Dbareos

open source data protection

Bareos
Backup Archiving REcovery Open Sourced

Main Reference

Bareos GmbH & Co KG
This manual documents Bareos version master (October 27, 2016)

Copyright (©) 1999-2012, Free Software Foundation Europe e.V.
Copyright (©) 2010-2012, Planets Communications B.V.
Copyright (©) 2013-2016, Bareos GmbH & Co. KG
Bareos (R) is a registered trademark of Bareos GmbH & Co KG.
Bacula ®) is a registered trademark of Kern Sibbald.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A
copy of the license is included in the section entitled ”GNU Free Documentation License”.

Contents

I Introduction and Tutorial

1 What is Bareos?

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
1.10

History o e
Who Needs Bareos?
Bareos Components or Services Lo
Bareos Version Numbers and Releases o o
Bareos Packages e
Quick Start
Terminology o e
What Bareos is Not e
Interactions Between the Bareos Services oo o
The Current State of Bareos L e
1.10.1 What is Implemented Lo
1.10.2 Advantages Over Other Backup Programs
1.10.3 Current Implementation Restrictions L.
1.10.4 Design Limitations or Restrictions
1.10.5 Ttems to Note e

2 Installing Bareos

2.1
2.2
2.3

2.4

2.5

3.1
3.2

3.3

3.4

3.5

Decide about the Bareos release touse
Decide about the Database Backend,
Install the Bareos Software Packages
2.3.1 Install on RedHat based Linux Distributions
2.3.2 Install on SUSE based Linux Distributions
2.3.3 Install on Debian based Linux Distributions
2.3.4 Install on Univention Corporate Server
Prepare Bareos databaseo
2.4.1 Debian based Linux Distributions,
2.4.2 Other Platforms e
Start the daemons

Installing Bareos Webui

Features L o e
System Requirements oL
3.2.1 Version < 16.2 oL
Installation oL
3.3.1 Adding the Bareos Repository o
3.3.2 Install the bareos-webui package Lo L.
3.3.3 Minimal Configuration
3.34 Configuration Details o
Upgrade from 15.2 to0 16.2
3.4.1 Console/Profile changes
3.4.2 directors.ini e
3.4.3 configuration.dni L oL
Additional informationo
3.5.1 NGINX .

0 00 OO U WWw W W -

o = T S
NN = = OO

13
13
13
14
14
15
15
16
16
16
17
17

ii CONTENTS
4 Updating Bareos 27
4.1 Updating the configuration files L 27
4.2 Updating the database scheme L 27
4.2.1 Debian based Linux Distributions 27

4.2.2 Other Platforms 27

5 Getting Started with Bareos 29
5.1 Understanding Jobs and Schedules L 29
5.2 Understanding Pools, Volumes and Labels 0. 29
5.3 Setting Up Bareos Configuration Files 0. 30
5.4 Testing your Configuration Files o 30

6 Tutorial 31
6.1 Starting the Database 31
6.2 Installing Bareos 31
6.3 Starting the Daemons 31
6.4 Using the Director to Query and Start Jobs 32
6.5 Running a Job 33
6.6 Restoring Your Files e 36
6.7 Quitting the Console Program L 38
6.8 Adding a Client e 38
6.9 Patience When Starting Daemons or Mounting Blank Tapes 41
6.10 Pools e e e 41
6.11 Other Useful Console Commands i 42

7 Critical Items to Implement Before Production 43
7.1 Critical Items e e e e e 43
7.2 Recommended Items e 44

II Configuration 45
8 Customizing the Configuration 47
8.1 Configuration Path Layout 47
8.1.1 What configuration will be used?o 48

8.1.2 Subdirectory Configuration Scheme L L. 48

8.2 Configuration File Format 50
8.2.1 Character Sets e 51

8.2.2 Comments e 51

8.2.3 Semicolons e 51

8.2.4 Including other Configuration Files 51

8.3 Resource oL e 52
8.3.1 Resource Directive o Lo 52

8.3.2 Resource Directive Keyword o 52

8.3.3 Resource Directive Value o 52

8.3.4 Resource Types L o 57

8.4 Names, Passwords and Authorization, 57

9 Director Configuration 61
9.1 Director Resource e e 61
9.2 Job Resource L e 67
9.3 JobDefs Resource e 89
9.4 Schedule Resource e 89
9.4.1 Technical Notes on Schedules 92

9.5 FileSet Resource L 93
9.5.1 FileSet Include Ressource e 93

9.5.2 FileSet Exclude Ressource e 106

9.5.3 FileSet Examples e 107

9.5.4 Windows FileSets e 111

9.5.5 Testing Your FileSet 112

9.6

Client Resource e e e 112

CONTENTS

9.7
9.8

9.9

9.10
9.11
9.12
9.13
9.14

Storage Resource L e
Pool Resource L e
9.8.1 Scratch Pool
Catalog Resource e
Messages Resource
Console Resource
Profile Resource L
Counter Resource e
Example Director Configuration File oL

10 Storage Daemon Configuration

10.1
10.2
10.3
10.4

10.5
10.6
10.7

Storage Resource
Director Resource L
NDMP Resource o 0 e e e e e
Device Resource L e e e
10.4.1 Edit Codes for Mount and Unmount Directives
10.4.2 Devices that require amount (USB)
Autochanger Resource e
Messages Resource e
Example Storage Daemon Configuration File

11 Client/File Daemon Configuration

11.1
11.2
11.3
11.4

Client Resource e
Director Resource e
Messages Resource L e
Example Client Configuration File

12 Messages Resource

12.1

Message Types . . . o o o o o i e e e e e e

13 Console Configuration

13.1
13.2
13.3

Director Resource L e
Console Resource e
Example Console Configuration File
13.3.1 Using Named Consoles ittt e e

14 Monitor Configuration

14.1
14.2
14.3
14.4
14.5

Monitor Resource e e
Director Resource e e e e e e e e e e e e e
Client Resource e
Storage Resource
Tray Monitor e

IIT Tasks and Concepts

15 Bareos Console

15.1
15.2

15.3
154

15.5

Console Configuration e
Running the Console Program
15.2.1 Exit the Console Program o
15.2.2 Running the Console from a Shell Script
Console Keywords e
Console Commands e e
15.4.1 Special dot (.) Commands
15.4.2 Special At (@) Commands Lo L
Adding Volumes to a Pool o

iii

118
123
131
131
134
134
137
139
140

145
145
151
153
154
166
166
167
168
168

173
173
180
183
183

185
188

191
191
193
196
196

199
199
200
201
201
202

205

iv CONTENTS
16 The Restore Command 231
16.1 General oL 231
16.2 The Restore Command L 231
16.3 Selecting Files by Filename 235
16.4 Replace Options 236
16.5 Command Line Arguments e 236
16.6 Using File Relocation 237
16.7 Restoring Directory Attributes 238
16.8 Restoring on Windows L e 239
16.9 Restore Errors. oL 239
16.10 Example Restore Job Resource 239
16.11 File Selection Commands L 240
17 Volume Management 243
17.1 Key Concepts and Resource Records o 243
17.1.1 Pool Options to Limit the Volume Usage 244

17.1.2 Automatic Volume Labeling 244

17.1.3 Restricting the Number of Volumes and Recycling 245

17.2 Concurrent Disk Jobs 246
17.2.1 Example for two clients, separate devices and recycling 246

17.2.2 Using Multiple Storage Devices o 248

17.3 Automatic Volume Recycling 250
17.3.1 Automatic Pruning 251

17.3.2 Pruning Directives Lo o 251

17.3.3 Recycling Algorithm 252

17.3.4 Recycle Status 253

17.3.5 Daily, Weekly, Monthly Tape Usage Example 254

17.3.6 Automatic Pruning and Recycling Example 255

17.3.7 Manually Recycling Volumes oo 257

18 Automated Disk Backup 259
18.1 Ovwerall Design 259
18.1.1 Full Pool e 260

18.1.2 Differential Pool 260

18.1.3 Incremental Pool 260

18.2 Configuration Files 261
19 Autochanger Support 265
19.1 Knowing What SCSI Devices You Have 266
19. 1.1 LANUX .« . o v e e e e e e 266

19.1.2 FreeBSD e 266

19.2 Slots e e e 266
19.3 Multiple Devices o e e 267
19.4 Device Configuration Records L 267
19.5 An Example Configuration Fileo o 268
19.6 A Multi-drive Example Configuration File 0. .. 268
19.7 Specifying Slots When Labeling L Lo 269
19.8 Changing Cartridges i e e 269
19.9 Dealing with Multiple Magazines 269
19.10 Update Slots Command e e e 270
19.11 Using the Autochanger 270
19.12 Barcode Support 271
19.13 Use bconsole to display Autochanger content, 272
19.14 Bareos Autochanger Interface L oL 272
19.15 Tapespeed and blocksizes L 272

CONTENTS

20.1

20.2
20.3

21 Data Spooling

21.1

22.1
22.2

23.1
23.2
23.3

23.4
23.5

23.6

24.1
24.2

26 Plugins

26.1

26.2

20 Using Tape Drives without Autochanger
Simple One Tape Backup
20.1.1 Advantages e e
20.1.2 Disadvantageso e e
20.1.3 Practical Details L
Manually Changing Tapes o e
Daily Tape Rotation 0
20.3.1 Advantageso e e
20.3.2 Disadvantageso e e e e e e
20.3.3 Practical Details Lo
Data Spooling Directives
21.1.1 Additional Notes e
22 Migration and Copy
Important Migration Considerations o
Configure Copy or Migration Jobs L o
22.2.1 Example Migration Jobs L o
23 Always Incremental Backup Scheme
Conventional Backup Scheme Drawbacks L.
Always Incremental Concept
How to configure in Bareos
23.3.1 Always Incremental Backup Job oL oo o
23.3.2 Comnsolidate Job
23.3.3 Storagesand Pools oL L
How it works e
Enhancements for the Always Incremental Backup Scheme
23.5.1 The basic always incremental scheme 0oL
23.5.2 Always Incremental Max Full Age
23.5.3 Max Full Consolidations
Long Term Storage of Always Incremental Jobs
23.6.1 Copy Jobs
23.6.2 Virtual Full Jobs L
24 How to manually transfer data/volumes
Import Data from a Remote Storage Daemon
Import Data from a Independent Remote Full Bareos Installation
25 File Deduplication using Base Jobs
File Daemon Plugins L
26.1.1 bpipe Plugin e
26.1.2 PGSQL Plugin e
26.1.3 MySQL Plugin
26.1.4 MSSQL Plugin
26.1.5 LDAP Plugin
26.1.6 Cephfs Plugin e
26.1.7 Rados Plugin L
26.1.8 GlusterFS Plugin
26.1.9 python-fd Plugin
26.1.10 VMware Plugin e
Storage Daemon Plugins L oL
26.2.1 autoxflate-sd
26.2.2 scsicrypto-sd ... Lo e
26.2.3 scsitapealert-sd Lo
26.2.4 python-sd Plugin e
Director Plugins e e

26.3

26.3.1 python-dir Plugin

277
277
277
277
277
277
278
278
278
279

283
283
284

285
286
286
287

291
291
292
293
293
294
294
295
297
297
297
299
299
301
301

303
304
305

307

vi CONTENTS
27 The Windows Version of Bareos 323
27.1 Windows Installation e 323
27.1.1 Graphical Installation Lo 324

27.1.2 Command Line (Silent) Installation 325

27.2 Dealing with Windows Problems o o 326
27.2.1 Antivirus Program oL 326

27.2.2 Enable Debuggging L 326

27.3 Windows Compatibility Considerations 326
27.3.1 Exclusively Opened Files 326

27.3.2 Backing up the Windows Registry 0. 326

27.3.3 Windows Reparse Points o 326

27.3.4 Hard Links e e e e 328

27.3.5 FilesNotToBackup Registry Key 328

27.3.6 Windows dedup support e 328

27.3.7 Store all file attributes 328

27.3.8 Support for Windows EFS filesystems L. 329

27.4 Volume Shadow Copy Service (VSS) i 329
27.41 VSS Problems. 330

27.5 Windows Firewalls e e e 330
27.5.1 Network TCP Port e 330

27.6 Windows Restore Problems 330
277 Windows Backup Problemso 330
27.8 Windows Ownership and Permissions Problems 331
27.9 Advanced Windows Configuration 331
27.9.1 Windows Serviceo e 331

27.9.2 Windows Specific Command Line Options 332

28 Network setup 333
28.1 Client Initiated Connection 0 i i it e e e e e 333
28.2 Passive Clients e 334
28.2.1 USAGE e 334

29 Transport Encryption 337
29.1 TLS Configuration Directives e 337
29.2 Getting TLS Certificates e 338
29.3 Example TLS Configuration Files Lo 338
30 Data Encryption 341
30.1 Encryption Technical Details 341
30.2 Generating Private/Public Encryption Keys L 342
30.3 Example Data Encryption Configurations (bareos-fd.conf) 342
30.4 Decrypting with a Master Key 342

31 NDMP Backups with Bareos 343
31.1 Example Setup for NDMP backup 343
31.1.1 Enable NDMP on your storage appliance 343

31.1.2 Bareos Director: Configure NDMP Client Resource 344

31.1.3 Bareos Storage Daemon: Configure NDMP 345

31.1.4 Bareos Director: Configure a Paired Storage 346

31.1.5 Bareos Director: Configure NDMP Fileset 347

31.1.6 Bareos Director: Configure NDMP Jobs 348

31.2 Run NDMP Backup e 349
31.2.1 NDMP Backup Level e 351

31.3 Run NDMP Restore e e e 351
31.3.1 Full Restore e e e 352

31.3.2 Restore files to original path 352

31.3.3 Restore files to different path 354

31.4 NDMP Copy Jobs o e 354
31.4.1 Restore to NDMP Primary Storage System 356

31.5 NDMP Debugging 357
31.6 Limitations e e e e e e 357

CONTENTS vii

31.6.1 NDMP Job limitations when scanning in volumes 357

31.6.2 Single file restore on incremental backups o000 357

31.6.3 Restore always transfers the full main backup file to the Primary Storage System . 357

31.6.4 Temporary memory mapped database 358

31.7 Tested Environments Lo e 358
32 Catalog Maintenance 359
32.1 Catalog Database L e 359
32.1.1 dbconfig-common (Debian) L 359

32.1.2 Manual Configuration 360

32.2 Retention Periods 365
32.3 PostgreSQL e 367
32.3.1 Compacting Your PostgreSQL Database 367

32.3.2 Repairing Your PostgreSQL Database 369

324 MySQL/MariaDB 370
32.4.1 MySQL/MariaDB Support 370

32.4.2 Compacting Your MySQL Database 370

32.4.3 Repairing Your MySQL Database L .. 370

32.44 MySQL Tableis Full 370

32.4.5 MySQL Server Has Gone Away o 371

32.4.6 MySQL Temporary Tables 371

32.5 Performance Issues Indexes 371
32.5.1 PostgreSQL Indexes 371

32.5.2 MySQL Indexes o . . o 371

32.5.3 SQLite Indexes 372

32.6 Backing Up Your Bareos Database 372
32.7 Database Size 373
33 Bareos Security Issues 375
33.1 Configuring and Testing TCP Wrappers 375
33.2 Secure Erase Command 375
IV Appendix 377
A System Requirements 379
B Operating Systems 381
Bl e 382
B.1.1 Packages for the different Linux platforms 382

B.1.2 Univention Corporate Server 385

B.1.3 Debian.org / Ubuntu Universe 390

B4 MacOS X . . o o e 391

C Bareos Programs 393
C.1 Parameter L e 393
C.1.1 Specifying the Configuration File 393

C.1.2 Specifying a Device Name Fora Tape 393

C.1.3 Specifying a Device Name Fora File 393

C.1.4 Specifying Volumes L 393

C.2 Bareos Daemons e 394
C.2.1 Daemon Command Line Options 394

C.2.2 bareos-dir L e 394

C.2.3 bareos-sd 394

C.2.4 bareos-fd L 394

C.3 Imteractive Programs 394
C.3.1 beconsole e 394

C.3.2 bareos-webui 394

C.3.3 bat 395

C.4 Volume Utility Commands e 395

C.4.1 bls « oo 395

viii

CONTENTS

C.4.2 bextract e e e
C.4.3 bScan
C.dd DCODY « -« o e
C.4.5 btape
C.4.6 DSCrypto . . . o v e e e
C.5 Other Programs« . e
C.5.1 bsmtp
C.5.2 bareos-dbcheck
C.5.3 DBregex v v i i e
C.5.4 bwild. . . . o e
C.5.5 bpluginfo e
The Bootstrap File
D.1 Bootstrap File Format e
D.2 Automatic Generation of Bootstrap Files. L.
D.3 Bootstrap for bscan
D.4 Bootstrap Exampleo
Verify File Integrity with Bareos
E.1 The Details e
E.2 Running the Verify e
E.3 What To Do When Differences Are Found
E.4 A Verify Configuration Example o
Backward Compatibility
F.1 Tape Formats e e e e
F.2 Compatibility between Bareos and Bacula
F.2.1 Upgrade from Bacula 5.2 to Bareos 0.
Catalog Tables
G.1 Job . o e e e
G.1.1 JobStatus
Howtos
H.1 Use a dummy device to test the backup
H.2 Backup Of Third Party Databases
H.2.1 Backup of MSSQL Databases with Bareos Plugin
H.2.2 Backup of a PostgreSQL Database
H.2.3 Backup of a MySQL Database
Disaster Recovery Using Bareos
I.1 General
IL1.1 Important Considerations L Lo
1.2 Steps to Take Before Disaster Strikes L
I.3 Bare Metal Recovery of Bareos Clients
.31 Linux . . . o e
14 Restoring a Bareos Server L L
Troubleshooting
J.1 Debug Messages e e e
J.2 Client Access Problems e
J.2.1 Difficulties Connecting from the FD tothe SD
J.2.2 Authorization Errors e
J.3 Concurrent Jobs e
J.4 Tape Labels: ANSTor IBM e
J.4.1 Reading L
J.4.2 Writing e
J.5 Tape Drive o e e e
J.5.1 Get Your Tape Drive Working oo
J.6 Autochanger e e

J.6.1 Testing Autochanger and Adapting mtx-changer script

CONTENTS

J.7 Restore

J.7.1 Restore a pruned job using a patterno

J.7.2 Problems Restoring Files .
J.7.3 Restoring Files Can Be Slow

J.74 Restoring When Things Go Wrong

K Debugging
K.1 Traceback
K.2 Testing The Traceback

K.2.1 Getting A Traceback On Other Systems

K.3 Manually Running Bareos Under The

L Release Notes

Debugger oo

M Bareos Copyright, Trademark, and Licenses

M.1 Licenses Overview
M.2 GNU Free Documentation License .
M.3 GNU Affero Gerneral Public License
M.4 GNU Lesser Gerneral Public License

V Index
General
Director
Storage Daemon
File Daemon

Console

ix

453
453
453
454
454

459
459
459
460
460

461

467
467
469
477
489

493
495
506
510
512

513

Part 1

Introduction and Tutorial

Chapter 1

What is Bareos”?

Bareos is a set of computer programs that permits the system administrator to manage backup, recovery,
and verification of computer data across a network of computers of different kinds. Bareos can also run
entirely upon a single computer and can backup to various types of media, including tape and disk.

In technical terms, it is a network Client/Server based backup program. Bareos is relatively easy to use and
efficient, while offering many advanced storage management features that make it easy to find and recover
lost or damaged files. Due to its modular design, Bareos is scalable from small single computer systems to
systems consisting of hundreds of computers located over a large network.

1.1 History

Bareos is a fork of the open source project Bacula version 5.2. In 2010 the Bacula community developer
Marco van Wieringen started to collect rejected or neglected community contributions in his own branch.
This branch was later on the base of Bareos and since then was enriched by a lot of new features.

This documentation also bases on the original Bacula documentation, it is technically also a fork of the
documenation created following the rules of the GNU Free Documentation License.

Original author of Bacula and it’s documentation is Kern Sibbald. We thank Kern and all contributors to
Bacula and it’s documentation. We maintain a list of contributors to Bacula (until the time we’ve started
the fork) and Bareos in our AUTHORS file.

1.2 Who Needs Bareos?

If you are currently using a program such as tar, dump, or bru to backup your computer data, and you would
like a network solution, more flexibility, or catalog services, Bareos will most likely provide the additional
features you want. However, if you are new to Unix systems or do not have offsetting experience with a
sophisticated backup package, the Bareos project does not recommend using Bareos as it is much more
difficult to setup and use than tar or dump.

If you want Bareos to behave like the above mentioned simple programs and write over any tape that you
put in the drive, then you will find working with Bareos difficult. Bareos is designed to protect your data
following the rules you specify, and this means reusing a tape only as the last resort. It is possible to ”force”
Bareos to write over any tape in the drive, but it is easier and more efficient to use a simpler program for
that kind of operation.

If you would like a backup program that can write to multiple volumes (i.e. is not limited by your tape drive
capacity), Bareos can most likely fill your needs.

If you are currently using a sophisticated commercial package such as Legato Networker, ARCservel T, Arkeia,
IBM Tivoli Storage Manager or PerfectBackup+, you may be interested in Bareos, which provides many of
the same features and is free software available under the GNU AGPLv3 software license.

1.3 Bareos Components or Services

Bareos is made up of the following major components or services: Director, Console, File, Storage, and
Monitor services.

http://www.bareos.org/en/faq/items/why_fork.html
http://www.bacula.org
http://www.bacula.org/5.2.x-manuals/en/main/main/
https://github.com/bareos/bareos/blob/master/AUTHORS

Bareos Director

The Director is the central control program for all the other daemons. It schedules and supervises all
the backup, restore, verify and archive operations. The system administrator uses the Bareos Director to
schedule backups and to recover files. The Director runs as a daemon (or service) in the background.

Bareos Console

The Bareos Console (bconsole) is the program that allows the administrator or user to communicate with
the Bareos Director. It runs in a shell window (i.e. TTY interface). Most system administrators will find
this completely adequate. For more details see the Bareos Console.

Bareos File Daemon

The Bareos File Daemon is a program that must be installed on each (Client) machine that should be backed
up. At the request of the Bareos Director, it finds the files to be backed up and sends them (their data) to
the Bareos Storage Daemon.

It is specific to the operating system on which it runs and is responsible for providing the file attributes and
data when requested by the Bareos Director.

The Bareos File Daemon is also responsible for the file system dependent part of restoring the file attributes
and data during a recovery operation. This program runs as a daemon on the machine to be backed up.

Bareos Storage Daemon

The Bareos Storage Daemon is responsible, at the Bareos Director request, for accepting data from a Bareos
File Daemon and storing the file attributes and data to the physical backup media or volumes. In the case
of a restore request, it is responsible to find the data and send it to the Bareos File Daemon.

There can be multiple Bareos Storage Daemon in your environment, all controlled by the same Bareos
Director.

The Storage services runs as a daemon on the machine that has the backup device (such as a tape drive).

Catalog

The Catalog services are comprised of the software programs responsible for maintaining the file indexes
and volume databases for all files backed up. The Catalog services permit the system administrator or user
to quickly locate and restore any desired file. The Catalog services sets Bareos apart from simple backup
programs like tar and bru, because the catalog maintains a record of all Volumes used, all Jobs run, and
all Files saved, permitting efficient restoration and Volume management. Bareos currently supports three
different databases, MySQL, PostgreSQL, and SQLite, one of which must be chosen when building Bareos.
The three SQL databases currently supported (MySQL, PostgreSQL or SQLite) provide quite a number of
features, including rapid indexing, arbitrary queries, and security. Although the Bareos project plans to sup-
port other major SQL databases, the current Bareos implementation interfaces only to MySQL, PostgreSQL
and SQLite.

To perform a successful save or restore, the following four daemons must be configured and running: the
Director daemon, the File daemon, the Storage daemon, and the Catalog service (MySQL, PostgreSQL or
SQLite).

1.4 Bareos Version Numbers and Releases

Bareos version numbers consists of three parts: YY.Q.C

YY year (last two digits)

Q quarter of the year

YY.Q year and quarter of the code freeze. After this, as a general rule, no new feature should
get introduced to this Bareos branch. Subsequent release are for bugfixing.

C Release counter. For every subsequent release, this counter is incremented. Beginning

with 16.2, numbers from 1 to 3 represents the month of the quarter during development.
After the code freeze, the number is set to 4. So, stable releases get number from 4
onwards. Maintenance releases get numbers starting from 5 onwards.

Following information can be determined from the Bareos release bareos-16.2.4:

e 16.2: Code freeze have been in the second quarter of 2016

e 4: this is the first stable release of the bareos-16.2 branch

1.5 Bareos Packages

Following Bareos Linux packages are available (release 14.2):

Package Name

Description

bareos

bareos-bat

bareos-bconsole

bareos-client

bareos-common
bareos-database-common
bareos-database-mysql
bareos-database-postgresql
bareos-database-sqlite3
bareos-database-tools
bareos-devel

bareos-director
bareos-director-python-plugin
bareos-filedaemon
bareos-filedaemon-ceph-plugin
bareos-filedaemon-glusterfs-plugin
bareos-filedaemon-ldap-python-plugin
bareos-filedaemon-python-plugin
bareos-storage
bareos-storage-ceph
bareos-storage-fifo
bareos-storage-glusterfs
bareos-storage-python-plugin
bareos-storage-tape

bareos-tools

bareos-traymonitor
bareos-vadp-dumper
bareos-vmware-plugin
bareos-vmware-vix-disklib
bareos-webui

Backup Archiving REcovery Open Sourced - metapackage
Bareos Admin Tool (GUI)

Bareos administration console (CLI)

Bareos client Meta-All-In-One package

Common files, required by multiple Bareos packages
Generic abstraction libs and files to connect to a database
Libs and tools for mysql catalog

Libs and tools for postgresql catalog

Libs and tools for sqlite3 catalog

Bareos CLI tools with database dependencies (bareos-dbcheck, bscan)
Devel headers

Bareos Director daemon

Python plugin for Bareos Director daemon

Bareos File daemon (backup and restore client)

CEPH plugin for Bareos File daemon

GlusterFS plugin for Bareos File daemon

LDAP Python plugin for Bareos File daemon

Python plugin for Bareos File daemon

Bareos Storage daemon

CEPH support for the Bareos Storage daemon

FIFO support for the Bareos Storage backend

GlusterFS support for the Bareos Storage daemon
Python plugin for Bareos Storage daemon

Tape support for the Bareos Storage daemon

Bareos CLI tools (bcopy, bextract, bls, bregex, bwild)
Bareos Tray Monitor (QT)

VADP Dumper - vStorage APIs for Data Protection Dumper program
Bareos VMware plugin

VMware vix disklib distributable libraries

Bareos Web User Interface

Not all packages (especially optional backends and plugins) are available on all platforms. For details, see
Packages for the different Linux platforms.

Additionally, packages containing debug information are available. These are named differently depending
on the distribution (bareos-debuginfo or bareos-dbg or ...).

Not all packages are required to run Bareos.

e For the Bareos Director, the package bareos-director and one of bareos-database-postgresql,
bareos-database-mysql or bareos-database-sqlite3 are required (use bareos-database-sqlite3

only for testing).

e For the Bareos Storage Daemon, the package bareos-storage is required. If you plan to connect tape
drives to the storage director, also install the package bareos-storage-tape. This is kept separately,
because it has additional dependencies for tape tools.

e On a client, only the package bareos-filedaemon is required. If you run it on a workstation, the
packages bareos-traymonitor gives the user information about running backups.

e On a Backup Administration system you need to install at least bareos-bconsole to have an interac-

tive console to the Bareos Director.

1.6 Quick Start

To get Bareos up and running quickly, the author recommends that you first scan the Terminology section
below, then quickly review the next chapter entitled The Current State of Bareos, then the Installing Bareos,
the Getting Started with Bareos, which will give you a quick overview of getting Bareos running. After which,
you should proceed to the chapter How to Configure Bareos, and finally the chapter on Running Bareos.

1.7 Terminology

Administrator The person or persons responsible for administrating the Bareos system.
Backup The term Backup refers to a Bareos Job that saves files.

Bootstrap File The bootstrap file is an ASCII file containing a compact form of commands that allow
Bareos or the stand-alone file extraction utility (bextract) to restore the contents of one or more
Volumes, for example, the current state of a system just backed up. With a bootstrap file, Bareos can
restore your system without a Catalog. You can create a bootstrap file from a Catalog to extract any
file or files you wish.

Catalog The Catalog is used to store summary information about the Jobs, Clients, and Files that were
backed up and on what Volume or Volumes. The information saved in the Catalog permits the admin-
istrator or user to determine what jobs were run, their status as well as the important characteristics
of each file that was backed up, and most importantly, it permits you to choose what files to restore.
The Catalog is an online resource, but does not contain the data for the files backed up. Most of the
information stored in the catalog is also stored on the backup volumes (i.e. tapes). Of course, the
tapes will also have a copy of the file data in addition to the File Attributes (see below).

The catalog feature is one part of Bareos that distinguishes it from simple backup and archive programs
such as dump and tar.

Client In Bareos’s terminology, the word Client refers to the machine being backed up, and it is synonymous
with the File services or File daemon, and quite often, it is referred to it as the FD. A Client is defined
in a configuration file resource.

Console The program that interfaces to the Director allowing the user or system administrator to control
Bareos.

Daemon Unix terminology for a program that is always present in the background to carry out a designated
task. On Windows systems, as well as some Unix systems, daemons are called Services.

Directive The term directive is used to refer to a statement or a record within a Resource in a configuration
file that defines one specific setting. For example, the Name directive defines the name of the Resource.

Director The main Bareos server daemon that schedules and directs all Bareos operations. Occasionally,
the project refers to the Director as DIR.

Differential A backup that includes all files changed since the last Full save started. Note, other backup
programs may define this differently.

File Attributes The File Attributes are all the information necessary about a file to identify it and all its
properties such as size, creation date, modification date, permissions, etc. Normally, the attributes are
handled entirely by Bareos so that the user never needs to be concerned about them. The attributes
do not include the file’s data.

File daemon The daemon running on the client computer to be backed up. This is also referred to as the
File services, and sometimes as the Client services or the FD.

FileSet A FileSet is a Resource contained in a configuration file that defines the files to be backed up. It
consists of a list of included files or directories, a list of excluded files, and how the file is to be stored
(compression, encryption, signatures). For more details, see the FileSet Resource in the Director
chapter of this document.

Incremental A backup that includes all files changed since the last Full, Differential, or Incremental backup
started. It is normally specified on the Level directive within the Job resource definition, or in a
Schedule resource.

Job A Bareos Job is a configuration resource that defines the work that Bareos must perform to backup
or restore a particular Client. It consists of the Type (backup, restore, verify, etc), the Level (full,
differential, incremental, etc.), the FileSet, and Storage the files are to be backed up (Storage device,
Media Pool). For more details, see the Job Resource in the Director chapter of this document.

Monitor The program that interfaces to all the daemons allowing the user or system administrator to
monitor Bareos status.

Resource A resource is a part of a configuration file that defines a specific unit of information that is
available to Bareos. It consists of several directives (individual configuration statements). For example,
the Job resource defines all the properties of a specific Job: name, schedule, Volume pool, backup type,
backup level, ...

Restore A restore is a configuration resource that describes the operation of recovering a file from backup
media. It is the inverse of a save, except that in most cases, a restore will normally have a small set
of files to restore, while normally a Save backs up all the files on the system. Of course, after a disk
crash, Bareos can be called upon to do a full Restore of all files that were on the system.

Schedule A Schedule is a configuration resource that defines when the Bareos Job will be scheduled for
execution. To use the Schedule, the Job resource will refer to the name of the Schedule. For more
details, see the Schedule Resource in the Director chapter of this document.

Service This is a program that remains permanently in memory awaiting instructions. In Unix environ-
ments, services are also known as daemons.

Storage Coordinates The information returned from the Storage Services that uniquely locates a file
on a backup medium. It consists of two parts: one part pertains to each file saved, and the other
part pertains to the whole Job. Normally, this information is saved in the Catalog so that the user
doesn’t need specific knowledge of the Storage Coordinates. The Storage Coordinates include the File
Attributes (see above) plus the unique location of the information on the backup Volume.

Storage Daemon The Storage daemon, sometimes referred to as the SD, is the code that writes the
attributes and data to a storage Volume (usually a tape or disk).

Session Normally refers to the internal conversation between the File daemon and the Storage daemon.
The File daemon opens a session with the Storage daemon to save a FileSet or to restore it. A session
has a one-to-one correspondence to a Bareos Job (see above).

Verify A verify is a job that compares the current file attributes to the attributes that have previously been
stored in the Bareos Catalog. This feature can be used for detecting changes to critical system files
similar to what a file integrity checker like Tripwire does. One of the major advantages of using Bareos
to do this is that on the machine you want protected such as a server, you can run just the File daemon,
and the Director, Storage daemon, and Catalog reside on a different machine. As a consequence, if
your server is ever compromised, it is unlikely that your verification database will be tampered with.

Verify can also be used to check that the most recent Job data written to a Volume agrees with what
is stored in the Catalog (i.e. it compares the file attributes), *or it can check the Volume contents
against the original files on disk.

Retention Period There are various kinds of retention periods that Bareos recognizes. The most important
are the File Retention Period, Job Retention Period, and the Volume Retention Period. Each of
these retention periods applies to the time that specific records will be kept in the Catalog database.
This should not be confused with the time that the data saved to a Volume is valid.

The File Retention Period determines the time that File records are kept in the catalog database. This
period is important for two reasons: the first is that as long as File records remain in the database,
you can "browse” the database with a console program and restore any individual file. Once the File
records are removed or pruned from the database, the individual files of a backup job can no longer be
"browsed”. The second reason for carefully choosing the File Retention Period is because the volume
of the database File records use the most storage space in the database. As a consequence, you must
ensure that regular ”pruning” of the database file records is done to keep your database from growing
too large. (See the Console prune command for more details on this subject).

The Job Retention Period is the length of time that Job records will be kept in the database. Note,
all the File records are tied to the Job that saved those files. The File records can be purged leaving
the Job records. In this case, information will be available about the jobs that ran, but not the details

of the files that were backed up. Normally, when a Job record is purged, all its File records will also
be purged.

The Volume Retention Period is the minimum of time that a Volume will be kept before it is reused.
Bareos will normally never overwrite a Volume that contains the only backup copy of a file. Under
ideal conditions, the Catalog would retain entries for all files backed up for all current Volumes. Once
a Volume is overwritten, the files that were backed up on that Volume are automatically removed
from the Catalog. However, if there is a very large pool of Volumes or a Volume is never overwritten,
the Catalog database may become enormous. To keep the Catalog to a manageable size, the backup
information should be removed from the Catalog after the defined File Retention Period. Bareos
provides the mechanisms for the catalog to be automatically pruned according to the retention periods
defined.

Scan A Scan operation causes the contents of a Volume or a series of Volumes to be scanned. These
Volumes with the information on which files they contain are restored to the Bareos Catalog. Once
the information is restored to the Catalog, the files contained on those Volumes may be easily restored.
This function is particularly useful if certain Volumes or Jobs have exceeded their retention period and
have been pruned or purged from the Catalog. Scanning data from Volumes into the Catalog is done
by using the bscan program. See the bscan section of the Bareos Utilities chapter of this manual for
more details.

Volume A Volume is an archive unit, normally a tape or a named disk file where Bareos stores the data
from one or more backup jobs. All Bareos Volumes have a software label written to the Volume by
Bareos so that it identifies what Volume it is really reading. (Normally there should be no confusion
with disk files, but with tapes, it is easy to mount the wrong one.)

1.8 What Bareos is Not

Bareos is a backup, restore and verification program and is not a complete disaster recovery system in itself,
but it can be a key part of one if you plan carefully and follow the instructions included in the Disaster
Recovery chapter of this manual.

1.9 Interactions Between the Bareos Services

The following block diagram shows the typical interactions between the Bareos Services for a backup job.
Each block represents in general a separate process (normally a daemon). In general, the Director oversees
the flow of information. It also maintains the Catalog.

File Attributes + Data

Z onsole File
daegmon
ser Comunands
et ; Cormmands
Anthonzation
. Catalog Fequests Storage
Director
daem on
File &thibutes
File & tiributes Storage Location
Storage Locahon
= =
SQL DEMS For 50

Physical Media

File Attobates + Data

10

1.10 The Current State of Bareos

1.10.1

What is Implemented

e Job Control

Network backup/restore with centralized Director.

Internal scheduler for automatic Job execution.

Scheduling of multiple Jobs at the same time.

You may run one Job at a time or multiple simultaneous Jobs (sometimes called multiplexing).
Job sequencing using priorities.

Console interface to the Director allowing complete control. Some GUIs are also available.

o Security

Verification of files previously cataloged, permitting a Tripwire like capability (system break-in
detection).

CRAM-MD5 password authentication between each component (daemon).
Configurable TLS (SSL) communications encryption between each component.
Configurable Data (on Volume) encryption on a Client by Client basis.
Computation of MD5 or SHA1 signatures of the file data if requested.

e Restore Features

Restore of one or more files selected interactively either for the current backup or a backup prior
to a specified time and date.

Listing and Restoration of files using stand-alone bls and bextract tool programs. Among other
things, this permits extraction of files when Bareos and/or the catalog are not available. Note, the
recommended way to restore files is using the restore command in the Console. These programs
are designed for use as a last resort.

Ability to restore the catalog database rapidly by using bootstrap files (previously saved).

Ability to recreate the catalog database by scanning backup Volumes using the bscan program.

e SQL Catalog

Catalog database facility for remembering Volumes, Pools, Jobs, and Files backed up.
Support for PostgreSQL, MySQL and SQLite Catalog databases.
User extensible queries to the PostgreSQL, MySQL and SQLite databases.

e Advanced Volume and Pool Management

Labeled Volumes, preventing accidental overwriting (at least by Bareos).

Any number of Jobs and Clients can be backed up to a single Volume. That is, you can backup
and restore Linux, Unix and Windows machines to the same Volume.

Multi-volume saves. When a Volume is full, Bareos automatically requests the next Volume and
continues the backup.

Pool and Volume library management providing Volume flexibility (e.g. monthly, weekly, daily
Volume sets, Volume sets segregated by Client, ...).

Machine independent Volume data format. Linux, Solaris, and Windows clients can all be backed
up to the same Volume if desired.

The Volume data format is upwards compatible so that old Volumes can always be read.

A flexible message handler including routing of messages from any daemon back to the Director
and automatic email reporting.

Data spooling to disk during backup with subsequent write to tape from the spooled disk files.
This prevents tape ”"shoe shine” during Incremental/Differential backups.

e Advanced Support for most Storage Devices

11

— Autochanger support using a simple shell interface that can interface to virtually any autoloader
program. A script for mtx is provided.

— Support for autochanger barcodes — automatic tape labeling from barcodes.

— Automatic support for multiple autochanger magazines either using barcodes or by reading the
tapes.

— Support for multiple drive autochangers.
— Raw device backup/restore. Restore must be to the same device.
— All Volume blocks contain a data checksum.

— Migration support — move data from one Pool to another or one Volume to another.
Multi-Operating System Support

— Programmed to handle arbitrarily long filenames and messages.

— Compression on a file by file basis done by the Client program if requested before network transit.
— Saves and restores POSIX ACLs and Extended Attributes on most OSes if enabled.

— Access control lists for Consoles that permit restricting user access to only their data.

— Support for save/restore of files larger than 2GB.

Support ANSI and IBM tape labels.

— Support for Unicode filenames (e.g. Chinese) on Win32 machines

— Consistent backup of open files on Win32 systems using Volume Shadow Copy (VSS).

— Support for path/filename lengths of up to 64K on Win32 machines (unlimited on Unix/Linux
machines).

Miscellaneous

— Multi-threaded implementation.

1.10.2 Advantages Over Other Backup Programs

Bareos handles multi-volume backups.

A full comprehensive SQL standard database of all files backed up. This permits online viewing of files
saved on any particular Volume.

Automatic pruning of the database (removal of old records) thus simplifying database administration.
The modular but integrated design makes Bareos very scalable.

Bareos has a built-in Job scheduler.

The Volume format is documented and there are simple C programs to read/write it.

Bareos uses well defined (IANA registered) TCP/IP ports — no rpcs, no shared memory.

Bareos installation and configuration is relatively simple compared to other comparable products.

Aside from several GUI administrative interfaces, Bareos has a comprehensive shell administrative
interface, which allows the administrator to use tools such as ssh to administrate any part of Bareos
from anywhere.

1.10.3 Current Implementation Restrictions

It is possible to configure the Bareos Director to use multiple Catalogs. However, this is neither advised,
nor supported. Multiple catalogs require more management because in general you must know what
catalog contains what data, e.g. currently, all Pools are defined in each catalog.

Bareos can generally restore any backup made from one client to any other client. However, if the
architecture is significantly different (i.e. 32 bit architecture to 64 bit or Win32 to Unix), some
restrictions may apply (e.g. Solaris door files do not exist on other Unix/Linux machines; there are
reports that Zlib compression written with 64 bit machines does not always read correctly on a 32 bit
machine).

12

1.10.4 Design Limitations or Restrictions

e Names (resource names, volume names, and such) defined in Bareos configuration files are limited to a
fixed number of characters. Currently the limit is defined as 127 characters. Note, this does not apply
to filenames, which may be arbitrarily long.

e Command line input to some of the stand alone tools — e.g. btape, bconsole is restricted to several
hundred characters maximum. Normally, this is not a restriction, except in the case of listing multiple
Volume names for programs such as bscan. To avoid this command line length restriction, please use
a .bsr file to specify the Volume names.

e Bareos configuration files for each of the components can be any length. However, the length of an
individual line is limited to 500 characters after which it is truncated. If you need lines longer than 500
characters for directives such as ACLs where they permit a list of names are character strings simply
specify multiple short lines repeating the directive on each line but with different list values.

1.10.5 Items to Note

e Bareos’s Differential and Incremental normal backups are based on time stamps. Consequently, if you
move files into an existing directory or move a whole directory into the backup fileset after a Full
backup, those files will probably not be backed up by an Incremental save because they will have
old dates. This problem is corrected by using Accurate mode backups or by explicitly updating the
date/time stamp on all moved files.

e In non Accurate mode, files deleted after a Full save will be included in a restoration. This is typical
for most similar backup programs. To avoid this, use Accurate mode backup.

Chapter 2

Installing Bareos

If you are like me, you want to get Bareos running immediately to get a feel for it, then later you want to go
back and read about all the details. This chapter attempts to accomplish just that: get you going quickly
without all the details.

Bareos comes prepackaged for a number of Linux distributions. So the easiest way to get to a running Bareos
installation, is to use a platform where prepacked Bareos packages are available. Additional information can
be found in the chapter Operating Systems.

If Bareos is available as a package, only 5 steps are required to get to a running Bareos System:

1. Decide about the Bareos release to use
2. Decide about the Database Backend
3. Install the Bareos Software Packages
4. Prepare Bareos database

5. Start the daemons

This will start a very basic Bareos installation which will regularly backup a directory to disk. In order to
fit it to your needs, you’ll have to adapt the configuration and might want to backup other clients.

2.1 Decide about the Bareos release to use
e http://download.bareos.org/bareos/release/latest/

You’ll find Bareos binary package repositories at http://download.bareos.org/. The latest stable released
version is available at http://download.bareos.org/bareos/release/latest/.

The public key to verify the repository is also in repository directory (Release.key for Debian based distri-
butions, repodata/repomd.xml.key for RPM based distributions).

Section Install the Bareos Software Packages describes how to add the software repository to your system.

2.2 Decide about the Database Backend

Next you have to decide, what database backend you want to use. Bareos supports following database
backends:

e PostgreSQL by package bareos-database-postgresql
e MariaDB/MySQL by package bareos-database-mysql

e Sqlite by package bareos-database-sqlite3
Please note! The Sqlite backend is only intended for testing, not for productive use.

PostgreSQL is the default backend. If you have no other preferences, you should use this one.

MariaDB/MySQL backend is also supported. If your system offers both, you should use MariaDB, see
MySQL/MariaDB Support.

13

http://download.bareos.org/bareos/release/latest/
http://download.bareos.org/
http://download.bareos.org/bareos/release/latest/

14

Sqlite backend is intended for testing purposes only.
The Bareos database packages have there dependencies only to the database client packages, therefore the
database itself must be installed manually.

2.3 Install the Bareos Software Packages

You will have to install the package bareos and the database backend package (bareos-database-*) you
want to use. The corresponding database should already be installed and running, see Decide about the
Database Backend.

If you do not explicitly choose a database backend, your operating system installer will choose one for
you. The default should be PostgreSQL, but depending on your operating system and the already installed
packages, this may differ.

The package bareos is only a meta package, that contains dependencies to the main components of Bareos,
see Bareos Packages. If you want to setup a distributed environment (like one Director, separate database
server, multiple Storage daemons) you have to choose the corresponding Bareos packages to install on each
hosts instead of just installing the bareos package.

2.3.1 Install on RedHat based Linux Distributions
RHEL>7, CentOS>7, Fedora

Bareos Version >= 15.2.0 requires the Jansson library package. On RHEL 7 it is available through the
RHEL Server Optional channel. On CentOS 7 and Fedora is it included on the main repository.

#
define parameter
#

DIST=RHEL_7

or

DIST=Fedora_24
DIST=Cent0S_7

DATABASE=postgresql
or
DATABASE=mysql

add the Bareos repository
URL=http://download.bareos.org/bareos/release/latest/$DIST
wget -0 /etc/yum.repos.d/bareos.repo $URL/bareos.repo

install Bareos packages
yum install bareos bareos-database-$DATABASE

Commands 2.1: Bareos installation on RHEL > 7 / CentOS > 7 / Fedora

RHEL 6, CentOS 6

Bareos Version >= 15.2.0 requires the Jansson library package. This package is available on EPEL 6. Make
sure, it is available on your system.

#
define parameter
#

DIST=RHEL_6
DIST=Cent0S_6

DATABASE=postgresql
or
DATABASE=mysql

add the Bareos repository
URL=http://download.bareos.org/bareos/release/latest/$DIST
wget -0 /etc/yum.repos.d/bareos.repo $URL/bareos.repo

install Bareos packages
yum install bareos bareos-database-$DATABASE

https://fedoraproject.org/wiki/EPEL

Commands 2.2: Bareos installation on RHEL > 6 / CentOS > 6

RHEL 5, CentOS 5

yum in RHEL 5/CentOS 5 has slightly different behaviour as far as dependency resolving is concerned: it
sometimes install a dependent package after the one that has the dependency defined. To make sure that it
works, install the desired Bareos database backend package first in a separate step:

#
define parameter
#

DIST=RHEL_5
or
DIST=Cent0S_5

DATABASE=postgresql
or
DATABASE=mysql

add the Bareos repository
URL=http://download.bareos.org/bareos/release/latest/$DIST
wget -0 /etc/yum.repos.d/bareos.repo $URL/bareos.repo

install Bareos packages
yum install bareos-database-$DATABASE
yum install bareos

Commands 2.3: Bareos installation on RHEL 5 / CentOS 5

2.3.2 Install on SUSE based Linux Distributions
SUSE Linux Enterprise Server (SLES), openSUSE

#
define parameter
#

DIST=SLE_12_SP1

or

DIST=SLE_11_SP4

DIST=openSUSE_Leap_42.1
DIST=openSUSE_13.2

DATABASE=postgresql
or
DATABASE=mysql

add the Bareos repository
URL=http://download.bareos.org/bareos/release/latest/$DIST
zypper addrepo —-refresh $URL/bareos.repo

install Bareos packages
zypper install bareos bareos-database-$DATABASE

Commands 2.4: Bareos installation on SLES / openSUSE

2.3.3 Install on Debian based Linux Distributions
Debian / Ubuntu

Bareos Version >= 15.2.0 requires the Jansson library package. On Ubuntu is it available in Ubuntu Universe.
In Debian, is it included in the main repository.

#
define parameter
#

DIST=Debian_8.0

16

or

DIST=Debian_7.0

DIST=xUbuntu_16.04
DIST=xUbuntu_14.04
DIST=xUbuntu_12.04

DATABASE=postgresql
or
DATABASE=mysql

URL=http://download.bareos.org/bareos/release/latest/$DIST/

add the Bareos repository
printf "deb $URL /\n" > /etc/apt/sources.list.d/bareos.list

add package key
wget -q $URL/Release.key -0- | apt-key add -

install Bareos packages
apt-get update
apt-get install bareos bareos-database-$DATABASE

Commands 2.5: Bareos installation on Debian / Ubuntu

If you prefer using the versions of Bareos directly integrated into the distributions, please note that there
are some differences, see Limitations of the Debian.org/Ubuntu Universe version of Bareos.

2.3.4 Install on Univention Corporate Server

Bareos offers additional functionality and integration into an Univention Corporate Server environment.
Please follow the intructions in Univention Corporate Server.

If you are not interested in this additional functionality, the commands described in Install on Debian based
Linux Distributions will also work for Univention Corporate Servers.

2.4 Prepare Bareos database

We assume that you have already your database installed and basically running. Currently the database
backends PostgreSQL and MySQL are recommended. The Sqlite database backend is only intended for
testing purposes.

The easiest way to set up a database is using an system account that have passwordless local access to the
database. Often this is the user root for MySQL and the user postgres for PostgreSQL.

For details, see chapter Catalog Maintenance.

2.4.1 Debian based Linux Distributions

Since Bareos Version >= 14.2.0 the Debian (and Ubuntu) based packages support the dbconfig-common
mechanism to create and update the Bareos database.
Follow the instructions during install to configure it according to your needs.

1" Configuring F

The bareos-database-common package must have a database installed and configured before it can be used. This ne of several database types. Bslow, you will be
an be ndled with dbconfig-comnon

If you are an advanced database adninistrator and know that you want to perform this configuration manually, or database-common:
if your database has already been installed and configured, you should refuse this option. Datails on what

needs to be done should most likely be provided in /usr/share/doc/bareos-database-common.

mysql
sqlite3

Otherwise, you shouild probably choose this option.

Configurs database for with

<Cancel>

If you decide not to use dbconfig-common (selecting <No> on the initial dialog), follow the instructions for
Other Platforms.

The selectable database backends depend on the bareos-database-* packages installed.

For details see dbconfig-common (Debian).

17

2.4.2 Other Platforms
PostgreSQL

If your are using PostgreSQL and your PostgreSQL administration user is postgres (default), use following
commands:

su postgres -c /usr/lib/bareos/scripts/create_bareos_database

su postgres -c /usr/lib/bareos/scripts/make_bareos_tables
su postgres -c /usr/lib/bareos/scripts/grant_bareos_privileges

Commands 2.6: Setup Bareos catalog with PostgreSQL

MySQL/MariaDB

Make sure, that root has direct access to the local MySQL server. Check if the command mysql connects
to the database without defining the password. This is the default on RedHat and SUSE distributions. On
other systems (Debian, Ubuntu), create the file ~/.my.cnf with your authentication informations:

[client]

host=localhost

user=root
password= YourPasswordForAccessingMysqlAsRoot

Configuration 2.7: MySQL credentials file .my.cnf

It is recommended, to secure the Bareos database connection with a password. See Catalog Maintenance —
MySQL about how to archieve this. For testing, using a password-less MySQL connection is probable okay.
Setup the Bareos database tables by following commands:

/usr/lib/bareos/scripts/create_bareos_database
/usr/lib/bareos/scripts/make_bareos_tables
/usr/lib/bareos/scripts/grant_bareos_privileges

Commands 2.8: Setup Bareos catalog with MySQL

As some Bareos updates require a database schema update, therefore the file /root/.my.cnf might also be
useful in the future.

2.5 Start the daemons

service bareos-dir start
service bareos-sd start
service bareos-fd start

Commands 2.9: Start the Bareos Daemons

You will eventually have to allow access to the ports 9101-9103, used by Bareos.
Now you should be able to access the director using the bconsole.
When you want to use the bareos-webui, please refer to the chapter Installing Bareos Webui.

18

Chapter 3

Installing Bareos Webui

This chapter addresses the installation process of the Bareos Webui.
Since Version >= 15.2.0 bareos-webui is part of the Bareos project and available for a number of platforms.

B comows o Remce Gk Sowoues Semoes Drac His L v -
Show | Actons
Time period Status
last wesk
Job lst
Show <o+ enres Search
Job D 1 Job name Client Type Level Fles Bytss Errors Status Actions
o s BackupCatsiog shelon-fa Backp Fl 108 714mE o = o m
Fileset Gatalog
Pool
Sehaduled 2016 0907 21:10:00
Start 20160307 21:10:0
End 2016.09-07 217003
o w Backp o 0008 a == c =
L Bckup 5 7041 KB o [oscces | S
L Beckp 108 211M8 o [5uccen | =
LI Backup ° 0me o [5vcees | °
o s Backp 1 0ms o [sucee | [
o s Backup Full 108 7098 o [50cee: | °
6 s Backp 0 008 o =3 <
o s Backp nerement: ' 0ms o [5ucce: | <
& wr beerwae s Bk N — =

3.1 Features

e Intuitive web interface

e Multilinugual (English/German/French/Russian)

e Can access multiple directors and catalogs

e Individual accounts and ACL support via Bareos restricted named consoles

e Tape Autochanger management, with the possibility to label, import/export media and update your
autochanger slot status

e Temporarly enable or disable jobs, clients and schedules and also see their current state
e Show

— Detailed information about Jobs, Clients, Filesets, Pools, Volumes, Storages, Schedules, Logs and
Director messages

— Filedaemon, Storage- and Director updates

— Client, Director, Storage and Scheduler status
e Backup Jobs

— Start, cancel, rerun and restore from.
— Show the file list of backup jobs

e Restore files by browsing through a filetree of your backup jobs.

19

20

— Merge your backup jobs history and filesets of a client or use a single backup job for restore.

— Restore files to a different client instead of the origin

beonsole interface (limited to non-interactive commands)

3.2 System Requirements

A platform, for which the bareos-webui package is available, see Bareos Packages.

A working Bareos environment.

Bareos Director version >= Bareos Webui version.

e The Bareos Webui can be installed on any host. It does not have to be installed on the same as the
Bareos Director.

The default installation uses an Apache 2.x webserver with mod-rewrite, mod-php5 and mod-setenv.

PHP >=5.3.23

3.2.1 Version < 16.2

Bareos Webui Version >= 16.2.4 incorporates the required Zend Framework 2 components, no extra Zend
Framework installation is required. For older versions of bareos-webui, you must install Zend Framework
separately. Unfortunately, not all distributions offer Zend Framework 2 packages. The following list shows
where to get the Zend Framework 2 package:

e RHEL, CentOS

— https://fedoraproject.org/wiki/EPEL
— https://apps.fedoraproject.org/packages/php-ZendFramework?2

e Fedora
— https://apps.fedoraproject.org/packages/php-ZendFramework?2
e SUSE, Debian, Ubuntu

— http://download.bareos.org/bareos

Also be aware, that older versions of Bareos Director do not support the Subdirectory Configuration Scheme
and therefore Bareos configuration resource files must be included manually.

3.3 Installation

3.3.1 Adding the Bareos Repository

If not already done, add the Bareos repository that is matching your Linux distribution. Please have a look
at the chapter Install the Bareos Software Packages for more information on how to achieve this.

3.3.2 Install the bareos-webui package
After adding the repository simply install the bareos-webui package via your package manager.
e RHEL, CentOS and Fedora
yum install bareos-webui

Commands 3.1:

or

dnf install bareos-webui

Commands 3.2:

https://fedoraproject.org/wiki/EPEL
https://apps.fedoraproject.org/packages/php-ZendFramework2
https://apps.fedoraproject.org/packages/php-ZendFramework2
http://download.bareos.org/bareos

21

e SUSE Linux Enterprise Server (SLES), openSUSE

zypper install bareos-webui

Commands 3.3:

e Debian, Ubuntu
apt-get install bareos-webui

Commands 3.4:

3.3.3 Minimal Configuration
This assumes, Bareos Director and Bareos Webui are installed on the same host.

1. If you are using SELinux, allow HTTPD scripts and modules make network connections:
setsebool -P httpd_can_network_connect on

Commands 3.5:

For details, see SELinux.
2. Restart Apache (to load configuration provided by bareos-webui, see Configure your Apache Webserver)

3. Use bconsole to create a user with name admin and password secret and permissions defined in

s s Dir
webui-adming? . :

*configure add console name=admin password=secret profile=webui-admin

bconsole 3.6: add a named console

Of course, you can choose other names and passwords. For details, see Create a restricted consoles.

4. Login to http://HOSTNAME /bareos-webui with username and password as created in 3.

3.3.4 Configuration Detalils

Create a restricted consoles

There is not need, that Bareos Webui itself provide a user management. Instead it uses so named Console®”"

defined in the Bareos Director. You can have multiple consoles with different names and passwords, sort of
like multiple users, each with different privileges.

At least one ConsoleP" is required to use the Bareos Webui.

To allow a user with name admin and password secret to access the Bareos Director with permissions

defined in the webui-adminl’", = (see Configuration of profile resources), either

e create a file /etc/bareos/bareos-dir.d/console/admin. conf with following content:

Console {
Name = "admin"
Password = "secret"
Profile = "webui-admin"
}

Resource 3.7: bareos-dir.d/console/admin.conf

To enable this, reload or restart your Bareos Director.

e or use the bconsole:
*configure add console name=admin password=secret profile=webui-admin

bconsole 3.8: add console

For details, please read Console Resource.

22

Configuration of profile resources

The package bareos-webui comes with a predefined profile for Bareos Webui: webui-adminl” . .

If your Bareos Webui is installed on another system then the Bareos Director, you have to copy the profile
to the Bareos Director.

This is the default profile, giving access to all Bareos resources and allowing all commands used by the
Bareos Webui:

Profile {
Name = webui-admin
CommandACL = !.bvfs_clear_cache, !.exit, !.sql, !configure, !create, !delete, !purge, !sqlquery, !umount, v

< lunmount, *allx
Job ACL = *allx
Schedule ACL = *allx
Catalog ACL = *allx*
Pool ACL = *allx
Storage ACL = *allx
Client ACL = *allx
FileSet ACL = *allx
Where ACL = *allx*
Plugin Options ACL = *allx*

Resource 3.9: bareos-dir.d/profile/webui-admin.conf

The ProfileP®™ itself does not give any access to the Bareos Director, but can be used by Console®”, which
do give access to the Bareos Director, see Create a restricted consoles.
For details, please read Profile Resource.

SELinux

To use Bareos Director on a system with SELinux enabled, permission must be given to HTTPD to make
network connections:

setsebool -P httpd_can_network_connect on

Commands 3.10:

Configure your Apache Webserver

The package bareos-webui provides a default configuration for Apache. Depending on your distribution,
it is installed at /etc/apache2/conf.d/bareos-webui.conf, /etc/httpd/conf.d/bareos-webui.conf or
/etc/apache2/available-conf/bareos-webui.conf.

The required Apache modules, setenv, rewrite and php are enabled via package postinstall script. However,
after installing the bareos-webui package, you need to restart your Apache webserver manually.

Configure your /etc/bareos-webui/directors.ini

Configure your directors in /etc/bareos-webui/directors.ini to match your settings.
The configuration file /etc/bareos-webui/directors.ini should look similar to this:
; Bareos WebUI Configuration

; File: /etc/bareos-webui/directors.ini
5

H

; Section bareos-dir

[bareos-dir]

; Enable or disable director. Possible values are "yes" or "no", the default is "yes".
enabled = "yes"

; Fill in the IP-Address or FQDN of your director.
diraddress = "localhost"

; Default value is 9101
dirport = 9101

; Set catalog to explicit value if you have multiple catalogs,

n

; the default value is "MyCatalog".

;catalog = "MyCatalog"

; Section remote-dir
[remote-dir]

enabled = "no"

diraddress = "hostname"
;jdirport = 9101

;catalog = "MyCatalog"
;tls_verify_peer = false
;server_can_do_tls = false
;server_requires_tls = false
;client_can_do_tls = false
;client_requires_tls = false
;ca_file = ""
;cert_file = ""
;cert_file_passphrase =
;allowed_cns = ""

nn

Configuration 3.11: /etc/bareos-webui/directors.ini

23

You can add as many directors as you want, also the same host with a different name and different catalog,

if you have multiple catalogs.

Configure your /etc/bareos-webui/configuration.ini

Since Version >= 16.2.2 you are able to configure some parameters of the Bareos Webui to your needs.

[session]
Default: 3600 seconds
timeout=3600

[tables]

Define a list of pagination values.

Default: 10,25,50,100
pagination_values=10,25,50,100

Default number of rows per page

for possible values see pagination_values

Default: 25
pagination_default_value=25

State saving - restore table state on page reload.

Default: false
save_previous_state=false

[autochanger]

Pooltype for label to use as filter.
See pooltype in output of bconsole: list pools

Default: none
labelpooltype=scratch

Configuration 3.12: /etc/bareos-webui/configuration.ini

3.4 Upgrade from 15.2 to 16.2

3.4.1 Console/Profile changes

The Bareos Webui Director profile shipped with Bareos 15.2 (webui

in the file /etc/bareos/

bareos-dir.d/webui-profiles.conf) is not sufficient to use the Bareos Webui 16.2. This has several

reasons:

1. The handling of acls is more strict in Bareos 16.2 then it has been in Bareos 15.2. Substring matching

is no longer enabled, therefore you need to change .bvfs_% to .bvfs_.* in your Command AC

Profile

to have a proper regular expression. Otherwise the restore module won’t work any longer, especially

the file browser.

2. The Bareos Webui 16.2 uses following additional commands:

24

.help
.schedule

e .pools

e import
e export
e update
e release
e enable
e disable

If you used an unmodified /etc/bareos/bareos-dir.d/webui-profiles.conf file, the easiest way is to
overwrite it with the new profile file /etc/bareos/bareos-dir.d/profile/webui-admin.conf. The new

webui-adminl” . ~allows all commands, except of the dangerous ones, see Configuration of profile resources.

3.4.2 directors.ini

Since 16.2 it is possible to work with different catalogs. Therefore the catalog parameter has been introduced.
If you don’t set a catalog explicitly the default MyCatalogg],,,,, Will be used. Please see Configure your
/ete/bareos-webui/directors.ini for more details.

3.4.3 configuration.ini

Since 16.2 the Bareos Webui introduced an additional configuration file besides the directors.ini file named
configuration.ini where you are able to adjust some parameters of the webui to your needs. Please see
Configure your /etc/bareos-webui/directors.ini for more details.

3.5 Additional information

3.5.1 NGINX

If you prefer to use Bareos Webui on Nginx with php5-fpm instead of Apache, a basic working configuration
could look like this:

server {
listen 9100;
server_name bareos;
root /var/www/bareos-webui/public;

location / {

index index.php;

try_files $uri $uri/ /index.php?$query_string;
}

location ~ .php$ {
include snippets/fastcgi-php.conf;

php5-cgi alone:

pass the PHP

scripts to FastCGI server
listening on 127.0.0.1:9000
#fastcgi_pass 127.0.0.1:9000;

php5-fpm:
fastcgi_pass unix:/var/run/php5-fpm.sock;

APPLICATION_ENV: set to ’development’ or ’production’

#fastcgi_param APPLICATION_ENV development;
fastcgi_param APPLICATION_ENV production;

Configuration 3.13: bareos-webui on nginx

25

This will make the Bareos Webui accessible at http://bareos:9100/ (assuming your DNS resolve the hostname
bareos to the NGINX server).

26

Chapter 4

Updating Bareos

In most cases, a Bareos update is simply done by a package update of the distribution. Please remind, that
Bareos Director and Bareos Storage Daemon must always have the same version. The version of the File
Daemon may differ, see chapter about backward compatibility.

4.1 Updating the configuration files

When updating Bareos through the distribution packaging mechanism, the existing configuration kept as
they are.

If you don’t want to modify the bahaviour, there is normally no need to modify the configuration.
However, in some rare cases, configuration changes are required. These cases are described in the Release
Notes.

With Bareos version 16.2.4 the default configuration uses the Subdirectory Configuration Scheme. This
scheme offers various improvements. However, if your are updating from earlier versions, your existing
single configuration files (/etc/bareos/bareos-*.conf) stay in place and are contentiously used by Bareos.
The new default configuration resource files will also be installed (/etc/bareos/bareos-*.d/*/*.conf).
However, they will only be used, when the legacy configuration file does not exist.

See Updates from Bareos < 16.2.4 for details and how to migrate to Subdirectory Configuration Scheme.

4.2 Updating the database scheme

Sometimes improvements in Bareos make it necessary to update the database scheme.

Please note! If the Bareos catalog database does not have the current schema, the Bareos Director refuses to
start.

Detailed information can then be found in the log file /var/log/bareos/bareos.log.

Take a look into the Release Notes to see which Bareos updates do require a database scheme update.

4.2.1 Debian based Linux Distributions

Since Bareos Version >= 14.2.0 the Debian (and Ubuntu) based packages support the dbconfig-common
mechanism to create and update the Bareos database. If this is properly configured, the database schema
will be automatically adapted by the Bareos packages.

Please note! When using the PostgreSQL backend and updating to Bareos < 14.2.3, it is necessary to
manually grant database permissions, normally by using

root@linux:~# su - postgres -c /usr/lib/bareos/scripts/grant_bareos_privileges

Commands 4.1:

For details see dbconfig-common (Debian).
If you disabled the usage of dbconfig-common, follow the instructions for Other Platforms.

4.2.2 Other Platforms

This has to be done as database administrator. On most platforms Bareos knows only about the credentials
to access the Bareos database, but not about the database administrator to modify the database schema.

27

28

The task of updating the database schema is done by the script /usr/lib/bareos/scripts/update_bareos_
tables.

However, this script requires administration access to the database. Depending on your distribution and your
database, this requires different preparations. More details can be found in chapter Catalog Maintenance.
Please note! If you’re updating to Bareos <= 13.2.3 and have configured the Bareos database during install
using Bareos environment variables (db_ name, db_ user or db_ password, see Catalog Maintenance), make
sure to have these variables defined in the same way when calling the update and grant scripts. Newer
versions of Bareos read these wvariables from the Director configuration file /etc/bareos/bareos-dir.
conf. However, make sure that the user running the database scripts has read access to this file (or set the
environment variables). The postgres user normally does not have the required permissions.

PostgreSQL
If your are using PostgreSQL and your PostgreSQL administrator is postgres (default), use following

commands:

su postgres -c /usr/lib/bareos/scripts/update_bareos_tables
su postgres -c /usr/lib/bareos/scripts/grant_bareos_privileges

Commands 4.2: Update PostgreSQL database schema

The grant_bareos_privileges command is required, if new databases tables are introduced. It does not
hurt to run it multiple times.
After this, restart the Bareos Director and verify it starts without problems.

MySQL/MariaDB

Make sure, that root has direct access to the local MySQL server. Check if the command mysql without
parameter connects to the database. If not, you may be required to adapt your local MySQL configuration
file ~/.my.cnf. It should look similar to this:

[client]

host=localhost

user=root

password= YourPasswordForAccessingMysqlAsRoot

Configuration 4.3: MySQL credentials file .my.cnf

If you are able to connect via the mysql to the database, run the following script from the Unix prompt:
/usr/lib/bareos/scripts/update_bareos_tables

Commands 4.4: Update MySQL database schema
Currently on MySQL is it not necessary to run grant_bareos_privileges, because access to the database

is already given using wildcards.
After this, restart the Bareos Director and verify it starts without problems.

Chapter 5

Getting Started with Bareos

5.1 Understanding Jobs and Schedules

In order to make Bareos as flexible as possible, the directions given to Bareos are specified in several pieces.
The main instruction is the job resource, which defines a job. A backup job generally consists of a FileSet,
a Client, a Schedule for one or several levels or times of backups, a Pool, as well as additional instructions.
Another way of looking at it is the FileSet is what to backup; the Client is who to backup; the Schedule
defines when, and the Pool defines where (i.e. what Volume).

Typically one FileSet/Client combination will have one corresponding job. Most of the directives, such as
FileSets, Pools, Schedules, can be mixed and matched among the jobs. So you might have two different Job
definitions (resources) backing up different servers using the same Schedule, the same Fileset (backing up
the same directories on two machines) and maybe even the same Pools. The Schedule will define what type
of backup will run when (e.g. Full on Monday, incremental the rest of the week), and when more than one
job uses the same schedule, the job priority determines which actually runs first. If you have a lot of jobs,
you might want to use JobDefs, where you can set defaults for the jobs, which can then be changed in the
job resource, but this saves rewriting the identical parameters for each job. In addition to the FileSets you
want to back up, you should also have a job that backs up your catalog.

Finally, be aware that in addition to the backup jobs there are restore, verify, and admin jobs, which have
different requirements.

5.2 Understanding Pools, Volumes and Labels

If you have been using a program such as tar to backup your system, Pools, Volumes, and labeling may be
a bit confusing at first. A Volume is a single physical tape (or possibly a single file) on which Bareos will
write your backup data. Pools group together Volumes so that a backup is not restricted to the length of a
single Volume (tape). Consequently, rather than explicitly naming Volumes in your Job, you specify a Pool,
and Bareos will select the next appendable Volume from the Pool and mounts it.

Although the basic Pool options are specified in the Director’s Pool resource, the real Pool is maintained
in the Bareos Catalog. It contains information taken from the Pool resource (configuration file) as well as
information on all the Volumes that have been added to the Pool.

For each Volume, Bareos maintains a fair amount of catalog information such as the first write date/time,
the last write date/time, the number of files on the Volume, the number of bytes on the Volume, the number
of Mounts, etc.

Before Bareos will read or write a Volume, the physical Volume must have a Bareos software label so that
Bareos can be sure the correct Volume is mounted. Depending on your configuration, this is either done
automatically by Bareos or manually using the label command in the Console program.

The steps for creating a Pool, adding Volumes to it, and writing software labels to the Volumes, may seem
tedious at first, but in fact, they are quite simple to do, and they allow you to use multiple Volumes (rather
than being limited to the size of a single tape). Pools also give you significant flexibility in your backup
process. For example, you can have a ”Daily” Pool of Volumes for Incremental backups and a ”Weekly”
Pool of Volumes for Full backups. By specifying the appropriate Pool in the daily and weekly backup Jobs,
you thereby insure that no daily Job ever writes to a Volume in the Weekly Pool and vice versa, and Bareos
will tell you what tape is needed and when.

For more on Pools, see the Pool Resource section of the Director Configuration chapter, or simply read on,
and we will come back to this subject later.

29

30

5.3 Setting Up Bareos Configuration Files

On Unix, Bareos configuration files are usually located in the /etc/bareos/ directory and are named ac-
cordingly to the programs that use it. Since Bareos Version >= 16.2.4 the default configuration is stored as
one file per resource in subdirectories under bareos-dir.d, bareos-sd.d or bareos-fd.d. For details, see
Customizing the Configuration and Subdirectory Configuration Scheme.

5.4 Testing your Configuration Files

You can test if your configuration file is syntactically correct by running the appropriate daemon with the
-t option. The daemon will process the configuration file and print any error messages then terminate.

As the Bareos Director and Bareos Storage Daemon runs as user bareos, testing the configuration should
be done as bareos.

This is especially required to test the Bareos Director, as it also connects to the database and checks if the
catalog schema version is correct. Depending on your database, only the bareos has permission to access it.

su bareos -s /bin/sh -c "/usr/sbin/bareos-dir -t"
su bareos -s /bin/sh -c "/usr/sbin/bareos-sd -t"
bareos-fd -t

bconsole -t

bareos-tray-monitor -t

Commands 5.1: Testing Configuration Files

Chapter 6

Tutorial

This chapter will guide you through running Bareos. To do so, we assume you have installed Bareos.
However, we assume that you have not modified the configuration. The examples in this chapter use the
default configuration files and will write the volumes to disk in your /var/lib/bareos/storage/ directory.
The general flow of running Bareos is:

1. Start the Database (if using PostgreSQL or MySQL/MariaDB)
2. Installing Bareos

3. Start the Bareos Daemons

4. Start the Console program to interact with the Bareos Director
5. Run a job

6. Test recovering some files from the Volume just written to ensure the backup is good and that you
know how to recover. Better test before disaster strikes

7. Add a second client.

Each of these steps is described in more detail below.

6.1 Starting the Database

If you are using PostgreSQL or MySQL/MariaDB as the Bareos database, you should start it before you
install Bareos. If you are using Sqlite you need do nothing. Sqlite is automatically started by the Bareos
Director.

6.2 Installing Bareos

For installing Bareos, follow the instructions from the Installing Bareos chapter.

6.3 Starting the Daemons

Assuming you have installed the packages, to start the three daemons, from your installation directory,
simply enter:

service bareos-dir start
service bareos-sd start
service bareos-fd start

31

32

6.4 Using the Director to Query and Start Jobs

To communicate with the Bareos Director and to query the state of Bareos or run jobs, the bconsole
program can be used as a textual interface. Alternatively, for most purposes, also the Bareos Webui can be
used, but for simplicity, here we will describe only the bconsole program.

The bconsole runs the Bareos Console program, which connects to the Bareos Director. Since Bareos is a
network program, you can run the Console program anywhere on your network. Most frequently, however,
one runs it on the same machine as the Bareos Director. Normally, the Console program will print something
similar to the following:

root@linux:~# bconsole

Connecting to Director bareos:9101

Enter a period to cancel a command.
*

Commands 6.1: bconsole

The asterisk is the console command prompt.
Type help to see a list of available commands:

*xhelp
Command Description
add Add media to a pool
autodisplay Autodisplay console messages
automount Automount after label
cancel Cancel a job
create Create DB Pool from resource
delete Delete volume, pool or job
disable Disable a job
enable Enable a job
estimate Performs FileSet estimate, listing gives full listing
exit Terminate Bconsole session
export Export volumes from normal slots to import/export slots
gui Non-interactive gui mode
help Print help on specific command
import Import volumes from import/export slots to normal slots
label Label a tape
list List objects from catalog
1list Full or long list like list command
messages Display pending messages
memory Print current memory usage
mount Mount storage
move Move slots in an autochanger
prune Prune expired records from catalog
purge Purge records from catalog
quit Terminate Bconsole session
query Query catalog
restore Restore files
relabel Relabel a tape
release Release storage
reload Reload conf file
rerun Rerun a job
run Run a job
status Report status
setbandwidth Sets bandwidth
setdebug Sets debug level
setip Sets new client address -- if authorized
show Show resource records
sqlquery Use SQL to query catalog
time Print current time
trace Turn on/off trace to file
unmount Unmount storage
umount Umount - for old-time Unix guys, see unmount
update Update volume, pool or stats
use Use specific catalog
var Does variable expansion

33

version Print Director version
wait Wait until no jobs are running

bconsole 6.2: help

Details of the console program’s commands are explained in the Bareos Console chapter.

6.5 Running a Job
At this point, we assume you have done the following:

e Started the Database

e Installed Bareos

e Prepared the database for Bareos

e Started Bareos Director, Storage Daemon and File Daemon
e Invoked the Console program with bconsole

Furthermore, we assume for the moment you are using the default configuration files.
At this point, enter the show filesets and you should get something similar this:

*show filesets

FileSet {
Name = "SelfTest"
Include {
Options {
Signature = MD5
}
File = "/usr/sbin"
}
}

FileSet {
Name = "Catalog"
Include {

Options {
Signature = MD5
}
File
File

"/var/lib/bareos/bareos.sql"
"/etc/bareos"

bconsole 6.3: show filesets

One of the FileSets is the pre-defined SelfTesti , FileSet that will backup the /usr/sbin directory. For
testing purposes, we have chosen a directory of moderate size (about 30 Megabytes) and complexity without
being too big. The FileSet Catalogy ., is used for backing up Bareos’s catalog and is not of interest to us
for the moment. You can change what is backed up by editing the configuration and changing the File =
line in the FileSet"" resource.

Now is the time to run your first backup job. We are going to backup your Bareos source directory to a File

Volume in your /var/lib/bareos/storage/ directory just to show you how easy it is. Now enter:

*status dir

bareos-dir Version: 13.2.0 (09 April 2013) x86_64-pc-linux-gnu debian Debian GNU/Linux 6.0
— (squeeze)

Daemon started 23-May-13 13:17. Jobs: run=0, running=0 mode=0

Heap: heap=270,336 smbytes=59,285 max_bytes=59,285 bufs=239 max_bufs=239

Scheduled Jobs:
Level Type Pri Scheduled Name Volume

34

Incremental Backup 10 23-May-13 23:05 BackupClient1l testvol
Full Backup 11 23-May-13 23:10 BackupCatalog testvol

Running Jobs:
Console connected at 23-May-13 13:34
No Jobs running.

bconsole 6.4: status dir

where the times and the Director’s name will be different according to your setup. This shows that an Incre-
mental job is scheduled to run for the Job BackupClient1}’ at 1:05am and that at 1:10, a BackupCatalog]';
is scheduled to run.

Now enter:

xstatus client
Automatically selected Client: bareos-fd
Connecting to Client bareos-fd at bareos:9102

bareos-fd Version: 13.2.0 (09 April 2013) x86_64-pc-linux-gnu debian Debian GNU/Linux 6.0
— (squeeze)
Daemon started 23-May-13 13:17. Jobs: run=0 running=0.
Heap: heap=135,168 smbytes=26,000 max_bytes=26,147 bufs=65 max_bufs=66
Sizeof: boffset_t=8 size_t=8 debug=0 trace=0 bwlimit=0kB/s

Running Jobs:
Director connected at: 23-May-13 13:58
No Jobs running.

bconsole 6.5: status client

In this case, the client is named bareos-£d2 . your name might be different, but the line beginning with

bareos-fd Version is printed by your Bareos File Daemon, so we are now sure it is up and running.
Finally do the same for your Bareos Storage Daemon with:

*status storage
Automatically selected Storage: File
Connecting to Storage daemon File at bareos:9103

bareos-sd Version: 13.2.0 (09 April 2013) x86_64-pc-linux-gnu debian Debian GNU/Linux 6.0 (squeeze)
Daemon started 23-May-13 13:17. Jobs: run=0, running=0.

Heap: heap=241,664 smbytes=28,574 max_bytes=88,969 bufs=73 max_bufs=74

Sizes: boffset_t=8 size_t=8 int32_t=4 int64_t=8 mode=0 bwlimit=0kB/s

Running Jobs:
No Jobs running.

Device status:

Device "FileStorage" (/var/lib/bareos/storage) is not open.

Used Volume status:

bconsole 6.6: status storage

Dir
Storage

You will notice that the default Bareos Storage Daemon device is named File and that it will use
device /var/lib/bareos/storage, which is not currently open.

Now, let’s actually run a job with:

run

35

you should get the following output:

Automatically selected Catalog: MyCatalog
Using Catalog "MyCatalog"
A job name must be specified.
The defined Job resources are:
1: BackupClientl
2: BackupCatalog
3: RestoreFiles
Select Job resource (1-3):

Here, Bareos has listed the three different Jobs that you can run, and you should choose number 1 and type
enter, at which point you will get:

Run Backup job

JobName: BackupClientl

Level: Incremental

Client: bareos-fd

Format: Native

FileSet: SelfTest

Pool: Full (From Job resource)

NextPool: #*None* (From unknown source)
Storage: File (From Job resource)
When: 2013-05-23 14:50:04
Priority: 10

0K to run? (yes/mod/mno):

At this point, take some time to look carefully at what is printed and understand it. It is asking you if it is
OK to run a job named BackupClient1?)’y with FileSet SelfTestp ., as an Incremental job on your Client,
and to use Storage Fileg? and Pool Fullp” , and finally, it wants to run it now (the current time should
be displayed by your console).

Here we have the choice to run (yes), to modify one or more of the above parameters (mod), or to not
run the job (no). Please enter yes, at which point you should immediately get the command prompt (an
asterisk).

If you wait a few seconds, then enter the command messages you will get back something like:

TODO: Replace beconsole output by current version of Bareos.

*messages

28-Apr-2003 14:30 bareos-sd: Wrote label to prelabeled Volume
"TestVolume0O01" on device /var/lib/bareos/storage

28-Apr-2003 14:30 rufus-dir: Bareos 1.30 (28Apr03): 28-Apr-2003 14:30

JobId: 1

Job: BackupClient1.2003-04-28_14.22.33
FileSet: Full Set

Backup Level: Full

Client: bareos-fd

Start time: 28-Apr-2003 14:22

End time: 28-Apr-2003 14:30
Files Written: 1,444

Bytes Written: 38,988,877
Rate: 81.2 KB/s
Software Compression: None

Volume names(s): TestVolume001
Volume Session Id: 1

Volume Session Time: 1051531381
Last Volume Bytes: 39,072,359

FD termination status: O0OK

SD termination status: OK
Termination: Backup 0K

28-Apr-2003 14:30 rufus-dir:
28-Apr-2003 14:30 rufus-dir:
28-Apr-2003 14:30 rufus-dir:
28-Apr-2003 14:30 rufus-dir:
28-Apr-2003 14:30 rufus-dir:

Begin pruning Jobs.

No Jobs found to prune.
Begin pruning Files.

No Files found to prune.
End auto prune.

bconsole 6.7: run

If you don’t see the output immediately, you can keep entering messages until the job terminates.
Instead of typing messages multiple times, you can also ask bconsole to wait, until a specific job is finished:

36

*wait jobid=1
bconsole 6.8: wait

or just wait , which waits for all running jobs to finish.

Another useful command is autodisplay on. With autodisplay activated, messages will automatically be
displayed as soon as they are ready.

If you do an 1s -1 of your /var/lib/bareos/storage directory, you will see that you have the following
item:

-rw-r-—---- 1 bareos bareos 39072153 Apr 28 14:30 Full-001

This is the file Volume that you just wrote and it contains all the data of the job just run. If you run
additional jobs, they will be appended to this Volume unless you specify otherwise.

If you would like to stop here, you can simply enter quit in the Console program.

If you would like to try restoring the files that you just backed up, read the following section.

6.6 Restoring Your Files

If you have run the default configuration and run the job as demonstrated above, you can restore the backed
up files in the Console program by entering:

*restore all

First you select one or more JobIds that contain files
to be restored. You will be presented several methods
of specifying the JoblIds. Then you will be allowed to
select which files from those JobIds are to be restored.

To select the JobIds, you have the following choices:
1: List last 20 Jobs run

2: List Jobs where a given File is saved

3: Enter list of comma separated JobIds to select

4: Enter SQL list command

5: Select the most recent backup for a client

6: Select backup for a client before a specified time

7: Enter a list of files to restore

8: Enter a list of files to restore before a specified time
9: Find the JobIds of the most recent backup for a client
10: Find the JobIds for a backup for a client before a specified time
11: Enter a list of directories to restore for found JoblIds
12: Select full restore to a specified Job date

13: Cancel
Select item: (1-13):

bconsole 6.9: restore

As you can see, there are a number of options, but for the current demonstration, please enter 5 to do a
restore of the last backup you did, and you will get the following output:

Automatically selected Client: bareos-fd
The defined FileSet resources are:

1: Catalog

2: Full Set
Select FileSet resource (1-2):

As you can see, Bareos knows what client you have, and since there was only one, it selected it automatically.
Select 2, because you want to restore files from the file set.

+ + + + + s
+ + + + + +

jobid | level | jobfiles | jobbytes | starttime | volumename

-+

+ t + +

F—

1| F | 166 | 19,069,526 | 2013-05-05 23:05:02 | TestVolume0OO1

+ + + +

+ — +

You have selected the following JobIds: 1

Building directory tree for JobId(s) 1 ... ++ttttttttttttttttttttttttttttttttttttttt
165 files inserted into the tree and marked for extraction.

You are now entering file selection mode where you add (mark) and

remove (unmark) files to be restored. No files are initially added, unless
you used the "all" keyword on the command line.

Enter "done" to leave this mode.

cwd is: /

$

37

where I have truncated the listing on the right side to make it more readable.
Then Bareos produced a listing containing all the jobs that form the current backup, in this case, there

is only one, and the Storage daemon was also automatically chosen.

Bareos then took all the files that

were in Job number 1 and entered them into a directory tree (a sort of in memory representation of your
filesystem). At this point, you can use the cd and 1s or dir commands to walk up and down the directory
tree and view what files will be restored. For example, if you enter cd /usr/sbin and then enter dir you
will get a listing of all the files in the /usr/sbin/ directory. On your system, the path might be somewhat
different. For more information on this, please refer to the Restore Command Chapter of this manual for

more details.
To exit this mode, simply enter:

done

and you will get the following output:

Bootstrap records written to
/home/user/bareos/testbin/working/restore.bsr
The restore job will require the following Volumes:

TestVolume001
1444 files selected to restore.
Run Restore job

JobName: RestoreFiles

Bootstrap: /home/user/bareos/testbin/working/restore.bsr
Where: /tmp/bareos-restores

Replace: always

FileSet: Full Set

Backup Client: rufus-fd
Restore Client: rufus-fd

Storage: File
Jobld: *Nonex*
When: 2005-04-28 14:53:54

0K to run? (yes/mod/mo):
Bootstrap records written to /var/lib/bareos/bareos-dir.restore.l.bsr

The job will require the following
Volume (s) Storage(s) SD Device(s)

TestVolumeOO1 File FileStorage

Volumes marked with "*" are online.

166 files selected to be restored.

Run Restore job

JobName: RestoreFiles

Bootstrap: /var/lib/bareos/bareos-dir.restore.1.bsr
Where: /tmp/bareos-restores

Replace: Always

FileSet: Full Set

Backup Client: bareos-fd
Restore Client: bareos-fd

Format: Native

Storage: File

When: 2013-05-23 15:56:53
Catalog: MyCatalog

Priority: 10

Plugin Options: *None*
0K to run? (yes/mod/mno):

If you answer yes your files will be restored to /tmp/bareos-restores

. If you want to restore the files to

their original locations, you must use the mod option and explicitly set Where: to nothing (or to /). We

38

recommend you go ahead and answer yes and after a brief moment, enter messages , at which point you
should get a listing of all the files that were restored as well as a summary of the job that looks similar to
this:

23-May 15:24 bareos-dir JobId 2: Start Restore Job RestoreFiles.2013-05-23_15.24.01_10

23-May 15:24 bareos-dir JobId 2: Using Device "FileStorage" to read.

23-May 15:24 bareos-sd JobId 2: Ready to read from volume "TestVolumeOO1" on device "FileStorage" (/var/lib/bareos/storage).
23-May 15:24 bareos-sd JobId 2: Forward spacing Volume "TestVolumeOO1l" to file:block 0:194.

23-May 15:58 bareos-dir JobId 3: Bareos bareos-dir 13.2.0 (09Apri3):

Build 0S: x86_64-pc-linux-gnu debian Debian GNU/Linux 6.0 (squeeze)
JobId: 2

Job: RestoreFiles.2013-05-23_15.58.48_11
Restore Client: bareos-fd

Start time: 23-May-2013 15:58:50

End time: 23-May-2013 15:58:52

Files Expected: 166

Files Restored: 166

Bytes Restored: 19,069,526

Rate: 9534.8 KB/s

FD Errors: 0

FD termination status: 0K
SD termination status: OK
Termination: Restore 0K

After exiting the Console program, you can examine the files in /tmp/bareos-restores, which will contain
a small directory tree with all the files. Be sure to clean up at the end with:

root@linux:~# rm -rf /tmp/bareos-restore

Commands 6.10: remove restore directory

6.7 Quitting the Console Program

Simply enter the command quit .

6.8 Adding a Client

If you have gotten the example shown above to work on your system, you may be ready to add a second
Client (Bareos File Daemon). That is you have a second machine that you would like backed up. Lets
assume, following settings about the machine you want to add to your backup environment:

Hostname (FQDN) client2.example.com
IP Address 192.168.0.2

OS Linux (otherwise the paths may differ)

For this you have to make changes on the server side (Bareos Director) and the client side.

Client: install package

See Installing Bareos about how to add the Bareos repository. The only part you need installed on the other
machine is the bareos-filedaemon.

Director: configure client

Bareos Version >= 16.2.4 offers the configure add command to add resources to the Bareos Director.
Start the bconsole and use the configure add client command. Address must be a DNS resolvable name
or an IP address.

*configure add client name=client2-fd address=192.168.0.2 password=secret
Created resource config file "/etc/bareos/bareos-dir.d/client/client2-fd.conf":
Client {

Name = client2-fd

Address = 192.168.0.2

Password = secret

39

bconsole 6.11: add a client
This creates two resource configuration files:
e /etc/bareos/bareos-dir.d/client/client2-fd.conf

e /etc/bareos/bareos-dir-export/client/client2-fd/bareos-fd.d/director/bareos-dir.conf
(assuming your director resource is named bareos-dir)

The /etc/bareos/bareos-dir-export/client/client2-fd/bareos-fd.d/director/bareos-dir.conf
is the required resource needed on the Bareos File Daemon. You can copy it to the destination:

scp /etc/bareos/bareos-dir-export/client/client2-fd/bareos-fd.d/director/bareos-dir.conf
< root@client2.example.com:/etc/bareos/bareos-fd.d/director/

Commands 6.12: Copy the bareos-fd director resource to the new client

Manual configuration
Alternatively you can configure your resources manually. On the Bareos Director create the file
Client {

Name = client2-fd

Address = 192.168.0.2

Password = secret

}
Resource 6.13: bareos-dir.d/client/client2-fd.conf

Reload or restart your Bareos Director:

*reload
reloaded

bceonsole 6.14: reload the Director configuration

The corresponding Bareos File Daemon director resource can be created directly on the client, see below.

Client: configure
The package bareos-filedaemon Version >= 16.2.4 brings several configuration files:
e /etc/bareos/bareos-fd.d/client/myself.conf
e /etc/bareos/bareos-fd.d/director/bareos-dir.conf
e /etc/bareos/bareos-fd.d/director/bareos-mon.conf
e /etc/bareos/bareos-fd.d/messages/Standard.conf
In detail:

client/myself.conf defines the name of the client. The default is <hostname>-fd. Changes are only
required, if you want to use another name or en- or disable special Bareos File Daemon features. See
Client Resource.

director/bareos-dir.conf gives the Bareos Director bareos-dir full access to this Bareos File Daemon.
During installation, the Password £ is set to a random default. Adapt the name and/or the
password to your Bareos Director. (The name bareos-dir is the default Bareos Director name since
Bareos Version >= 16.2.4.)

director/bareos-mon.conf gives the Bareos Director bareos-mon restricted access to this Bareos File
Daemon. During installation, the Password I is set to a random value. This resource is intended

Director

to be used by the local bareos-tray-monitor.

messages/Standard.conf defines, how messages should be handled. The default sends all relevant messages
to the Bareos Director.

40

If your Bareos Director is named bareos-dir, the /etc/bareos/bareos-fd.d/director/bareos-dir.conf
may already be overwritten by the file you copied from the Bareos Director. If your Director has another
name, an addition resource file will exists. You can define an arbitrary number of Bareos Director’s in your
Bareos File Daemon configuration. However, normally you will only have one Director®™® with full control

of your Bareos File Daemon and optional one Director® for monitoring (used by the Bareos Tray Monitor).
Anyhow, the resource will look similar to this:

Director {
Name = bareos-dir

Password = "[md5]5ebe2294ecd0e0f08eab7690d2a6eec69"
}

Resource 6.15: bareos-fd.d/director/bareos-dir.conf

After a restart of the Bareos File Daemon to reload the configuration this resource allows the access for a
Bareos Director with name bareos-dir and password secret (stored in MD5 format).

service bareos-fd restart

Commands 6.16: restart bareos-fd

Manual configuration

If you have not created the Director™ by configure , you can create it also manually. If your Bareos Direc-
tor is also named bareos-dir, modify or create the file /etc/bareos/bareos-fd.d/director/bareos-dir.
conf:
Director {

Name = "bareos-dir" # Name of your Bareos Director

Password = "secret" # Password (cleartext or MD5) must be identical

to the password of your client reosurce in the Direcotr
(bareos-dir.d/client/client2-fd.conf)

Resource 6.17: bareos-fd.d/director/bareos-dir.conf

See the relation between resource names and password of the different Bareos components in Names, Pass-
words and Authorization.

If your are not using the Subdirectory Configuration Scheme, make sure that this resource file gets included
in your Bareos File Daemon configuration. You can verify this by

bareos-fd -xc

Commands 6.18: show how bareos-fd would read the current configuration files

After modifying the file, you have to restart the Bareos File Daemon:
service bareos-fd restart

Commands 6.19: restart bareos-fd

Director: test client, add a job

The following example show how to

e Verify the network connection from Bareos Director to the Bareos File Daemon.

Add a job resource.

Dry-run the job (estimate listing).

Run the job.

Wait for the job to finish.

Verify the job.

41

*status client=client2-fd

*configure add job name=client2-job client=client2-fd jobdefs=DefaultJob
Created resource config file "/etc/bareos/bareos-dir.d/job/client2-job.conf":
Job {

Name = client2-job

Client = client2-fd

JobDefs = DefaultJob
}

*estimate listing job=client2-job
*run job=client2-job

=;<\'V.ait jobid=...

;l'i'st joblog jobid=...

>;<l'i:st files jobid=...

xlist volumes

bconsole 6.20: test the client and add a job resource

6.9 Patience When Starting Daemons or Mounting Blank Tapes

When you start the Bareos daemons, the Storage daemon attempts to open all defined storage devices and
verify the currently mounted Volume (if configured). Until all the storage devices are verified, the Storage
daemon will not accept connections from the Console program. If a tape was previously used, it will be
rewound, and on some devices this can take several minutes. As a consequence, you may need to have a bit
of patience when first contacting the Storage daemon after starting the daemons. If you can see your tape
drive, once the lights stop flashing, the drive will be ready to be used.

The same considerations apply if you have just mounted a blank tape in a drive. It can take a minute or
two before the drive properly recognizes that the tape is blank. If you attempt to mount the tape with the
Console program during this recognition period, it is quite possible that you will hang your SCSI driver. As
a consequence, you are again urged to have patience when inserting blank tapes. Let the device settle down
before attempting to access it.

6.10 Pools

Creating the Pool is automatically done when the Bareos Director starts, so if you understand Pools, you
can skip to the next section.

When you run a backup job, one of the things that Bareos must know is what Volumes to use. Instead of
specifying a Volume (tape) directly, you specify which Pool of Volumes you want Bareos to consult when
it wants a Volume for writing backups. Bareos will select the first available Volume from the Pool that is
appropriate for the Storage D't you have specified for the Job being run. When a volume has filled up with
data, Bareos will change its VolStatus from Append to Full, and then Bareos will use the next volume
and so on. If no appendable Volume exists in the Pool, the Director will attempt to recycle an old Volume.
For details, please read the Automatic Volume Recycling chapter.

If there are still no appendable Volumes available, Bareos will send a message requesting the operator to
create an appropriate Volume.

Bareos keeps track of the Pool name, the volumes contained in the Pool, and a number of attributes of each
of those Volumes.

When Bareos starts, it ensures that all Pool resource definitions have been recorded in the catalog. You can
verify this by entering:

xlist pools
+-—= +
| PoolId | Name
+-—= +

| 1 | Full

NumVols MaxVols

PoolType | LabelFormat |
I

[

100

— + — +
— + — +
— + — +

Backup

42

2	Differential	O	100	Backup	Differential-
3	Incremental	1	100	Backup	Incremental-
4	Scratch	0	0	Backup	*

+ + + o +

bconsole 6.21: list pools

6.11 Other Useful Console Commands

help Show the list all all available commands.

help list Show detail information about a specific command, in this case the command list .

status dir Print a status of all running jobs and jobs scheduled in the next 24 hours.

status The console program will prompt you to select a daemon type, then will request the daemon’s status.

status jobid=nn Print a status of JobId nn if it is running. The Storage daemon is contacted and requested
to print a current status of the job as well.

list pools List the pools defined in the Catalog (normally only Default is used).
list volumes Lists all the media defined in the Catalog.

list jobs Lists all jobs in the Catalog that have run.

list jobid=nn Lists Jobld nn from the Catalog.

list jobtotals Lists totals for all jobs in the Catalog.

list files jobid=nn List the files that were saved for Jobld nn.

list jobmedia List the media information for each Job run.

messages Prints any messages that have been directed to the console.

quit Exit or quit the console program.

Most of the commands given above, with the exception of list, will prompt you for the necessary arguments
if you simply enter the command name.
The full list of commands is shown in the chapter Console Commands.

Chapter 7

Critical Items to Implement Before
Production

We recommend you take your time before implementing a production on a Bareos backup system since
Bareos is a rather complex program, and if you make a mistake, you may suddenly find that you cannot
restore your files in case of a disaster. This is especially true if you have not previously used a major backup
product.

If you follow the instructions in this chapter, you will have covered most of the major problems that can
occur. It goes without saying that if you ever find that we have left out an important point, please inform
us, so that we can document it to the benefit of everyone.

7.1 Critical Items

The following assumes that you have installed Bareos, you more or less understand it, you have at least
worked through the tutorial or have equivalent experience, and that you have set up a basic production
configuration. If you haven’t done the above, please do so and then come back here. The following is a sort
of checklist that points with perhaps a brief explanation of why you should do it. In most cases, you will
find the details elsewhere in the manual. The order is more or less the order you would use in setting up a
production system (if you already are in production, use the checklist anyway).

e Test your tape drive for compatibility with Bareos by using the test command of the btape program.
e Test the end of tape handling of your tape drive by using the fill command in the btape program.

e Do at least one restore of files. If you backup multiple OS types (Linux, Solaris, HP, MacOS, FreeBSD,
Win32, ...), restore files from each system type. The Restoring Files chapter shows you how.

e Write a bootstrap file to a separate system for each backup job. See Write Bootstrap D directive
and more details are available in the The Bootstrap File chapter. Also, the default bareos-dir.conf
comes with a Write Bootstrap directive defined. This allows you to recover the state of your system

as of the last backup.

e Backup your catalog. An example of this is found in the default bareos-dir.conf file. The backup script
is installed by default and should handle any database, though you may want to make your own local
modifications. See also Backing Up Your Bareos Database for more information.

e Write a bootstrap file for the catalog. An example of this is found in the default bareos-dir.conf file.
This will allow you to quickly restore your catalog in the event it is wiped out — otherwise it is many
excruciating hours of work.

e Make a copy of the bareos-dir.conf, bareos-sd.conf, and bareos-fd.conf files that you are using on your
server. Put it in a safe place (on another machine) as these files can be difficult to reconstruct if your
server dies.

e Bareos assumes all filenames are in UTF-8 format. This is important when saving the filenames to the
catalog. For Win32 machine, Bareos will automatically convert from Unicode to UTF-8, but on Unix,
Linux, *BSD, and MacOS X machines, you must explicitly ensure that your locale is set properly.
Typically this means that the LANG environment variable must end in .UTF-8. A full example is

43

44

en_US.UTF-8. The exact syntax may vary a bit from OS to OS, and exactly how you define it will
also vary.

On most modern Win32 machines, you can edit the conf files with notepad and choose output encoding
UTF-8.

7.2 Recommended Items
Although these items may not be critical, they are recommended and will help you avoid problems.

e Read the Getting Started with Bareos chapter

e After installing and experimenting with Bareos, read and work carefully through the examples in the
Tutorial chapter of this manual.

e Learn what each of the Bareos Programs does.

e Set up reasonable retention periods so that your catalog does not grow to be too big. See the following
three chapters:
Automatic Volume Recycling,
Volume Management,
Automated Disk Backup.

If you absolutely must implement a system where you write a different tape each night and take it offsite in
the morning. We recommend that you do several things:

e Write a bootstrap file of your backed up data and a bootstrap file of your catalog backup to a external
media like CDROM or USB stick, and take that with the tape. If this is not possible, try to write
those files to another computer or offsite computer, or send them as email to a friend. If none of that
is possible, at least print the bootstrap files and take that offsite with the tape. Having the bootstrap
files will make recovery much easier.

e It is better not to force Bareos to load a particular tape each day. Instead, let Bareos choose the tape.
If you need to know what tape to mount, you can print a list of recycled and appendable tapes daily,
and select any tape from that list. Bareos may propose a particular tape for use that it considers
optimal, but it will accept any valid tape from the correct pool.

Part 11

Configuration

45

Chapter 8

Customizing the Configuration

Each Bareos component (Director, Client, Storage, Console) has its own configuration containing a set of
resource definitions. These resources are very similar from one service to another, but may contain different
directives (records) depending on the component. For example, in the Director configuration, the Director
Resource defines the name of the Director, a number of global Director parameters and his password. In
the File daemon configuration, the Director Resource specifies which Directors are permitted to use the File
daemon.

If you install all Bareos daemons (Director, Storage and File Daemon) onto one system, the Bareos package
tries its best to generate a working configuration as a basis for your individual configuration.

The details of each resource and the directives permitted therein are described in the following chapters.
The following configuration files must be present:

e Director Configuration — to define the resources necessary for the Director. You define all the Clients
and Storage daemons that you use in this configuration file.

e Storage Daemon Configuration — to define the resources to be used by each Storage daemon. Normally,
you will have a single Storage daemon that controls your disk storage or tape drives. However, if you
have tape drives on several machines, you will have at least one Storage daemon per machine.

e Client/File Daemon Configuration — to define the resources for each client to be backed up. That is,
you will have a separate Client resource file on each machine that runs a File daemon.

e Console Configuration — to define the resources for the Console program (user interface to the Director).
It defines which Directors are available so that you may interact with them.

8.1 Configuration Path Layout

When a Bareos component starts, it reads its configuration. In Bareos < 16.2.2 only configuration files
(which optionally can include other files) are supported. Since Bareos Version >= 16.2.2 also configuration
subdirectories are supported.

Naming
In this section, the following naming is used:
e $CONFIGDIR refers to the base configuration directory. Bareos Linux packages use /etc/bareos/.

e A component is one of the following Bareos programs:

— bareos-dir

— bareos-sd

— bareos-fd

— bareos-traymonitor

— bconsole

— bat (only legacy config file: bat.conf)

— Bareos tools, like Volume Utility Commands and others.

e $COMPONENT refers to one of the listed components.

47

48

8.1.1 What configuration will be used?

When starting a Bareos component, it will look for its configuration. Bareos components allow the configu-
ration file/directory to be specified as a command line parameter -c $PATH.

e configuration path parameter is not given (default)

— $CONFIGDIR/$COMPONENT. conf is a file
* the configuration is read from the file $CONFIGDIR/$COMPONENT. conf
— $CONFIGDIR/$COMPONENT.d/ is a directory
* the configuration is read from $CONFIGDIR/$COMPONENT.d/*/*.conf (subdirectory configu-
ration)

e configuration path parameter is given (-c $PATH)

— $PATH is a file
* the configuration is read from the file specified in $PATH
— $PATH is a directory
 the configuration is read from $PATH/$COMPONENT.d/*/*.conf (subdirectory configuration)
As the $CONFIGDIR differs between platforms or is overwritten by the path parameter, the documentation

will often refer to the configuration without the leading path (e.g. $COMPONENT.d/*/*.conf instead of
$CONFIGDIR/$COMPONENT.d/*/* . conf).

SPATH s ead configuration from the fle spcified in SPATH

otherwise
otherwise

SCONFIGDIR/SCOMPONENT.con exists e eud configurs
SCONFIGDIR/ACOMPONENT.d! s dircctory

read configuration from SCONFIGDIR/SCOMPONENT.d/*/*.conf

When subdirectory configuration is used, all files matching $PATH/$COMPONENT . d/*/* . conf will be read, see
Subdirectory Configuration Scheme.

Relation between Bareos components and configuration

Subdirectory Configuration Scheme
Configuration File (default path on Unix)
Bareos component (default path on Unix) since Bareos >= 16.2.2
bareos-dir bareos-dir.conf bareos-dir.d
Director Configuration (/etc/bareos/bareos-dir.conf) (/etc/bareos/bareos-dir.d/)
bareos-sd bareos-sd.conf bareos-sd.d
Storage Daemon Configuration (/etc/bareos/bareos-sd. conf) (/etc/bareos/bareos-sd.d/)
bareos-fd bareos-£d. conf bareos-£fd.d
Client/File Daemon Configuration || (/etc/bareos/bareos-fd.conf) (/etc/bareos/bareos-£d.d/)
bconsole bconsole.conf bconsole.d
Console Configuration (/etc/bareos/bconsole. conf) (/etc/bareos/bconsole.d/)
bareos-traymonitor tray-monitor.conf tray-monitor.d
Monitor Configuration (/etc/bareos/tray-monitor.conf) | (/etc/bareos/tray-monitor.d/)
bat bat.conf (not supported)
(/etc/bareos/bat . conf)
Volume Utility Commands bareos-sd.conf bareos-sd.d
(use the bareos-sd configuration) (/etc/bareos/bareos-sd. conf) (/etc/bareos/bareos-sd.d/)

8.1.2 Subdirectory Configuration Scheme

If the subdirectory configuration is used, instead of a single configuration file, all files matching $COMPONENT .
d/*/*.conf are read as a configuration, see What configuration will be used?.

49

Reason for the Subdirectory Configuration Scheme

In Bareos < 16.2.2, Bareos uses one configuration file per component.

Most larger Bareos environments split their configuration into separate files, making it easier to manage the
configuration.

Also some extra packages (bareos-webui, plugins, ...) require a configuration, which must be included into
the Bareos Director or Bareos Storage Daemon configuration. The subdirectory approach makes it easier to
add or modify the configuration resources of different Bareos packages.

The Bareos configure command requires a configuration directory structure, as provided by the subdirectory
approach.

From Bareos Version >= 16.2.4 on, new installations will use configuration subdirectories by default.

Resource file conventions

e Each configuration resource has to use its own configuration file.
e The path of a resource file is $COMPONENT . d/$RESOURCETYPE/$RESOURCENAVME. conf.

e The name of the configuration file is identical with the resource name:

— e.g.
* bareos-dir.d/director/bareos-dir.conf
* bareos-dir.d/pool/Full.conf

— Exceptions:

* The resource file bareos-fd.d/client/myself.conf always has the file name myself.conf,
while the name is normally set to the hostname of the system.

e Example resource files:

— Additional packages can contain configuration files that are automatically included. However,
most additional configuration resources require configuration. When a resource file requires con-
figuration, it has to be included as an example file:

* $CONFIGDIR/$COMPONENT.d/$RESOURCE/$NAME. conf . example

x For example, the Bareos Webui entails one config resource and one config resource example
for the Bareos Director:

- $CONFIGDIR/bareos-director.d/profile/webui-admin. conf
- $CONFIGDIR/bareos-director.d/console/admin. conf.example

¢ Disable/remove configuration resource files:

— Normally you should not remove resources that are already in use (jobs, clients, ...). Instead
you should disable them by adding the directive Enable = no. Otherwise you take the risk that
orphaned entries are kept in the Bareos catalog. However, if a resource has not been used or all
references have been cleared from the database, they can also be removed from the configuration.
Please note! If you want to remove a configuration resource that is part of a Bareos package, replace
the resource configuration file by an empty file. This prevents the resource from reappearing in the
course of a package update.

Using Subdirectories Configuration Scheme

New installation
e The Subdirectories Configuration Scheme is used by default from Bareos Version >= 16.2.4 onwards.
e They will be usable immediately after installing a Bareos component.

¢ If additional packages entail example configuration files ($NAME. conf . example), copy them to $NAME.
conf, modify it as required and reload or restart the component.

o0

Updates from Bareos < 16.2.4

e When updating to a Bareos version containing the Subdirectories Configuration, the existing configu-
ration will not be touched and is still the default configuration.

— Please note! Problems can occur if you have implemented an own wildcard mechanism to load
your configuration from the same subdirectories as used by the new packages (£CONFIGDIR/
£COMPONENT. d/ */ *. conf). In this case, newly installed configuration resource files can alter
your current configuration by adding resources. Best create a copy of your configuration directory
before updating Bareos and modify your existing configuration file to use that other directory.

e As long as the old configuration file ($CONFIGDIR/$COMPONENT. conf) exists, it will be used.

e The correct way of migrating to the new configuration scheme would be to split the configuration file
into resources, store them in the resource directories and then remove the original configuration file.
— For migrating the Bareos Director configuration, the script bareos-migrate-config.sh exists. Being

called, it connects via bconsole to a running Bareos Director and creates subdirectories with the
resource configuration files.

prepare temporary directory
mkdir /tmp/baroes-dir.d
cd /tmp/baroes-dir.d

download migration script

wget
— https://raw.githubusercontent.com/bareos/bareos-contrib/master/misc/bareos-migrate-config/bareos-migrate-

execute the script
bash bareos-migrate-config.sh

backup old configuration
mv /etc/bareos/bareos-dir.conf /etc/bareos/bareos-dir.conf.bak
mv /etc/bareos/bareos-dir.d /etc/bareos/bareos-dir.d.bak

make sure, that all packaged configuration resources exists,

otherwise they will be added when updating Bareos.

for i in ‘find /etc/bareos/bareos-dir.d.bak/ -name *.conf -type f -printf "%P\n"‘; do touch [/
< "$i"; done

install newly generated configuration
cp -a /tmp/bareos-dir.d /etc/bareos/

Commands 8.1: barecos-migrate-config.sh

Restart the Bareos Director and verify your configuration. Also make sure, that all resource config-
uration files coming from Bareos packages exists, in doubt as empty files, see remove configuration
resource files.

— Another way, without splitting the configuration into resource files is:
*
mkdir $CONFIGDIR/$COMPONENT.d/migrate && mv $CONFIGDIR/$COMPONENT.conf ,/
< $CONFIGDIR/$COMPONENT.d/migrate

Commands 8.2: move configuration to subdirectory

* Resources defined in both, the new configuration directory scheme and the old configuration
file, must be removed from one of the places, best from the old configuration file, after verifying
that the settings are identical with the new settings.

8.2 Configuration File Format

A configuration file consists of one or more resources (see Resource).
Bareos programs can work with
e all resources defined in one configuration file

e configuration files that include other configuration files (see Including other Configuration Files)

e Subdirectory Configuration Scheme, where each configuration file contains exactly one resource defini-
tion

https://github.com/bareos/bareos-contrib/blob/master/misc/bareos-migrate-config/bareos-migrate-config.sh
https://github.com/bareos/bareos-contrib/blob/master/misc/bareos-migrate-config/bareos-migrate-config.sh

ol

8.2.1 Character Sets

Bareos is designed to handle most character sets of the world, US ASCII, German, French, Chinese, ...
However, it does this by encoding everything in UTF-8, and it expects all configuration files (including those
read on Win32 machines) to be in UTF-8 format. UTF-8 is typically the default on Linux machines, but
not on all Unix machines, nor on Windows, so you must take some care to ensure that your locale is set
properly before starting Bareos.

To ensure that Bareos configuration files can be correctly read including foreign characters, the LANG
environment variable must end in .UTF-8. A full example is en_ US.UTF-8. The exact syntax may vary
a bit from OS to OS, so that the way you have to define it will differ from the example. On most newer
Win32 machines you can use notepad to edit the conf files, then choose output encoding UTF-8.

Bareos assumes that all filenames are in UTF-8 format on Linux and Unix machines. On Win32 they are in
Unicode (UTF-16) and will hence be automatically converted to UTF-8 format.

8.2.2 Comments

When reading a configuration, blank lines are ignored and everything after a hash sign (#) until the end of
the line is taken to be a comment.

8.2.3 Semicolons

A semicolon (;) is a logical end of line and anything after the semicolon is considered as the next statement.
If a statement appears on a line by itself, a semicolon is not necessary to terminate it, so generally in the
examples in this manual, you will not see many semicolons.

8.2.4 Including other Configuration Files

If you wish to break your configuration file into smaller pieces, you can do so by including other files using the
syntax @f ilename where filename is the full path and filename of another file. The @filename specification
can be given anywhere a primitive token would appear.

@/etc/bareos/extra/clients.conf

Configuration 8.3: include a configuration file

Since Bareos Version >= 16.2.1 wildcards in pathes are supported:
@/etc/bareos/extra/*.conf

Configuration 8.4: include multiple configuration files

By using @| command it is also possible to include the output of a script as a configuration:

@|"/etc/bareos/generate_configuration_to_stdout.sh"

Configuration 8.5: use the output of a script as configuration

or if a parameter should be used:
@|"sh -c ’/etc/bareos/generate_client_configuration_to_stdout.sh clientname=clientl.example.com’"

Configuration 8.6: use the output of a script with parameter as a configuration

The scripts are called at the start of the daemon. You should use this with care.

8.3 Resource

A resource is defined as the resource type (see Resource Types), followed by an open brace ({), a number of
Resource Directives, and ended by a closing brace (})

Each resource definition MUST contain a Name directive. It can contain a Description directive. The Name
directive is used to uniquely identify the resource. The Description directive can be used during the display
of the Resource to provide easier human recognition. For example:

Director {

Name = "bareos-dir"

Description = "Main Bareos Director"

Query File = "/usr/lib/bareos/scripts/query.sql"
}

52

Configuration 8.7: Resource example

defines the Director resource with the name bareos-dir and a query file /usr/lib/bareos/scripts/query.
sql.
When naming resources, for some resource types naming conventions should be applied:

Client names should be postfixed with -fd
Storage names should be postfixed with -sd

Director names should be postfixed with -dir

These conventions helps a lot when reading log messages.

8.3.1 Resource Directive

Each directive contained within the resource (within the curly braces {}) is composed of a Resource Directive
Keyword followed by an equal sign (=) followed by a Resource Directive Value. The keywords must be one
of the known Bareos resource record keywords.

8.3.2 Resource Directive Keyword

A resource directive keyword is the part before the equal sign (=) in a Resource Directive. The following
sections will list all available directives by Bareos component resources.

Upper and Lower Case and Spaces

Case (upper/lower) and spaces are ignored in the resource directive keywords.
Within the keyword (i.e. before the equal sign), spaces are not significant. Thus the keywords: name,
Name, and N a m e are all identical.

8.3.3 Resource Directive Value

A resource directive value is the part after the equal sign (=) in a Resource Directive.

Spaces

Spaces after the equal sign and before the first character of the value are ignored. Other spaces within a
value may be significant (not ignored) and may require quoting.

Quotes

In general, if you want spaces in a name to the right of the first equal sign (=), you must enclose that name
within double quotes. Otherwise quotes are not generally necessary because once defined, quoted strings
and unquoted strings are all equal.

Within a quoted string, any character following a backslash (\) is taken as itself (handy for inserting back-
slashes and double quotes (”)).

Please note! If the configure directive is used to define a number, the number is never to be put between
surrounding quotes. This is even true if the number is specified together with its unit, like 365 days.

Numbers

Numbers are not to be quoted, see Quotes. Also do not prepend numbers by zeros (0), as these are not
parsed in the expected manner (write 1 instead of 01).

93

Data Types

When parsing the resource directives, Bareos classifies the data according to the types listed below.

acl This directive defines what is permitted to be accessed. It does this by using a list of regular expressions,
separated by commas (,) or using multiple directives. If !/ is prepended, the expression is negated. The
special keyword *all* allows unrestricted access.

Depending on the type of the ACL, the regular expressions can be either resource names, paths or
console commands.

Since Bareos Version >= 16.2.4 regular expression are handled more strictly. Before also substring
matches has been accepted.

For clarification, we demonstrate the usage of ACLs by some examples for Command ACL 2"

Console*®

Command ACL = help

Configuration 8.8: Allow only the help command

Command ACL = help, list

Configuration 8.9: Allow the help and the list command

Command ACL = help, iDoNotExist

Configuration 8.10: Allow the help and the (not existing) iDoNotExist command

Command ACL = *allx*

Configuration 8.11: Allow all commands (special keyword)

Command ACL = !sqlquery, 'u.*, xallx*

Configuration 8.12: Allow all commands except sqlquery and commands starting with u

Same:

Command ACL = !sqlquery, 'u.*
Command ACL = *allx

Configuration 8.13: Some as above. Specifying it in multiple lines doesn’t change the meaning

Command ACL = !sqlquery
Command ACL = !u.x*

Comamnd ACL = !set(ipl|debug)
Comamnd ACL = *allx*

Configuration 8.14: Additional deny the setip and setdebug commands

Please note! ACL checking stops at the first match. So the following definition allows all commands,
which might not be what you expected:

WARNING: this configuration ignores !sqlquery, as *all* is matched before.
Command ACL = *all*, !sqlquery

Configuration 8.15: Wrong: Allows all commands

auth-type Specifies the authentication type that must be supplied when connecting to a backup protocol
that uses a specific authentication type. Currently only used for NDMP Resource.

The following values are allowed:

None - Use no password
Clear - Use clear text password
MD5 - Use MD5 hashing

integer A 32 bit integer value. It may be positive or negative.

Don’t use quotes around the number, see Quotes.

o4

long integer A 64 bit integer value. Typically these are values such as bytes that can exceed 4 billion and
thus require a 64 bit value.

Don’t use quotes around the number, see Quotes.

name A keyword or name consisting of alphanumeric characters, including the hyphen, underscore, and
dollar characters. The first character of a name must be a letter. A name has a maximum length
currently set to 127 bytes.

Please note that Bareos resource names as well as certain other names (e.g. Volume names) must
contain only letters (including ISO accented letters), numbers, and a few special characters (space,
underscore, ...). All other characters and punctuation are invalid.

password This is a Bareos password and it is stored internally in MD5 hashed format.

path A path is either a quoted or non-quoted string. A path will be passed to your standard shell for
expansion when it is scanned. Thus constructs such as $SHOME are interpreted to be their correct
values. The path can either reference to a file or a directory.

positive integer A 32 bit positive integer value.

Don’t use quotes around the number, see Quotes.

speed The speed parameter can be specified as k/s, kb/s, m/s or mb/s.

Don’t use quotes around the parameter, see Quotes.

string A quoted string containing virtually any character including spaces, or a non-quoted string. A string
may be of any length. Strings are typically values that correspond to filenames, directories, or system
command names. A backslash (\) turns the next character into itself, so to include a double quote in
a string, you precede the double quote with a backslash. Likewise to include a backslash.

string-list Multiple strings, specified in multiple directives, or in a single directive, separated by commas

(5)-

strname is similar to a name, except that the name may be quoted and can thus contain additional
characters including spaces.

net-address is either a domain name or an IP address specified as a dotted quadruple in string or quoted
string format. This directive only permits a single address to be specified. The net-port must be
specificly separated. If multiple net-addresses are needed, please assess if it is also possible to specify
net-addresses (plural).

net-addresses Specify a set of net-addresses and net-ports. Probably the simplest way to explain this is
to show an example:

Addresses = {
ip = { addr = 1.2.3.4; port = 1205;}

ipvd = {
addr = 1.2.3.4; port = http;}
ipvé = {
addr = 1.2.3.4;
port = 1205;
}
ip = {
addr = 1.2.3.4
port = 1205
}
ip = { addr = 1.2.3.4 }
ip = { addr = 201:220:222::2 }
ip = {

addr = server.example.com

Configuration 8.16: net-addresses

%)

where ip, ip4, ip6, addr, and port are all keywords. Note, that the address can be specified as either
a dotted quadruple, or in IPv6 colon notation, or as a symbolic name (only in the ip specification).
Also, the port can be specified as a number or as the mnemonic value from the /etc/services file.
If a port is not specified, the default one will be used. If an ip section is specified, the resolution can
be made either by IPv4 or IPv6. If ip4 is specified, then only IPv4 resolutions will be permitted, and
likewise with ip6.

net-port Specify a network port (a positive integer).

Don’t use quotes around the parameter, see Quotes.
resource A resource defines a relation to the name of another resource.

size A size specified as bytes. Typically, this is a floating point scientific input format followed by an optional
modifier. The floating point input is stored as a 64 bit integer value. If a modifier is present, it must
immediately follow the value with no intervening spaces. The following modifiers are permitted:

k 1,024 (kilobytes)

kb 1,000 (kilobytes)

m 1,048,576 (megabytes)
mb 1,000,000 (megabytes)
g 1,073,741,824 (gigabytes)
gb 1,000,000,000 (gigabytes)

Don’t use quotes around the parameter, see Quotes.

time A time or duration specified in seconds. The time is stored internally as a 64 bit integer value, but it is
specified in two parts: a number part and a modifier part. The number can be an integer or a floating
point number. If it is entered in floating point notation, it will be rounded to the nearest integer. The
modifier is mandatory and follows the number part, either with or without intervening spaces. The
following modifiers are permitted:
seconds
minutes (60 seconds)
hours (3600 seconds)
days (3600*24 seconds)
weeks (3600*24*7 seconds)
months (3600%24*30 seconds)
quarters (3600%24*91 seconds)
years (3600%24*365 seconds)
Any abbreviation of these modifiers is also permitted (i.e. seconds may be specified as sec or s). A
specification of m will be taken as months.

The specification of a time may have as many number/modifier parts as you wish. For example:

1 week 2 days 3 hours 10 mins
1 month 2 days 30 sec
are valid date specifications.
Don’t use quotes around the parameter, see Quotes.
audit-command-list Specifies the commands that should be logged on execution (audited). E.g.

Audit Events = label
Audit Events = restore

Configuration 8.17:

Based on the type string-list.

yes|no Either a yes or a no (or true or false).

o6

Variable Expansion

Depending on the directive, Bareos will expand to the following variables:

Variable Expansion on Volume Labels

Bareos internal variables can be used:

Internal
Variable
$Year
$Month
$Day
$Hour
$Minute
$Second
$WeekDay
$Job
$Dir
$Level
$Type
$JobId
$JobName
$Storage
$Client
$NumVols
$Pool
$Catalog
$MediaType

Description

Year

Month: 1-12

Day: 1-31

Hour: 0-24

Minute: 0-59

Second: 0-59

Day of the week: 0-6, using 0 for Sunday
Name of the Job

Name of the Director

Job Level

Job Type

Jobld

unique name of a job

Name of the Storage Daemon
Name of the Clients

Numbers of volumes in the pool
Name of the Pool

Name of the Catalog

Type of the media

When labeling a new volume (

see Label Format D

Additional, normal environment variables can be used, e.g. $H0ME oder $HOSTNAME.
With the exception of Job specific variables, you can trigger the variable expansion by using the var command.

Variable Expansion on RunScripts

Variable
\%c
\’%d
\Ye
\%1
\%J
\%1
\%n
\%r
\%s
\%b
\%B
\%E
\%t
\%v
\%V

Variable Expansion in Autochanger Commands

Description

Client’s Name

Director’s Name

Job Exit Code

Jobld

Unique Jobld

Job Level

Unadorned Job Name

Recipients

Since Time

Job Bytes

Job Bytes in human readable format
Job Files

Job Type (Backup, ...)

Read Volume Name (only on Director)
Write Volume Name (only on Director)

following variables can be used:

Variable
\%a
\%c
\%d
\%E
\%J
\%o
\%s
\%S
\%v

Description

Archive Device Name
Changer Device Name
Changer Drive Index

Client’s Name

Job Name

Command

Slot Base 0

Slot Base 1

Volume Name

), following

At the configuration of RunScripts following variables can be used:

At the configuration of autochanger commands the

o7

Variable Expansion in Mount Commands At the configuration of mount commands the following
variables can be used:

Variable Description

\%a Archive Device Name
\%e Erase

\%n Part Number

\%m Mount Point

\%v Last Part Name

Variable Expansion in Mail and Operator Commands At the configuration of mail and operator
commands the following variables can be used:

Variable Description

\c Client’s Name

\%d Director’s Name

\%e Job Exit Code

\%1 Jobld

\%J Unique Job Id

\%1 Job Level

\%n Unadorned Job Name
\%s Since Time

\%t Job Type (Backup, ...)
\%r Recipients

\%v Read Volume Name
\%V Write Volume Name
\%b Job Bytes

\%B Job Bytes in human readable format
\%F Job Files

8.3.4 Resource Types

The following table lists all current Bareos resource types. It shows what resources must be defined for each
service (daemon). The default configuration files will already contain at least one example of each permitted
resource.

] Resource H Director \ Client \ Storage \ Console ‘

Autochanger X
Catalog X
Client
Console
Device X
Director
FileSet
Job
JobDefs
Message
NDMP X
Pool
Profile
Schedule
Storage

™
»

»
"

SR R]

R R M

8.4 Names, Passwords and Authorization

In order for one daemon to contact another daemon, it must authorize itself with a password. In most
cases, the password corresponds to a particular name, so both the name and the password must match to
be authorized. Passwords are plain text, any text. They are not generated by any special process; just use
random text.

The default configuration files are automatically defined for correct authorization with random passwords.
If you add to or modify these files, you will need to take care to keep them consistent.

o8

CONSOLE

beconsole.canf

Cirector {
y M= = fw-dir
Feem=woird = xxx
v

—

STORAGE

bareos-sd.canf

Cewice o

FeclisType = COG-2

¥
Cirector {
M= = fw-dir
Feemmword = =be
¥

FILE DEAMON
CLIENT

bareosfd.conf

Cirector {
Mem= = fw-dir
Feermworel = o=t

Figure 8.1: Relation between resource names and passwords

99

In the left column, you can see the Director, Storage, and Client resources and their corresponding names
and passwords — these are all in bareos-dir.conf. In the right column the corresponding values in the
Console, Storage daemon (SD), and File daemon (FD) configuration files are shown.

Please note that the address fw-sd, that appears in the Storage resource of the Director, is passed to the
File daemon in symbolic form. The File daemon then resolves it to an IP address. For this reason you must
use either an IP address or a resolvable fully qualified name. A name such as localhost, not being a fully
qualified name, will resolve in the File daemon to the localhost of the File daemon, which is most likely
not what is desired. The password used for the File daemon to authorize with the Storage daemon is a
temporary password unique to each Job created by the daemons and is not specified in any .conf file.

60

Chapter 9

Director Configuration

Of all the configuration files needed to run Bareos, the Director’s is the most complicated and the one that
you will need to modify the most often as you add clients or modify the FileSets.

For a general discussion of configuration files and resources including the recognized data types see Cus-
tomizing the Configuration.

Everything revolves around a job and is tied to a job in one way or another.

The Bareos Director knows about following resource types:

e Director Resource — to define the Director’s name and its access password used for authenticating the
Console program. Only a single Director resource definition may appear in the Director’s configuration
file.

e Job Resource — to define the backup/restore Jobs and to tie together the Client, FileSet and Schedule
resources to be used for each Job. Normally, you will Jobs of different names corresponding to each
client (i.e. one Job per client, but a different one with a different name for each client).

e JobDefs Resource — optional resource for providing defaults for Job resources.

e Schedule Resource — to define when a Job has to run. You may have any number of Schedules, but
each job will reference only one.

e FileSet Resource — to define the set of files to be backed up for each Client. You may have any number
of FileSets but each Job will reference only one.

e Client Resource — to define what Client is to be backed up. You will generally have multiple Client
definitions. Each Job will reference only a single client.

e Storage Resource — to define on what physical device the Volumes should be mounted. You may have
one or more Storage definitions.

e Pool Resource — to define the pool of Volumes that can be used for a particular Job. Most people use
a single default Pool. However, if you have a large number of clients or volumes, you may want to have
multiple Pools. Pools allow you to restrict a Job (or a Client) to use only a particular set of Volumes.

e Catalog Resource — to define in what database to keep the list of files and the Volume names where
they are backed up. Most people only use a single catalog. It is possible, however not adviced and not
supported to use multiple catalogs, see Current Implementation Restrictions.

e Messages Resource — to define where error and information messages are to be sent or logged. You may
define multiple different message resources and hence direct particular classes of messages to different
users or locations (files, ...).

9.1 Director Resource
The Director resource defines the attributes of the Directors running on the network. Only a single Director

resource is allowed.
The following is an example of a valid Director resource definition:

61

62

Director {
Name = bareos-dir
Password = secretpassword
QueryFile = "/etc/bareos/query.sql"
Maximum Concurrent Jobs = 10
Messages = Daemon

Configuration 9.1: Director Resource example

configuration directive name | type of data default value remark
Absolute Job Timeout = positive-integer

Audit Events = audit-command-list

Auditing = yes|no no

Backend Directory = DirectoryList /usr/lib/bareos/backends (platform specific)
Description = string

Dir Address = net-address 9101

Dir Addresses = net-addresses 9101

Dir Port = net-port 9101

Dir Source Address = net-address 0

FD Connect Timeout = time 180

Heartbeat Interval = time 0

Key Encryption Key = password

Log Timestamp Format = string

Maximum Concurrent Jobs = positive-integer 1

Maximum Connections = positive-integer 30

Maximum Console Connections | = positive-integer 20

Messages = resource-name

Name = name required
NDMP Log Level = positive-integer 4

NDMP Snooping = yes|no

Omit Defaults = yes|no yes

Optimize For Size = yes|no no

Optimize For Speed = yes|no no

Password = password required
Pid Directory = path /var/lib/bareos (platform specific)

Plugin Directory = path

Plugin Names = PluginNames

Query File = path required
Scripts Directory = path

SD Connect Timeout = time 1800

Secure Erase Command = string

Statistics Collect Interval = positive-integer 150

Statistics Retention = time 160704000

Sub Sys Directory = path deprecated
Subscriptions = positive-integer 0

TLS Allowed CN = string-list

TLS Authenticate = yes|no no

TLS CA Certificate Dir = path

TLS CA Certificate File = path

TLS Certificate = path

TLS Certificate Revocation List | = path

TLS Cipher List = string

TLS DH File = path

TLS Enable = yes|no no

TLS Key = path

TLS Require = yes|no no

TLS Verify Peer = yes|no yes

Ver Id = string

Working Directory = path /var/lib/bareos (platform specific)

63

Absolute Job Timeout = <positive-integer>

Version >= 14.2.0

Audit Events = <audit-command-list>
Specify which commands (see Console Commands) will be audited. If nothing is specified (and Auditing
pix is enabled), all commands will be audited.

Director

Version >= 14.2.0

Auditing = <yes|no> (default: no)
This directive allows to en- or disable auditing of interaction with the Bareos Director. If enabled,
audit messages will be generated. The messages resource configured in Messages DI . = defines, how
these messages are handled.

Version >= 14.2.0

Backend Directory = <DirectoryList> (default: /usr/lib/bareos/backends (platform specific))
This directive specifies a directory from where the Bareos Director loads his dynamic backends.

Description = <string>
The text field contains a description of the Director that will be displayed in the graphical user
interface. This directive is optional.

Dir Address = <net-address> (default: 9101)
This directive is optional, but if it is specified, it will cause the Director server (for the Console
program) to bind to the specified address. If this and the Dir Addresses D, = directives are not
specified, the Director will bind to any available address (the default).

Dir Addresses = <net-addresses> (default: 9101)
Specify the ports and addresses on which the Director daemon will listen for Bareos Console connec-
tions.

Please note that if you use the Dir Addresses [... directive, you must not use either a Dir Port

Dix or a Dir Address Pir directive in the same resource.

Director Director

Dir Port = <net-port> (default: 9101)
Specify the port on which the Director daemon will listen for Bareos Console connections. This same
port number must be specified in the Director resource of the Console configuration file. This directive
should not be used if you specify Dir Addresses B (N.B plural) directive.

Director

Dir Source Address = <net-address> (default: 0)
This record is optional, and if it is specified, it will cause the Director server (when initiating
connections to a storage or file daemon) to source its connections from the specified address. Only a
single IP address may be specified. If this record is not specified, the Director server will source its
outgoing connections according to the system routing table (the default).

FD Connect Timeout = <time> (default: 180)
where time is the time that the Director should continue attempting to contact the File daemon to
start a job, and after which the Director will cancel the job.

Heartbeat Interval = <time> (default: 0)
This directive is optional and if specified will cause the Director to set a keepalive interval (heartbeat)
in seconds on each of the sockets it opens for the Client resource. This value will override any
specified at the Director level. It is implemented only on systems that provide the setsockopt
TCP_KEEPIDLE function (Linux, ...). The default value is zero, which means no change is made to
the socket.

64

Key Encryption Key = <password>
This key is used to encrypt the Security Key that is exchanged between the Director and the Storage
Daemon for supporting Application Managed Encryption (AME). For security reasons each Director
should have a different Key Encryption Key.

Log Timestamp Format = <string>

Version >= 15.2.3

Maximum Concurrent Jobs = <positive-integer> (default: 1)
This directive specifies the maximum number of total Director Jobs that should run concurrently.

The Volume format becomes more complicated with multiple simultaneous jobs, consequently, restores
may take longer if Bareos must sort through interleaved volume blocks from multiple simultaneous
jobs. This can be avoided by having each simultaneous job write to a different volume or by using data
spooling, which will first spool the data to disk simultaneously, then write one spool file at a time to
the volume thus avoiding excessive interleaving of the different job blocks.

See also the section about Concurrent Jobs.

Maximum Connections = <positive-integer> (default: 30)

Maximum Console Connections = <positive-integer> (default: 20)
This directive specifies the maximum number of Console Connections that could run concurrently.

Messages = <resource-name>
The messages resource specifies where to deliver Director messages that are not associated with a
specific Job. Most messages are specific to a job and will be directed to the Messages resource specified
by the job. However, there are a messages that can occur when no job is running.

Name = <name> (required)
The name of the resource.

The director name used by the system administrator.

NDMP Log Level = <positive-integer> (default: 4)
This directive sets the loglevel for the NDMP protocol library.
Version >= 13.2.0

NDMP Snooping = <yes|no>
This directive enables the Snooping and pretty printing of NDMP protocol information in debugging
mode.
Version >= 13.2.0

Omit Defaults = <yes|no> (default: yes)
When showing the configuration, omit those parameter that have there default value assigned.

Optimize For Size = <yes|no> (default: no)
If set to yes this directive will use the optimizations for memory size over speed. So it will try to
use less memory which may lead to a somewhat lower speed. Its currently mostly used for keeping all
hardlinks in memory.

If none of Optimize For Size Di* . ~and Optimize For Speed % . is enabled, Optimize For Size DI . .
is enabled by default.
Optimize For Speed = <yes|no> (default: no)

If set to yes this directive will use the optimizations for speed over the memory size. So it will try to
use more memory which lead to a somewhat higher speed. Its currently mostly used for keeping all

65

Dir
Director

hardlinks in memory. Its relates to the Optimize For Size
are mutually exclusive.

option set either one to yes as they

Password = <password> (required)
Specifies the password that must be supplied for the default Bareos Console to be authorized. This
password correspond to Password o2 of the Console configuration file.

Director

The password is plain text.

Pid Directory = <path> (default: /var/lib/bareos (platform specific))
This directive is optional and specifies a directory in which the Director may put its process Id file.
The process Id file is used to shutdown Bareos and to prevent multiple copies of Bareos from running
simultaneously. Standard shell expansion of the Directory is done when the configuration file is read
so that values such as $HOME will be properly expanded.

The PID directory specified must already exist and be readable and writable by the Bareos daemon
referencing it.

Typically on Linux systems, you will set this to: /var/run. If you are not installing Bareos in the
system directories, you can use the Working Directory as defined above.

Plugin Directory = <path>
Plugins are loaded from this directory. To load only specific plugins, use 'Plugin Names’.

Version >= 14.2.0

Plugin Names = <PluginNames>
List of plugins, that should get loaded from 'Plugin Directory’ (only basenames, ’-dir.so’ is added
automatically). If empty, all plugins will get loaded.

Version >= 14.2.0

Query File = <path> (required)
This directive is required and specifies a directory and file in which the Director can find the canned
SQL statements for the query command.

Scripts Directory = <path>
This directive is currently unused.

SD Connect Timeout = <time> (default: 1800)
where time is the time that the Director should continue attempting to contact the Storage daemon
to start a job, and after which the Director will cancel the job.

Secure Erase Command = <string>
Specify command that will be called when bareos unlinks files.

When files are no longer needed, Bareos will delete (unlink) them. With this directive, it will call the
specified command to delete these files. See Secure Erase Command for details.
Version >= 15.2.1

Statistics Collect Interval = <positive-integer> (default: 150)
Bareos offers the possibility to collect statistic information from its connected devices. To do so, Collect
Statistics g, .. must be enabled. This interval defines, how often the Director connects to the attached

Storage Daemons to collect the statistic information.
Version >= 14.2.0

Statistics Retention = <time> (default: 160704000)

The Statistics Retention directive defines the length of time that Bareos will keep statistics job
records in the Catalog database after the Job End time (in JobHistory table). When this time period
expires, and if user runs prune stats command, Bareos will prune (remove) Job records that are older
than the specified period.

Theses statistics records aren’t use for restore purpose, but mainly for capacity planning, billings, etc.
See chapter about how to extract information from the catalog for additional information.

See the Configuration chapter of this manual for additional details of time specification.

Sub Sys Directory = <path>

Please note! This directive is deprecated.

Subscriptions = <positive-integer> (default: 0)

In case you want check that the number of active clients don’t exceed a specific number, you can define
this number here and check with the status subscriptions command.

However, this is only indended to give a hint. No active limiting is implemented.
Version >= 12.4.4

TLS Allowed CN = <string-list>

”Common Name”s (CNs) of the allowed peer certificates.

TLS Authenticate = <yes|no> (default: no)

Use TLS only to authenticate, not for encryption.

TLS CA Certificate Dir = <path>

Path of a TLS CA certificate directory.

TLS CA Certificate File = <path>

Path of a PEM encoded TLS CA certificate(s) file.

TLS Certificate = <path>

Path of a PEM encoded TLS certificate.

TLS Certificate Revocation List = <path>

Path of a Certificate Revocation List file.

TLS Cipher List = <string>

List of valid TLS Ciphers.

TLS DH File = <path>

Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange
will be used for the ephemeral keying, allowing for forward secrecy of communications.

67

TLS Enable = <yes|no> (default: no)
Enable TLS support.

Bareos can be configured to encrypt all its network traffic. See chapter TLS Configuration Directives
to see, how the Bareos Director (and the other components) must be configured to use TLS.

TLS Key = <path>
Path of a PEM encoded private key. It must correspond to the specified ” TLS Certificate”.

TLS Require = <yes|no> (default: no)
Without setting this to yes, Bareos can fall back to use unencryption connections. Enabling this
implicietly sets ”TLS Enable = yes”.

TLS Verify Peer = <yes|no> (default: yes)
If disabled, all certificates signed by a known CA will be accepted. If enabled, the CN of a certificate
must the Address or in the ”TLS Allowed CN” list.

Ver Id = <string>
where string is an identifier which can be used for support purpose. This string is displayed using
the version command.

Working Directory = <path> (default: /var/lib/bareos (platform specific))
This directive is optional and specifies a directory in which the Director may put its status files. This
directory should be used only by Bareos but may be shared by other Bareos daemons. Standard shell
expansion of the directory is done when the configuration file is read so that values such as $HOME
will be properly expanded.

The working directory specified must already exist and be readable and writable by the Bareos
daemon referencing it.

9.2 Job Resource

The Job resource defines a Job (Backup, Restore, ...) that Bareos must perform. Each Job resource definition
contains the name of a Client and a FileSet to backup, the Schedule for the Job, where the data are to be
stored, and what media Pool can be used. In effect, each Job resource must specify What, Where, How,
and When or FileSet, Storage, Backup/Restore/Level, and Schedule respectively. Note, the FileSet must be
specified for a restore job for historical reasons, but it is no longer used.

Only a single type (Backup, Restore, ...) can be specified for any job. If you want to backup multiple
FileSets on the same Client or multiple Clients, you must define a Job for each one.

Note, you define only a single Job to do the Full, Differential, and Incremental backups since the different
backup levels are tied together by a unique Job name. Normally, you will have only one Job per Client, but
if a client has a really huge number of files (more than several million), you might want to split it into to
Jobs each with a different FileSet covering only part of the total files.

Multiple Storage daemons are not currently supported for Jobs, so if you do want to use multiple storage
daemons, you will need to create a different Job and ensure that for each Job that the combination of Client
and FileSet are unique. The Client and FileSet are what Bareos uses to restore a client, so if there are
multiple Jobs with the same Client and FileSet or multiple Storage daemons that are used, the restore will
not work. This problem can be resolved by defining multiple FileSet definitions (the names must be different,
but the contents of the FileSets may be the same).

configuration directive name | type of data | default value | remark

68

Accurate

Add Prefix

Add Suffix

Allow Duplicate Jobs

Allow Higher Duplicates
Allow Mixed Priority
Always Incremental

Always Incremental Job Retention
Always Incremental Keep Number
Always Incremental Max Full Age
Backup Format

Base

Bootstrap

Cancel Lower Level Duplicates
Cancel Queued Duplicates
Cancel Running Duplicates
Catalog

Client

Client Run After Job

Client Run Before Job
Description

Differential Backup Pool
Differential Max Runtime
Differential Max Wait Time
Dir Plugin Options

Enabled

FD Plugin Options

File History Size

File Set

Full Backup Pool

Full Max Runtime

Full Max Wait Time
Incremental Backup Pool
Incremental Max Runtime
Incremental Max Wait Time
Job Defs

Job To Verify

Level

Max Concurrent Copies
Max Diff Interval

Max Full Consolidations
Max Full Interval

Max Run Sched Time

Max Run Time

Max Start Delay

Max Virtual Full Interval
Max Wait Time

Maximum Bandwidth
Maximum Concurrent Jobs
Messages

Name

Next Pool

Plugin Options

Pool

Prefer Mounted Volumes
Prefix Links

Priority

Protocol

Prune Files

yes|no

string

string

yes|no

yes|no

yes|no

yes|no

time
positive-integer
time

string
Resourcelist
path

yes|no

yes|no

yes|no
resource-name
resource-name
RunscriptShort
RunscriptShort
string
resource-name
time

time

string-list
yes|no
string-list
Size64
resource-name
resource-name
time

time
resource-name
time

time
resource-name
resource-name
BackupLevel
positive-integer
time
positive-integer
time

= time

time

time

time

time

speed
positive-integer
resource-name
name
resource-name
string-list
resource-name
yes|no

yes|no
positive-integer
ProtocolType
yes|no

no

yes
yes
no
no

Native

no
no
no

yes

10000000

100

yes

no

10
Native
no

deprecated

deprecated

deprecated

required
required

alias, deprecated
required

Prune Jobs

Prune Volumes
Purge Migration Job
Regex Where
Replace

Rerun Failed Levels
Reschedule Interval
Reschedule On Error
Reschedule Times
Run

Run After Failed Job
Run After Job

Run Before Job

Run Script

Save File History
Schedule

SD Plugin Options
Selection Pattern
Selection Type
Spool Attributes
Spool Data

Spool Size

Storage

Strip Prefix

Type

Verify Job

Virtual Full Backup Pool

Where

Write Bootstrap
Write Part After Job
Write Verify List

= yes|no

= yes|no

= yes|no

= string

= ReplaceOption
= yes|no

= time

= yes|no

= positive-integer
= string-list

= RunscriptShort
= RunscriptShort
= RunscriptShort
{ Runscript }

= yes|no

= resource-name
= string-list

= string

= MigrationType
= yes|no

= yes|no

= Size64

= Resourcelist
= string

= JobType

= resource-name
= resource-name
= path

= path

= yes|no

= path

no
no
no

Always
no
1800
no

yes

no
no

required
alias

deprecated

69

Accurate = <yes|no>

(default: no)

In accurate mode, the File daemon knowns exactly which files were present after the last backup. So
it is able to handle deleted or renamed files.

When restoring a FileSet for a specified date (including ”most recent”), Bareos is able to restore exactly
the files and directories that existed at the time of the last backup prior to that date including ensuring
that deleted files are actually deleted, and renamed directories are restored properly.

When doing VirtualFull backups, it is advised to use the accurate mode, otherwise the VirtualFull

might contain already deleted files.

However, using the accurate mode has also disadvantages:

e The File daemon must keep data concerning all files in memory. So If you do not have sufficient
memory, the backup may either be terribly slow or fail. For 500.000 files (a typical desktop linux
system), it will require approximately 64 Megabytes of RAM on your File daemon to hold the

required information.

Add Prefix = <string>

This directive applies only to a Restore job and specifies a prefix to the directory name of all files
being restored. This will use File Relocation feature.

Add Suffix = <string>

This directive applies only to a Restore job and specifies a suffix to all files being restored. This will

use File Relocation feature.

70

Using Add Suffix=.0ld, /etc/passwd will be restored to /etc/passwsd.old

Allow Duplicate Jobs = <yes|no> (default: yes)
A duplicate job in the sense we use it here means a second or subsequent job with the same name

JobA 1st
JobA 2nd

[¢] | L
L:::\eDu;xvzxes \eve\FZT‘d Tleve\ (1st) | Cancel 1st
ex: Full > Incremental Run 2nd
no | no
Tevel(1st) > level(2nd) | YES
ex: Full > Incremental| =~

A duplicate job in the se nse we use it here meansa second
or subsaquent job with the same name staris.

yes

is 1st queued Cancel Queued
not yet running) Duplicates
No
yes no

Y
Y&$ [Cancel Running
CEnce2Ir_1dET <——|Duplicates
un No

Figure 9.1: Allow Duplicate Jobs usage

starts. This happens most frequently when the first job runs longer than expected because no tapes
are available.

If this directive is enabled duplicate jobs will be run. If the directive is set to no then only one job
of a given name may run at one time. The action that Bareos takes to ensure only one job runs is
determined by the directives

e Cancel Lower Level Duplicates 7'

e Cancel Queued Duplicates D't

Dir

e Cancel Running Duplicates D*

If none of these directives is set to yes, Allow Duplicate Jobs is set to no and two jobs are present,
then the current job (the second one started) will be cancelled.

Allow Higher Duplicates = <yes|no> (default: yes)

Allow Mixed Priority = <yes|no> (default: no)
When set to yes, this job may run even if lower priority jobs are already running. This means a high
priority job will not have to wait for other jobs to finish before starting. The scheduler will only mix
priorities when all running jobs have this set to true.

Note that only higher priority jobs will start early. Suppose the director will allow two concurrent
jobs, and that two jobs with priority 10 are running, with two more in the queue. If a job with priority

71

5 is added to the queue, it will be run as soon as one of the running jobs finishes. However, new
priority 10 jobs will not be run until the priority 5 job has finished.

Always Incremental = <yes|no> (default: no)
Enable/disable always incremental backup scheme.

Version >= 16.2.4

Always Incremental Job Retention = <time> (default: 0)
Backup Jobs older than the specified time duration will be merged into a new Virtual backup.

Version >= 16.2.4

Always Incremental Keep Number = <positive-integer> (default: 0)
Guarantee that at least the specified number of Backup Jobs will persist, even if they are older than
” Always Incremental Job Retention”.

Version >= 16.2.4

Always Incremental Max Full Age = <time>
If 7 AlwaysIncrementalMaxFullAge” is set, during consolidations only incremental backups will be
considered while the Full Backup remains to reduce the amount of data being consolidated. Only if
the Full Backup is older than ” AlwaysIncrementalMaxFullAge”, the Full Backup will be part of the
consolidation to avoid the Full Backup becoming too old .

Version >= 16.2.4

Backup Format = <string> (default: Native)
The backup format used for protocols which support multiple formats. By default, it uses the Bareos
Native Backup format. Other protocols, like NDMP supports different backup formats for instance:

e Dump
e Tar
e SMTape

Base = <ResourceList>
The Base directive permits to specify the list of jobs that will be used during Full backup as base.
This directive is optional. See the Base Job chapter for more information.

Bootstrap = <path>
The Bootstrap directive specifies a bootstrap file that, if provided, will be used during Restore Jobs
and is ignored in other Job types. The bootstrap file contains the list of tapes to be used in a restore
Job as well as which files are to be restored. Specification of this directive is optional, and if specified,
it is used only for a restore job. In addition, when running a Restore job from the console, this value
can be changed.

If you use the restore command in the Console program, to start a restore job, the bootstrap file will
be created automatically from the files you select to be restored.

For additional details see The Bootstrap File chapter.

Cancel Lower Level Duplicates = <yes|no> (default: no)
If Allow Duplicate Jobs D is set to no and this directive is set to yes, Bareos will choose between
duplicated jobs the one with the highest level. For example, it will cancel a previous Incremental to
run a Full backup. It works only for Backup jobs. If the levels of the duplicated jobs are the same,
nothing is done and the directives Cancel Queued Duplicates »* and Cancel Running Duplicates D%

Job Job
will be examined.

72

Cancel Queued Duplicates = <yes|no> (default: no)
If Allow Duplicate Jobs D is set to no and if this directive is set to yes any job that is already queued

to run but not yet running will be canceled.

Cancel Running Duplicates = <yes|no> (default: no)
If Allow Duplicate Jobs P is set to no and if this directive is set to yes any job that is already

Job
running will be canceled.

Catalog = <resource-name>
This specifies the name of the catalog resource to be used for this Job. When a catalog is defined in a
Job it will override the definition in the client.
Version >= 13.4.0

Client = <resource-name>
The Client directive specifies the Client (File daemon) that will be used in the current Job. Only
a single Client may be specified in any one Job. The Client runs on the machine to be backed up,
and sends the requested files to the Storage daemon for backup, or receives them when restoring.
For additional details, see the Client Resource of this chapter. This directive is required For versions
before 13.3.0, this directive is required for all Jobtypes. For Version >= 13.3.0 it is required for all
Jobtypes but Copy or Migrate jobs.

Client Run After Job = <RunscriptShort>
This is a shortcut for the Run Script 2 resource, that run on the client after a backup job.

Client Run Before Job = <RunscriptShort>
This is basically a shortcut for the Run Script P resource, that run on the client before the backup
job.

Please note! For compatibility reasons, with this shortcut, the command is executed directly when the
client receive it. And if the command is in error, other remote runscripts will be discarded. To be sure

that all commands will be sent and executed, you have to use Run Script % syntax.

Description = <string>

Differential Backup Pool = <resource-name>
The Differential Backup Pool specifies a Pool to be used for Differential backups. It will override any
Pool Vv specification during a Differential backup.

Differential Max Runtime = <time>
The time specifies the maximum allowed time that a Differential backup job may run, counted from
when the job starts (not necessarily the same as when the job was scheduled).

Differential Max Wait Time = <time>
Please note! This directive is deprecated.

This directive has been deprecated in favor of Differential Max Runtime Pi*

Job*

Dir Plugin Options = <string-list>
These settings are plugin specific, see Director Plugins.

Enabled = <yes|no> (default: yes)
En- or disable this resource.

This directive allows you to enable or disable automatic execution via the scheduler of a Job.

73

FD Plugin Options = <string-list>
These settings are plugin specific, see File Daemon Plugins.

File History Size = <Size64> (default: 10000000)
When using NDMP and Save File History 7't is enabled, this directives controls the size of the internal

temporary database (LMDB) to translate NDMP file and directory information into Bareos file and
directory information.

File History Size must be greater the number of directories + files of this NDMP backup job.

Please note! This uses a large memory mapped file (File History Size 256 —> around 2,3
GB for the File History Size = 10000000). On 32-bit systems or if a memory limit for the
user running the Bareos Director (normally bareos) ewists (verify by su - bareos -s /bin/
sh -c "ulimit -a"), this may fail.

Version >= 15.2.4

File Set = <resource-name>
The FileSet directive specifies the FileSet that will be used in the current Job. The FileSet specifies
which directories (or files) are to be backed up, and what options to use (e.g. compression, ...). Only
a single FileSet resource may be specified in any one Job. For additional details, see the FileSet
Resource section of this chapter. This directive is required (For versions before 13.3.0 for all Jobtypes
and for versions after that for all Jobtypes but Copy and Migrate).

Full Backup Pool = <resource-name>
The Full Backup Pool specifies a Pool to be used for Full backups. It will override any Pool Dir
specification during a Full backup.

Full Max Runtime = <time>
The time specifies the maximum allowed time that a Full backup job may run, counted from when
the job starts (not necessarily the same as when the job was scheduled).

Full Max Wait Time = <time>
Please note! This directive is deprecated.

This directive has been deprecated in favor of Full Max Runtime 2

Job*

Incremental Backup Pool = <resource-name>
The Incremental Backup Pool specifies a Pool to be used for Incremental backups. It will override

any Pool D' specification during an Incremental backup.

Incremental Max Runtime = <time>
The time specifies the maximum allowed time that an Incremental backup job may run, counted from
when the job starts, (not necessarily the same as when the job was scheduled).

Incremental Max Wait Time = <time>
Please note! This directive is deprecated.

This directive has been deprecated in favor of Incremental Max Runtime 77

Job Defs = <resource-name>

If a Job Defs resource name is specified, all the values contained in the named Job Defs resource
will be used as the defaults for the current Job. Any value that you explicitly define in the current
Job resource, will override any defaults specified in the Job Defs resource. The use of this directive
permits writing much more compact Job resources where the bulk of the directives are defined in one
or more Job Defs. This is particularly useful if you have many similar Jobs but with minor variations
such as different Clients. To structure the configuration even more, Job Defs themselves can also refer
to other Job Defs.

74

Job To Verify = <resource-name>

Level = <BackupLevel>

Dir

The Level directive specifies the default Job level to be run. Each different Type 0'r (Backup, Restore,
...) has a different set of Levels that can be specified. The Level is normally overridden by a
different value that is specified in the Schedule Resource. This directive is not required, but must be
specified either by this directive or as an override specified in the Schedule Resource.

For a Backup Job, the Level may be one of the following:
Full

When the Level is set to Full all files in the FileSet whether or not they have changed will
be backed up.

Incremental

When the Level is set to Incremental all files specified in the FileSet that have changed
since the last successful backup of the the same Job using the same FileSet and Client, will
be backed up. If the Director cannot find a previous valid Full backup then the job will be
upgraded into a Full backup. When the Director looks for a valid backup record in the catalog
database, it looks for a previous Job with:

e The same Job name.
e The same Client name.

e The same FileSet (any change to the definition of the FileSet such as adding or deleting
a file in the Include or Exclude sections constitutes a different FileSet.

e The Job was a Full, Differential, or Incremental backup.
e The Job terminated normally (i.e. did not fail or was not canceled).
e The Job started no longer ago than Max Full Interval.

If all the above conditions do not hold, the Director will upgrade the Incremental to a Full
save. Otherwise, the Incremental backup will be performed as requested.

The File daemon (Client) decides which files to backup for an Incremental backup by com-
paring start time of the prior Job (Full, Differential, or Incremental) against the time each
file was last "modified” (st_mtime) and the time its attributes were last ”changed” (st_ctime).
If the file was modified or its attributes changed on or after this start time, it will then be
backed up.

Some virus scanning software may change st_ctime while doing the scan. For example, if the
virus scanning program attempts to reset the access time (st_atime), which Bareos does not
use, it will cause st_ctime to change and hence Bareos will backup the file during an Incremen-
tal or Differential backup. In the case of Sophos virus scanning, you can prevent it from reset-
ting the access time (st_atime) and hence changing st_ctime by using the --no-reset-atime
option. For other software, please see their manual.

When Bareos does an Incremental backup, all modified files that are still on the system are
backed up. However, any file that has been deleted since the last Full backup remains in
the Bareos catalog, which means that if between a Full save and the time you do a restore,
some files are deleted, those deleted files will also be restored. The deleted files will no longer
appear in the catalog after doing another Full save.

In addition, if you move a directory rather than copy it, the files in it do not have their
modification time (st_mtime) or their attribute change time (st_ctime) changed. As a conse-
quence, those files will probably not be backed up by an Incremental or Differential backup
which depend solely on these time stamps. If you move a directory, and wish it to be properly
backed up, it is generally preferable to copy it, then delete the original.

However, to manage deleted files or directories changes in the catalog during an Incremental
backup you can use Job Resource. This is quite memory consuming process.

Differential

When the Level is set to Differential all files specified in the FileSet that have changed since

the last successful Full backup of the same Job will be backed up. If the Director cannot
find a valid previous Full backup for the same Job, FileSet, and Client, backup, then the
Differential job will be upgraded into a Full backup. When the Director looks for a valid Full
backup record in the catalog database, it looks for a previous Job with:

(0]

e The same Job name.
e The same Client name.

e The same FileSet (any change to the definition of the FileSet such as adding or deleting
a file in the Include or Exclude sections constitutes a different FileSet.

e The Job was a FULL backup.
e The Job terminated normally (i.e. did not fail or was not canceled).
e The Job started no longer ago than Max Full Interval.

If all the above conditions do not hold, the Director will upgrade the Differential to a Full
save. Otherwise, the Differential backup will be performed as requested.

The File daemon (Client) decides which files to backup for a differential backup by comparing
the start time of the prior Full backup Job against the time each file was last "modified”
(st_mtime) and the time its attributes were last ”changed” (st_ctime). If the file was modified
or its attributes were changed on or after this start time, it will then be backed up. The start
time used is displayed after the Since on the Job report. In rare cases, using the start time
of the prior backup may cause some files to be backed up twice, but it ensures that no change
is missed.

When Bareos does a Differential backup, all modified files that are still on the system are
backed up. However, any file that has been deleted since the last Full backup remains in
the Bareos catalog, which means that if between a Full save and the time you do a restore,
some files are deleted, those deleted files will also be restored. The deleted files will no longer
appear in the catalog after doing another Full save. However, to remove deleted files from
the catalog during a Differential backup is quite a time consuming process and not currently
implemented in Bareos. It is, however, a planned future feature.

As noted above, if you move a directory rather than copy it, the files in it do not have
their modification time (st_mtime) or their attribute change time (st_ctime) changed. As a
consequence, those files will probably not be backed up by an Incremental or Differential
backup which depend solely on these time stamps. If you move a directory, and wish it to be
properly backed up, it is generally preferable to copy it, then delete the original. Alternatively,
you can move the directory, then use the touch program to update the timestamps.
However, to manage deleted files or directories changes in the catalog during an Differential
backup you can use accurate mode. This is quite memory consuming process. See for more
details.

Every once and a while, someone asks why we need Differential backups as long as Incremental
backups pickup all changed files. There are possibly many answers to this question, but the
one that is the most important for me is that a Differential backup effectively merges all
the Incremental and Differential backups since the last Full backup into a single Differential
backup. This has two effects: 1. It gives some redundancy since the old backups could be
used if the merged backup cannot be read. 2. More importantly, it reduces the number
of Volumes that are needed to do a restore effectively eliminating the need to read all the
volumes on which the preceding Incremental and Differential backups since the last Full are
done.

VirtualFull

Restore

When the Level is set to VirtualFull, a new Full backup is generated from the last existing

Full backup and the matching Differential- and Incremental-Backups. It matches this ac-
cording the Name 2ir = and Name 2. .. This means, a new Full backup get created without
transfering all the data from the client to the backup server again. The new Full backup will

be stored in the pool defined in Next Pool P .
Please note! Opposite to the offer backup levels, VirtualFull may require read and write access
to multiple volumes. In most cases you have to make sure, that Bareos does not try to read

and write to the same Volume.

For a Restore Job, no level needs to be specified.

Verify

For a Verify Job, the Level may be one of the following:

InitCatalog

does a scan of the specified FileSet and stores the file attributes in the Catalog database.
Since no file data is saved, you might ask why you would want to do this. It turns out to be
a very simple and easy way to have a Tripwire like feature using Bareos. In other words,

76

it allows you to save the state of a set of files defined by the FileSet and later check to see if
those files have been modified or deleted and if any new files have been added. This can be
used to detect system intrusion. Typically you would specify a FileSet that contains the set
of system files that should not change (e.g. /sbin, /boot, /lib, /bin, ...). Normally, you run
the InitCatalog level verify one time when your system is first setup, and then once again
after each modification (upgrade) to your system. Thereafter, when your want to check the
state of your system files, you use a Verify level = Catalog. This compares the results of
your InitCatalog with the current state of the files.

Catalog

Compares the current state of the files against the state previously saved during an Init-
Catalog. Any discrepancies are reported. The items reported are determined by the verify
options specified on the Include directive in the specified FileSet (see the FileSet resource
below for more details). Typically this command will be run once a day (or night) to check
for any changes to your system files.

Please note! If you run two Verify Catalog jobs on the same client at the same time, the results
will certainly be incorrect. This is because Verify Catalog modifies the Catalog database while
running in order to track new files.

VolumeToCatalog

This level causes Bareos to read the file attribute data written to the Volume from the last
backup Job for the job specified on the VerifyJob directive. The file attribute data are
compared to the values saved in the Catalog database and any differences are reported. This
is similar to the DiskToCatalog level except that instead of comparing the disk file attributes
to the catalog database, the attribute data written to the Volume is read and compared to
the catalog database. Although the attribute data including the signatures (MD5 or SHA1)
are compared, the actual file data is not compared (it is not in the catalog).
VolumeToCatalog jobs need a client to extract the metadata, but this client does not have to
be the original client. We suggest to use the client on the backup server itself for maximum
performance.

Please note! If you run two Verify VolumeToCatalog jobs on the same client at the same time,
the results will certainly be incorrect. This is because the Verify VolumeToCatalog modifies
the Catalog database while running.

DiskToCatalog

This level causes Bareos to read the files as they currently are on disk, and to compare the
current file attributes with the attributes saved in the catalog from the last backup for the
job specified on the VerifyJob directive. This level differs from the VolumeToCatalog
level described above by the fact that it doesn’t compare against a previous Verify job but
against a previous backup. When you run this level, you must supply the verify options on
your Include statements. Those options determine what attribute fields are compared.

This command can be very useful if you have disk problems because it will compare the
current state of your disk against the last successful backup, which may be several jobs.
Note, the current implementation does not identify files that have been deleted.

Max Concurrent Copies = <positive-integer> (default: 100)

Max Diff Interval = <time>

The time specifies the maximum allowed age (counting from start time) of the most recent successful
Differential backup that is required in order to run Incremental backup jobs. If the most recent
Differential backup is older than this interval, Incremental backups will be upgraded to Differential
backups automatically. If this directive is not present, or specified as 0, then the age of the previous
Differential backup is not considered.

Max Full Consolidations = <positive-integer> (default: 0)

If ” AlwaysIncrementalMaxFullAge” is configured, do not run more than ”MaxFullConsolidations” con-
solidation jobs that include the Full backup.

7

Version >= 16.2.4

Max Full Interval = <time>
The time specifies the maximum allowed age (counting from start time) of the most recent successful
Full backup that is required in order to run Incremental or Differential backup jobs. If the most recent
Full backup is older than this interval, Incremental and Differential backups will be upgraded to Full
backups automatically. If this directive is not present, or specified as 0, then the age of the previous
Full backup is not considered.

Max Run Sched Time = <time>
The time specifies the maximum allowed time that a job may run, counted from when the job was
scheduled. This can be useful to prevent jobs from running during working hours. We can see it like
Max Start Delay + Max Run Time.

Max Run Time = <time>
The time specifies the maximum allowed time that a job may run, counted from when the job starts,
(not necessarily the same as when the job was scheduled).

By default, the watchdog thread will kill any Job that has run more than 6 days. The maximum
watchdog timeout is independent of Max Run Time and cannot be changed.

Max Start Delay = <time>
The time specifies the maximum delay between the scheduled time and the actual start time for the
Job. For example, a job can be scheduled to run at 1:00am, but because other jobs are running, it
may wait to run. If the delay is set to 3600 (one hour) and the job has not begun to run by 2:00am,
the job will be canceled. This can be useful, for example, to prevent jobs from running during day
time hours. The default is no limit.

Max Virtual Full Interval = <time>
The time specifies the maximum allowed age (counting from start time) of the most recent successful
Virtual Full backup that is required in order to run Incremental or Differential backup jobs. If the
most recent Virtual Full backup is older than this interval, Incremental and Differential backups will
be upgraded to Virtual Full backups automatically. If this directive is not present, or specified as 0,
then the age of the previous Virtual Full backup is not considered.
Version >= 14.4.0

Max Wait Time = <time>
The time specifies the maximum allowed time that a job may block waiting for a resource (such as
waiting for a tape to be mounted, or waiting for the storage or file daemons to perform their duties),
counted from the when the job starts, (not necessarily the same as when the job was scheduled).

Maximum Bandwidth = <speed>
The speed parameter specifies the maximum allowed bandwidth that a job may use.

Maximum Concurrent Jobs = <positive-integer> (default: 1)
Specifies the maximum number of Jobs from the current Job resource that can run concurrently. Note,
this directive limits only Jobs with the same name as the resource in which it appears. Any other
restrictions on the maximum concurrent jobs such as in the Director, Client or Storage resources will
also apply in addition to the limit specified here.

For details, see the Concurrent Jobs chapter.

Messages = <resource-name> (required)
The Messages directive defines what Messages resource should be used for this job, and thus how and
where the various messages are to be delivered. For example, you can direct some messages to a log

78

Max Run Sched Time

>
P Max Wait Time
Max Run Time H
: >
Mz Start Delay § i
| Wait time Run time | Blocked Run time
A A A A
»>
H : H Time
Scheduled Time Start Time Ask sysop to End Time
mourt next
volume

Figure 9.2: Job time control directives

file, and others can be sent by email. For additional details, see the Messages Resource Chapter of
this manual. This directive is required.

Name = <name> (required)
The name of the resource.

The Job name. This name can be specified on the Run command in the console program to start a
job. If the name contains spaces, it must be specified between quotes. It is generally a good idea to
give your job the same name as the Client that it will backup. This permits easy identification of jobs.

When the job actually runs, the unique Job Name will consist of the name you specify here followed
by the date and time the job was scheduled for execution. This directive is required.

Next Pool = <resource-name>
A Next Pool override used for Migration/Copy and Virtual Backup Jobs.

Plugin Options = <string-list>
Please note! This directive is deprecated.
This directive is an alias.

Pool = <resource-name> (required)
The Pool directive defines the pool of Volumes where your data can be backed up. Many Bareos
installations will use only the Default pool. However, if you want to specify a different set of Volumes
for different Clients or different Jobs, you will probably want to use Pools. For additional details, see
the Pool Resource of this chapter. This directive is required.

In case of a Copy or Migration job, this setting determines what Pool will be examined for finding
Joblds to migrate. The exception to this is when Selection Type D = SQLQuery, and although a
Pool directive must still be specified, no Pool is used, unless you specifically include it in the SQL
query. Note, in any case, the Pool resource defined by the Pool directive must contain a Next Pool

pir = ... directive to define the Pool to which the data will be migrated.

Prefer Mounted Volumes = <yes|no> (default: yes)
If the Prefer Mounted Volumes directive is set to yes, the Storage daemon is requested to select either
an Autochanger or a drive with a valid Volume already mounted in preference to a drive that is not
ready. This means that all jobs will attempt to append to the same Volume (providing the Volume

79

is appropriate — right Pool, ... for that job), unless you are using multiple pools. If no drive with a
suitable Volume is available, it will select the first available drive. Note, any Volume that has been
requested to be mounted, will be considered valid as a mounted volume by another job. This if multiple
jobs start at the same time and they all prefer mounted volumes, the first job will request the mount,
and the other jobs will use the same volume.

If the directive is set to no, the Storage daemon will prefer finding an unused drive, otherwise, each job
started will append to the same Volume (assuming the Pool is the same for all jobs). Setting Prefer
Mounted Volumes to no can be useful for those sites with multiple drive autochangers that prefer to
maximize backup throughput at the expense of using additional drives and Volumes. This means that
the job will prefer to use an unused drive rather than use a drive that is already in use.

Despite the above, we recommend against setting this directive to no since it tends to add a lot of
swapping of Volumes between the different drives and can easily lead to deadlock situations in the
Storage daemon. We will accept bug reports against it, but we cannot guarantee that we will be able
to fix the problem in a reasonable time.

A better alternative for using multiple drives is to use multiple pools so that Bareos will be forced to
mount Volumes from those Pools on different drives.

Prefix Links = <yes|no> (default: no)
If a Where path prefix is specified for a recovery job, apply it to absolute links as well. The default
is No. When set to Yes then while restoring files to an alternate directory, any absolute soft links
will also be modified to point to the new alternate directory. Normally this is what is desired — i.e.
everything is self consistent. However, if you wish to later move the files to their original locations, all
files linked with absolute names will be broken.

Priority = <positive-integer> (default: 10)
This directive permits you to control the order in which your jobs will be run by specifying a positive
non-zero number. The higher the number, the lower the job priority. Assuming you are not running
concurrent jobs, all queued jobs of priority 1 will run before queued jobs of priority 2 and so on,
regardless of the original scheduling order.

The priority only affects waiting jobs that are queued to run, not jobs that are already running. If one
or more jobs of priority 2 are already running, and a new job is scheduled with priority 1, the currently
running priority 2 jobs must complete before the priority 1 job is run, unless Allow Mixed Priority is
set.

If you want to run concurrent jobs you should keep these points in mind:

e See Concurrent Jobs on how to setup concurrent jobs.

e Bareos concurrently runs jobs of only one priority at a time. It will not simultaneously run a
priority 1 and a priority 2 job.

e If Bareos is running a priority 2 job and a new priority 1 job is scheduled, it will wait until the
running priority 2 job terminates even if the Maximum Concurrent Jobs settings would otherwise
allow two jobs to run simultaneously.

e Suppose that bareos is running a priority 2 job and a new priority 1 job is scheduled and queued
waiting for the running priority 2 job to terminate. If you then start a second priority 2 job,
the waiting priority 1 job will prevent the new priority 2 job from running concurrently with the
running priority 2 job. That is: as long as there is a higher priority job waiting to run, no new
lower priority jobs will start even if the Maximum Concurrent Jobs settings would normally allow
them to run. This ensures that higher priority jobs will be run as soon as possible.

If you have several jobs of different priority, it may not best to start them at exactly the same
time, because Bareos must examine them one at a time. If by Bareos starts a lower priority job
first, then it will run before your high priority jobs. If you experience this problem, you may
avoid it by starting any higher priority jobs a few seconds before lower priority ones. This insures
that Bareos will examine the jobs in the correct order, and that your priority scheme will be respected.

Protocol = <ProtocolType> (default: Native)
The backup protocol to use to run the Job. If not set it will default to Native currently the director
understand the following protocols:

80

1. Native - The native Bareos protocol
2. NDMP - The NDMP protocol

Prune Files = <yes|no> (default: no)
Normally, pruning of Files from the Catalog is specified on a Client by Client basis in the Client
resource with the AutoPrune directive. If this directive is specified (not normally) and the value is
yes, it will override the value specified in the Client resource.

Prune Jobs = <yes|no> (default: no)
Normally, pruning of Jobs from the Catalog is specified on a Client by Client basis in the Client
resource with the AutoPrune directive. If this directive is specified (not normally) and the value is
yes, it will override the value specified in the Client resource.

Prune Volumes = <yes|no> (default: no)
Normally, pruning of Volumes from the Catalog is specified on a Pool by Pool basis in the Pool
resource with the AutoPrune directive. Note, this is different from File and Job pruning which is
done on a Client by Client basis. If this directive is specified (not normally) and the value is yes, it
will override the value specified in the Pool resource.

Purge Migration Job = <yes|no> (default: no)
This directive may be added to the Migration Job definition in the Director configuration file to purge
the job migrated at the end of a migration.

Regex Where = <string>
This directive applies only to a Restore job and specifies a regex filename manipulation of all files being
restored. This will use File Relocation feature.

For more informations about how use this option, see RegexWhere Format.

Replace = <ReplaceOption> (default: Always)
This directive applies only to a Restore job and specifies what happens when Bareos wants to restore
a file or directory that already exists. You have the following options for replace-option:

always when the file to be restored already exists, it is deleted and then replaced by the copy that
was backed up. This is the default value.

ifnewer if the backed up file (on tape) is newer than the existing file, the existing file is deleted and
replaced by the back up.

ifolder if the backed up file (on tape) is older than the existing file, the existing file is deleted and
replaced by the back up.

never if the backed up file already exists, Bareos skips restoring this file.

Rerun Failed Levels = <yes|no> (default: no)
If this directive is set to yes (default no), and Bareos detects that a previous job at a higher level
(i.e. Full or Differential) has failed, the current job level will be upgraded to the higher level. This
is particularly useful for Laptops where they may often be unreachable, and if a prior Full save has
failed, you wish the very next backup to be a Full save rather than whatever level it is started as.

There are several points that must be taken into account when using this directive: first, a failed job
is defined as one that has not terminated normally, which includes any running job of the same name
(you need to ensure that two jobs of the same name do not run simultaneously); secondly, the Ignore
File Set Changes i, directive is not considered when checking for failed levels, which means that
any FileSet change will trigger a rerun.

81

Reschedule Interval = <time> (default: 1800)

If you have specified Reschedule On Error = yes and the job terminates in error, it will be
rescheduled after the interval of time specified by time-specification. See the time specification
formats in the Configure chapter for details of time specifications. If no interval is specified, the job
will not be rescheduled on error.

Reschedule On Error = <yes|no> (default: no)

If this directive is enabled, and the job terminates in error, the job will be rescheduled as determined
by the Reschedule Interval P and Reschedule Times D7 directives. If you cancel the job, it will not
be rescheduled.

This specification can be useful for portables, laptops, or other machines that are not always connected
to the network or switched on.

Reschedule Times = <positive-integer> (default: 5)

Run

Run

This directive specifies the maximum number of times to reschedule the job. If it is set to zero (the
default) the job will be rescheduled an indefinite number of times.

= <string-list>

The Run directive (not to be confused with the Run option in a Schedule) allows you to start other
jobs or to clone jobs. By using the cloning keywords (see below), you can backup the same data (or
almost the same data) to two or more drives at the same time. The job-name is normally the same
name as the current Job resource (thus creating a clone). However, it may be any Job name, so one
job may start other related jobs.

The part after the equal sign must be enclosed in double quotes, and can contain any string or set
of options (overrides) that you can specify when entering the Run command from the console. For
example storage=DDS-4 In addition, there are two special keywords that permit you to clone
the current job. They are level=%]l and since=%s. The %l in the level keyword permits entering
the actual level of the current job and the %s in the since keyword permits putting the same time for
comparison as used on the current job. Note, in the case of the since keyword, the %s must be enclosed
in double quotes, and thus they must be preceded by a backslash since they are already inside quotes.
For example:

run = "Nightly-backup level=Yl since=\"%s\" storage=DDS-4"

A cloned job will not start additional clones, so it is not possible to recurse.

Please note that all cloned jobs, as specified in the Run directives are submitted for running before
the original job is run (while it is being initialized). This means that any clone job will actually start
before the original job, and may even block the original job from starting until the original job finishes
unless you allow multiple simultaneous jobs. Even if you set a lower priority on the clone job, if no
other jobs are running, it will start before the original job.

If you are trying to prioritize jobs by using the clone feature (Run directive), you will find it much

easier to do using a Run Script D' resource, or a Run Before Job P directive.

After Failed Job = <RunscriptShort>

This is a shortcut for the Run Script »¥ resource, that runs a command after a failed job.

If the exit code of the program run is non-zero, Bareos will print a warning message.

Run Script {
Command = "echo test"
Runs When = After

Runs On Failure = yes
Runs On Client = no
Runs On Success = yes # default, you can drop this line

82

Run

Run

Run

After Job = <RunscriptShort>
This is a shortcut for the Run Script
error or without being canceled).

Dir

D resource, that runs a command after a successful job (without

If the exit code of the program run is non-zero, Bareos will print a warning message.

Before Job = <RunscriptShort>

This is a shortcut for the Run Script P resource, that runs a command before a job.

If the exit code of the program run is non-zero, the current Bareos job will be canceled.

Run Before Job = "echo test"

is equivalent to:

Run Script {
Command = "echo test"
Runs On Client = No
Runs When = Before

}

Script = <Runscript>
The RunScript directive behaves like a resource in that it requires opening and closing braces around
a number of directives that make up the body of the runscript.

The specified Command (see below for details) is run as an external program prior or after the current
Job. This is optional. By default, the program is executed on the Client side like in ClientRunXXXJob.

Console options are special commands that are sent to the director instead of the OS. At this time,
console command ouputs are redirected to log with the jobid 0.

You can use following console command: delete, disable, enable, estimate, list, 11ist, memory,
prune, purge, reload, status, setdebug, show, time, trace, update, version, .client, .jobs,
.pool, .storage. See Bareos Console for more information. You need to specify needed information
on command line, nothing will be prompted. Example:

Console = "prune files client=\Jc"
Console = "update stats age=3"
You can specify more than one Command/Console option per RunScript.

You can use following options may be specified in the body of the runscript:

’ Options \ Value \ Information
Runs On Success Yes | No run if JobStatus is successful
Runs On Failure Yes | No run if JobStatus isn’t successful
Runs On Client Yes | No run command on client
Runs When Never | Before | | When to run
After | Always |
AfterVSS
Fail Job On Error Yes | No Fail job if script returns something different
from 0
Command External command
Console Console command

Any output sent by the command to standard output will be included in the Bareos job report. The
command string must be a valid program name or name of a shell script.

Please note! The command string is parsed then fed to the OS, which means that the path will be
searched to execute your specified command, but there is no shell interpretation. As a consequence, if
you invoke complicated commands or want any shell features such as redirection or piping, you must
call a shell script and do it inside that script. Alternatively, it is possible to use sh -c .. .7 in the
command definition to force shell interpretation, see example below.

Before executing the specified command, Bareos performs character substitution of the following char-
acters:

%%
%b
%B
%c
%d
%D
%e
%f
%F
%h
%i
%j
%1
%n
%op
%P
s
%ot
%v
YAY
%ow
Y%ox

%

Job Bytes

Job Bytes in human readable format
Client’s name

Daemon’s name (Such as host-dir or host-fd)
Director’s name (Also valid on file daemon)
Job Exit Status

Job FileSet (Only on director side)

Job Files

Client address

Job Id

Unique Job Id

Job Level

Job name

Pool name (Only on director side)

Daemon PID

Since time

Job type (Backup, ...)

Read Volume name(s) (Only on director side)
Write Volume name(s) (Only on director side)

Storage name (Only on director side)
Spooling enabled? (”yes” or "no”)

83

Some character substitutions are not available in all situations. The Job Exit Status code %e edits the

following values:

e OK
e Error

Fatal Error

Canceled

e Differences

e Unknown term code

Thus if you edit it on a command line, you will need to enclose it within some sort of quotes.

You can use these following shortcuts:

’ Keyword

\ RunsOnSuccess \ RunsOnFailure \ FailJobOnError \ Runs On Client \ RunsWhen

Run Before Job P

Yes

No

Before

Run After Job Pir

Job

Yes No

No

After

Run After Failed Job P

Job

No Yes

No

After

Client Run Before Job Yi*

Job

Yes

Yes

Before

Client Run After Job D

Yes No

Yes

After

Examples:

Run Script {
RunsWhen = Before
FailJobOnError = No

Command = "/etc/init.d/apache stop"

}

RunScript {
RunsWhen = After
RunsOnFailure = Yes

Command = "/etc/init.d/apache start"

}

RunScript {
RunsWhen = Before

FailJobOnError = Yes

Command = "sh -c ’top -b -n 1 > /var/backup/top.out’"

}

Special Windows Considerations

You can run scripts just after snapshots initializations with AfterVSS keyword.

84

In addition, for a Windows client, please take note that you must ensure a correct path to your script.
The script or program can be a .com, .exe or a .bat file. If you just put the program name in then
Bareos will search using the same rules that cmd.exe uses (current directory, Bareos bin directory, and
PATH). It will even try the different extensions in the same order as cmd.exe. The command can be
anything that cmd.exe or command.com will recognize as an executable file.

However, if you have slashes in the program name then Bareos figures you are fully specifying the
name, so you must also explicitly add the three character extension.

The command is run in a Win32 environment, so Unix like commands will not work unless you have
installed and properly configured Cygwin in addition to and separately from Bareos.

The System %Path% will be searched for the command. (under the environment variable dialog
you have have both System Environment and User Environment, we believe that only the System
environment will be available to bareos-fd, if it is running as a service.)

System environment variables can be referenced with %var% and used as either part of the command
name or arguments.

So if you have a script in the Bareos
bin directory then the following lines should work fine:

Client Run Before Job = "systemstate"
or
Client Run Before Job = "systemstate.bat"
or
Client Run Before Job = "\"C:/Program Files/Bareos/systemstate.bat\""

The outer set of quotes is removed when the configuration file is parsed. You need to escape the inner
quotes so that they are there when the code that parses the command line for execution runs so it can
tell what the program name is.

The special characters &<>()@~| will need to be quoted, if they are part of a filename or argument.

If someone is logged in, a blank ”command” window running the commands will be present during the
execution of the command.

Some Suggestions from Phil Stracchino for running on Win32 machines with the native Win32 File
daemon:

1. You might want the ClientRunBeforeJob directive to specify a .bat file which runs the actual
client-side commands, rather than trying to run (for example) regedit /e directly.

2. The batch file should explicitly ’exit 0’ on successful completion.
3. The path to the batch file should be specified in Unix form:
Client Run Before Job = "c:/bareos/bin/systemstate.bat"
rather than DOS/Windows form:
INCORRECT: Client Run Before Job = "c:\bareos \bin \systemstate .bat"

For Win32, please note that there are certain limitations:
Client Run Before Job = "C:/Program Files/Bareos/bin/pre-exec.bat"

Lines like the above do not work because there are limitations of cmd.exe that is used to execute the
command. Bareos prefixes the string you supply with cmd.exe /c. To test that your command works
you should type cmd /c "C:/Program Files/test.exe" at a cmd prompt and see what happens.
Once the command is correct insert a backslash (\) before each double quote (”), and then put quotes
around the whole thing when putting it in the director’s .conf file. You either need to have only one
set of quotes or else use the short name and don’t put quotes around the command path.

Below is the output from cmd’s help as it relates to the command line passed to the /c option.

If /C or /K is specified, then the remainder of the command line after the switch is processed as a
command line, where the following logic is used to process quote (”) characters:

1. If all of the following conditions are met, then quote characters on the command line are preserved:
e 1o /S switch.
e exactly two quote characters.
e 10 special characters between the two quote characters, where special is one of: &<>()@"|

85

e there are one or more whitespace characters between the the two quote characters.
e the string between the two quote characters is the name of an executable file.

2. Otherwise, old behavior is to see if the first character is a quote character and if so, strip the
leading character and remove the last quote character on the command line, preserving any text
after the last quote character.

Save File History = <yes|no> (default: yes)
Allow disabling storing the file history, as this causes problems problems with some implementations
of NDMP (out-of-order metadata).

With File History Size P the maximum number of files and directories inside a NDMP job can be
configured.

Please note! The File History is required to do a single file restore from NDMP backups. With this
disabled, only full restores are possible.
Version >= 14.2.0

Schedule = <resource-name>

The Schedule directive defines what schedule is to be used for the Job. The schedule in turn determines
when the Job will be automatically started and what Job level (i.e. Full, Incremental, ...) is to be
run. This directive is optional, and if left out, the Job can only be started manually using the Console
program. Although you may specify only a single Schedule resource for any one job, the Schedule
resource may contain multiple Run directives, which allow you to run the Job at many different
times, and each run directive permits overriding the default Job Level Pool, Storage, and Messages
resources. This gives considerable flexibility in what can be done with a single Job. For additional
details, see Schedule Resource.

SD Plugin Options = <string-list>
These settings are plugin specific, see Storage Daemon Plugins.

Selection Pattern = <string>
Selection Patterns is only used for Copy and Migration jobs, see Migration and Copy. The interpreta-

tion of its value depends on the selected Selection Type Dir.

For the OldestVolume and SmallestVolume, this Selection pattern is not used (ignored).

For the Client, Volume, and Job keywords, this pattern must be a valid regular expression that will
filter the appropriate item names found in the Pool.

For the SQLQuery keyword, this pattern must be a valid SELECT SQL statement that returns Joblds.

Selection Type = <MigrationType>
Selection Type is only used for Copy and Migration jobs, see Migration and Copy. It determines how
a migration job will go about selecting what Joblds to migrate. In most cases, it is used in conjunction
with a Selection Pattern P to give you fine control over exactly what Joblds are selected. The possible
values are:

SmallestVolume This selection keyword selects the volume with the fewest bytes from the Pool to
be migrated. The Pool to be migrated is the Pool defined in the Migration Job resource. The
migration control job will then start and run one migration backup job for each of the Jobs found
on this Volume. The Selection Pattern, if specified, is not used.

Oldest Volume This selection keyword selects the volume with the oldest last write time in the Pool
to be migrated. The Pool to be migrated is the Pool defined in the Migration Job resource. The
migration control job will then start and run one migration backup job for each of the Jobs found
on this Volume. The Selection Pattern, if specified, is not used.

Client The Client selection type, first selects all the Clients that have been backed up in the Pool

specified by the Migration Job resource, then it applies the Selection Pattern D7 as a regular
expression to the list of Client names, giving a filtered Client name list. All jobs that were backed
up for those filtered (regexed) Clients will be migrated. The migration control job will then start

and run one migration backup job for each of the Joblds found for those filtered Clients.

86

Volume The Volume selection type, first selects all the Volumes that have been backed up in the

Pool specified by the Migration Job resource, then it applies the Selection Pattern D't as a regular
expression to the list of Volume names, giving a filtered Volume list. All Joblds that were backed
up for those filtered (regexed) Volumes will be migrated. The migration control job will then

start and run one migration backup job for each of the Joblds found on those filtered Volumes.
Job The Job selection type, first selects all the Jobs (as defined on the Name D7 directive in a Job

Job
resource) that have been backed up in the Pool specified by the Migration Job resource, then it
applies the Selection Pattern D7 as a regular expression to the list of Job names, giving a filtered
Job name list. All JobIds that were run for those filtered (regexed) Job names will be migrated.
Note, for a given Job named, they can be many jobs (Joblds) that ran. The migration control

job will then start and run one migration backup job for each of the Jobs found.
SQLQuery The SQLQuery selection type, used the Selection Pattern ?¥ as an SQL query to obtain

Job

the Joblds to be migrated. The Selection Pattern must be a valid SELECT SQL statement for
your SQL engine, and it must return the Jobld as the first field of the SELECT.

PoolOccupancy This selection type will cause the Migration job to compute the total size of the
specified pool for all Media Types combined. If it exceeds the Migration High Bytes 2 defined
in the Pool, the Migration job will migrate all Joblds beginning with the oldest Volume in the
pool (determined by Last Write time) until the Pool bytes drop below the Migration Low Bytes
o defined in the Pool. This calculation should be consider rather approximative because it is

made once by the Migration job before migration is begun, and thus does not take into account

additional data written into the Pool during the migration. In addition, the calculation of the
total Pool byte size is based on the Volume bytes saved in the Volume (Media) database entries.

The bytes calculate for Migration is based on the value stored in the Job records of the Jobs to

be migrated. These do not include the Storage daemon overhead as is in the total Pool size. As

a consequence, normally, the migration will migrate more bytes than strictly necessary.

PoolTime The PoolTime selection type will cause the Migration job to look at the time each Jobld
has been in the Pool since the job ended. All Jobs in the Pool longer than the time specified on

Migration Time P directive in the Pool resource will be migrated.

PoolUncopiedJobs This selection which copies all jobs from a pool to an other pool which were not
copied before is available only for copy Jobs.

Spool Attributes = <yes|no> (default: no)

Is Spool Attributes is disabled, the File attributes are sent by the Storage daemon to the Director as
they are stored on tape. However, if you want to avoid the possibility that database updates will slow
down writing to the tape, you may want to set the value to yes, in which case the Storage daemon
will buffer the File attributes and Storage coordinates to a temporary file in the Working Directory,
then when writing the Job data to the tape is completed, the attributes and storage coordinates will

be sent to the Director.
NOTE: When Spool Data D' is set to yes, Spool Attributes is also automatically set to yes.

Job

For details, see Data Spooling.

Spool Data = <yes|no> (default: no)

If this directive is set to yes, the Storage daemon will be requested to spool the data for this Job to
disk rather than write it directly to the Volume (normally a tape).

Thus the data is written in large blocks to the Volume rather than small blocks. This directive is
particularly useful when running multiple simultaneous backups to tape. Once all the data arrives or
the spool files’ maximum sizes are reached, the data will be despooled and written to tape.

Spooling data prevents interleaving data from several job and reduces or eliminates tape drive stop
and start commonly known as ”shoe-shine”.

We don’t recommend using this option if you are writing to a disk file using this option will probably
just slow down the backup jobs.

NOTE: When this directive is set to yes, Spool Attributes 2 is also automatically set to yes.

Job

For details, see Data Spooling.

87

Spool Size = <Size64>
This specifies the maximum spool size for this job. The default is taken from Maximum Spool Size
sd limit.

Device

Storage = <ResourceList>
The Storage directive defines the name of the storage services where you want to backup the FileSet
data. For additional details, see the Storage Resource of this manual. The Storage resource may also
be specified in the Job’s Pool resource, in which case the value in the Pool resource overrides any
value in the Job. This Storage resource definition is not required by either the Job resource or in the
Pool, but it must be specified in one or the other, if not an error will result.

Strip Prefix = <string>
This directive applies only to a Restore job and specifies a prefix to remove from the directory name
of all files being restored. This will use the File Relocation feature.

Using Strip Prefix=/etc, /etc/passwd will be restored to /passwd
Under Windows, if you want to restore c:/files to d:/files, you can use:

Strip Prefix c:

Add Prefix = d:

Type = <JobType> (required)
The Type directive specifies the Job type, which is one of the following:

Backup
Run a backup Job. Normally you will have at least one Backup job for each client you want
to save. Normally, unless you turn off cataloging, most all the important statistics and data
concerning files backed up will be placed in the catalog.

Restore
Run a restore Job. Normally, you will specify only one Restore job which acts as a sort of
prototype that you will modify using the console program in order to perform restores. Although
certain basic information from a Restore job is saved in the catalog, it is very minimal compared
to the information stored for a Backup job — for example, no File database entries are generated
since no Files are saved.

Restore jobs cannot be automatically started by the scheduler as is the case for Backup, Verify
and Admin jobs. To restore files, you must use the restore command in the console.

Verify
Run a verify Job. In general, verify jobs permit you to compare the contents of the catalog to
the file system, or to what was backed up. In addition, to verifying that a tape that was written
can be read, you can also use verify as a sort of tripwire intrusion detection.

Admin
Run an admin Job. An Admin job can be used to periodically run catalog pruning, if you do
not want to do it at the end of each Backup Job. Although an Admin job is recorded in the
catalog, very little data is saved.

Migrate defines the job that is run as being a Migration Job. A Migration Job is a sort of control
job and does not have any Files associated with it, and in that sense they are more or less like an
Admin job. Migration jobs simply check to see if there is anything to Migrate then possibly start
and control new Backup jobs to migrate the data from the specified Pool to another Pool. Note,
any original Jobld that is migrated will be marked as having been migrated, and the original
Jobld can nolonger be used for restores; all restores will be done from the new migrated Job.

Copy defines the job that is run as being a Copy Job. A Copy Job is a sort of control job and does
not have any Files associated with it, and in that sense they are more or less like an Admin job.
Copy jobs simply check to see if there is anything to Copy then possibly start and control new
Backup jobs to copy the data from the specified Pool to another Pool. Note that when a copy
is made, the original Joblds are left unchanged. The new copies can not be used for restoration
unless you specifically choose them by Jobld. If you subsequently delete a Jobld that has a copy,

88

the copy will be automatically upgraded to a Backup rather than a Copy, and it will subsequently
be used for restoration.

Consolidate is used to consolidate Always Incremental Backups jobs, see Always Incremental Backup
Scheme. It has been introduced in Bareos Version >= 16.2.4.

Within a particular Job Type, there are also Levels, see Level D'r.

Verify Job = <resource-name>

This directive is an alias.

If you run a verify job without this directive, the last job run will be compared with the catalog, which
means that you must immediately follow a backup by a verify command. If you specify a Verify Job
Bareos will find the last job with that name that ran. This permits you to run all your backups, then
run Verify jobs on those that you wish to be verified (most often a VolumeToCatalog) so that the
tape just written is re-read.

Virtual Full Backup Pool = <resource-name>

Where = <path>

This directive applies only to a Restore job and specifies a prefix to the directory name of all files
being restored. This permits files to be restored in a different location from which they were saved. If
Where is not specified or is set to backslash (/), the files will be restored to their original location.
By default, we have set Where in the example configuration files to be /tmp/bareos-restores. This
is to prevent accidental overwriting of your files.

Please note! To use Where on NDMP backups, please read Restore files to different path.

Write Bootstrap = <path>

The writebootstrap directive specifies a file name where Bareos will write a bootstrap file for each
Backup job run. This directive applies only to Backup Jobs. If the Backup job is a Full save, Bareos
will erase any current contents of the specified file before writing the bootstrap records. If the Job is
an Incremental or Differential save, Bareos will append the current bootstrap record to the end of the
file.

Using this feature, permits you to constantly have a bootstrap file that can recover the current state
of your system. Normally, the file specified should be a mounted drive on another machine, so that
if your hard disk is lost, you will immediately have a bootstrap record available. Alternatively, you
should copy the bootstrap file to another machine after it is updated. Note, it is a good idea to write a
separate bootstrap file for each Job backed up including the job that backs up your catalog database.

If the bootstrap-file-specification begins with a vertical bar (|), Bareos will use the specification as
the name of a program to which it will pipe the bootstrap record. It could for example be a shell script
that emails you the bootstrap record.

Before opening the file or executing the specified command, Bareos performs character substitution
like in RunScript directive. To automatically manage your bootstrap files, you can use this in your
JobDefs resources:

Job Defs {

Write Bootstrap = "/c_/n.bsr"

For more details on using this file, please see chapter The Bootstrap File.

Write Part After Job = <yes|no>

Please note! This directive is deprecated.

89

Write Verify List = <path>

The following is an example of a valid Job resource definition:

Job {
Name = "Minou"
Type = Backup
Level = Incremental # default

Client = Minou
FileSet="Minou Full Set"
Storage = DLTDrive

Pool = Default

Schedule = "MinouWeeklyCycle"
Messages = Standard

Configuration 9.2: Job Resource Example

9.3 JobDefs Resource

The JobDefs resource permits all the same directives that can appear in a Job resource. However, a JobDefs
resource does not create a Job, rather it can be referenced within a Job to provide defaults for that Job.
This permits you to concisely define several nearly identical Jobs, each one referencing a JobDefs resource
which contains the defaults. Only the changes from the defaults need to be mentioned in each Job.

9.4 Schedule Resource

The Schedule resource provides a means of automatically scheduling a Job as well as the ability to override
the default Level, Pool, Storage and Messages resources. If a Schedule resource is not referenced in a Job,
the Job can only be run manually. In general, you specify an action to be taken and when.

configuration directive name | type of data | default value | remark
Description = string

Enabled = yes|no yes

Name = name required
Run = job-overrides> <date-time-specification

Description = <string>

Enabled = <yes|no> (default: yes)
En- or disable this resource.

Name = <name> (required)
The name of the resource.

The name of the schedule being defined.

Run = <job-overrides> <date-time-specification>
The Run directive defines when a Job is to be run, and what overrides if any to apply. You may specify
multiple run directives within a Schedule resource. If you do, they will all be applied (i.e. multiple
schedules). If you have two Run directives that start at the same time, two Jobs will start at the same
time (well, within one second of each other).

90

The Job-overrides permit overriding the Level, the Storage, the Messages, and the Pool specifications
provided in the Job resource. In addition, the FullPool, the IncrementalPool, and the DifferentialPool
specifications permit overriding the Pool specification according to what backup Job Level is in effect.

By the use of overrides, you may customize a particular Job. For example, you may specify a Messages
override for your Incremental backups that outputs messages to a log file, but for your weekly or
monthly Full backups, you may send the output by email by using a different Messages override.

Job-overrides are specified as: keyword=value where the keyword is Level, Storage, Messages,
Pool, FullPool, DifferentialPool, or IncrementalPool, and the value is as defined on the respective
directive formats for the Job resource. You may specify multiple Job-overrides on one Run directive
by separating them with one or more spaces or by separating them with a trailing comma. For example:

Level=Full is all files in the FileSet whether or not they have changed.
Level=Incremental is all files that have changed since the last backup.
Pool=Weekly specifies to use the Pool named Weekly.

Storage=DLT Drive specifies to use DLT _Drive for the storage device.
Messages=Verbose specifies to use the Verbose message resource for the Job.

FullPool=Full specifies to use the Pool named Full if the job is a full backup, or is upgraded from
another type to a full backup.

DifferentialPool=Differential specifies to use the Pool named Differential if the job is a differen-
tial backup.

IncrementalPool=Incremental specifies to use the Pool named Incremental if the job is an in-
cremental backup.

Accurate=yes|no tells Bareos to use or not the Accurate code for the specific job. It can allow you
to save memory and and CPU resources on the catalog server in some cases.

SpoolData=yes|no tells Bareos to use or not to use spooling for the specific job.

Date-time-specification determines when the Job is to be run. The specification is a repetition,
and as a default Bareos is set to run a job at the beginning of the hour of every hour of every day of
every week of every month of every year. This is not normally what you want, so you must specify or
limit when you want the job to run. Any specification given is assumed to be repetitive in nature and
will serve to override or limit the default repetition. This is done by specifying masks or times for the
hour, day of the month, day of the week, week of the month, week of the year, and month when you
want the job to run. By specifying one or more of the above, you can define a schedule to repeat at
almost any frequency you want.

Basically, you must supply a month, day, hour, and minute the Job is to be run. Of these four
items to be specified, day is special in that you may either specify a day of the month such as 1, 2, ...
31, or you may specify a day of the week such as Monday, Tuesday, ... Sunday. Finally, you may also
specify a week qualifier to restrict the schedule to the first, second, third, fourth, or fifth week of the
month.

For example, if you specify only a day of the week, such as Tuesday the Job will be run every hour
of every Tuesday of every Month. That is the month and hour remain set to the defaults of every
month and all hours.

Note, by default with no other specification, your job will run at the beginning of every hour. If
you wish your job to run more than once in any given hour, you will need to specify multiple run
specifications each with a different minute.

The date/time to run the Job can be specified in the following way in pseudo-BNF:

<week-keyword > = 1st | 2nd | 3rd | 4th | 5th | first | second | third | fourth
| fifth | last
<wday-keyword > = sun | mon | tue | wed | thu | fri | sat | sunday | monday

| tuesday | wednesday | thursday | friday | saturday
<week-of-year-keyword> ::= w00 | w01 | ... w52 | wh3

<month-keyword> = jan | feb | mar | apr | may | jun | jul | aug | sep | oct |
nov | dec | january | february | ... | december
<digit> =1|2|3|4]5[6]7|8]9]|0

<number>

<digit> | <digit><number>

<12hour>
<hour>
<minute>
<day>
<time>

<time-spec>
<day-range>
<month-range>
<wday-range>
<range>
<modulo>

<date>

<date-spec>
<day-spec>

<month-spec>

<date-time-spec>

0l1]2]...12

0/1]2]..23

0]1]2]..59

1]2]..31

<hour>:<minute> | <12hour>:<minute>am |

<12hour>:<minute>pm

at <time> | hourly

<day>-<day>
<month-keyword>-<month-keyword>
<wday-keyword >-<wday-keyword>

<day-range> | <month-range> | <wday-range>
<day>/<day> | <week-of-year-keyword>/<week-of-
year-keyword >

<date-keyword> | <day> | <range>

<date> | <date-spec>

<day> | <wday-keyword> | <day> | <wday-
range> | <week-keyword> <wday-keyword> | <week-
keyword> <wday-range> | daily

<month-keyword> | <month-range> | monthly
<month-spec> <day-spec> <time-spec>

91

Note, the Week of Year specification wnn follows the ISO standard definition of the week of the year, where
Week 1 is the week in which the first Thursday of the year occurs, or alternatively, the week which contains
the 4th of January. Weeks are numbered w01 to wb3. w00 for Bareos is the week that precedes the first ISO
week (i.e. has the first few days of the year if any occur before Thursday). w00 is not defined by the ISO
specification. A week starts with Monday and ends with Sunday.

According to the NIST (US National Institute of Standards and Technology), 12am and 12pm are ambiguous

and can be defined to anything. However, 12:01am is the same as 00:01 and 12:01pm is the same as 12:01, so
Bareos defines 12am as 00:00 (midnight) and 12pm as 12:00 (noon). You can avoid this abiguity (confusion)
by using 24 hour time specifications (i.e. no am/pm).
An example schedule resource that is named WeeklyCycle and runs a job with level full each Sunday at
2:05am and an incremental job Monday through Saturday at 2:05am is:

Schedule {
Name "WeeklyCycle"
Run = Level=Full sun at 2:05
Run = Level=Incremental mon-sat at 2:05

}

Configuration 9.3: Schedule Example

An example of a possible monthly cycle is as follows:

Schedule {

Name
Run =
Run =
Run =

}

"MonthlyCycle"
Level=Full Pool=Monthly 1st sun at 2:05
Level=Differential 2nd-5th sun at 2:05
Level=Incremental Pool=Daily mon-sat at 2:05

Configuration 9.4:

The first of every month:

Schedule {

Name
Run =
Run =

}

The last friday of the month (i.e. the last friday in the last week of the month)

"First"
Level=Full on 1 at 2:05
Level=Incremental on 2-31 at 2:05

Configuration 9.5:

92

Schedule {

Name = "Last Friday"

Run = Level=Full last fri at 21:00
}

Configuration 9.6:

Every 10 minutes:

Schedule {

Name = "TenMinutes"

Run = Level=Full hourly at 0:05
Run = Level=Full hourly at 0:15
Run = Level=Full hourly at 0:25
Run = Level=Full hourly at 0:35
Run = Level=Full hourly at 0:45
Run = Level=Full hourly at 0:55

Configuration 9.7:

The modulo scheduler makes it easy to specify schedules like odd or even days/weeks, or more generally
every n days or weeks. It is called modulo scheduler because it uses the modulo to determine if the schedule
must be run or not. The second variable behind the slash lets you determine in which cycle of days/weeks
a job should be run. The first part determines on which day/week the job should be run first. E.g. if you
want to run a backup in a 5-week-cycle, starting on week 3, you set it up as w03/w05.

Schedule {
Name = "Odd Days"
Run = 1/2 at 23:10

}
Schedule {
Name = "Even Days"
Run = 2/2 at 23:10
+
Schedule {
Name = "On the 3rd week in a 5-week-cycle"
Run = w03/w05 at 23:10
}
Schedule {

Name = "Odd Weeks"
Run = w01/w02 at 23:10

}
Schedule {
Name = "Even Weeks"
Run = w02/w02 at 23:10
}

Configuration 9.8: Schedule Examples: modulo

9.4.1 Technical Notes on Schedules

Internally Bareos keeps a schedule as a bit mask. There are six masks and a minute field to each schedule.
The masks are hour, day of the month (mday), month, day of the week (wday), week of the month (wom),
and week of the year (woy). The schedule is initialized to have the bits of each of these masks set, which
means that at the beginning of every hour, the job will run. When you specify a month for the first time,
the mask will be cleared and the bit corresponding to your selected month will be selected. If you specify
a second month, the bit corresponding to it will also be added to the mask. Thus when Bareos checks the
masks to see if the bits are set corresponding to the current time, your job will run only in the two months
you have set. Likewise, if you set a time (hour), the hour mask will be cleared, and the hour you specify will
be set in the bit mask and the minutes will be stored in the minute field.

For any schedule you have defined, you can see how these bits are set by doing a show schedules command
in the Console program. Please note that the bit mask is zero based, and Sunday is the first day of the week
(bit zero).

93

9.5 FileSet Resource

The FileSet resource defines what files are to be included or excluded in a backup job. A FileSet resource
is required for each backup Job. It consists of a list of files or directories to be included, a list of files or
directories to be excluded and the various backup options such as compression, encryption, and signatures
that are to be applied to each file.

Any change to the list of the included files will cause Bareos to automatically create a new FileSet (defined
by the name and an MD5 checksum of the Include/Exclude contents). Each time a new FileSet is created,
Bareos will ensure that the next backup is always a Full save.

configuration directive name | type of data | default value | remark
Description = string

Enable VSS = yes|no yes

Exclude { IncludeExcludeItenm }

Ignore File Set Changes = yes|no no

Include { IncludeExcludeItenm }

Name = name required

Description = <string>
Information only.

Enable VSS = <yes|no> (default: yes)
If this directive is set to yes the File daemon will be notified that the user wants to use a Volume
Shadow Copy Service (VSS) backup for this job. This directive is effective only on the Windows File
Daemon. It permits a consistent copy of open files to be made for cooperating writer applications,
and for applications that are not VSS away, Bareos can at least copy open files. The Volume Shadow
Copy will only be done on Windows drives where the drive (e.g. C:, D:, ...) is explicitly mentioned in
a File directive. For more information, please see the Windows chapter of this manual.

Exclude = <IncludeExcludeltem>
Describe the files, that should get excluded from a backup, see section about the FileSet Exclude
Ressource.

Ignore File Set Changes = <yes|no> (default: no)
Normally, if you modify the FileSet Include or Exclude lists, the next backup will be forced to a Full
so that Bareos can guarantee that any additions or deletions are properly saved.

We strongly recommend against setting this directive to yes, since doing so may cause you to have an
incomplete set of backups.

If this directive is set to yes, any changes you make to the FileSet Include or Exclude lists, will not
force a Full during subsequent backups.

Include = <IncludeExcludeltem>
Describe the files, that should get included to a backup, see section about the FileSet Include
Ressource.

Name = <name> (required)
The name of the resource.

The name of the FileSet resource.

9.5.1 FileSet Include Ressource

The Include resource must contain a list of directories and/or files to be processed in the backup job.

94

Normally, all files found in all subdirectories of any directory in the Include File list will be backed up.
Note, see below for the definition of <file-list>>. The Include resource may also contain one or more Options
resources that specify options such as compression to be applied to all or any subset of the files found when
processing the file-list for backup. Please see below for more details concerning Options resources.

There can be any number of Include resources within the FileSet, each having its own list of directories or
files to be backed up and the backup options defined by one or more Options resources.

Please take note of the following items in the FileSet syntax:

1.

File

There is no equal sign (=) after the Include and before the opening brace ({). The same is true for
the Exclude.

. Each directory (or filename) to be included or excluded is preceded by a File =. Previously they were

simply listed on separate lines.

. The Exclude resource does not accept Options.

. When using wild-cards or regular expressions, directory names are always terminated with a slash (/)

and filenames have no trailing slash.

= < filename | dirname | |command | \ <includefile-client | <includefile-server >
The file list consists of one file or directory name per line. Directory names should be specified without
a trailing slash with Unix path notation.

Windows users, please take note to specify directories (even c:/...) in Unix path notation. If you use
Windows conventions, you will most likely not be able to restore your files due to the fact that the
Windows path separator was defined as an escape character long before Windows existed, and Bareos
adheres to that convention (i.e. means the next character appears as itself).

You should always specify a full path for every directory and file that you list in the FileSet. In
addition, on Windows machines, you should always prefix the directory or filename with the drive
specification (e.g. c:/xxx) using Unix directory name separators (forward slash). The drive letter
itself can be upper or lower case (e.g. c¢:/xxx or C:/xxx).

Bareos’s default for processing directories is to recursively descend in the directory saving all files and
subdirectories. Bareos will not by default cross filesystems (or mount points in Unix parlance). This
means that if you specify the root partition (e.g. /), Bareos will save only the root partition and not
any of the other mounted filesystems. Similarly on Windows systems, you must explicitly specify each
of the drives you want saved (e.g. c:/ and d:/ ...). In addition, at least for Windows systems, you
will most likely want to enclose each specification within double quotes particularly if the directory (or
file) name contains spaces. The df command on Unix systems will show you which mount points you
must specify to save everything. See below for an example.

Take special care not to include a directory twice or Bareos will backup the same files two times wasting
a lot of space on your archive device. Including a directory twice is very easy to do. For example:

Include {
Options {
compression=GZIP
}
File
File
}

/

/usr

Configuration 9.9: File Set

on a Unix system where /usr is a subdirectory (rather than a mounted filesystem) will cause /usr to
be backed up twice.

<file-list> is a list of directory and/or filename names specified with a File = directive. To include
names containing spaces, enclose the name between double-quotes. Wild-cards are not interpreted in
file-lists. They can only be specified in Options resources.

There are a number of special cases when specifying directories and files in a file-list. They are:

e Any name preceded by an at-sign (@) is assumed to be the name of a file, which contains a list
of files each preceded by a ”"File =”. The named file is read once when the configuration file is
parsed during the Director startup. Note, that the file is read on the Director’s machine and not

on the Client’s. In fact, the @filename can appear anywhere within the conf file where a token

95

would be read, and the contents of the named file will be logically inserted in the place of the
@filename. What must be in the file depends on the location the @filename is specified in the
conf file. For example:

Include {
Options {
compression=GZIP

}
@/home/files/my-files
}

Configuration 9.10: File Set with Include File

Any name beginning with a vertical bar (|) is assumed to be the name of a program. This program
will be executed on the Director’s machine at the time the Job starts (not when the Director reads
the configuration file), and any output from that program will be assumed to be a list of files or
directories, one per line, to be included. Before submitting the specified command Bareos will
performe character substitution.

This allows you to have a job that, for example, includes all the local partitions even if you change
the partitioning by adding a disk. The examples below show you how to do this. However, please
note two things:

1. if you want the local filesystems, you probably should be using the fstype directive and set
onefs=no.

2. the exact syntax of the command needed in the examples below is very system dependent. For
example, on recent Linux systems, you may need to add the -P option, on FreeBSD systems, the
options will be different as well.

In general, you will need to prefix your command or commands with a sh -c so that they are
invoked by a shell. This will not be the case if you are invoking a script as in the second example
below. Also, you must take care to escape (precede with a \) wild-cards, shell character, and
to ensure that any spaces in your command are escaped as well. If you use a single quotes ()
within a double quote (), Bareos will treat everything between the single quotes as one field so it
will not be necessary to escape the spaces. In general, getting all the quotes and escapes correct
is a real pain as you can see by the next example. As a consequence, it is often easier to put
everything in a file and simply use the file name within Bareos. In that case the sh -c will not
be necessary providing the first line of the file is #!/bin/sh.

As an example:

Include {
Options {
signature = SHA1
}
File = "|sh -c ’df -1 | grep \""/dev/hd[abl\" | grep -v \".*/tmp\" | awk \"{print \\$6}\"’"
}

Configuration 9.11: File Set with inline script

will produce a list of all the local partitions on a Linux system. Quoting is a real problem because
you must quote for Bareos which consists of preceding every \ and every ” with a \, and you must
also quote for the shell command. In the end, it is probably easier just to execute a script file
with:

Include {
Options {
signature=MD5
}
File = "|my_partitions"

}
Configuration 9.12: File Set with external script

where my_partitions has:

#!/bin/sh
df -1 | grep "“/dev/hd[abl" | grep -v ".*/tmp" \
| awk "{print \$6}"

96

If the vertical bar (|) in front of my_partitions is preceded by a backslash as in \ |, the program
will be executed on the Client’s machine instead of on the Director’s machine. Please note that
if the filename is given within quotes, you will need to use two slashes. An example, provided by
John Donagher, that backs up all the local UFS partitions on a remote system is:

FileSet {
Name = "All local partitions"
Include {
Options {
signature=SHA1
onefs=yes

¥
File = "\\|bash -c \"df -k1F ufs | tail +2 | awk ’{print \$6}’\""
}
}

Configuration 9.13: File Set with inline script in quotes

The above requires two backslash characters after the double quote (one preserves the next one).
If you are a Linux user, just change the ufs to ext3 (or your preferred filesystem type), and you
will be in business.

If you know what filesystems you have mounted on your system, e.g. for Linux only using ext2,
ext3 or ext4, you can backup all local filesystems using something like:

Include {

Options {
signature = SHA1
onfs=no
fstype=ext2

File = /
Configuration 9.14: File Set to backup all extfs partions

Any file-list item preceded by a less-than sign (<) will be taken to be a file. This file will be
read on the Director’s machine (see below for doing it on the Client machine) at the time the Job
starts, and the data will be assumed to be a list of directories or files, one per line, to be included.
The names should start in column 1 and should not be quoted even if they contain spaces. This
feature allows you to modify the external file and change what will be saved without stopping
and restarting Bareos as would be necessary if using the @ modifier noted above. For example:

Include {
Options {
signature = SHA1
}
File = "</home/files/local-filelist"
}

If you precede the less-than sign (<) with a backslash as in \<, the file-list will be read on the
Client machine instead of on the Director’s machine. Please note that if the filename is given
within quotes, you will need to use two slashes.

Include {
Options {
signature = SHA1
}
File = "\\</home/xxx/filelist-on-client"
}

If you explicitly specify a block device such as /dev/hdal, then Bareos will assume that this is
a raw partition to be backed up. In this case, you are strongly urged to specify a sparse=yes
include option, otherwise, you will save the whole partition rather than just the actual data that
the partition contains. For example:

Include {
Options {
signature=MD5
sparse=yes

File = /dev/hd6

97

Configuration 9.15: Backup Raw Partitions

will backup the data in device /dev/hd6. Note, the bf /dev/hd6 must be the raw partition itself.
Bareos will not back it up as a raw device if you specify a symbolic link to a raw device such as
my be created by the LVM Snapshot utilities.

e A file-list may not contain wild-cards. Use directives in the Options resource if you wish to specify
wild-cards or regular expression matching.

Exclude Dir Containing = <filename>
This directive can be added to the Include section of the FileSet resource. If the specified filename
(filename-string) is found on the Client in any directory to be backed up, the whole directory will
be ignored (not backed up). We recommend to use the filename .nobackup, as it is a hidden file on
unix systems, and explains what is the purpose of the file.

For example:

List of files to be backed up
FileSet {
Name = "MyFileSet"
Include {
Options {
signature = MD5

}
File = /home
Exclude Dir Containing = .nobackup

Configuration 9.16: Exlude Directories containing the file .nobackup

But in /home, there may be hundreds of directories of users and some people want to indicate that
they don’t want to have certain directories backed up. For example, with the above FileSet, if the user
or sysadmin creates a file named .nobackup in specific directories, such as

/home/user/www/cache/.nobackup
/home/user/temp/.nobackup

then Bareos will not backup the two directories named:

/home/user/www/cache
/home/user/temp

NOTE: subdirectories will not be backed up. That is, the directive applies to the two directories in
question and any children (be they files, directories, etc).

Plugin = <plugin-name:plugin-parameterl:plugin-parameter2:...>
Instead of only specifying files, a file set can also use plugins. Plugins are additional libraries that
handle specific requirements. The purpose of plugins is to provide an interface to any system program
for backup and restore. That allows you, for example, to do database backups without a local dump.

The syntax and semantics of the Plugin directive require the first part of the string up to the colon to
be the name of the plugin. Everything after the first colon is ignored by the File daemon but is passed
to the plugin. Thus the plugin writer may define the meaning of the rest of the string as he wishes.
The program bpluginfo can be used, to retreive information about a specific plugin.

Examples about the bpipe- and the mssql-plugin can be found in the sections about the bpipe Plugin
and the Backup of MSSQL Databases with Bareos Plugin.

Note: It is also possible to define more than one plugin directive in a FileSet to do several database
dumps at once.

Options = <...>
See the FileSet Options Ressource section.

98

FileSet Options Ressource

The Options resource is optional, but when specified, it will contain a list of keyword=value options to be
applied to the file-list. See below for the definition of file-list. Multiple Options resources may be specified
one after another. As the files are found in the specified directories, the Options will applied to the filenames
to determine if and how the file should be backed up. The wildcard and regular expression pattern matching
parts of the Options resources are checked in the order they are specified in the FileSet until the first one
that matches. Once one matches, the compression and other flags within the Options specification will apply
to the pattern matched.

A key point is that in the absence of an Option or no other Option is matched, every file is accepted for
backing up. This means that if you want to exclude something, you must explicitly specify an Option with
an exclude = yes and some pattern matching.

Once Bareos determines that the Options resource matches the file under consideration, that file will be
saved without looking at any other Options resources that may be present. This means that any wild cards
must appear before an Options resource without wild cards.

If for some reason, Bareos checks all the Options resources to a file under consideration for backup, but there
are no matches (generally because of wild cards that don’t match), Bareos as a default will then backup the
file. This is quite logical if you consider the case of no Options clause is specified, where you want everything
to be backed up, and it is important to keep in mind when excluding as mentioned above.

However, one additional point is that in the case that no match was found, Bareos will use the options found
in the last Options resource. As a consequence, if you want a particular set of ”default” options, you should
put them in an Options resource after any other Options.

It is a good idea to put all your wild-card and regex expressions inside double quotes to prevent conf file
scanning problems.

This is perhaps a bit overwhelming, so there are a number of examples included below to illustrate how this
works.

You find yourself using a lot of Regex statements, which will cost quite a lot of CPU time, we recommend
you simplify them if you can, or better yet convert them to Wild statements which are much more efficient.
The directives within an Options resource may be one of the following:

AutoExclude = <yes|no> (default: yes)
Automatically exclude files not intended for backup. Currently only used for Windows, to exclude
files defined in the registry key HKEY_LOCAL_MACHINE\SYSTEM \CurrentControlSet \Control \
BackupRestore \FilesNotToBackup , see section FilesNotToBackup Registry Key.

Version >= 14.2.2

compression=<GZIP|GZIP1|...|GZIP9|LZO|LZFAST|LZ4|LZ4HC>

Configures the software compression to be used by the File Daemon. The compression is done on a file
by file basis.

Software compression gets important if you are writing to a device that does not support compression by
itself (e.g. hard disks). Otherwise, all modern tape drive do support hardware compression. Software
compression can also be helpful to reduce the required network bandwidth, as compression is done
on the File Daemon. However, using Bareos software compression and device hardware compression
together is not advised, as trying to compress precompressed data is a very CPU-intense task and
probably end up in even larger data.

You can overwrite this option per Storage resource using the Allow Compression g = = no option.
compression=GZIP

All files saved will be software compressed using the GNU ZIP compression format.

Specifying GZIP uses the default compression level 6 (i.e. GZIP is identical to GZIP6). If
you want a different compression level (1 through 9), you can specify it by appending the level
number with no intervening spaces to GZIP. Thus compression=GZIP1 would give minimum
compression but the fastest algorithm, and compression=GZIP9 would give the highest level of
compression, but requires more computation. According to the GZIP documentation, compression
levels greater than six generally give very little extra compression and are rather CPU intensive.

compression=LZO
All files saved will be software compressed using the LZO compression format. The compression
is done on a file by file basis by the File daemon. Everything else about GZIP is true for LZO.

99

LZO provides much faster compression and decompression speed but lower compression ratio than
GZIP. If your CPU is fast enough you should be able to compress your data without making the
backup duration longer.

Note that Bareos only use one compression level LZO1X-1 specified by LZO.

compression=LZFAST
All files saved will be software compressed using the LZFAST compression format. The compres-
sion is done on a file by file basis by the File daemon. Everything else about GZIP is true for
LZFAST.

LZFAST provides much faster compression and decompression speed but lower compression ratio
than GZIP. If your CPU is fast enough you should be able to compress your data without making
the backup duration longer.

compression=LZ4
All files saved will be software compressed using the LZ4 compression format. The compression
is done on a file by file basis by the File daemon. Everything else about GZIP is true for LZ4.
LZ4 provides much faster compression and decompression speed but lower compression ratio than
GZIP. If your CPU is fast enough you should be able to compress your data without making the
backup duration longer.

Both LZ4 and LZ4HC have the same decompression speed which is about twice the speed of the
LZO compression. So for a restore both L.Z4 and LZ4HC are good candidates.

Please note! As LZj compression is not supported by Bacula, make sure Compatible &2

Client — T00-
compression=LZ4HC
All files saved will be software compressed using the LZ4HC compression format. The compression
is done on a file by file basis by the File daemon. Everything else about GZIP is true for LZ4.
LZ4HC is the High Compression version of the LZ4 compression. It has a higher compression

ratio than L.Z4 and is more comparable to GZIP-6 in both compression rate and cpu usage.

Both LZ4 and LZ4HC have the same decompression speed which is about twice the speed of the
LZO compression. So for a restore both L.Z4 and LZ4HC are good candidates.

Please note! As LZj compression is not supported by Bacula, make sure Compatible &2

Client

= no.

signature=<SHA1|MD5>

signature=SHA1
An SHAT1 signature will be computed for all The SHA1 algorithm is purported to be some what
slower than the MD5 algorithm, but at the same time is significantly better from a cryptographic
point of view (i.e. much fewer collisions, much lower probability of being hacked.) It adds four
more bytes than the MD5 signature. We strongly recommend that either this option or MD5
be specified as a default for all files. Note, only one of the two options MD5 or SHA1 can be
computed for any file.

signature=MD5
An MD?5 signature will be computed for all files saved. Adding this option generates about 5%
extra overhead for each file saved. In addition to the additional CPU time, the MDb5 signature
adds 16 more bytes per file to your catalog. We strongly recommend that this option or the SHA1
option be specified as a default for all files.

basejob=<options> The options letters specified are used when running a Backup Level=Full with
BaseJobs. The options letters are the same than in the verify= option below.

accurate=<options> The options letters specified are used when running a Backup
Level=Incremental /Differential in Accurate mode. The options letters are the same than
in the verify= option below.

verify=<options>
The options letters specified are used when running a Verify Level=Catalog as well as the Disk-
ToCatalog level job. The options letters may be any combination of the following:

i compare the inodes
p compare the permission bits

n compare the number of links

100

u compare the user id

g compare the group id

s compare the size

a compare the access time

m compare the modification time (st_mtime)

¢ compare the change time (st_ctime)

d report file size decreases

5 compare the MD5 signature

1 compare the SHA1 signature

A Only for Accurate option, it allows to always backup the file

A useful set of general options on the Level=Catalog or Level=DiskToCatalog verify is pins5 i.e.
compare permission bits, inodes, number of links, size, and MD5 changes.

onefs=yes|no
If set to yes (the default), Bareos will remain on a single file system. That is it will not backup file
systems that are mounted on a subdirectory. If you are using a *nix system, you may not even be
aware that there are several different filesystems as they are often automatically mounted by the OS
(e.g. /dev, /net, /sys, /proc, ...). Bareos will inform you when it decides not to traverse into another
filesystem. This can be very useful if you forgot to backup a particular partition. An example of the
informational message in the job report is:

rufus-fd: /misc is a different filesystem. Will not descend from / into /misc

rufus-fd: /net is a different filesystem. Will not descend from / into /met

rufus-fd: /var/lib/nfs/rpc_pipefs is a different filesystem. Will not descend from /var/lib/nfs into /var/lib/nfs/rpc_
rufus-fd: /selinux is a different filesystem. Will not descend from / into /selinux

rufus-fd: /sys is a different filesystem. Will not descend from / into /sys

rufus-fd: /dev is a different filesystem. Will not descend from / into /dev

rufus-fd: /home is a different filesystem. Will not descend from / into /home

If you wish to backup multiple filesystems, you can explicitly list each filesystem you want saved.
Otherwise, if you set the onefs option to no, Bareos will backup all mounted file systems (i.e. traverse
mount points) that are found within the FileSet. Thus if you have NFS or Samba file systems
mounted on a directory listed in your FileSet, they will also be backed up. Normally, it is preferable
to set onefs=yes and to explicitly name each filesystem you want backed up. Explicitly naming the
filesystems you want backed up avoids the possibility of getting into a infinite loop recursing filesystems.
Another possibility is to use onefs=no and to set fstype=ext2, See the example below for more
details.

If you think that Bareos should be backing up a particular directory and it is not, and you have
onefs=no set, before you complain, please do:

stat /
stat <filesystem>

where you replace filesystem with the one in question. If the Device: number is different for / and
for your filesystem, then they are on different filesystems. E.g.

stat /

File: ¢/’

Size: 4096 Blocks: 16 I0 Block: 4096 directory
Device: 302h/7704 Inode: 2 Links: 26

Access: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (o/ root)
Access: 2005-11-10 12:28:01.000000000 +0100
Modify: 2005-09-27 17:52:32.000000000 +0200
Change: 2005-09-27 17:52:32.000000000 +0200

stat /net

File: ‘/home’

Size: 4096 Blocks: 16 I0 Block: 4096 directory
Device: 308h/776d Inode: 2 Links: 7

Access: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (0/ root)
Access: 2005-11-10 12:28:02.000000000 +0100
Modify: 2005-11-06 12:36:48.000000000 +0100
Change: 2005-11-06 12:36:48.000000000 +0100

101

Also be aware that even if you include /home in your list of files to backup, as you most likely should,
you will get the informational message that ” /home is a different filesystem” when Bareos is processing
the / directory. This message does not indicate an error. This message means that while examining
the File = referred to in the second part of the message, Bareos will not descend into the directory
mentioned in the first part of the message. However, it is possible that the separate filesystem will be
backed up despite the message. For example, consider the following FileSet:

File
File

/

/var

where /var is a separate filesystem. In this example, you will get a message saying that Bareos will
not decend from / into /var. But it is important to realise that Barcos will descend into /var from
the second File directive shown above. In effect, the warning is bogus, but it is supplied to alert you
to possible omissions from your FileSet. In this example, /var will be backed up. If you changed the
FileSet such that it did not specify /var, then /var will not be backed up.

honor nodump flag=<yes|no>
If your file system supports the nodump flag (e. g. most BSD-derived systems) Bareos will honor
the setting of the flag when this option is set to yes. Files having this flag set will not be included in
the backup and will not show up in the catalog. For directories with the nodump flag set recursion
is turned off and the directory will be listed in the catalog. If the honor nodump flag option is not
defined or set to no every file and directory will be eligible for backup.

portable=yes|no

If set to yes (default is no), the Bareos File daemon will backup Win32 files in a portable format,
but not all Win32 file attributes will be saved and restored. By default, this option is set to no,
which means that on Win32 systems, the data will be backed up using Windows API calls and on
WinNT/2K/XP, all the security and ownership attributes will be properly backed up (and restored).
However this format is not portable to other systems — e.g. Unix, Win95/98/Me. When backing up
Unix systems, this option is ignored, and unless you have a specific need to have portable backups, we
recommend accept the default (no) so that the maximum information concerning your files is saved.

recurse=yes|no
If set to yes (the default), Bareos will recurse (or descend) into all subdirectories found unless the
directory is explicitly excluded using an exclude definition. If you set recurse=no, Bareos will save
the subdirectory entries, but not descend into the subdirectories, and thus will not save the files or
directories contained in the subdirectories. Normally, you will want the default (yes).

sparse=yes|no
Enable special code that checks for sparse files such as created by ndbm. The default is no, so no
checks are made for sparse files. You may specify sparse=yes even on files that are not sparse file.
No harm will be done, but there will be a small additional overhead to check for buffers of all zero,
and if there is a 32K block of all zeros (see below), that block will become a hole in the file, which may
not be desirable if the original file was not a sparse file.

Restrictions: Bareos reads files in 32K buffers. If the whole buffer is zero, it will be treated as a
sparse block and not written to tape. However, if any part of the buffer is non-zero, the whole buffer
will be written to tape, possibly including some disk sectors (generally 4098 bytes) that are all zero. As
a consequence, Bareos’s detection of sparse blocks is in 32K increments rather than the system block
size. If anyone considers this to be a real problem, please send in a request for change with the reason.

If you are not familiar with sparse files, an example is say a file where you wrote 512 bytes at address
zero, then 512 bytes at address 1 million. The operating system will allocate only two blocks, and the
empty space or hole will have nothing allocated. However, when you read the sparse file and read the
addresses where nothing was written, the OS will return all zeros as if the space were allocated, and if
you backup such a file, a lot of space will be used to write zeros to the volume. Worse yet, when you
restore the file, all the previously empty space will now be allocated using much more disk space. By
turning on the sparse option, Bareos will specifically look for empty space in the file, and any empty
space will not be written to the Volume, nor will it be restored. The price to pay for this is that Bareos
must search each block it reads before writing it. On a slow system, this may be important. If you
suspect you have sparse files, you should benchmark the difference or set sparse for only those files
that are really sparse.

You probably should not use this option on files or raw disk devices that are not really sparse files (i.e.
have holes in them).

102

readfifo=yes|no
If enabled, tells the Client to read the data on a backup and write the data on a restore to any
FIFO (pipe) that is explicitly mentioned in the FileSet. In this case, you must have a program already
running that writes into the FIFO for a backup or reads from the FIFO on a restore. This can be
accomplished with the RunBeforeJob directive. If this is not the case, Bareos will hang indefinitely
on reading/writing the FIFO. When this is not enabled (default), the Client simply saves the directory
entry for the FIFO.

Normally, when Bareos runs a RunBeforeJob, it waits until that script terminates, and if the script
accesses the FIFO to write into it, the Bareos job will block and everything will stall. However, Vladimir
Stavrinov as supplied tip that allows this feature to work correctly. He simply adds the following to
the beginning of the RunBeforeJob script:

exec > /dev/null

Include {
Options {
signature=SHA1
readfifo=yes

}
File = /home/abc/fifo
}

Configuration 9.17: FileSet with Fifo

This feature can be used to do a "hot” database backup. You can use the RunBeforeJob to create
the fifo and to start a program that dynamically reads your database and writes it to the fifo. Bareos
will then write it to the Volume.

During the restore operation, the inverse is true, after Bareos creates the fifo if there was any data
stored with it (no need to explicitly list it or add any options), that data will be written back to the
fifo. As a consequence, if any such FIFOs exist in the fileset to be restored, you must ensure that there
is a reader program or Bareos will block, and after one minute, Bareos will time out the write to the
fifo and move on to the next file.

If you are planing to use a Fifo for backup, better take a look to the bpipe Plugin section.

noatime=yes|no
If enabled, and if your Operating System supports the O_NOATIME file open flag, Bareos will open
all files to be backed up with this option. It makes it possible to read a file without updating the inode
atime (and also without the inode ctime update which happens if you try to set the atime back to its
previous value). It also prevents a race condition when two programs are reading the same file, but
only one does not want to change the atime. It’s most useful for backup programs and file integrity
checkers (and Bareos can fit on both categories).

This option is particularly useful for sites where users are sensitive to their MailBox file access time.
It replaces both the keepatime option without the inconveniences of that option (see below).

If your Operating System does not support this option, it will be silently ignored by Bareos.

mtimeonly=yes|no
If enabled, tells the Client that the selection of files during Incremental and Differential backups should
based only on the st_mtime value in the stat() packet. The default is no which means that the selection
of files to be backed up will be based on both the st_mtime and the st_ctime values. In general, it is
not recommended to use this option.

keepatime=yes|no
The default is no. When enabled, Bareos will reset the st_atime (access time) field of files that it
backs up to their value prior to the backup. This option is not generally recommended as there are
very few programs that use st_atime, and the backup overhead is increased because of the additional
system call necessary to reset the times. However, for some files, such as mailboxes, when Bareos backs
up the file, the user will notice that someone (Bareos) has accessed the file. In this, case keepatime
can be useful. (I'm not sure this works on Win32).

Note, if you use this feature, when Bareos resets the access time, the change time (st_ctime) will
automatically be modified by the system, so on the next incremental job, the file will be backed up
even if it has not changed. As a consequence, you will probably also want to use mtimeonly = yes
as well as keepatime (thanks to Rudolf Cejka for this tip).

103

checkfilechanges=yes|no
If enabled, the Client will check size, age of each file after their backup to see if they have changed
during backup. If time or size mismatch, an error will raise.

zog-fd: Client1.2007-03-31_09.46.21 Error: /tmp/test mtime changed during backup.

In general, it is recommended to use this option.

hardlinks=yes|no

When enabled (default), this directive will cause hard links to be backed up. However, the File daemon
keeps track of hard linked files and will backup the data only once. The process of keeping track of the
hard links can be quite expensive if you have lots of them (tens of thousands or more). This doesn’t
occur on normal Unix systems, but if you use a program like BackupPC, it can create hundreds of
thousands, or even millions of hard links. Backups become very long and the File daemon will consume
a lot of CPU power checking hard links. In such a case, set hardlinks=no and hard links will not be
backed up. Note, using this option will most likely backup more data and on a restore the file system
will not be restored identically to the original.

wild=<string>
Specifies a wild-card string to be applied to the filenames and directory names. Note, if Exclude is
not enabled, the wild-card will select which files are to be included. If Exclude=yes is specified, the
wild-card will select which files are to be excluded. Multiple wild-card directives may be specified, and
they will be applied in turn until the first one that matches. Note, if you exclude a directory, no files
or directories below it will be matched.

You may want to test your expressions prior to running your backup by using the bwild program.
Please see the Utilities chapter of this manual for more. You can also test your full FileSet definition
by using the estimate command in the Console chapter of this manual. It is recommended to enclose
the string in double quotes.

wilddir=<string>
Specifies a wild-card string to be applied to directory names only. No filenames will be matched by
this directive. Note, if Exclude is not enabled, the wild-card will select directories to be included.
If Exclude=yes is specified, the wild-card will select which directories are to be excluded. Multiple
wild-card directives may be specified, and they will be applied in turn until the first one that matches.
Note, if you exclude a directory, no files or directories below it will be matched.

It is recommended to enclose the string in double quotes.

You may want to test your expressions prior to running your backup by using the bwild program.
Please see the Utilities chapter of this manual for more. You can also test your full FileSet definition
by using the estimate command in the Console chapter of this manual. An example of excluding with
the WildDir option on Win32 machines is presented below.

wildfile=<string>
Specifies a wild-card string to be applied to non-directories. That is no directory entries will be
matched by this directive. However, note that the match is done against the full path and filename, so
your wild-card string must take into account that filenames are preceded by the full path. If Exclude
is not enabled, the wild-card will select which files are to be included. If Exclude=yes is specified,
the wild-card will select which files are to be excluded. Multiple wild-card directives may be specified,
and they will be applied in turn until the first one that matches.

It is recommended to enclose the string in double quotes.

You may want to test your expressions prior to running your backup by using the bwild program.
Please see the Utilities chapter of this manual for more. You can also test your full FileSet definition
by using the estimate command in the Console chapter of this manual. An example of excluding with
the WildFile option on Win32 machines is presented below.

regex=<string>
Specifies a POSIX extended regular expression to be applied to the filenames and directory names,

which include the full path. If Exclude is not enabled, the regex will select which files are to be
included. If Exclude=yes is specified, the regex will select which files are to be excluded. Multiple

104

regex directives may be specified within an Options resource, and they will be applied in turn until the
first one that matches. Note, if you exclude a directory, no files or directories below it will be matched.

It is recommended to enclose the string in double quotes.

The regex libraries differ from one operating system to another, and in addition, regular expressions
are complicated, so you may want to test your expressions prior to running your backup by using the
bregex program. Please see the Utilities chapter of this manual for more. You can also test your full
FileSet definition by using the estimate command in the Console chapter of this manual.

You find yourself using a lot of Regex statements, which will cost quite a lot of CPU time, we recommend
you simplify them if you can, or better yet convert them to Wild statements which are much more
efficient.

regexfile=<string>
Specifies a POSIX extended regular expression to be applied to non-directories. No directories will be
matched by this directive. However, note that the match is done against the full path and filename,
so your regex string must take into account that filenames are preceded by the full path. If Exclude
is not enabled, the regex will select which files are to be included. If Exclude=yes is specified, the
regex will select which files are to be excluded. Multiple regex directives may be specified, and they
will be applied in turn until the first one that matches.

It is recommended to enclose the string in double quotes.

The regex libraries differ from one operating system to another, and in addition, regular expressions
are complicated, so you may want to test your expressions prior to running your backup by using the
bregex program. Please see the Utilities chapter of this manual for more.

regexdir=<string>
Specifies a POSIX extended regular expression to be applied to directory names only. No filenames
will be matched by this directive. Note, if Exclude is not enabled, the regex will select directories files
are to be included. If Exclude=yes is specified, the regex will select which files are to be excluded.
Multiple regex directives may be specified, and they will be applied in turn until the first one that
matches. Note, if you exclude a directory, no files or directories below it will be matched.

It is recommended to enclose the string in double quotes.

The regex libraries differ from one operating system to another, and in addition, regular expressions
are complicated, so you may want to test your expressions prior to running your backup by using the
bregex program. Please see the Utilities chapter of this manual for more.

Exclude = <yes|no> (default: no)
When enabled, any files matched within the Options will be excluded from the backup.

aclsupport=yes|no

The default is no. If this option is set to yes, and you have the POSIX libacl installed on your Linux
system, Bareos will backup the file and directory Unix Access Control Lists (ACL) as defined in IEEE
Std 1003.1e draft 17 and "POSIX.1e” (abandoned). This feature is available on Unix systems only
and requires the Linux ACL library. Bareos is automatically compiled with ACL support if the libacl
library is installed on your Linux system (shown in config.out). While restoring the files Bareos will
try to restore the ACLs, if there is no ACL support available on the system, Bareos restores the files
and directories but not the ACL information. Please note, if you backup an EXT3 or XF'S filesystem
with ACLs, then you restore them to a different filesystem (perhaps reiserfs) that does not have ACLs,
the ACLs will be ignored.

For other operating systems there is support for either POSIX ACLs or the more extensible NFSv4
ACLs.

The ACL stream format between Operation Systems is not compatible so for example an ACL saved
on Linux cannot be restored on Solaris.

The following Operating Systems are currently supported:

1. AIX (pre-5.3 (POSIX) and post 5.3 (POSIX and NFSv4) ACLs)
2. Darwin

3. FreeBSD (POSIX and NFSv4/ZFS ACLs)

4. HPUX

105

5. IRIX
6. Linux
7. Solaris (POSIX and NFSv4/ZFS ACLs)
8. Tru64

xattrsupport=yes|no
The default is no. If this option is set to yes, and your operating system support either so called
Extended Attributes or Extensible Attributes Bareos will backup the file and directory XATTR data.
This feature is available on UNIX only and depends on support of some specific library calls in libc.

The XATTR stream format between Operating Systems is not compatible so an XATTR saved on
Linux cannot for example be restored on Solaris.

On some operating systems ACLs are also stored as Extended Attributes (Linux, Darwin, FreeBSD)
Bareos checks if you have the aclsupport option enabled and if so will not save the same info when
saving extended attribute information. Thus ACLs are only saved once.

The following Operating Systems are currently supported:

AIX (Extended Attributes)

Darwin (Extended Attributes)

FreeBSD (Extended Attributes)

IRIX (Extended Attributes)

Linux (Extended Attributes)

NetBSD (Extended Attributes)

Solaris (Extended Attributes and Extensible Attributes)
Tru64 (Extended Attributes)

e A T o

ignore case=yes|no
The default is no. On Windows systems, you will almost surely want to set this to yes. When this
directive is set to yes all the case of character will be ignored in wild-card and regex comparisons.
That is an uppercase A will match a lowercase a.

fstype=filesystem-type
This option allows you to select files and directories by the filesystem type. The permitted filesystem-
type names are:

ext2, jfs, ntfs, proc, reiserfs, xfs, usbdevfs, sysfs, smbfs, is09660.

You may have multiple Fstype directives, and thus permit matching of multiple filesystem types within
a single Options resource. If the type specified on the fstype directive does not match the filesystem
for a particular directive, that directory will not be backed up. This directive can be used to prevent
backing up non-local filesystems. Normally, when you use this directive, you would also set onefs=no
so that Bareos will traverse filesystems.

This option is not implemented in Win32 systems.

DriveType=Windows-drive-type
This option is effective only on Windows machines and is somewhat similar to the Unix/Linux fstype
described above, except that it allows you to select what Windows drive types you want to allow. By
default all drive types are accepted.

The permitted drivetype names are:
removable, fixed, remote, cdrom, ramdisk

You may have multiple Driveype directives, and thus permit matching of multiple drive types within a
single Options resource. If the type specified on the drivetype directive does not match the filesystem
for a particular directive, that directory will not be backed up. This directive can be used to prevent
backing up non-local filesystems. Normally, when you use this directive, you would also set onefs=no
so that Bareos will traverse filesystems.

This option is not implemented in Unix/Linux systems.

hfsplussupport=yes|no
This option allows you to turn on support for Mac OSX HFS plus finder information.

106

strippath=<integer>
This option will cause integer paths to be stripped from the front of the full path/filename being
backed up. This can be useful if you are migrating data from another vendor or if you have taken a
snapshot into some subdirectory. This directive can cause your filenames to be overlayed with regular
backup data, so should be used only by experts and with great care.

size=sizeoption
This option will allow you to select files by their actual size. You can select either files smaller than
a certain size or bigger then a certain size, files of a size in a certain range or files of a size which is
within 1 % of its actual size.

The following settings can be used:

1. <size>-<size> - Select file in range size - size.
2. <size - Select files smaller than size.

3. >size - Select files bigger than size.
4

. size - Select files which are within 1 % of size.

shadowing=none|localwarn|localremove|globalwarn|globalremove
The default is none. This option performs a check within the fileset for any file-list entries which are
shadowing each other. Lets say you specify / and /usr but /usr is not a separate filesystem. Then in
the normal situation both / and /usr would lead to data being backed up twice.

The following settings can be used:

none - Do NO shadowing check
localwarn - Do shadowing check within one include block and warn
localremove - Do shadowing check within one include block and remove duplicates

globalwarn - Do shadowing check between all include blocks and warn

O =

globalremove - Do shadowing check between all include blocks and remove duplicates

The local and global part of the setting relate to the fact if the check should be performed only within
one include block (local) or between multiple include blocks of the same fileset (global). The warn and
remove part of the keyword sets the action e.g. warn the user about shadowing or remove the entry
shadowing the other.

Example for a fileset resource with fileset shadow warning enabled:

FileSet {
Name = "Test Set"
Include {
Options {
signature
shadowing
}
File
File
}
}

MD5
localwarn

/

/usr

Configuration 9.18: FileSet resource with fileset shadow warning enabled

meta=tag
This option will add a meta tag to a fileset. These meta tags are used by the Native NDMP protocol
to pass NDMP backup or restore environment variables via the Data Management Agent (DMA) in
Bareos to the remote NDMP Data Agent. You can have zero or more metatags which are all passed
to the remote NDMP Data Agent.

9.5.2 FileSet Exclude Ressource

FileSet Exclude-Ressources very similar to Include-Ressources, except that they only allow following direc-
tives:

File = < filename | directory | |command | \ <includefile-client | <includefile-server >
Files to exclude are descripted in the same way as at the FileSet Include Ressource.

For example:

FileSet {
Name = Exclusion_example
Include {
Options {
Signature = SHA1
}
File = /
File = /boot
File = /home
File = /rescue
File = /usr
}
Exclude {
File = /proc
File = /tmp # Don’t add trailing /
File = .journal
File = .autofsck
}
}

Configuration 9.19: FileSet using Exclude

Another way to exclude files and directories is to use the Exclude option from the Include section.

9.5.3 FileSet Examples

107

The following is an example of a valid FileSet resource definition. Note, the first Include pulls in the contents
of the file /etc/backup.list when Bareos is started (i.e. the @), and that file must have each filename to

be backed up preceded by a File = and on a separate line.

FileSet {
Name = "Full Set"
Include {

Options {
Compression=GZIP
signature=SHA1
Sparse = yes

}

@/etc/backup.list

}
Include {
Options {
wildfile
wildfile "%, exe"
Exclude = yes
}
File
File

"x . o"

/root/myfile
/usr/lib/another_file

Configuration 9.20: FileSet using import

In the above example, all the files contained in /etc/backup.list will be compressed with GZIP compres-
sion, an SHA1 signature will be computed on the file’s contents (its data), and sparse file handling will

apply.

The two directories /root/myfile and /usr/lib/another_file will also be saved without any options, but

all files in those directories with the extensions .o and .exe will be excluded.

Let’s say that you now want to exclude the directory /tmp. The simplest way to do so is to add an exclude

directive that lists /tmp. The example above would then become:

FileSet {
Name = "Full Set"
Include {
Options {
Compression=GZIP
signature=SHA1

108

Sparse = yes

}

@/etc/backup.list

}
Include {
Options {
wildfile
wildfile

= "k,

= "x, exe"

Exclude = yes

}
File =
File =
}
Exclude {
File = /tmp
}
}

/root/myfile
/usr/lib/another_file

don’t add trailing /

Configuration 9.21: extended FileSet excluding /tmp

You can add wild-cards to the File directives listed in the Exclude directory, but you need to take care
because if you exclude a directory, it and all files and directories below it will also be excluded.

Now lets take a slight variation on the above and suppose you want to save all your whole filesystem except
/tmp. The problem that comes up is that Bareos will not normally cross from one filesystem to another.
Doing a df command, you get the following output:

root@linux:~# df

Filesystem
/dev/hdab
/dev/hdal
/dev/hda9
/dev/hda2
/dev/hda8
/dev/hda6
none
//minimatou/c$
lmatou:/
lmatou:/home
lmatou:/usr
lpmatou:/
lpmatou:/home
lpmatou:/usr
deuter:/
deuter:/home
deuter:/files

1

k-blocks
5044156
62193
20161172
62217
5044156
5044156
127708
14099200
1554264
2478140
1981000
995116
19222656
2478140
4806936
4806904
44133352

Used Available
439232 4348692
4935 54047
5524660 13612372
6843 52161
42548 4745376
2613132 2174792
0 127708
9895424 4203776
215884 1258056
1589952 760072
1199960 678628
484112 459596
2787880 15458228
2038764 311260
97684 4465064
280100 4282620
27652876 14238608

Use%
10%
9%
29%
127,
1%
55%
0%
1%
15%
687%
647
52
167,
87%
3%
7%
67%

Mounted on

/

/boot

/home

/rescue

/tmp

/usr

/dev/shm
/mnt/mmatou
/mnt/matou
/mnt/matou/home
/mnt/matou/usr
/mnt/pmatou
/mnt/pmatou/home
/mnt/pmatou/usr
/mnt/deuter
/mnt/deuter/home
/mnt/deuter/files

Commands 9.22: df

And we see that there are a number of separate filesystems (/ /boot /home /rescue /tmp and /usr not to
mention mounted systems). If you specify only / in your Include list, Bareos will only save the Filesystem
/dev/hdab. To save all filesystems except /tmp with out including any of the Samba or NFS mounted
systems, and explicitly excluding a /tmp, /proc, .journal, and .autofsck, which you will not want to be saved
and restored, you can use the following:

FileSet {
Name = Include_example
Include {
Options {
wilddir = /proc
wilddir = /tmp
wildfile = "/.journal"
wildfile = "/.autofsck"
exclude = yes
}
File = /
File = /boot
File = /home
File = /rescue
File = /usr
}

Configuration 9.23: FileSet mount points

109

Since /tmp is on its own filesystem and it was not explicitly named in the Include list, it is not really needed
in the exclude list. It is better to list it in the Exclude list for clarity, and in case the disks are changed so
that it is no longer in its own partition.

Now, lets assume you only want to backup .Z and .gz files and nothing else. This is a bit trickier because
Bareos by default will select everything to backup, so we must exclude everything but .Z and .gz files. If
we take the first example above and make the obvious modifications to it, we might come up with a FileSet
that looks like this:

FileSet {
Name = "Full Set"
Include { trrrrrrrrnny
Options { This
wildfile = "*.Z" example
wildfile = "*.gz" doesn’t
work
} trrrrrrrrnn
File = /myfile
}
}

Configuration 9.24: Non-working example

The *.Z and *.gz files will indeed be backed up, but all other files that are not matched by the Options
directives will automatically be backed up too (i.e. that is the default rule).
To accomplish what we want, we must explicitly exclude all other files. We do this with the following:

FileSet {
Name = "Full Set"
Include {

Options {
wildfile
wildfile

"k, Z"
"*.gZ"

}

Options {
Exclude = yes
RegexFile = ".x"

}

File = /myfile

Configuration 9.25: Exclude all except specific wildcards

The ”trick” here was to add a RegexFile expression that matches all files. It does not match directory names,
so all directories in /myfile will be backed up (the directory entry) and any *.Z and *.gz files contained in
them. If you know that certain directories do not contain any *.Z or *.gz files and you do not want the
directory entries backed up, you will need to explicitly exclude those directories. Backing up a directory
entries is not very expensive.

Bareos uses the system regex library and some of them are different on different OSes. The above has
been reported not to work on FreeBSD. This can be tested by using the estimate job=job-name listing
command in the console and adapting the RegexFile expression appropriately.

Please be aware that allowing Bareos to traverse or change file systems can be very dangerous. For example,
with the following:

FileSet {
Name = "Bad example"
Include {
Options {
onefs=no
}
File = /mnt/matou
}
}

Configuration 9.26: backup all filesystem below /mnt/matou (use with care)

you will be backing up an NFS mounted partition (/mnt/matou), and since onefs is set to no, Bareos will
traverse file systems. Now if /mnt/matou has the current machine’s file systems mounted, as is often the
case, you will get yourself into a recursive loop and the backup will never end.

As a final example, let’s say that you have only one or two subdirectories of /home that you want to backup.
For example, you want to backup only subdirectories beginning with the letter a and the letter b — i.e.
/home/a* and /home/b*. Now, you might first try:

110

FileSet {
Name = "Full Set"
Include {
Options {
wilddir = "/home/ax"
wilddir = "/home/b*"
}

File = /home

Configuration 9.27: Non-working example

The problem is that the above will include everything in /home. To get things to work correctly, you need
to start with the idea of exclusion instead of inclusion. So, you could simply exclude all directories except
the two you want to use:

FileSet {
Name = "Full Set"
Include {
Options {
RegexDir = "~/home/[c-z]"
exclude = yes
}
File = /home
}
}

Configuration 9.28: Exclude by regex

And assuming that all subdirectories start with a lowercase letter, this would work.
An alternative would be to include the two subdirectories desired and exclude everything else:

FileSet {
Name = "Full Set"
Include {
Options {
wilddir = "/home/ax*"
wilddir = "/home/b*"
}
Options {
RegexDir = ".*"
exclude = yes

}
File = /home

Configuration 9.29: Include and Exclude

The following example shows how to back up only the My Pictures directory inside the My Documents
directory for all users in C:/Documents and Settings, i.e. everything matching the pattern:

C:/Documents and Settings/*/My Documents/My Pictures/*

To understand how this can be achieved, there are two important points to remember:

Firstly, Bareos walks over the filesystem depth-first starting from the File = lines. It stops descending when
a directory is excluded, so you must include all ancestor directories of each directory containing files to be
included.

Secondly, each directory and file is compared to the Options clauses in the order they appear in the FileSet.
When a match is found, no further clauses are compared and the directory or file is either included or
excluded.

The FileSet resource definition below implements this by including specifc directories and files and excluding
everything else.

FileSet {
Name = "AllPictures"

Include {
File = "C:/Documents and Settings"
Options {

signature = SHA1
verify = si

111

IgnoreCase = yes

Include all users’ directories so we reach the inner ones. Unlike a
WildDir pattern ending in *, this RegExDir only matches the top-level
directories and not any inner onmes.

RegExDir = ""C:/Documents and Settings/[~/]+$"

Ditto all users’ My Documents directories.
WildDir = "C:/Documents and Settings/*/My Documents"

Ditto all users’ My Documents/My Pictures directories.
WildDir = "C:/Documents and Settings/*/My Documents/My Pictures"

Include the contents of the My Documents/My Pictures directories and
any subdirectories.
Wild = "C:/Documents and Settings/#*/My Documents/My Pictures/*"

}

Options {
Exclude = yes
IgnoreCase = yes

Exclude everything else, in particular any files at the top level and
any other directories or files in the users’ directories.
Wild = "C:/Documents and Settings/*"

Configuration 9.30: Include/Exclude example

9.5.4 Windows FileSets

If you are entering Windows file names, the directory path may be preceded by the drive and a colon (as in
c:). However, the path separators must be specified in Unix convention (i.e. forward slash (/)). If you wish
to include a quote in a file name, precede the quote with a backslash (\). For example you might use the
following for a Windows machine to backup the "My Documents” directory:
FileSet {
Name = "Windows Set"
Include {
Options {
WildFile = "*.obj"
WildFile = "%.exe"
exclude = yes

}

File = "c:/My Documents"

Configuration 9.31: Windows FileSet
For exclude lists to work correctly on Windows, you must observe the following rules:
e Filenames are case sensitive, so you must use the correct case.
e To exclude a directory, you must not have a trailing slash on the directory name.

e If you have spaces in your filename, you must enclose the entire name in double-quote characters (7).
Trying to use a backslash before the space will not work.

e If you are using the old Exclude syntax (noted below), you may not specify a drive letter in the exclude.
The new syntax noted above should work fine including driver letters.

Thanks to Thiago Lima for summarizing the above items for us. If you are having difficulties getting includes
or excludes to work, you might want to try using the estimate job=xxx listing command documented in
the Console chapter of this manual.

On Win32 systems, if you move a directory or file or rename a file into the set of files being backed up,
and a Full backup has already been made, Bareos will not know there are new files to be saved during an
Incremental or Differential backup (blame Microsoft, not us). To avoid this problem, please copy any new
directory or files into the backup area. If you do not have enough disk to copy the directory or files, move
them, but then initiate a Full backup.

112

Example Fileset for Windows The following example demostrates a Windows FileSet. It backups all
data from all fixed drives and only excludes some Windows temporary data.

FileSet {

Name = "Windows All Drives"

Enable VSS = yes

Include {

Options {

Signature = MD5
Drive Type = fixed
IgnoreCase = yes

WildFile = "[A-Z]:/pagefile.sys"

WildDir = "[A-Z]:/RECYCLER"
WildDir = "[A-Z]:/$RECYCLE.BIN"
WildDir = "[A-Z]:/System Volume Information"
Exclude = yes
}
File = /

}
}

Configuration 9.32: Windows All Drives FileSet

File = / includes all Windows drives. Using Drive Type = fixed excludes drives like USB-Stick or CD-
ROM Drive. Using WildDir = "[A-Z]:/RECYCLER" excludes the backup of the directory RECYCLER from all
drives.

9.5.5 Testing Your FileSet

If you wish to get an idea of what your FileSet will really backup or if your exclusion rules will work correctly,
you can test it by using the estimate command in the Console program. See the estimate in the Console
chapter of this manual.

As an example, suppose you add the following test FileSet:
FileSet {
Name = Test
Include {
File = /home/xxx/test
Options {
regex = ".*\\.c$"
}
}
}

Configuration 9.33: FileSet for all *.c files

You could then add some test files to the directory /home/xxx/test and use the following command in
the console:

estimate job=<any-job-name> listing client=<desired-client> fileset=Test

bconsole 9.34: estimate

to give you a listing of all files that match. In the above example, it should be only files with names ending
in .c.

9.6 Client Resource

The Client (or FileDaemon) resource defines the attributes of the Clients that are served by this Director;
that is the machines that are to be backed up. You will need one Client resource definition for each machine
to be backed up.

configuration directive name | type of data | default value | remark
Address = string required
Allow Client Connect = yes|no alias, deprecated
Auth Type = None|Clear|[MD5 None
Auto Prune = yes|no no

Catalog = resource-name

Connection From Client To Director
Connection From Director To Client
Description

Enabled

FD Address

FD Password

FD Port

File Retention

Hard Quota

Heartbeat Interval

Job Retention

Maximum Bandwidth Per Job
Maximum Concurrent Jobs
Name

NDMP Block Size

NDMP Log Level

NDMP Use LMDB

Passive

Password

Port

Protocol

Quota Include Failed Jobs
Soft Quota

Soft Quota Grace Period
Strict Quotas

TLS Allowed CN

TLS Authenticate

TLS CA Certificate Dir

TLS CA Certificate File

TLS Certificate

TLS Certificate Revocation List
TLS Cipher List

TLS DH File

TLS Enable

TLS Key

TLS Require

TLS Verify Peer

Username

= yes|no

= yes|no

= string

= yes|no

= string

= password

= positive-integer
= time

= Size64

= time

= time

= speed

= positive-integer
= name

= positive-integer
= positive-integer
= yes|no

= yes|no

= password

= positive-integer
= AuthProtocolType
= yes|no

= Size64

= time

yes|no

= string-list

= yes|no

= path

= path

= path

= path

= string

= path

= yes|no

= path

= yes|no

= yes|no

= string

no
yes

yes

9102
5184000
0

0
15552000

64512

yes
no

9102
Native
yes

0

0

no

no

no

no
yes

alias
alias
alias

required

required

113

Address = <string>

(required)

Where the address is a host name, a fully qualified domain name, or a network address in dotted quad
notation for a Bareos File server daemon. This directive is required.

Allow Client Connect = <yes|no>

Please note! This directive is deprecated.
Alias of ”Connection From Client To Director”.

Auth Type = <None|Clear|MD5>

uses a specific authentication type.

Auto Prune = <yes|no>

If set to yes, Bareos will automatically apply the File Retention
period for the client at the end of the job.

Dir
Client

Dir
Client

(default: None)
Specifies the authentication type that must be supplied when connecting to a backup protocol that

(default: no)

period and the Job Retention

114

Pruning affects only information in the catalog and not data stored in the backup archives (on
Volumes), but if pruning deletes all data referring to a certain volume, the volume is regarded as
empty and will possibly be overwritten before the volume retention has expired.

Catalog = <resource-name>
This specifies the name of the catalog resource to be used for this Client. If none is specified the first
defined catalog is used.

Connection From Client To Director = <yes|no> (default: no)
The Director will accept incoming network connection from this Client.

For details, see Client Initiated Connection.
Version >= 16.2.2

Connection From Director To Client = <yes|no> (default: yes)
Let the Director initiate the network connection to the Client.

Version >= 16.2.2

Description = <string>

Enabled = <yes|no> (default: yes)
En- or disable this resource.

FD Address = <string>
Alias for Address.

FD Password = <password>
This directive is an alias.

FD Port = <positive-integer> (default: 9102)
This directive is an alias.

Where the port is a port number at which the Bareos File Daemon can be contacted. The default is
9102. For NDMP backups set this to 10000.

File Retention = <time> (default: 5184000)
The File Retention directive defines the length of time that Bareos will keep File records in the Catalog
database after the End time of the Job corresponding to the File records. When this time period expires
and Auto Prune 2 = yes, Bareos will prune (remove) File records that are older than the specified

File Retention period. Note, this affects only records in the catalog database. It does not affect your
archive backups.

File records may actually be retained for a shorter period than you specify on this directive if you
specify either a shorter Job Retention 27 . or a shorter Volume Retention 2 period. The shortest

retention period of the three takes precedence.
The default is 60 days.

Hard Quota = <Size64> (default: 0)
The amount of data determined by the Hard Quota directive sets the hard limit of backup space that
cannot be exceeded. This is the maximum amount this client can back up before any backup job will
be aborted.

If the Hard Quota is exceeded, the running job is terminated:

115

Fatal error: append.c:218 Quota Exceeded. Job Terminated.

Heartbeat Interval = <time> (default: 0)
This directive is optional and if specified will cause the Director to set a keepalive interval (heartbeat)
in seconds on each of the sockets it opens for the Storage resource. If set, this value overrides
Heartbeat Interval DI

Director

Job Retention = <time> (default: 15552000)
The Job Retention directive defines the length of time that Bareos will keep Job records in the Catalog
database after the Job End time. When this time period expires and Auto Prune 2if = = yes Bareos

will prune (remove) Job records that are older than the specified File Retention period. As with the
other retention periods, this affects only records in the catalog and not data in your archive backup.

If a Job record is selected for pruning, all associated File and JobMedia records will also be pruned
regardless of the File Retention period set. As a consequence, you normally will set the File retention
period to be less than the Job retention period. The Job retention period can actually be less than
the value you specify here if you set the Volume Retention 2 directive to a smaller duration. This is
because the Job retention period and the Volume retention period are independently applied, so the

smaller of the two takes precedence.
The default is 180 days.

Maximum Bandwidth Per Job = <speed>
The speed parameter specifies the maximum allowed bandwidth that a job may use when started for
this Client. The speed parameter should be specified in k/s, Kb/s, m/s or Mb/s.

Maximum Concurrent Jobs = <positive-integer> (default: 1)
This directive specifies the maximum number of Jobs with the current Client that can run concurrently.
Note, this directive limits only Jobs for Clients with the same name as the resource in which it
appears. Any other restrictions on the maximum concurrent jobs such as in the Director, Job or
Storage resources will also apply in addition to any limit specified here.

Name = <name> (required)
The name of the resource.

The client name which will be used in the Job resource directive or in the console run command.

NDMP Block Size = <positive-integer> (default: 64512)
This directive sets the default NDMP blocksize for this client.

NDMP Log Level = <positive-integer> (default: 4)
This directive sets the loglevel for the NDMP protocol library.

NDMP Use LMDB = <yes|no> (default: yes)

Passive = <yes|no> (default: no)
If enabled, the Storage Daemon will initiate the network connection to the Client. If disabled, the
Client will initiate the netowrk connection to the Storage Daemon.

The normal way of initializing the data channel (the channel where the backup data itself is transported)
is done by the file daemon (client) that connects to the storage daemon.

By using the client passive mode, the initialization of the datachannel is reversed, so that the storage
daemon connects to the filedaemon.

116

See chapter Passive Client.
Version >= 13.2.0

Password = <password> (required)
This is the password to be used when establishing a connection with the File services, so the Client
configuration file on the machine to be backed up must have the same password defined for this Director.

The password is plain text.

Port = <positive-integer> (default: 9102)

Protocol = <Native| NDMP > (default: Native)
The backup protocol to use to run the Job.

Currently the director understands the following protocols:

1. Native - The native Bareos protocol

2. NDMP - The NDMP protocol

Version >= 13.2.0

Quota Include Failed Jobs = <yes|no> (default: yes)
When calculating the amount a client used take into consideration any failed Jobs.

Soft Quota = <Size64> (default: 0)
This is the amount after which there will be a warning issued that a client is over his softquota. A
client can keep doing backups until it hits the hard quota or when the Soft Quota Grace Period 2

Client
is expired.
Soft Quota Grace Period = <time> (default: 0)
Time allowed for a client to be over its Soft Quota 2ir . before it will be enforced.

When the amount of data backed up by the client outruns the value specified by the Soft Quota
directive, the next start of a backup job will start the soft quota grace time period. This is written to
the job log:

Error: Softquota Exceeded, Grace Period starts now.

In the Job Overview, the value of Grace Expiry Date: will then change from
Soft Quota was never exceeded to the date when the grace time expires, e.g. 11-Dec-2012 04:
09:05.

During that period, it is possible to do backups even if the total amount of stored data exceeds the
limit specified by soft quota.

If in this state, the job log will write:

Error: Softquota Exceeded, will be enforced after Grace Period expires.

After the grace time expires, in the next backup job of the client, the value for Burst Quota will be
set to the value that the client has stored at this point in time. Also, the job will be terminated. The
following information in the job log shows what happened:

Warning: Softquota Exceeded and Grace Period expired.
Setting Burst Quota to 122880000 Bytes.
Fatal error: Soft Quota Exceeded / Grace Time expired. Job terminated.

At this point, it is not possible to do any backup of the client. To be able to do more backups, the
amount of stored data for this client has to fall under the burst quota value.

117

Strict Quotas = <yes|no> (default: no)
The directive Strict Quotas determines whether, after the Grace Time Period is over, to enforce the
Burst Limit (Strict Quotas = No) or the Soft Limit (Strict Quotas = Yes).

The Job Log shows either

Softquota Exceeded, enforcing Burst Quota Limit.

or

Softquota Exceeded, enforcing Strict Quota Limit.

TLS Allowed CN = <string-list>
”Common Name”s (CNs) of the allowed peer certificates.

TLS Authenticate = <yes|no> (default: no)
Use TLS only to authenticate, not for encryption.

TLS CA Certificate Dir = <path>
Path of a TLS CA certificate directory.

TLS CA Certificate File = <path>
Path of a PEM encoded TLS CA certificate(s) file.

TLS Certificate = <path>
Path of a PEM encoded TLS certificate.

TLS Certificate Revocation List = <path>
Path of a Certificate Revocation List file.

TLS Cipher List = <string>
List of valid TLS Ciphers.

TLS DH File = <path>
Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange
will be used for the ephemeral keying, allowing for forward secrecy of communications.

TLS Enable = <yes|no> (default: no)
Enable TLS support.

Bareos can be configured to encrypt all its network traffic. See chapter TLS Configuration Directives
to see, how the Bareos Director (and the other components) must be configured to use TLS.

118

TLS Key = <path>
Path of a PEM encoded private key. It must correspond to the specified ” TLS Certificate”.

TLS Require = <yes|no> (default: no)
Without setting this to yes, Bareos can fall back to use unencryption connections. Enabling this
implicietly sets " TLS Enable = yes”.

TLS Verify Peer = <yes|no> (default: yes)
If disabled, all certificates signed by a known CA will be accepted. If enabled, the CN of a certificate
must the Address or in the "TLS Allowed CN” list.

Username = <string>
Specifies the username that must be supplied when authenticating. Only used for the non Native
protocols at the moment.

The following is an example of a valid Client resource definition:

Client {
Name = clientl-fd
Address = clientl.example.com
Password = "secret"

}

Configuration 9.35: Minimal client resource definition in bareos-dir.conf

The following is an example of a Quota Configuration in Client resource:

Client {
Name = clientl-fd
Address = clientl.example.com
Password = "secret"

Quota

Soft Quota = 50 mb

Soft Quota Grace Period = 2 days
Strict Quotas = Yes

Hard Quota = 150 mb

Quota Include Failed Jobs = yes

Configuration 9.36: Quota Configuration in Client resource

9.7 Storage Resource

The Storage resource defines which Storage daemons are available for use by the Director.

configuration directive name | type of data | default value | remark
Address = string required
Allow Compression = yes|no yes

Auth Type = None|Clear|[MD5 None

Auto Changer = yes|no no

Cache Status Interval = time 30

Changer Device = strname

Collect Statistics = yes|no no

Description = string

Device = Device required

119

Enabled = yes|no yes
Heartbeat Interval = time 0
Maximum Bandwidth Per Job = speed
Maximum Concurrent Jobs = positive-integer 1
Maximum Concurrent Read Jobs | = positive-integer 0
Media Type = strname required
Name = name required
Paired Storage = resource-name
Password = password required
Port = positive-integer 9103
Protocol = AuthProtocolType | Native
SD Address = string alias
SD Password = password alias
SD Port = positive-integer 9108 alias
Sdd Port = positive-integer deprecated
Tape Device = string-list
TLS Allowed CN = string-list
TLS Authenticate = yes|no no
TLS CA Certificate Dir = path
TLS CA Certificate File = path
TLS Certificate = path
TLS Certificate Revocation List = path
TLS Cipher List = string
TLS DH File = path
TLS Enable = yes|no no
TLS Key = path
TLS Require = yes|no no
TLS Verify Peer = yes|no yes
Username = string
Address = <string> (required)

Where the address is a host name, a fully qualified domain name, or an IP address. Please note
that the <address> as specified here will be transmitted to the File daemon who will then use it to
contact the Storage daemon. Hence, it is not, a good idea to use localhost as the name but rather a
fully qualified machine name or an IP address. This directive is required.

Allow Compression = <yes|no> (default: yes)
This directive is optional, and if you specify No, it will cause backups jobs running on this storage
resource to run without client File Daemon compression. This effectively overrides compression
options in FileSets used by jobs which use this storage resource.

Auth Type = <None|Clear|MD5> (default: None)
Specifies the authentication type that must be supplied when connecting to a backup protocol that
uses a specific authentication type.

Auto Changer = <yes|no> (default: no)
If you specify yes for this command, when you use the label command or the add command to
create a new Volume, Bareos will also request the Autochanger Slot number. This simplifies creating
database entries for Volumes in an autochanger. If you forget to specify the Slot, the autochanger will
not be used. However, you may modify the Slot associated with a Volume at any time by using the
update volume or update slots command in the console program. When autochanger is enabled,
the algorithm used by Bareos to search for available volumes will be modified to consider only Volumes
that are known to be in the autochanger’s magazine. If no in changer volume is found, Bareos will
attempt recycling, pruning, ..., and if still no volume is found, Bareos will search for any volume
whether or not in the magazine. By privileging in changer volumes, this procedure minimizes operator
intervention.

120

For the autochanger to be used, you must also specify Autochanger = yes in the Autochanger $¢ .

in the Storage daemon’s configuration file as well as other important Storage daemon configuration
information. Please consult the Autochanger Support chapter for the details of using autochangers.

Cache Status Interval = <time> (default: 30)

Changer Device = <strname>

Collect Statistics = <yes|no> (default: no)
Collect statistic information. These information will be collected by the Director (see Statistics Collect
Interval 2) and stored in the Catalog.

Director

Description = <string>
Information.

Device = <Device> (required)
This directive specifies the Storage daemon’s name of the device resource to be used for the storage.
If you are using an Autochanger, the name specified here should be the name of the Storage daemon’s
Autochanger resource rather than the name of an individual device. This name is not the physical
device name, but the logical device name as defined on the Name directive contained in the Device or
the Autochanger resource definition of the Storage daemon configuration file. You can specify any
name you would like (even the device name if you prefer) up to a maximum of 127 characters in length.
The physical device name associated with this device is specified in the Storage daemon configuration
file (as Archive Device). Please take care not to define two different Storage resource directives in the
Director that point to the same Device in the Storage daemon. Doing so may cause the Storage daemon
to block (or hang) attempting to open the same device that is already open. This directive is required.

Enabled = <yes|no> (default: yes)
En- or disable this resource.

Heartbeat Interval = <time> (default: 0)
This directive is optional and if specified will cause the Director to set a keepalive interval (heartbeat)
in seconds on each of the sockets it opens for the Storage resource. This value will override any
specified at the Director level. It is implemented only on systems (Linux, ...) that provide the
setsockopt TCP_KEEPIDLE function. The default value is zero, which means no change is made to
the socket.

Maximum Bandwidth Per Job = <speed>

Maximum Concurrent Jobs = <positive-integer> (default: 1)
This directive specifies the maximum number of Jobs with the current Storage resource that can run
concurrently. Note, this directive limits only Jobs for Jobs using this Storage daemon. Any other
restrictions on the maximum concurrent jobs such as in the Director, Job or Client resources will also
apply in addition to any limit specified here.

If you set the Storage daemon’s number of concurrent jobs greater than one, we recommend that you
read Concurrent Jobs and/or turn data spooling on as documented in Data Spooling.

Maximum Concurrent Read Jobs = <positive-integer> (default: 0)
This directive specifies the maximum number of Jobs with the current Storage resource that can read

121

concurrently.

Media Type = <strname> (required)
This directive specifies the Media Type to be used to store the data. This is an arbitrary string of
characters up to 127 maximum that you define. It can be anything you want. However, it is best to
make it descriptive of the storage media (e.g. File, DAT, ”HP DLT8000”, 8mm, ...). In addition, it
is essential that you make the Media Type specification unique for each storage media type. If you
have two DDS-4 drives that have incompatible formats, or if you have a DDS-4 drive and a DDS-4
autochanger, you almost certainly should specify different Media Types. During a restore, assuming
a DDS-4 Media Type is associated with the Job, Bareos can decide to use any Storage daemon that
supports Media Type DDS-4 and on any drive that supports it.

If you are writing to disk Volumes, you must make doubly sure that each Device resource defined in
the Storage daemon (and hence in the Director’s conf file) has a unique media type. Otherwise Bareos
may assume, these Volumes can be mounted and read by any Storage daemon File device.

Currently Bareos permits only a single Media Type per Storage Device definition. Consequently, if
you have a drive that supports more than one Media Type, you can give a unique string to Volumes
with different intrinsic Media Type (Media Type = DDS-3-4 for DDS-3 and DDS-4 types), but then
those volumes will only be mounted on drives indicated with the dual type (DDS-3-4).

If you want to tie Bareos to using a single Storage daemon or drive, you must specify a unique Media
Type for that drive. This is an important point that should be carefully understood. Note, this applies
equally to Disk Volumes. If you define more than one disk Device resource in your Storage daemon’s
conf file, the Volumes on those two devices are in fact incompatible because one can not be mounted
on the other device since they are found in different directories. For this reason, you probably should
use two different Media Types for your two disk Devices (even though you might think of them as both
being File types). You can find more on this subject in the Basic Volume Management chapter of this
manual.

The MediaType specified in the Director’s Storage resource, must correspond to the Media Type
specified in the Device resource of the Storage daemon configuration file. This directive is required,
and it is used by the Director and the Storage daemon to ensure that a Volume automatically selected
from the Pool corresponds to the physical device. If a Storage daemon handles multiple devices (e.g.
will write to various file Volumes on different partitions), this directive allows you to specify exactly
which device.

As mentioned above, the value specified in the Director’s Storage resource must agree with the value
specified in the Device resource in the Storage daemon’s configuration file. It is also an additional
check so that you don’t try to write data for a DLT onto an 8mm device.

Name = <name> (required)
The name of the resource.

The name of the storage resource. This name appears on the Storage directive specified in the Job
resource and is required.

Paired Storage = <resource-name>
For NDMP backups this points to the definition of the Native Storage that is accesses via the NDMP
protocol. For now we only support NDMP backups and restores to access Native Storage Daemons
via the NDMP protocol. In the future we might allow to use Native NDMP storage which is not
bound to a Bareos Storage Daemon.

Password = <password> (required)
This is the password to be used when establishing a connection with the Storage services. This same
password also must appear in the Director resource of the Storage daemon’s configuration file. This
directive is required.

The password is plain text.

Port = <positive-integer> (default: 9103)
Where port is the port to use to contact the storage daemon for information and to start jobs. This

122

same port number must appear in the Storage resource of the Storage daemon’s configuration file.

Protocol = <AuthProtocolType> (default: Native)

SD Address = <string>
Alias for Address.

SD Password = <password>
Alias for Password.

SD Port = <positive-integer> (default: 9103)
Alias for Port.

Sdd Port = <positive-integer>
Please note! This directive is deprecated.

Tape Device = <string-list>

TLS Allowed CN = <string-list>
”Common Name”s (CNs) of the allowed peer certificates.

TLS Authenticate = <yes|no> (default: no)
Use TLS only to authenticate, not for encryption.

TLS CA Certificate Dir = <path>
Path of a TLS CA certificate directory.

TLS CA Certificate File = <path>
Path of a PEM encoded TLS CA certificate(s) file.

TLS Certificate = <path>
Path of a PEM encoded TLS certificate.

TLS Certificate Revocation List = <path>
Path of a Certificate Revocation List file.

123

TLS Cipher List = <string>
List of valid TLS Ciphers.

TLS DH File = <path>
Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange
will be used for the ephemeral keying, allowing for forward secrecy of communications.

TLS Enable = <yes|no> (default: no)
Enable TLS support.

Bareos can be configured to encrypt all its network traffic. For details, refer to chapter TLS
Configuration Directives.

TLS Key = <path>
Path of a PEM encoded private key. It must correspond to the specified ” TLS Certificate”.

TLS Require = <yes|no> (default: no)
Without setting this to yes, Bareos can fall back to use unencryption connections. Enabling this
implicietly sets " TLS Enable = yes”.

TLS Verify Peer = <yes|no> (default: yes)
If disabled, all certificates signed by a known CA will be accepted. If enabled, the CN of a certificate
must the Address or in the ”TLS Allowed CN” list.

Username = <string>

The following is an example of a valid Storage resource definition:

Storage {
Name = DLTDrive
Address = lpmatou
Password = storage_password # password for Storage daemon
Device = "HP DLT 80" # same as Device in Storage daemon
Media Type = DLT8000 # same as MediaType in Storage daemon

Configuration 9.37: Storage resource (tape) example

9.8 Pool Resource

The Pool resource defines the set of storage Volumes (tapes or files) to be used by Bareos to write the data.
By configuring different Pools, you can determine which set of Volumes (media) receives the backup data.
This permits, for example, to store all full backup data on one set of Volumes and all incremental backups
on another set of Volumes. Alternatively, you could assign a different set of Volumes to each machine that
you backup. This is most easily done by defining multiple Pools.

Another important aspect of a Pool is that it contains the default attributes (Maximum Jobs, Retention
Period, Recycle flag, ...) that will be given to a Volume when it is created. This avoids the need for you
to answer a large number of questions when labeling a new Volume. Each of these attributes can later be
changed on a Volume by Volume basis using the update command in the console program. Note that you

124

must explicitly specify which Pool Bareos is to use with each Job. Bareos will not automatically search for
the correct Pool.

Most often in Bareos installations all backups for all machines (Clients) go to a single set of Volumes. In
this case, you will probably only use the Default Pool. If your backup strategy calls for you to mount a
different tape each day, you will probably want to define a separate Pool for each day. For more information
on this subject, please see the Backup Strategies chapter of this manual.

To use a Pool, there are three distinct steps. First the Pool must be defined in the Director’s configuration
file. Then the Pool must be written to the Catalog database. This is done automatically by the Director
each time that it starts, or alternatively can be done using the create command in the console program.
Finally, if you change the Pool definition in the Director’s configuration file and restart Bareos, the pool will
be updated alternatively you can use the update pool console command to refresh the database image. It is
this database image rather than the Director’s resource image that is used for the default Volume attributes.
Note, for the pool to be automatically created or updated, it must be explicitly referenced by a Job resource.
Next the physical media must be labeled. The labeling can either be done with the label command in the
console program or using the btape program. The preferred method is to use the label command in the
console program.

Finally, you must add Volume names (and their attributes) to the Pool. For Volumes to be used by Bareos
they must be of the same Media Type as the archive device specified for the job (i.e. if you are going to
back up to a DLT device, the Pool must have DLT volumes defined since 8mm volumes cannot be mounted
on a DLT drive). The Media Type has particular importance if you are backing up to files. When running
a Job, you must explicitly specify which Pool to use. Bareos will then automatically select the next Volume
to use from the Pool, but it will ensure that the Media Type of any Volume selected from the Pool is
identical to that required by the Storage resource you have specified for the Job.

If you use the label command in the console program to label the Volumes, they will automatically be added
to the Pool, so this last step is not normally required.

It is also possible to add Volumes to the database without explicitly labeling the physical volume. This is
done with the add console command.

As previously mentioned, each time Bareos starts, it scans all the Pools associated with each Catalog, and
if the database record does not already exist, it will be created from the Pool Resource definition. Bareos
probably should do an update pool if you change the Pool definition, but currently, you must do this
manually using the update pool command in the Console program.

The Pool Resource defined in the Director’s configuration file (bareos-dir.conf) may contain the following
directives:

configuration directive name | type of data | default value | remark
Action On Purge = ActionOnPurge

Auto Prune = yes|no yes
Catalog = resource-name

Catalog Files = yes|no yes
Cleaning Prefix = strname CLN
Description = string

File Retention = time

Job Retention = time

Label Format = strname

Label Type = Label

= positive-integer
= Size64

= positive-integer
= positive-integer
= positive-integer

Maximum Block Size
Maximum Volume Bytes
Maximum Volume Files
Maximum Volume Jobs
Maximum Volumes

Migration High Bytes = Size64

Migration Low Bytes = Size64

Migration Time = time

Minimum Block Size = positive-integer

Name = name required
Next Pool = resource-name

Pool Type = Pooltype Backup

Purge Oldest Volume = yes|no no

Recycle = yes|no yes

125

Recycle Current Volume = yes|no no

Recycle Oldest Volume = yes|no no

Recycle Pool = resource-name

Scratch Pool = resource-name

Storage = Resourcelist

Use Catalog = yes|no yes

Use Volume Once = yes|no deprecated
Volume Retention = time 31536000

Volume Use Duration = time

Action On Purge = <ActionOnPurge>
This directive Action On Purge=Truncate instructs Bareos to truncate the volume when it is purged
with the purge volume action=truncate command. It is useful to prevent disk based volumes from
consuming too much space.

Pool {
Name = Default
Action On Purge = Truncate

You can schedule the truncate operation at the end of your BackupCatalog®’: job like in this example:

Job {
Name = BackupCatalog

RunScript {
RunsWhen=After
RunsOnClient=No
Console = "purge volume action=truncate storage=File allpools"

}
}

Auto Prune = <yes|no> (default: yes)
If Auto Prune=yes, the Volume Retention 2 period is automatically applied when a new Volume
is needed and no appendable Volumes exist in the Pool. Volume pruning causes expired Jobs (older
than the Volume Retention 2 period) to be deleted from the Catalog and permits possible recycling

Pool
of the Volume.

Catalog = <resource-name>
This specifies the name of the catalog resource to be used for this Pool. When a catalog is defined in
a Pool it will override the definition in the client (and the Catalog definition in a Job since Version
>=13.4.0). e.g. this catalog setting takes precedence over any other definition.

Catalog Files = <yes|no> (default: yes)
This directive defines whether or not you want the names of the files that were saved to be put into
the catalog. If disabled, the Catalog database will be significantly smaller. The disadvantage is that
you will not be able to produce a Catalog listing of the files backed up for each Job (this is often
called Browsing). Also, without the File entries in the catalog, you will not be able to use the Console
restore command nor any other command that references File entries.

Cleaning Prefix = <strname>> (default: CLN)
This directive defines a prefix string, which if it matches the beginning of a Volume name during
labeling of a Volume, the Volume will be defined with the VolStatus set to Cleaning and thus Bareos
will never attempt to use this tape. This is primarily for use with autochangers that accept barcodes
where the convention is that barcodes beginning with CLIN are treated as cleaning tapes.

126

The default value for this directive is consequently set to CLN, so that in most cases the cleaning
tapes are automatically recognized without configuration. If you use another prefix for your cleaning
tapes, you can set this directive accordingly.

Description = <string>

File Retention = <time>
The File Retention directive defines the length of time that Bareos will keep File records in the Catalog
database after the End time of the Job corresponding to the File records.

This directive takes precedence over Client directives of the same name. For example, you can decide
to increase Retention times for Archive or OffSite Pool.

Note, this affects only records in the catalog database. It does not affect your archive backups.

Dir

For more information see Client documentation about File Retention 2,

Job Retention = <time>
The Job Retention directive defines the length of time that Bareos will keep Job records in the Catalog
database after the Job End time. As with the other retention periods, this affects only records in the
catalog and not data in your archive backup.

This directive takes precedence over Client directives of the same name. For example, you can decide
to increase Retention times for Archive or OffSite Pool.

Dir

For more information see Client side documentation Job Retention 2F, .

Label Format = <strname>
This directive specifies the format of the labels contained in this pool. The format directive is used as
a sort of template to create new Volume names during automatic Volume labeling.

The format should be specified in double quotes ("), and consists of letters, numbers and the special
characters hyphen (-), underscore (_), colon (:), and period (.), which are the legal characters for a
Volume name.

In addition, the format may contain a number of variable expansion characters which will be expanded
by a complex algorithm allowing you to create Volume names of many different formats. In all cases,
the expansion process must resolve to the set of characters noted above that are legal Volume names.
Generally, these variable expansion characters begin with a dollar sign ($) or a left bracket ([). For
more details on variable expansion, please see Variable Expansion on Volume Labels.

If no variable expansion characters are found in the string, the Volume name will be formed from the
format string appended with the a unique number that increases. If you do not remove volumes from
the pool, this number should be the number of volumes plus one, but this is not guaranteed. The unique
number will be edited as four digits with leading zeros. For example, with a Label Format = "File-",
the first volumes will be named File-0001, File-0002, ...

In almost all cases, you should enclose the format specification (part after the equal sign) in double
quotes (").

Label Type = <ANSI|IBM|Bareos>
This directive is implemented in the Director Pool resource and in the SD Device resource (Label
Type 2). If it is specified in the SD Device resource, it will take precedence over the value passed

from the Director to the SD.

Maximum Block Size = <positive-integer>
The Maximum Block Size can be defined here to define different block sizes per volume or statically
for all volumes at Maximum Block Size !, .. If not defined, its default is 63 KB. Increasing this value
could improve the throughput of writing to tapes.
Please note! However make sure to read the Setting Block Sizes chapter carefully before applying any
changes.

Version >= 14.2.0

127

Maximum Volume Bytes = <Size64>
This directive specifies the maximum number of bytes that can be written to the Volume. If you
specify zero (the default), there is no limit except the physical size of the Volume. Otherwise, when
the number of bytes written to the Volume equals size the Volume will be marked Used. When the
Volume is marked Used it can no longer be used for appending Jobs, much like the Full status but it
can be recycled if recycling is enabled, and thus the Volume can be re-used after recycling. This value
is checked and the Used status set while the job is writing to the particular volume.

This directive is particularly useful for restricting the size of disk volumes, and will work correctly even
in the case of multiple simultaneous jobs writing to the volume.

The value defined by this directive in the bareos-dir.conf file is the default value used when a Volume
is created. Once the volume is created, changing the value in the bareos-dir.conf file will not change
what is stored for the Volume. To change the value for an existing Volume you must use the update
command in the Console.

Maximum Volume Files = <positive-integer>
This directive specifies the maximum number of files that can be written to the Volume. If you specify
zero (the default), there is no limit. Otherwise, when the number of files written to the Volume equals
positive-integer the Volume will be marked Used. When the Volume is marked Used it can no
longer be used for appending Jobs, much like the Full status but it can be recycled if recycling is
enabled and thus used again. This value is checked and the Used status is set only at the end of a job
that writes to the particular volume.

The value defined by this directive in the bareos-dir.conf file is the default value used when a Volume
is created. Once the volume is created, changing the value in the bareos-dir.conf file will not change
what is stored for the Volume. To change the value for an existing Volume you must use the update
command in the Console.

Maximum Volume Jobs = <positive-integer>
This directive specifies the maximum number of Jobs that can be written to the Volume. If you specify
zero (the default), there is no limit. Otherwise, when the number of Jobs backed up to the Volume
equals positive-integer the Volume will be marked Used. When the Volume is marked Used it can
no longer be used for appending Jobs, much like the Full status but it can be recycled if recycling is
enabled, and thus used again. By setting MaximumVolumeJobs to one, you get the same effect as
setting UseVolumeOnce = yes.

The value defined by this directive in the bareos-dir.conf file is the default value used when a Volume
is created. Once the volume is created, changing the value in the bareos-dir.conf file will not change
what is stored for the Volume. To change the value for an existing Volume you must use the update
command in the Console.

If you are running multiple simultaneous jobs, this directive may not work correctly because when a
drive is reserved for a job, this directive is not taken into account, so multiple jobs may try to start
writing to the Volume. At some point, when the Media record is updated, multiple simultaneous jobs
may fail since the Volume can no longer be written.

Maximum Volumes = <positive-integer>
This directive specifies the maximum number of volumes (tapes or files) contained in the pool. This
directive is optional, if omitted or set to zero, any number of volumes will be permitted. In general,
this directive is useful for Autochangers where there is a fixed number of Volumes, or for File storage
where you wish to ensure that the backups made to disk files do not become too numerous or consume
too much space.

Migration High Bytes = <Size64>
This directive specifies the number of bytes in the Pool which will trigger a migration if Selection Type
Pir = PoolOccupancy has been specified. The fact that the Pool usage goes above this level does not
automatically trigger a migration job. However, if a migration job runs and has the PoolOccupancy
selection type set, the Migration High Bytes will be applied. Bareos does not currently restrict a pool
to have only a single Media Type g’ ..., so you must keep in mind that if you mix Media Types in a

Pool, the results may not be what you want, as the Pool count of all bytes will be for all Media Types

128

combined.

Migration Low Bytes = <Size64>
This directive specifies the number of bytes in the Pool which will stop a migration if Selection Type
Pir = PoolOccupancy has been specified and triggered by more than Migration High Bytes 2 being
in the pool. In other words, once a migration job is started with PoolOccupancy migration selection
and it determines that there are more than Migration High Bytes, the migration job will continue to

run jobs until the number of bytes in the Pool drop to or below Migration Low Bytes.

Migration Time = <time>
Dir

If Selection Type 77 = PoolTime, the time specified here will be used. If the previous Backup Job or
Jobs selected have been in the Pool longer than the specified time, then they will be migrated.

Minimum Block Size = <positive-integer>
The Minimum Block Size can be defined here to define different block sizes per volume or statically
for all volumes at Minimum Block Size ¢ For details, see chapter Setting Block Sizes.

Device*

Name = <name> (required)
The name of the resource.

The name of the pool.

Next Pool = <resource-name>
This directive specifies the pool a Migration or Copy Job and a Virtual Backup Job will write their
data too. This directive is required to define the Pool into which the data will be migrated. Without
this directive, the migration job will terminate in error.

Pool Type = <Pooltype> (default: Backup)
This directive defines the pool type, which corresponds to the type of Job being run. It is required
and may be one of the following:

Backup
*Archive
*Cloned
*Migration
*Copy

*Save

Note, only Backup is currently implemented.

Purge Oldest Volume = <yes|no> (default: no)
This directive instructs the Director to search for the oldest used Volume in the Pool when another
Volume is requested by the Storage daemon and none are available. The catalog is then purged
irrespective of retention periods of all Files and Jobs written to this Volume. The Volume is then
recycled and will be used as the next Volume to be written. This directive overrides any Job, File, or
Volume retention periods that you may have specified.

This directive can be useful if you have a fixed number of Volumes in the Pool and you want to cycle
through them and reusing the oldest one when all Volumes are full, but you don’t want to worry about
setting proper retention periods. However, by using this option you risk losing valuable data.

In most cases, you should use Recycle Oldest Volume 2 instead.

Please note! Be aware that Purge Oldest Volume disregards all retention periods. If you have
only a single Volume defined and you turn this variable on, that Volume will always be immediately
overwritten when it fills! So at a minimum, ensure that you have a decent number of Volumes in your
Pool before running any jobs. If you want retention periods to apply do not use this directive.

129

We highly recommend against using this directive, because it is sure that some day, Bareos will purge
a Volume that contains current data.

Recycle = <yes|no> (default: yes)
This directive specifies whether or not Purged Volumes may be recycled. If it is set to yes and Bareos
needs a volume but finds none that are appendable, it will search for and recycle (reuse) Purged
Volumes (i.e. volumes with all the Jobs and Files expired and thus deleted from the Catalog). If the
Volume is recycled, all previous data written to that Volume will be overwritten. If Recycle is set
to no, the Volume will not be recycled, and hence, the data will remain valid. If you want to reuse
(re-write) the Volume, and the recycle flag is no (0 in the catalog), you may manually set the recycle
flag (update command) for a Volume to be reused.

Please note that the value defined by this directive in the configuration file is the default value used
when a Volume is created. Once the volume is created, changing the value in the configuration file will
not change what is stored for the Volume. To change the value for an existing Volume you must use
the update volume command.

When all Job and File records have been pruned or purged from the catalog for a particular Volume,
if that Volume is marked as Append, Full, Used, or Error, it will then be marked as Purged. Only
Volumes marked as Purged will be considered to be converted to the Recycled state if the Recycle
directive is set to yes.

Recycle Current Volume = <yes|no> (default: no)
If Bareos needs a new Volume, this directive instructs Bareos to Prune the volume respecting the Job
and File retention periods. If all Jobs are pruned (i.e. the volume is Purged), then the Volume is
recycled and will be used as the next Volume to be written. This directive respects any Job, File, or
Volume retention periods that you may have specified.

This directive can be useful if you have: a fixed number of Volumes in the Pool, you want to cycle
through them, and you have specified retention periods that prune Volumes before you have cycled
through the Volume in the Pool.

However, if you use this directive and have only one Volume in the Pool, you will immediately recycle
your Volume if you fill it and Bareos needs another one. Thus your backup will be totally invalid.
Please use this directive with care.

Recycle Oldest Volume = <yes|no> (default: no)
This directive instructs the Director to search for the oldest used Volume in the Pool when another
Volume is requested by the Storage daemon and none are available. The catalog is then pruned
respecting the retention periods of all Files and Jobs written to this Volume. If all Jobs are pruned
(i.e. the volume is Purged), then the Volume is recycled and will be used as the next Volume to be
written. This directive respects any Job, File, or Volume retention periods that you may have specified.

This directive can be useful if you have a fixed number of Volumes in the Pool and you want to cycle
through them and you have specified the correct retention periods.

However, if you use this directive and have only one Volume in the Pool, you will immediately recycle
your Volume if you fill it and Bareos needs another one. Thus your backup will be totally invalid.
Please use this directive with care.

Recycle Pool = <resource-name>
This directive defines to which pool the Volume will be placed (moved) when it is recycled. Without
this directive, a Volume will remain in the same pool when it is recycled. With this directive, it can
be moved automatically to any existing pool during a recycle. This directive is probably most useful
when defined in the Scratch pool, so that volumes will be recycled back into the Scratch pool. For
more on the see the Scratch Pool section of this manual.

Although this directive is called RecyclePool, the Volume in question is actually moved from its
current pool to the one you specify on this directive when Bareos prunes the Volume and discovers
that there are no records left in the catalog and hence marks it as Purged.

130

Scratch Pool = <resource-name>
This directive permits to specify a dedicate Scratch for the current pool. This pool will replace the
special pool named Scrach for volume selection. For more information about Scratch see Scratch Pool
section of this manual. This is useful when using multiple storage sharing the same mediatype or
when you want to dedicate volumes to a particular set of pool.

Storage = <ResourceList>

The Storage directive defines the name of the storage services where you want to backup the FileSet
data. For additional details, see the Storage Resource of this manual. The Storage resource may also
be specified in the Job resource, but the value, if any, in the Pool resource overrides any value in the
Job. This Storage resource definition is not required by either the Job resource or in the Pool, but it
must be specified in one or the other. If not configuration error will result. We highly recommend
that you define the Storage resource to be used in the Pool rather than elsewhere (job, schedule run,
...). Be aware that you theoretically can give a list of storages here but only the first item from the
list is actually used for backup and restore jobs.

Use Catalog = <yes|no> (default: yes)
Store information into Catalog. In all pratical use cases, leave this value to its defaults.

Use Volume Once = <yes|no>
Please note! This directive is deprecated.

Use Maximum Volume Jobs 2 = 1 instead.

Volume Retention = <time> (default: 31536000)
The Volume Retention directive defines the length of time that Bareos will keep records associated
with the Volume in the Catalog database after the End time of each Job written to the Volume. When
this time period expires, and if AutoPrune is set to yes Bareos may prune (remove) Job records that
are older than the specified Volume Retention period if it is necessary to free up a Volume. Recycling
will not occur until it is absolutely necessary to free up a volume (i.e. no other writable volume
exists). All File records associated with pruned Jobs are also pruned. The time may be specified as
seconds, minutes, hours, days, weeks, months, quarters, or years. The Volume Retention is applied
independently of the Job Retention and the File Retention periods defined in the Client resource.
This means that all the retentions periods are applied in turn and that the shorter period is the one
that effectively takes precedence. Note, that when the Volume Retention period has been reached,
and it is necessary to obtain a new volume, Bareos will prune both the Job and the File records. This
pruning could also occur during a status dir command because it uses similar algorithms for finding
the next available Volume.

It is important to know that when the Volume Retention period expires, Bareos does not automatically
recycle a Volume. It attempts to keep the Volume data intact as long as possible before over writing
the Volume.

By defining multiple Pools with different Volume Retention periods, you may effectively have a set of
tapes that is recycled weekly, another Pool of tapes that is recycled monthly and so on. However, one
must keep in mind that if your Volume Retention period is too short, it may prune the last valid
Full backup, and hence until the next Full backup is done, you will not have a complete backup of
your system, and in addition, the next Incremental or Differential backup will be promoted to a Full
backup. As a consequence, the minimum Volume Retention period should be at twice the interval
of your Full backups. This means that if you do a Full backup once a month, the minimum Volume
retention period should be two months.

The default Volume retention period is 365 days, and either the default or the value defined by this
directive in the bareos-dir.conf file is the default value used when a Volume is created. Once the
volume is created, changing the value in the bareos-dir.conf file will not change what is stored for
the Volume. To change the value for an existing Volume you must use the update command in the
Console.

131

Volume Use Duration = <time>
The Volume Use Duration directive defines the time period that the Volume can be written beginning
from the time of first data write to the Volume. If the time-period specified is zero (the default), the
Volume can be written indefinitely. Otherwise, the next time a job runs that wants to access this
Volume, and the time period from the first write to the volume (the first Job written) exceeds the
time-period-specification, the Volume will be marked Used, which means that no more Jobs can be
appended to the Volume, but it may be recycled if recycling is enabled. Once the Volume is recycled,
it will be available for use again.

You might use this directive, for example, if you have a Volume used for Incremental backups, and
Volumes used for Weekly Full backups. Once the Full backup is done, you will want to use a different
Incremental Volume. This can be accomplished by setting the Volume Use Duration for the Incremental
Volume to six days. Le. it will be used for the 6 days following a Full save, then a different Incremental
volume will be used. Be careful about setting the duration to short periods such as 23 hours, or you
might experience problems of Bareos waiting for a tape over the weekend only to complete the backups
Monday morning when an operator mounts a new tape.

Please note that the value defined by this directive in the bareos-dir.conf file is the default value used
when a Volume is created. Once the volume is created, changing the value in the bareos-dir.conf file
will not change what is stored for the Volume. To change the value for an existing Volume you must
use the update volume command in the Console.

In order for a Pool to be used during a Backup Job, the Pool must have at least one Volume associated with
it. Volumes are created for a Pool using the label or the add commands in the Bareos Console, program.
In addition to adding Volumes to the Pool (i.e. putting the Volume names in the Catalog database), the
physical Volume must be labeled with a valid Bareos software volume label before Bareos will accept the
Volume. This will be automatically done if you use the label command. Bareos can automatically label
Volumes if instructed to do so, but this feature is not yet fully implemented.

The following is an example of a valid Pool resource definition:

Pool {

Name = Default
Pool Type = Backup

Configuration 9.38: Pool resource example

9.8.1 Scratch Pool

In general, you can give your Pools any name you wish, but there is one important restriction: the Pool
named Scratch, if it exists behaves like a scratch pool of Volumes in that when Bareos needs a new Volume
for writing and it cannot find one, it will look in the Scratch pool, and if it finds an available Volume, it will
move it out of the Scratch pool into the Pool currently being used by the job.

9.9 Catalog Resource

The Catalog Resource defines what catalog to use for the current job. Currently, Bareos can only handle a
single database server (SQLite, MySQL, PostgreSQL) that is defined when configuring Bareos. However,
there may be as many Catalogs (databases) defined as you wish. For example, you may want each Client to
have its own Catalog database, or you may want backup jobs to use one database and verify or restore jobs
to use another database.

Since SQLite is compiled in, it always runs on the same machine as the Director and the database must
be directly accessible (mounted) from the Director. However, since both MySQL and PostgreSQL are
networked databases, they may reside either on the same machine as the Director or on a different machine
on the network. See below for more details.

configuration directive name | type of data | default value | remark

132

Address = string alias

DB Address = string

DB Driver = string required
DB Name = string required
DB Password = password

DB Port = positive-integer

DB Socket = string

DB User = string

Description = string

Disable Batch Insert = yes|no no

Exit On Fatal = yes|no no

Idle Timeout = positive-integer | 30

Inc Connections = positive-integer | 1

Max Connections = positive-integer | 5

Min Connections = positive-integer | 1

Multiple Connections = yes|no

Name = name required
Password = password alias
Reconnect = yes|no no

User = string alias
Validate Timeout = positive-integer | 120

Address = <string>
This directive is an alias.

Alias for DB Address P

Catalog*®

DB Address = <string>
This is the host address of the database server. Normally, you would specify this instead of DB Socket
o if the database server is on another machine. In that case, you will also specify DB Port 2*

Catalog Catalog*

This directive is used only by MySQL and PostgreSQL and is ignored by SQLite if provided.

DB Driver = <postgresql | mysql | sqlite> (required)
Selects the database type to use.

DB Name = <string> (required)
This specifies the name of the database.

DB Password = <password>
This specifies the password to use when login into the database.

DB Port = <positive-integer>
This defines the port to be used in conjunction with DB Address ¢Z, . to access the database if it is

on another machine. This directive is used only by MySQL and PostgreSQL and is ignored by SQLite
if provided.

DB Socket = <string>
This is the name of a socket to use on the local host to connect to the database. This directive is used
only by MySQL and is ignored by SQLite. Normally, if neither DB Socket ¢Z | or DB Address 2.,

are specified, MySQL will use the default socket. If the DB Socket is specified, the MySQL server
must reside on the same machine as the Director.

DB User = <string>
This specifies what user name to use to log into the database.

133

Description = <string>

Disable Batch Insert = <yes|no> (default: no)
This directive allows you to override at runtime if the Batch insert should be enabled or disabled.
Normally this is determined by querying the database library if it is thread-safe. If you think that
disabling Batch insert will make your backup run faster you may disable it using this option and set
it to Yes.

Exit On Fatal = <yes|no> (default: no)
Make any fatal error in the connection to the database exit the program

Version >= 15.1.0

Idle Timeout = <positive-integer> (default: 30)
This directive is used by the experimental database pooling functionality. Only use this for non
production sites. This sets the idle time after which a database pool should be shrinked.

Inc Connections = <positive-integer> (default: 1)
This directive is used by the experimental database pooling functionality. Only use this for non
production sites. This sets the number of connections to add to a database pool when not enough
connections are available on the pool anymore.

Max Connections = <positive-integer> (default: 5)
This directive is used by the experimental database pooling functionality. Only use this for non
production sites. This sets the maximum number of connections to a database to keep in this database
pool.

Min Connections = <positive-integer> (default: 1)
This directive is used by the experimental database pooling functionality. Only use this for non
production sites. This sets the minimum number of connections to a database to keep in this database
pool.

Multiple Connections = <yes|no>
Not yet implemented.

Name = <name> (required)
The name of the resource.
The name of the Catalog. No necessary relation to the database server name. This name will be
specified in the Client resource directive indicating that all catalog data for that Client is maintained
in this Catalog.

Password = <password>
This directive is an alias.

Alias for DB Password 2i*

Catalog*

Reconnect = <yes|no> (default: no)
Try to reconnect a database connection when its dropped

Version >= 15.1.0

User = <string>
This directive is an alias.
Alias for DB User Pir

Catalog*

134

Validate Timeout = <positive-integer> (default: 120)
This directive is used by the experimental database pooling functionality. Only use this for non
production sites. This sets the validation timeout after which the database connection is polled to see
if its still alive.

The following is an example of a valid Catalog resource definition:

Catalog

{
Name = SQLite
DB Driver = sqlite
DB Name = bareos;
DB User = bareos;
DB Password = ""

Configuration 9.39: Catalog Resource for Sqlite

or for a Catalog on another machine:

Catalog
{
Name = MySQL
DB Driver = mysql
DB Name = bareos
DB User = bareos
DB Password = "secret"
DB Address = remote.example.com
DB Port = 1234

Configuration 9.40: Catalog Resource for remote MySQL

9.10 Messages Resource

For the details of the Messages Resource, please see the Messages Resource of this manual.

9.11 Console Resource

There are three different kinds of consoles, which the administrator or user can use to interact with the
Director. These three kinds of consoles comprise three different security levels.

Default Console the first console type is an “anonymous” or “default” console, which has full privileges.
There is no console resource necessary for this type since the password is specified in the Director’s
resource and consequently such consoles do not have a name as defined on a Name directive. Typically
you would use it only for administrators.

Named Console the second type of console, is a “named” console (also called “Restricted Console”) defined
within a Console resource in both the Director’s configuration file and in the Console’s configuration
file. Both the names and the passwords in these two entries must match much as is the case for Client
programs.

This second type of console begins with absolutely no privileges except those explicitly specified in the
Director’s Console resource. Thus you can have multiple Consoles with different names and passwords,
sort, of like multiple users, each with different privileges. As a default, these consoles can do absolutely
nothing — no commands whatsoever. You give them privileges or rather access to commands and
resources by specifying access control lists in the Director’s Console resource. The ACLs are specified
by a directive followed by a list of access names. Examples of this are shown below.

e The third type of console is similar to the above mentioned one in that it requires a Console

resource definition in both the Director and the Console. In addition, if the console name, provided
on the Name 2 directive, is the same as a Client name, that console is permitted to use the
SetIP command to change the Address directive in the Director’s client resource to the IP address
of the Console. This permits portables or other machines using DHCP (non-fixed IP addresses)

to "notify” the Director of their current IP address.

135

The Console resource is optional and need not be specified. The following directives are permitted within
these resources:

configuration directive name | type of data [default value | remark

Catalog ACL = acl

Client ACL = acl

Command ACL = acl

Description = string

File Set ACL = acl

Job ACL = acl

Name = name required
Password = password required
Plugin Options ACL = acl

Pool ACL = acl

Profile = Resourcelist

Run ACL = acl

Schedule ACL = acl

Storage ACL = acl

TLS Allowed CN = string-list

TLS Authenticate = yes|no no
TLS CA Certificate Dir = path

TLS CA Certificate File = path

TLS Certificate = path

TLS Certificate Revocation List | = path

TLS Cipher List = string

TLS DH File = path

TLS Enable = yes|no no
TLS Key = path

TLS Require = yes|no no
TLS Verify Peer = yes|no yes
Where ACL = acl

Catalog ACL = <acl>
This directive is used to specify a list of Catalog resource names that can be accessed by the console.

Client ACL = <acl>
This directive is used to specify a list of Client resource names that can be accessed by the console.

Command ACL = <acl>
This directive is used to specify a list of of console commands that can be executed by the console.
See examples at Data Types.

Description = <string>

File Set ACL = <acl>
This directive is used to specify a list of FileSet resource names that can be accessed by the console.

Job ACL = <acl>
This directive is used to specify a list of Job resource names that can be accessed by the console.
Without this directive, the console cannot access any of the Director’s Job resources. Multiple Job
resource names may be specified by separating them with commas, and/or by specifying multiple
Job ACL directives. For example, the directive may be specified as:

JobACL
JobACL

"backup-bareos-fd", "backup-www.example.com-fd"
"RestoreFiles"

136

With the above specification, the console can access the Director’s resources for the jobs named on
the Job ACL directives, but for no others.

Name = <name> (required)
The name of the console. This name must match the name specified at the Console client.

Password = <password> (required)
Specifies the password that must be supplied for a named Bareos Console to be authorized.

Plugin Options ACL = <acl>
Use this directive to specify the list of allowed Plugin Options.

Pool ACL = <acl>
This directive is used to specify a list of Pool resource names that can be accessed by the console.

Profile = <ResourceList>
Profiles can be assigned to a Console. ACL are checked until either a deny ACL is found or an allow
ACL. First the console ACL is checked then any profile the console is linked to.

One or more Profile names can be assigned to a Console. If an ACL is not defined in the Console, the
profiles of the Console will be checked in the order as specified here. The first found ACL will be used.
See Profile Resource.

Version >= 14.2.3

Run ACL = <acl>

Schedule ACL = <acl>
This directive is used to specify a list of Schedule resource names that can be accessed by the console.

Storage ACL = <acl>
This directive is used to specify a list of Storage resource names that can be accessed by the console.

TLS Allowed CN = <string-list>

”Common Name”s (CNs) of the allowed peer certificates.

TLS Authenticate = <yes|no> (default: no)
Use TLS only to authenticate, not for encryption.

TLS CA Certificate Dir = <path>
Path of a TLS CA certificate directory.

TLS CA Certificate File = <path>
Path of a PEM encoded TLS CA certificate(s) file.

TLS Certificate = <path>
Path of a PEM encoded TLS certificate.

137

TLS Certificate Revocation List = <path>
Path of a Certificate Revocation List file.

TLS Cipher List = <string>
List of valid TLS Ciphers.

TLS DH File = <path>
Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange
will be used for the ephemeral keying, allowing for forward secrecy of communications.

TLS Enable = <yes|no> (default: no)
Enable TLS support.

Bareos can be configured to encrypt all its network traffic. See chapter TLS Configuration Directives
to see, how the Bareos Director (and the other components) must be configured to use TLS.

TLS Key = <path>
Path of a PEM encoded private key. It must correspond to the specified ” TLS Certificate”.

TLS Require = <yes|no> (default: no)
Without setting this to yes, Bareos can fall back to use unencryption connections. Enabling this
implicietly sets ”TLS Enable = yes”.

TLS Verify Peer = <yes|no> (default: yes)
If disabled, all certificates signed by a known CA will be accepted. If enabled, the CN of a certificate
must the Address or in the "TLS Allowed CN” list.

Where ACL = <acl>
This directive permits you to specify where a restricted console can restore files. If this directive is not
specified, only the default restore location is permitted (normally /tmp/bareos-restores. If *all* is
specified any path the user enters will be accepted. Any other value specified (there may be multiple
Where ACL directives) will restrict the user to use that path. For example, on a Unix system, if you
specify 7 /7, the file will be restored to the original location.

The example at Using Named Consoles shows how to use a console resource for a connection from a client
like beconsole.

9.12 Profile Resource

The Profile Resource defines a set of ACLs. Console Resources can be tight to one or more profiles (Profile
bir), making it easier to use a common set of ACLs.

Console

configuration directive name | type of data | default value | remark

138

Catalog ACL = acl
Client ACL = acl
Command ACL = acl
Description = string
File Set ACL = acl
Job ACL = acl
Name = name required
Plugin Options ACL = acl
Pool ACL = acl
Schedule ACL = acl
Storage ACL = acl
Where ACL = acl

Catalog ACL = <acl>
Lists the Catalog resources, this resource has access to. The special keyword *all* allows access to all
Catalog resources.

Client ACL = <acl>
Lists the Client resources, this resource has access to. The special keyword *all* allows access to all
Client resources.

Command ACL = <acl>
Lists the commands, this resource has access to. The special keyword *all* allows using commands.

Description = <string>
Additional information about the resource. Only used for Uls.

File Set ACL = <acl>
Lists the File Set resources, this resource has access to. The special keyword *all* allows access to all
File Set resources.

Job ACL = <acl>
Lists the Job resources, this resource has access to. The special keyword *all* allows access to all Job
resources.

Name = <name> (required)
The name of the resource.

Plugin Options ACL = <acl>
Specifies the allowed plugin options. An empty strings allows all Plugin Options.

139

Pool ACL = <acl>
Lists the Pool resources, this resource has access to. The special keyword *all* allows access to all
Pool resources.

Schedule ACL = <acl>
Lists the Schedule resources, this resource has access to. The special keyword *all* allows access to all
Schedule resources.

Storage ACL = <acl>
Lists the Storage resources, this resource has access to. The special keyword *all* allows access to all
Storage resources.

Where ACL = <acl>
Specifies the base directories, where files could be restored. An empty string allows restores to all
directories.

9.13 Counter Resource

The Counter Resource defines a counter variable that can be accessed by variable expansion used for creating

Volume labels with the Label Format 2 directive.

configuration directive name | type of data | default value | remark
Catalog = resource-name

Description = string

Maximum = positive-integer | 2147483647

Minimum = Int32 0

Name = name required
Wrap Counter = resource-name

Catalog = <resource-name>
If this directive is specified, the counter and its values will be saved in the specified catalog. If this
directive is not present, the counter will be redefined each time that Bareos is started.

Description = <string>

Maximum = <positive-integer> (default: 2147483647)
This is the maximum value value that the counter can have. If not specified or set to zero, the counter
can have a maximum value of 2,147,483,648 (2 to the 31 power). When the counter is incremented
past this value, it is reset to the Minimum.

Minimum = <Int32> (default: 0)
This specifies the minimum value that the counter can have. It also becomes the default. If not
supplied, zero is assumed.

140

Name = <name> (required)
The name of the resource.

The name of the Counter. This is the name you will use in the variable expansion to reference the
counter value.

Wrap Counter = <resource-name>
If this value is specified, when the counter is incremented past the maximum and thus reset to the
minimum, the counter specified on the Wrap Counter 2 . is incremented. (This is currently not
implemented).

9.14 Example Director Configuration File

See below an example of a full Director configuration file:

Default Bareos Director configuration file for disk-only backup
(C) 2013 Bareos GmbH & Co.KG

Each configuration item has a reference number that shows
where this property can be changed in the configuration file.
Search for the number to find the correct line.

You have to configure the following accoring to your environment:

(#01)Email Address for bareos disaster recovery.
Specify a mailaddress outside of your backupserver.
There will be one mail per day.

(#02)Email Address for bareos reports. (Mail Command)
This mail address will recieve a report about each backup job.
It will be sent after the backupjob is complete.
Has to be configured twice ("Standard" and "Daemon" Message Ressources)

(#03)Email Address for bareos operator. (Operator Command)
This mail address will recieve a mail immediately when the
bareos system needs an operator intervention.
May be the same address as in (#02)

This disk-only setup stores all data into Qarchivedir®@

The preconfigured backup scheme is as follows:

Full Backups are done on first Saturday at 21:00 (#04)
Full Backups are written into the "Full" Pool (#05)
Full Backups are kept for 365 Days (#06)

Differential Backups are done on 2nd to 5th Saturday at 21:00 (#07)
Differential Backups are written into the "Differential" Pool (#08)

Differential Backups are kept for 90 Days (#09)
Incremental Backups are done monday to friday at 21:00 (#10)
Incremental Backups are written into the "Incremental" Pool (#11)
Incremental Backups are kept for 30 Days (#12)
What you also have to do is to change the default fileset (#13)

to either one of the demo filesets given or create our own fileset.

For Bareos release QVERSION@ (@DATE@) -- @DISTNAME@ @DISTVERQ

HOH B H OH H O HHHHEHHHEHHHHEHHE SRR H R HE RS

Director { # define myself
Name = @basename@-dir
QueryFile = "@scriptdir@/query.sql"
Maximum Concurrent Jobs = 10
Password = "@dir_passwordQ" # Console password
Messages = Daemon

141

remove comment in next line to load plugins from specified directory
Plugin Directory = @plugindir@
}

JobDefs {
Name = "DefaultJob"
Type = Backup
Level = Incremental
Client = @basename@-fd
FileSet = "SelfTest" # selftest fileset (#13)
Schedule = "WeeklyCycle"
Storage = File
Messages = Standard
Pool = Incremental
Priority = 10
Write Bootstrap = "@working_ dir@/%c.bsr"

Full Backup Pool = Full # write Full Backups into "Full" Pool (#05)
Differential Backup Pool = Differential # write Diff Backups into "Differential" Pool (#08)
Incremental Backup Pool = Incremental # write Incr Backups into "Incremental" Pool (#11)
}
#

Define the main nightly save backup job
By default, this job will back up to disk in @archivedir@
Job {
Name = "BackupClientl"
JobDefs = "DefaultJob"
}

#
Backup the catalog database (after the nightly save)
#
Job {
Name = "BackupCatalog"
JobDefs = "DefaultJob"
Level = Full
FileSet="Catalog"
Schedule = "WeeklyCycleAfterBackup"

This creates an ASCII copy of the catalog

Arguments to make_catalog_backup.pl are:

make_catalog_backup.pl <catalog-name>

RunBeforeJob = "@scriptdir@/make_catalog_backup.pl MyCatalog"

This deletes the copy of the catalog
RunAfterJob = "@scriptdir@/delete_catalog_backup"

This sends the bootstrap via mail for disaster recovery.

Should be sent to another system, please change recipient accordingly

Write Bootstrap = "|@sbindir@/bsmtp -h @smtp_host@ -f \"\(Bareos\) \" -s \"Bootstrap for Job %j\" @job_email@" # (#01)
Priority = 11 # run after main backup

}

#
Standard Restore template, to be changed by Console program
Only one such job is needed for all Jobs/Clients/Storage ...
#
Job {

Name = "RestoreFiles"

Type = Restore

Client=@basename@-fd

FileSet = "Linux A11l"

Storage = File

Pool = Incremental

Messages = Standard

Where = /tmp/bareos-restores

}
FileSet {
Name = "Windows All Drives"
Enable VSS = yes
Include {
Options {

Signature = MD5
Drive Type = fixed

142

IgnoreCase = yes

WildFile = "[A-Z]:/pagefile.sys"

WildDir = "[A-Z]:/RECYCLER"

WildDir = "[A-Z]:/$RECYCLE.BIN"

WildDir = "[A-Z]:/System Volume Information"
Exclude = yes

}
File = /
}
+
FileSet {
Name = "Linux A1l1"
Include {
Options {
Signature = MD5 # calculate md5 checksum per file
One FS = No # change into other filessytems
FS Type = ext2 # filesystems of given types will be backed up
FS Type = ext3 # others will be ignored
FS Type = exté
FS Type = xfs
FS Type = reiserfs
FS Type = jfs
FS Type = btrfs
}
File = /
}
Things that usually have to be excluded
You have to exclude Qarchivedir@
on your bareos server
Exclude {
File = Q@working_dir@
File = Qarchivedir@
File = /proc
File = /tmp
File = /.journal
File = /.fsck
}
+
fileset just to backup some files for selftest
FileSet {
Name = "SelfTest"
Include {
Options {

Signature = MD5 # calculate md5 checksum per file
}
File = @sbindir@

}
}
Schedule {
Name = "WeeklyCycle"
Run = Full 1st sat at 21:00 # (#04)
Run = Differential 2nd-5th sat at 21:00 # (#07)
Run = Incremental mon-fri at 21:00 # (#10)
}

This schedule does the catalog. It starts after the WeeklyCycle
Schedule {

Name = "WeeklyCycleAfterBackup"

Run = Full mon-fri at 21:10
}

This is the backup of the catalog
FileSet {
Name = "Catalog"
Include {
Options {
signature = MD5
}
File = "@working_ dir@/@db_name@.sql" # database dump
File = "@sysconfdir@" # configuration

143

}

Client (File Services) to backup
Client {

Name = @basename@-fd

Address = Q@hostname@

Password = "@fd_password@" # password for FileDaemon
File Retention = 30 days # 30 days
Job Retention = 6 months # six months
AutoPrune = no # Prune expired Jobs/Files
}
#
Definition of file storage device
#
Storage {

Name = File
Do not use "localhost" here
Address = Ghostname@ # N.B. Use a fully qualified name here
Password = "@sd_password@"
Device = FileStorage
Media Type = File

}
#
Generic catalog service
#
Catalog {
Name = MyCatalog
Uncomment the following lines if you want the dbi driver
Quncomment_dbi@ dbdriver = "dbi:@DEFAULT_DB_TYPEQ"; dbaddress = 127.0.0.1; dbport = @db_port@
#dbdriver = "@DEFAULT_DB_TYPEQ"
dbdriver = "XXX_REPLACE_WITH_DATABASE_DRIVER_XXX"
dbname = "@db_name@"
dbuser = "@db_user@"
dbpassword = "@db_password@"
}
#
Reasonable message delivery -- send most everything to email address and to the console
#

Messages {
Name = Standard
mailcommand = "@sbindir@/bsmtp -h @smtp_host@ -f \"\(Bareos\) \<%r\>\" -s \"Bareos: %t %e of Y%c %1\" %r"
operatorcommand = "@sbindir@/bsmtp -h @smtp_host@ -f \"\(Bareos\) \<%r\>\" -s \"Bareos: Intervention needed for %j\" %r"
mail = Q@job_email@ = all, !skipped # (#02)
operator = Q@job_email@ = mount # (#03)
console = all, !skipped, !saved
append = "Q@logdir@/bareos.log" = all, !skipped
catalog = all
}

#
Message delivery for daemon messages (no job).
#
Messages {
Name = Daemon
mailcommand = "@sbindir@/bsmtp -h @smtp_host@ -f \"\(Bareos\) \<%r\>\" -s \"Bareos daemon message\" /r"
mail = Q@job_email@ = all, !skipped # (#02)
console = all, !skipped, !saved
append = "@logdir@/bareos.log" = all, !skipped

}
#
Full Pool definition
#
Pool {
Name = Full

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 365 days
Maximum Volume Bytes = 50G
Maximum Volumes = 100

Label Format = "Full-"

Bareos can automatically recycle Volumes

Prune expired volumes

How long should the Full Backups be kept? (#06)
Limit Volume size to something reasonable
Limit number of Volumes in Pool

Volumes will be labeled "Full-<volume-id>"

H H HHH R

144

}

#
Differential Pool definition
#
Pool {
Name = Differential
Pool Type = Backup
Recycle = yes
AutoPrune = yes
Volume Retention = 90 days
Maximum Volume Bytes = 10G
Maximum Volumes = 100
Label Format = "Differential-"

}

#
Incremental Pool definition
#
Pool {
Name = Incremental
Pool Type = Backup
Recycle = yes
AutoPrune = yes
Volume Retention = 30 days
Maximum Volume Bytes = 1G
Maximum Volumes = 100
Label Format = "Incremental-"

}

#
Scratch pool definition
#
Pool {
Name = Scratch
Pool Type = Backup
}

#

H H HHE H R

H H H R K H

Bareos can automatically recycle Volumes

Prune expired volumes

How long should the Differential Backups be kept? (#09)
Limit Volume size to something reasonable

Limit number of Volumes in Pool

Volumes will be labeled "Differential-<volume-id>"

Bareos can automatically recycle Volumes

Prune expired volumes

How long should the Incremental Backups be kept?
Limit Volume size to something reasonable

Limit number of Volumes in Pool

Volumes will be labeled "Incremental-<volume-id>"

(#12)

Restricted console used by tray-monitor to get the status of the director

#
Console {
Name = @basename@-mon

Password = "@mon_dir_password@"

CommandACL = status, .status

}

Chapter 10

Storage Daemon Configuration

The Bareos Storage Daemon configuration file has relatively few resource definitions. However, due to the
great variation in backup media and system capabilities, the storage daemon must be highly configurable.
As a consequence, there are quite a large number of directives in the Device Resource definition that allow
you to define all the characteristics of your Storage device (normally a tape drive). Fortunately, with modern
storage devices, the defaults are sufficient, and very few directives are actually needed.

For a general discussion of configuration file and resources including the data types recognized by Bareos,
please see the Configuration chapter of this manual. The following Storage Resource definitions must be
defined:

e Storage — to define the name of the Storage daemon.

e Director — to define the Director’s name and his access password.

e Device — to define the characteristics of your storage device (tape drive).

e Messages — to define where error and information messages are to be sent.
Following resources are optional:

e Autochanger Resource — to define Autochanger devices.

e NDMP Resource — to define the NDMP authentication context.

10.1 Storage Resource

In general, the properties specified under the Storage resource define global properties of the Storage daemon.
Each Storage daemon configuration file must have one and only one Storage resource definition.

configuration directive name | type of data | default value remark
Absolute Job Timeout = positive-integer

Allow Bandwidth Bursting = yes|no no

Auto XFlate On Replication = yes|no no

Backend Directory = DirectoryList | /usr/lib/bareos/backends (platform specific)
Client Connect Wait = time 1800

Collect Device Statistics = yes|no no

Collect Job Statistics = yes|no no

Compatible = yes|no no

Description = string

Device Reserve By Media Type | = yes|no no

FD Connect Timeout = time 1800

File Device Concurrent Read = yes|no no

Heartbeat Interval = time 0

Log Timestamp Format = string

Maximum Bandwidth Per Job = speed

Maximum Concurrent Jobs = positive-integer | 20

Maximum Connections = positive-integer | 42

145

146

Maximum Network Buffer Size | = positive-integer
Messages = resource-name

Name = name required
NDMP Address = net-address 10000
NDMP Addresses = net-addresses 10000
NDMP Enable = yes|no no
NDMP Log Level = positive-integer | 4
NDMP Port = net-port 10000
NDMP Snooping = yes|no no
Pid Directory = path /var/lib/bareos (platform specific)
Plugin Directory = path

Plugin Names = PluginNames

Scripts Directory = path

SD Address = net-address 9103
SD Addresses = net-addresses 9103
SD Connect Timeout = time 1800
SD Port = net-port 9103
SD Source Address = net-address 0
Secure Erase Command = string

Statistics Collect Interval = positive-integer | 30
Sub Sys Directory = path

TLS Allowed CN = string-list

TLS Authenticate = yes|no no
TLS CA Certificate Dir = path

TLS CA Certificate File = path

TLS Certificate = path

TLS Certificate Revocation List | = path

TLS Cipher List = string

TLS DH File = path

TLS Enable = yes|no no
TLS Key = path

TLS Require = yes|no no
TLS Verify Peer = yes|no yes
Ver Id = string

Working Directory = path /var/lib/bareos (platform specific)

Absolute Job Timeout = <positive-integer>

Allow Bandwidth Bursting = <yes|no> (default: no)

Auto XFlate On Replication = <yes|no> (default: no)
This directive controls the autoxflate-sd plugin plugin when replicating data inside one or between two
storage daemons (Migration/Copy Jobs). Normally the storage daemon will use the autoinflate/au-
todeflate setting of the device when reading and writing data to it which could mean that while reading
it inflates the compressed data and the while writing the other deflates it again. If you just want the
data to be exactly the same e.g. don’t perform any on the fly uncompression and compression while
doing the replication of data you can set this option to no and it will override any setting on the device
for doing auto inflation/deflation when doing data replication. This will not have any impact on any
normal backup or restore jobs.

Version >= 13.4.0

Backend Directory = <DirectoryList> (default: /usr/lib/bareos/backends (platform specific))

147

Client Connect Wait = <time> (default: 1800)
This directive defines an interval of time in seconds that the Storage daemon will wait for a Client
(the File daemon) to connect. Be aware that the longer the Storage daemon waits for a Client, the
more resources will be tied up.

Collect Device Statistics = <yes|no> (default: no)
Collect Job Statistics = <yes|no> (default: no)
Compatible = <yes|no> (default: no)

This directive enables the compatible mode of the storage daemon. In this mode the storage daemon
will try to write the storage data in a compatible way with Bacula of which Bareos is a fork. This
only works for the data streams both share and not for any new datastreams which are Bareos specific.
Which may be read when used by a Bareos storage daemon but might not be understood by any of
the Bacula components (dir/sd/fd).

The default setting of this directive was changed to no since Bareos Version >= 15.2.0.

Description = <string>

Device Reserve By Media Type = <yes|no> (default: no)
FD Connect Timeout = <time> (default: 1800)
File Device Concurrent Read = <yes|no> (default: no)
Heartbeat Interval = <time> (default: 0)

This directive defines an interval of time in seconds. When the Storage daemon is waiting for the
operator to mount a tape, each time interval, it will send a heartbeat signal to the File daemon.
The default interval is zero which disables the heartbeat. This feature is particularly useful if you
have a router that does not follow Internet standards and times out an valid connection after a
short duration despite the fact that keepalive is set. This usually results in a broken pipe error message.

Log Timestamp Format = <string>

Version >= 15.2.3

Maximum Bandwidth Per Job = <speed>

Maximum Concurrent Jobs = <positive-integer> (default: 20)
This directive specifies the maximum number of Jobs that may run concurrently. Each contact from
the Director (e.g. status request, job start request) is considered as a Job, so if you want to be able
to do a status request in the console at the same time as a Job is running, you will need to set this
value greater than 1. To run simultaneous Jobs, you will need to set a number of other directives in
the Director’s configuration file. Which ones you set depend on what you want, but you will almost
certainly need to set the Maximum Concurrent Jobs . Please refer to the Concurrent Jobs
chapter.

148

Maximum Connections = <positive-integer> (default: 42)

Version >= 15.2.3

Maximum Network Buffer Size = <positive-integer>

Messages = <resource-name>

Name = <name> (required)
Specifies the Name of the Storage daemon.

NDMP Address = <net-address> (default: 10000)
This directive is optional, and if it is specified, it will cause the Storage daemon server (for NDMP
Tape Server connections) to bind to the specified IP-Address, which is either a domain name or an
IP address specified as a dotted quadruple. If this directive is not specified, the Storage daemon will
bind to any available address (the default).

NDMP Addresses = <net-addresses> (default: 10000)
Specify the ports and addresses on which the Storage daemon will listen for NDMP Tape Server
connections. Normally, the default is sufficient and you do not need to specify this directive.

NDMP Enable = <yes|no> (default: no)
This directive enables the Native NDMP Tape Agent.

NDMP Log Level = <positive-integer> (default: 4)
This directive sets the loglevel for the NDMP protocol library.

NDMP Port = <net-port> (default: 10000)
Specifies port number on which the Storage daemon listens for NDMP Tape Server connections.

NDMP Snooping = <yes|no> (default: no)
This directive enables the Snooping and pretty printing of NDMP protocol information in debugging
mode.

Pid Directory = <path> (default: /var/lib/bareos (platform specific))

This directive specifies a directory in which the Storage Daemon may put its process Id file files. The
process Id file is used to shutdown Bareos and to prevent multiple copies of Bareos from running
simultaneously. Standard shell expansion of the directory is done when the configuration file is read
so that values such as $HOME will be properly expanded.

Plugin Directory = <path>
This directive specifies a directory in which the Storage Daemon searches for plugins with the name
<pluginname>-sd.so which it will load at startup.

Plugin Names = <PluginNames>
If a Plugin Directory g ... is specified Plugin Names defines, which Storage Daemon Plugins get
loaded.

If Plugin Names is not defined, all plugins get loaded, otherwise the defined ones.

149

Scripts Directory = <path>
This directive is currently unused.

SD Address = <net-address> (default: 9103)
This directive is optional, and if it is specified, it will cause the Storage daemon server (for Director
and File daemon connections) to bind to the specified IP-Address, which is either a domain name or
an IP address specified as a dotted quadruple. If this and the SD Addresses & .. directives are not

specified, the Storage daemon will bind to any available address (the default).

SD Addresses = <net-addresses> (default: 9103)
Specify the ports and addresses on which the Storage daemon will listen for Director connections.

Using this directive, you can replace both the SD Port & = and SD Address g . directives.
SD Connect Timeout = <time> (default: 1800)
SD Port = <net-port> (default: 9103)

Specifies port number on which the Storage daemon listens for Director connections.

SD Source Address = <net-address> (default: 0)

Secure Erase Command = <string>
Specify command that will be called when bareos unlinks files.

When files are no longer needed, Bareos will delete (unlink) them. With this directive, it will call the
specified command to delete these files. See Secure Erase Command for details.
Version >= 15.2.1

Statistics Collect Interval = <positive-integer> (default: 30)

Sub Sys Directory = <path>

TLS Allowed CN = <string-list>
”Common Name”s (CNs) of the allowed peer certificates.

TLS Authenticate = <yes|no> (default: no)
Use TLS only to authenticate, not for encryption.

TLS CA Certificate Dir = <path>
Path of a TLS CA certificate directory.

TLS CA Certificate File = <path>
Path of a PEM encoded TLS CA certificate(s) file.

150

TLS Certificate = <path>
Path of a PEM encoded TLS certificate.

TLS Certificate Revocation List = <path>
Path of a Certificate Revocation List file.

TLS Cipher List = <string>
List of valid TLS Ciphers.

TLS DH File = <path>
Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange
will be used for the ephemeral keying, allowing for forward secrecy of communications.

TLS Enable = <yes|no> (default: no)
Enable TLS support.

Bareos can be configured to encrypt all its network traffic. Chapter TLS Configuration Directives
explains how the Bareos components must be configured to use TLS.

TLS Key = <path>
Path of a PEM encoded private key. It must correspond to the specified ” TLS Certificate”.

TLS Require = <yes|no> (default: no)
Without setting this to yes, Bareos can fall back to use unencryption connections. Enabling this
implicietly sets " TLS Enable = yes”.

TLS Verify Peer = <yes|no> (default: yes)
If disabled, all certificates signed by a known CA will be accepted. If enabled, the CN of a certificate
must the Address or in the "TLS Allowed CN” list.

Ver Id = <string>

Working Directory = <path> (default: /var/lib/bareos (platform specific))
This directive specifies a directory in which the Storage daemon may put its status files. This directory
should be used only by Bareos, but may be shared by other Bareos daemons provided the names
given to each daemon are unique.

The following is a typical Storage daemon storage resource definition.

#
"Global" Storage daemon configuration specifications appear
under the Storage resource.
#
Storage {
Name = "Storage daemon"
Address = localhost

151

Configuration 10.1: Storage daemon storage definition

10.2 Director Resource

The Director resource specifies the Name of the Director which is permitted to use the services of the
Storage daemon. There may be multiple Director resources. The Director Name and Password must match
the corresponding values in the Director’s configuration file.

configuration directive name | type of data | default value | remark

Description = string

Key Encryption Key = password

Maximum Bandwidth Per Job = speed

Monitor = yes|no

Name = name required
Password = password required
TLS Allowed CN = string-list

TLS Authenticate = yes|no no

TLS CA Certificate Dir = path

TLS CA Certificate File = path

TLS Certificate = path

TLS Certificate Revocation List | = path

TLS Cipher List = string

TLS DH File = path

TLS Enable = yes|no no

TLS Key = path

TLS Require = yes|no no

TLS Verify Peer = yes|no yes

Description = <string>

Key Encryption Key = <password>
This key is used to encrypt the Security Key that is exchanged between the Director and the Storage
Daemon for supporting Application Managed Encryption (AME). For security reasons each Director
should have a different Key Encryption Key.

Maximum Bandwidth Per Job = <speed>

Monitor = <yes|no>
If Monitor is set to no (default), this director will have full access to this Storage daemon. If Monitor
is set to yes, this director will only be able to fetch the current status of this Storage daemon.

Please note that if this director is being used by a Monitor, we highly recommend to set this directive
to yes to avoid serious security problems.

Name = <name> (required)
Specifies the Name of the Director allowed to connect to the Storage daemon. This directive is
required.

Password = <password> (required)

Specifies the password that must be supplied by the above named Director. This directive is required.

152

TLS Allowed CN = <string-list>
”Common Name”s (CNs) of the allowed peer certificates.

TLS Authenticate = <yes|no> (default: no)
Use TLS only to authenticate, not for encryption.

TLS CA Certificate Dir = <path>
Path of a TLS CA certificate directory.

TLS CA Certificate File = <path>
Path of a PEM encoded TLS CA certificate(s) file.

TLS Certificate = <path>
Path of a PEM encoded TLS certificate.

TLS Certificate Revocation List = <path>
Path of a Certificate Revocation List file.

TLS Cipher List = <string>
List of valid TLS Ciphers.

TLS DH File = <path>
Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange
will be used for the ephemeral keying, allowing for forward secrecy of communications.

TLS Enable = <yes|no> (default: no)
Enable TLS support.

Bareos can be configured to encrypt all its network traffic. Chapter TLS Configuration Directives
explains how the Bareos components must be configured to use TLS.

TLS Key = <path>
Path of a PEM encoded private key. It must correspond to the specified ” TLS Certificate”.

TLS Require = <yes|no> (default: no)
Without setting this to yes, Bareos can fall back to use unencryption connections. Enabling this
implicietly sets " TLS Enable = yes”.

153

TLS Verify Peer = <yes|no> (default: yes)
If disabled, all certificates signed by a known CA will be accepted. If enabled, the CN of a certificate
must the Address or in the "TLS Allowed CN” list.

The following is an example of a valid Director resource definition:

Director {
Name = MainDirector
Password = my_secret_password

}

Configuration 10.2: Storage daemon Director definition

10.3 NDMP Resource

The NDMP Resource specifies the authentication details of each NDMP client. There may be multiple NDMP
resources for a single Storage daemon. In general, the properties specified within the NDMP resource are
specific to one client.

configuration directive name | type of data [default value | remark
Auth Type = None|Clear|MD5 | None
Description = string
Log Level = positive-integer 4
Name = name required
Password = password required
Username = string required
Auth Type = <None|Clear|MD5> (default: None)

Specifies the authentication type that must be supplied by the above named NDMP Client. This
directive is required.

The following values are allowed:

1. None - Use no password
2. Clear - Use clear text password

3. MD5 - Use MD5 hashing

Description = <string>

Log Level = <positive-integer> (default: 4)
Specifies the NDMP Loglevel which overrides the global NDMP loglevel for this client.

Name = <name> (required)
Specifies the name of the NDMP Client allowed to connect to the Storage daemon. This directive is
required.

Password = <password> (required)

Specifies the password that must be supplied by the above named NDMP Client. This directive is
required.

154

Username = <string> (required)
Specifies the username that must be supplied by the above named NDMP Client. This directive is
required.

10.4 Device Resource

The Device Resource specifies the details of each device (normally a tape drive) that can be used by the
Storage daemon. There may be multiple Device resources for a single Storage daemon. In general, the
properties specified within the Device resource are specific to the Device.

configuration directive name | type of data | default value | remark
Alert Command = strname

Always Open = yes|no yes
Archive Device = strname required
Auto Deflate = IoDirection

Auto Deflate Algorithm = CompressionAlgorithm

Auto Deflate Level = Pint16 6

Auto Inflate = IoDirection

Auto Select = yes|no yes
Autochanger = yes|no no
Automatic Mount = yes|no no
Backward Space File = yes|no yes
Backward Space Record = yes|no yes

Block Checksum = yes|no yes

Block Positioning = yes|no yes

Bsf At Eom = yes|no no
Changer Command = strname

Changer Device = strname

Check Labels = yes|no no

Close On Poll = yes|no no

Collect Statistics = yes|no yes
Description = string

Device Options = string

Device Type = DeviceType

Diagnostic Device = strname

Drive Crypto Enabled = yes|no

Drive Index = Pint16

Drive Tape Alert Enabled = yes|no

Fast Forward Space File = yes|no yes
Forward Space File = yes|no yes
Forward Space Record = yes|no yes

Free Space Command = strname deprecated
Hardware End Of File = yes|no yes
Hardware End Of Medium = yes|no yes

Label Block Size = positive-integer 64512
Label Media = yes|no no

Label Type = Label

Maximum Block Size = MaxBlocksize

Maximum Changer Wait = time 300
Maximum Concurrent Jobs = positive-integer

Maximum File Size = Size64 1000000000
Maximum Job Spool Size = Size64

Maximum Network Buffer Size = positive-integer

Maximum Open Volumes = positive-integer 1
Maximum Open Wait = time 300
Mazimum Part Size = Sizeb4 deprecated
Maximum Rewind Wait = time 300
Maximum Spool Size = Size64

155

Maximum Volume Size = Sizeb deprecated
Media Type = strname required
Minimum Block Size = positive-integer

Mount Command = strname

Mount Point = strname

Name = name required
No Rewind On Close = yes|no yes

Offline On Unmount = yes|no no

Query Crypto Status = yes|no

Random Access = yes|no no

Removable Media = yes|no yes

Requires Mount = yes|no no

Spool Directory = path

Two Eof = yes|no no

Unmount Command = strname

Use Mtiocget = yes|no yes

Volume Capacity = Size64

Volume Poll Interval = time 300

Write Part Command = strname deprecated

Alert Command = <strname>
The name-string specifies an external program to be called at the completion of each Job after the
device is released. The purpose of this command is to check for Tape Alerts, which are present when
something is wrong with your tape drive (at least for most modern tape drives). The same substitution
characters that may be specified in the Changer Command may also be used in this string. For more
information, please see the Autochangers chapter of this manual.

Note, it is not necessary to have an autochanger to use this command. The example below uses the
tapeinfo program that comes with the mtx package, but it can be used on any tape drive. However,
you will need to specify a Changer Device directive in your Device resource (see above) so that the
generic SCSI device name can be edited into the command (with the %c).

An example of the use of this command to print Tape Alerts in the Job report is:

Alert Command = "sh -c ’tapeinfo -f Y%c | grep TapeAlert’"

and an example output when there is a problem could be:

bareos-sd Alert: TapeAlert[32]: Interface: Problem with SCSI interface
between tape drive and initiator.

Always Open = <yes|no> (default: yes)
If Yes, Bareos will always keep the device open unless specifically unmounted by the Console program.
This permits Bareos to ensure that the tape drive is always available, and properly positioned. If you
set AlwaysOpen to no Bareos will only open the drive when necessary, and at the end of the Job if
no other Jobs are using the drive, it will be freed. The next time Bareos wants to append to a tape on
a drive that was freed, Bareos will rewind the tape and position it to the end. To avoid unnecessary
tape positioning and to minimize unnecessary operator intervention, it is highly recommended that
Always Open = yes. This also ensures that the drive is available when Bareos needs it.

If you have Always Open = yes (recommended) and you want to use the drive for something else,
simply use the unmount command in the Console program to release the drive. However, don’t forget
to remount the drive with mount when the drive is available or the next Bareos job will block.

For File storage, this directive is ignored. For a FIFO storage device, you must set this to No.

Please note that if you set this directive to No Bareos will release the tape drive between each
job, and thus the next job will rewind the tape and position it to the end of the data. This
can be a very time consuming operation. In addition, with this directive set to no, certain mul-
tiple drive autochanger operations will fail. We strongly recommend to keep Always Open set to Yes

156

Archive Device = <strname> (required)
Specifies where to read and write the backup data. The type of the Archive Device can be specified
by the Device Type 3¢ . directive. If Device Type is not specified, Bareos tries to guess the Device

Type accordingly to the type of the specified Archive Device file type.
There are different types that are supported:

device Usually the device file name of a removable storage device (tape drive), for example /dev/nst0
or /dev/rmt/Ombn, preferably in the ”"non-rewind” variant. In addition, on systems such as
Sun, which have multiple tape access methods, you must be sure to specify to use Berkeley I/O
conventions with the device. The b in the Solaris (Sun) archive specification /dev/rmt/Ombn is
what is needed in this case. Bareos does not support SysV tape drive behavior.

directory If a directory is specified, it is used as file storage. The directory must be existing and
be specified as absolute path. Bareos will write to file storage in the specified directory and the
filename used will be the Volume name as specified in the Catalog. If you want to write into more
than one directory (i.e. to spread the load to different disk drives), you will need to define two
Device resources, each containing an Archive Device with a different directory.

fifo A FIFO is a special kind of file that connects two programs via kernel memory. If a FIFO device
is specified for a backup operation, you must have a program that reads what Bareos writes into
the FIFO. When the Storage daemon starts the job, it will wait for Maximum Open Wait ¢

Device

seconds for the read program to start reading, and then time it out and terminate the job. As
a consequence, it is best to start the read program at the beginning of the job perhaps with the

Run Before Job D directive. For this kind of device, you always want to specify Always Open

84 = no, because you want the Storage daemon to open it only when a job starts. Since a FIFO

Device

is a one way device, Bareos will not attempt to read a label of a FIFO device, but will simply
write on it. To create a FIFO Volume in the catalog, use the add command rather than the label
command to avoid attempting to write a label.

Device {
Name = FifoStorage
Media Type = Fifo
Device Type = Fifo
Archive Device = /tmp/fifo
LabelMedia = yes
Random Access = no
AutomaticMount = no
RemovableMedia
MaximumOpenWait = 60
AlwaysOpen = no

}

During a restore operation, if the Archive Device is a FIFO, Bareos will attempt to read from
the FIFO, so you must have an external program that writes into the FIFO. Bareos will wait
Maximum Open Wait ! . = seconds for the program to begin writing and will then time it out
and terminate the job. As noted above, you may use the Run Before Job ¥ to start the writer
program at the beginning of the job.

A FIFO device can also be used to test your configuration, see the Howto section.

Sd
Device

Sd

Device

GlusterFS Storage don’t use this directive, but only Device Type
(this behavior have changed with Version >= 15.2.0).

and Device Options

Sd
Device

Sd

Device*®

Ceph Object Store don’t use this directive, but only Device Type
(this behavior have changed with Version >= 15.2.0).

and Device Options

Auto Deflate = <IoDirection>
This is a parameter used by autoxflate-sd which allow you to transform a non compressed piece of data
into a compressed piece of data on the storage daemon. e.g. Storage Daemon compression. You can
either enable compression on the client and use the CPU cyclces there to compress your data with one
of the supported compression algorithms. The value of this parameter specifies a so called io-direction
currently you can use the following io-directions:

e in - compress data streams while reading the data from a device.

e out - compress data streams while writing the data to a device.

157

e both - compress data streams both when reading and writing to a device.

Currently only plain data streams are compressed (so things that are already compressed or encrypted
will not be considered for compression.) Also meta-data streams are not compressed. The compression
is done in a way that the stream is transformed into a native compressed data stream. So if you
enable this and send the data to a filedaemon it will know its a compressed stream and will do the
decompression itself. This also means that you can turn this option on and off at any time without
having any problems with data already written.

This option could be used if your clients doesn’t have enough power to do the compression/decompres-
sion itself and you have enough network bandwidth. Or when your filesystem doesn’t have the option
to transparently compress data you write to it but you want the data to be compressed when written.
Version >= 13.4.0

Auto Deflate Algorithm = <CompressionAlgorithm>
This option specifies the compression algorithm used for the autodeflate option which is performed by
the autoxflate-sd plugin. The algorithms supported are:

GZIP - gzip level 1-9

e LZO

LZFAST

o 174

LZ4HC

Version >= 13.4.0

Auto Deflate Level = <Pint16> (default: 6)
This option specifies the level to be used when compressing when you select a compression algorithm
that has different levels.

Version >= 13.4.0

Auto Inflate = <IoDirection>
This is a parameter used by autoxflate-sd which allow you to transform a compressed piece of data
into a non compressed piece of data on the storage daemon. e.g. Storage Daemon decompression. You
can either enable decompression on the client and use the CPU cyclces there to decompress your data
with one of the supported compression algorithms. The value of this parameter specifies a so called
io-direction currently you can use the following io-directions:

e in - decompress data streams while reading the data from a device.
e out - decompress data streams while writing the data to a device.

e both - decompress data streams both when reading and writing to a device.

This option allows you to write uncompressed data to for instance a tape drive that has hardware com-
pression even when you compress your data on the client with for instance a low cpu load compression
method (LZ4 for instance) to transfer less data over the network. It also allows you to restore data in
a compression format that the client might not support but the storage daemon does. This only works
on normal compressed datastreams not on encrypted datastreams or meta data streams.

Version >= 13.4.0

Auto Select = <yes|no> (default: yes)
If this directive is set to yes, and the Device belongs to an autochanger, then when the Autochanger
is referenced by the Director, this device can automatically be selected. If this directive is set to
no, then the Device can only be referenced by directly using the Device name in the Director. This
is useful for reserving a drive for something special such as a high priority backup or restore operations.

Autochanger = <yes|no> (default: no)
If Yes, this device belongs to an automatic tape changer, and you must specify an Autochanger
resource that points to the Device resources. You must also specify a Changer Device £ . . If the

Autochanger directive is set to No, the volume must be manually changed. You should also have an
identical directive to the Auto Changer g7 in the Director’s configuration file so that when labeling
tapes you are prompted for the slot.

158

Automatic Mount = <yes|no> (default: no)
If Yes, permits the daemon to examine the device to determine if it contains a Bareos labeled volume.
This is done initially when the daemon is started, and then at the beginning of each job. This directive
is particularly important if you have set Always Open = no because it permits Bareos to attempt
to read the device before asking the system operator to mount a tape. However, please note that the
tape must be mounted before the job begins.

Backward Space File = <yes|no> (default: yes)
If Yes, the archive device supports the MTBSF and MTBSF ioctls to backspace over an end of file
mark and to the start of a file. If No, these calls are not used and the device must be rewound and
advanced forward to the desired position.

Backward Space Record = <yes|no> (default: yes)
If Yes, the archive device supports the MTBSR ioctl to backspace records. If No, this call is not
used and the device must be rewound and advanced forward to the desired position. This function
if enabled is used at the end of a Volume after writing the end of file and any ANSI/IBM labels
to determine whether or not the last block was written correctly. If you turn this function off, the
test will not be done. This causes no harm as the re-read process is precautionary rather than required.

Block Checksum = <yes|no> (default: yes)
You may turn off the Block Checksum (CRC32) code that Bareos uses when writing blocks to a
Volume. Doing so can reduce the Storage daemon CPU usage slightly. It will also permit Bareos to
read a Volume that has corrupted data.

It is not recommend to turn this off, particularly on older tape drives or for disk Volumes where doing
so may allow corrupted data to go undetected.

Block Positioning = <yes|no> (default: yes)
This directive tells Bareos not to use block positioning when doing restores. Turning this directive off
can cause Bareos to be extremely slow when restoring files. You might use this directive if you wrote
your tapes with Bareos in variable block mode (the default), but your drive was in fixed block mode.

Bsf At Eom = <yes|no> (default: no)
If No, no special action is taken by Bareos with the End of Medium (end of tape) is reached because
the tape will be positioned after the last EOF tape mark, and Bareos can append to the tape as
desired. However, on some systems, such as FreeBSD, when Bareos reads the End of Medium (end
of tape), the tape will be positioned after the second EOF tape mark (two successive EOF marks
indicated End of Medium). If Bareos appends from that point, all the appended data will be lost.
The solution for such systems is to specify BSF at EOM which causes Bareos to backspace over the
second EOF mark. Determination of whether or not you need this directive is done using the test
command in the btape program.

Changer Command = <strname>
The name-string specifies an external program to be called that will automatically change volumes
as required by Bareos. Normally, this directive will be specified only in the AutoChanger resource,
which is then used for all devices. However, you may also specify the different Changer Command
in each Device resource. Most frequently, you will specify the Bareos supplied mtx-changer script as
follows:

Changer Command = "/usr/lib/bareos/scripts/mtx-changer %c %o %S %a %d"

and you will install the mtx on your system. An example of this command is in the default
bareos-sd.conf file. For more details on the substitution characters that may be specified to
configure your autochanger please see the Autochanger Support chapter of this manual.

Changer Device = <strname>
The specified name-string must be the generic SCSI device name of the autochanger that

159

corresponds to the normal read/write Archive Device specified in the Device resource. This generic
SCSI device name should be specified if you have an autochanger or if you have a standard tape drive
and want to use the Alert Command (see below). For example, on Linux systems, for an Archive
Device name of /dev/nst0, you would specify /dev/sg0 for the Changer Device name. Depending
on your exact configuration, and the number of autochangers or the type of autochanger, what you
specify here can vary. This directive is optional. See the Using Autochangers chapter of this manual
for more details of using this and the following autochanger directives.

Check Labels = <yes|no> (default: no)
If you intend to read ANSI or IBM labels, this must be set. Even if the volume is not ANSI labeled,
you can set this to yes, and Bareos will check the label type. Without this directive set to yes, Bareos
will assume that labels are of Bareos type and will not check for ANSI or IBM labels. In other words,
if there is a possibility of Bareos encountering an ANSI/IBM label, you must set this to yes.

Close On Poll = <yes|no> (default: no)
If Yes, Bareos close the device (equivalent to an unmount except no mount is required) and reopen
it at each poll. Normally this is not too useful unless you have the Offline on Unmount directive
set, in which case the drive will be taken offline preventing wear on the tape during any future
polling. Once the operator inserts a new tape, Bareos will recognize the drive on the next poll and
automatically continue with the backup. Please see above for more details.

Collect Statistics = <yes|no> (default: yes)

Description = <string>
The Description directive provides easier human recognition, but is not used by Bareos directly.

Device Options = <string>
Some Device Type ! . = require additional configuration. This can be specified in this directive, e.g.
for

GFAPI (GlusterFS) A GlusterFS Storage can be used as Storage backend of Bareos. Prerequistes
are a working GlusterFS storage system and the package bareos-storage-glusterfs. See
http://www.gluster.org/ for more information regarding GlusterFS installation and configu-
ration and specifically https://gluster.readthedocs.org/en/latest/Administrator Guide/
Bareos/ for Bareos integration. You can use following snippet to configure it as storage device:

Device {
Name = GlusterStorage
Archive Device = "Gluster Device"
Device Options = "uri=gluster://server.example.com/volumename/bareos"

Device Type = gfapi
Media Type = GlusterFile
Label Media = yes
Random Access = yes
Automatic Mount = yes
Removable Media = no
Always Open = no

}

Adapt server and volume name to your environment.
Version >= 15.2.0

Rados (Ceph Object Store) Here you configure the Ceph object store, which is accessed by the
SD using the Rados library. Prerequistes are a working Ceph object store and the package
bareos-storage-ceph. See http://ceph.com for more information regarding Ceph installation
and configuration. Assuming that you have an object store with name poolname and your Ceph
access is configured in /etc/ceph/ceph.conf, you can use following snippet to configure it as
storage device:

Device {
Name = RadosStorage
Archive Device = "Rados Device"

http://www.gluster.org/
https://gluster.readthedocs.org/en/latest/Administrator Guide/Bareos/
https://gluster.readthedocs.org/en/latest/Administrator Guide/Bareos/
http://ceph.com

160

Device Options = "conffile=/etc/ceph/ceph.conf,poolname=poolname"
Device Type = rados

Media Type = RadosFile

Label Media = yes

Random Access = yes

Automatic Mount = yes

Removable Media = n

Always Open = no

Version >= 15.2.0

Before the Device Options directive have been introduced, these options have to be configured in the
Archive Device 3¢ . directive. This behavior have changed with Version >= 15.2.0.

Device

Version >= 15.2.0

Device Type = <DeviceType>

The Device Type specification allows you to explicitly define the kind of device you want to use. It
may be one of the following:

Tape is used to access tape device and thus has sequential access. Tape devices are controlled using
ioctl() calls.

File tells Bareos that the device is a file. It may either be a file defined on fixed medium or a removable
filesystem such as USB. All files must be random access devices.

Fifo is a first-in-first-out sequential access read-only or write-only device.

GFAPI (GlusterFS) is used to access a GlusterFS storage. It must be configured using Device Options
24 Version >= 14.2.2

Device*

Rados (Ceph Object Store) is used to access a Ceph object store. It must be configured using
Device Options §! .. Version >= 14.2.2
The Device Type directive is not required in all cases. If it is not specified, Bareos will attempt to
guess what kind of device has been specified using the Archive Device 3! . = specification supplied.
There are several advantages to explicitly specifying the Device Type. First, on some systems, block
and character devices have the same type. Secondly, if you explicitly specify the Device Type, the
mount point need not be defined until the device is opened. This is the case with most removable
devices such as USB. If the Device Type is not explicitly specified, then the mount point must exist

when the Storage daemon starts.

Diagnostic Device = <strname>

Drive Crypto Enabled = <yes|no>

The default for this directive is No. If Yes the storage daemon can perform so called Application
Managed Encryption (AME) using a special Storage Daemon plugin which loads and clears the
Encryption key using the SCSI SPIN/SPOUT protocol.

Drive Index = <Pint16>

The Drive Index that you specify is passed to the mtx-changer script and is thus passed to the
mtx program. By default, the Drive Index is zero, so if you have only one drive in your autochanger,
everything will work normally. However, if you have multiple drives, you must specify multiple Bareos
Device resources (one for each drive). The first Device should have the Drive Index set to 0, and the
second Device Resource should contain a Drive Index set to 1, and so on. This will then permit you
to use two or more drives in your autochanger.

Drive Tape Alert Enabled = <yes|no>

161

Fast Forward Space File = <yes|no> (default: yes)
If No, the archive device is not required to support keeping track of the file number (MTIOCGET
ioctl) during forward space file. If Yes, the archive device must support the ioctl MTFSF call, which
virtually all drivers support, but in addition, your SCSI driver must keep track of the file number
on the tape and report it back correctly by the MTIOCGET ioctl. Note, some SCSI drivers will
correctly forward space, but they do not keep track of the file number or more seriously, they do not
report end of medium.

Forward Space File = <yes|no> (default: yes)
If Yes, the archive device must support the MTFSF ioctl to forward space by file marks. If No, data
must be read to advance the position on the device.

Forward Space Record = <yes|no> (default: yes)
If Yes, the archive device must support the MTFSR. ioctl to forward space over records. If No,
data must be read in order to advance the position on the device.

Free Space Command = <strname>
Please note! This directive is deprecated.

Hardware End Of File = <yes|no> (default: yes)

Hardware End Of Medium = <yes|no> (default: yes)
All modern (after 1998) tape drives should support this feature. In doubt, use the btape program to
test your drive to see whether or not it supports this function. If the archive device does not support
the end of medium ioctl request MTEQM, set this parameter to No. The storage daemon will then use
the forward space file function to find the end of the recorded data. In addition, your SCSI driver
must keep track of the file number on the tape and report it back correctly by the MTIOCGET
ioctl. Note, some SCSI drivers will correctly forward space to the end of the recorded data, but they
do not keep track of the file number. On Linux machines, the SCSI driver has a fast-eod option,
which if set will cause the driver to lose track of the file number. You should ensure that this option
is always turned off using the mt program.

Label Block Size = <64512> (default: 64512)
The storage daemon will write the label blocks with the size configured here. Usually, you will not
need to change this directive.

For more information on this directive, please see Tapespeed and blocksizes.
Version >= 14.2.0

Label Media = <yes|no> (default: no)
If Yes, permits this device to automatically label blank media without an explicit operator command.
It does so by using an internal algorithm as defined on the Label Format 2" record in each Pool
resource. If this is No as by default, Bareos will label tapes only by specific operator command (1label
in the Console) or when the tape has been recycled. The automatic labeling feature is most useful

when writing to disk rather than tape volumes.

Label Type = <Label>
Defines the label type to use, see section Tape Labels: ANSI or IBM. This directive is implemented
in the Director Pool resource (Label Type R) and in the SD Device resource. If it is specified in the
the SD Device resource, it will take precedence over the value passed from the Director to the SD. If

it is set to a non-default value, make sure to also enable Check Labels ¢

Device®

Maximum Block Size = <64512>
The Storage daemon will always attempt to write blocks of the specified size (in-bytes) to the archive

162

device. As a consequence, this statement specifies both the default block size and the maximum block
size. The size written never exceed the given size. If adding data to a block would cause it to exceed
the given maximum size, the block will be written to the archive device, and the new data will begin
a new block.

If no value is specified or zero is specified, the Storage daemon will use a default block size of 64,512
bytes (126 * 512).

Please note! If your are using LTO drives, changing the block size after labeling the tape will result
into unreadable tapes.

Please read chapter Tapespeed and blocksizes, to see how to tune this value in a safe manner.

Maximum Changer Wait = <time> (default: 300)
This directive specifies the maximum time in seconds for Bareos to wait for an autochanger to change
the volume. If this time is exceeded, Bareos will invalidate the Volume slot number stored in the
catalog and try again. If no additional changer volumes exist, Bareos will ask the operator to intervene.

Maximum Concurrent Jobs = <positive-integer>
This directive specifies the maximum number of Jobs that can run concurrently on a specified Device.
Using this directive, it is possible to have different Jobs using multiple drives, because when the
Maximum Concurrent Jobs limit is reached, the Storage Daemon will start new Jobs on any other
available compatible drive. This facilitates writing to multiple drives with multiple Jobs that all use
the same Pool.

Maximum File Size = <Size64> (default: 1000000000)
No more than size bytes will be written into a given logical file on the volume. Once this size is
reached, an end of file mark is written on the volume and subsequent data are written into the next
file. Breaking long sequences of data blocks with file marks permits quicker positioning to the start of
a given stream of data and can improve recovery from read errors on the volume. The default is one
Gigabyte. This directive creates EOF marks only on tape media. However, regardless of the medium
type (tape, disk, USB ...) each time a the Maximum File Size is exceeded, a record is put into the
catalog database that permits seeking to that position on the medium for restore operations. If you
set this to a small value (e.g. 1MB), you will generate lots of database records (JobMedia) and may
significantly increase CPU/disk overhead.

If you are configuring an modern drive like LTO-4 or newer, you probably will want to set the Maxi-
mum File Size to 20GB or bigger to avoid making the drive stop to write an EOF mark.

For more info regarding this parameter, read the tape speed whitepaper: Bareos Whitepaper Tape
Speed Tuning

Note, this directive does not limit the size of Volumes that Bareos will create regardless of whether
they are tape or disk volumes. It changes only the number of EOF marks on a tape and the number
of block positioning records that are generated. If you want to limit the size of all Volumes for a

particular device, use the use the Maximum Volume Bytes 2 directive.

Maximum Job Spool Size = <Size64>
where the bytes specify the maximum spool size for any one job that is running. The default is no limit.

Maximum Network Buffer Size = <positive-integer>
where bytes specifies the initial network buffer size to use with the File daemon. This size will be
adjusted down if it is too large until it is accepted by the OS. Please use care in setting this value since
if it is too large, it will be trimmed by 512 bytes until the OS is happy, which may require a large
number of system calls. The default value is 32,768 bytes.

The default size was chosen to be relatively large but not too big in the case that you are transmitting
data over Internet. It is clear that on a high speed local network, you can increase this number and
improve performance. For example, some users have found that if you use a value of 65,536 bytes they
get five to ten times the throughput. Larger values for most users don’t seem to improve performance.
If you are interested in improving your backup speeds, this is definitely a place to experiment. You

http://www.bareos.org/en/Whitepapers/articles/Speed_Tuning_of_Tape_Drives.html
http://www.bareos.org/en/Whitepapers/articles/Speed_Tuning_of_Tape_Drives.html

163

will probably also want to make the corresponding change in each of your File daemons conf files.

Maximum Open Volumes = <positive-integer> (default: 1)

Maximum Open Wait = <time> (default: 300)
This directive specifies the maximum amount of time that Bareos will wait for a device that is busy.
If the device cannot be obtained, the current Job will be terminated in error. Bareos will re-attempt
to open the drive the next time a Job starts that needs the the drive.

Maximum Part Size = <Size64>
Please note! This directive is deprecated.

Maximum Rewind Wait = <time> (default: 300)
This directive specifies the maximum time in seconds for Bareos to wait for a rewind before timing
out. If this time is exceeded, Bareos will cancel the job.

Maximum Spool Size = <Size64>
where the bytes specify the maximum spool size for all jobs that are running. The default is no limit.

Maximum Volume Size = <Size64>
Please note! This directive is deprecated.
Normally, Maximum Volume Bytes 2 should be used instead. Limit the number of bytes that will

be written onto a given volume on the archive device. This directive is used mainly in testing Bareos

to simulate a small Volume.

Media Type = <strname> (required)
The specified value names the type of media supported by this device, for example, ”DLT7000”. Media
type names are arbitrary in that you set them to anything you want, but they must be known to the
volume database to keep track of which storage daemons can read which volumes. In general, each
different storage type should have a unique Media Type associated with it. The same name-string
must appear in the appropriate Storage resource definition in the Director’s configuration file.

Even though the names you assign are arbitrary (i.e. you choose the name you want), you should take
care in specifying them because the Media Type is used to determine which storage device Bareos will
select during restore. Thus you should probably use the same Media Type specification for all drives
where the Media can be freely interchanged. This is not generally an issue if you have a single Storage
daemon, but it is with multiple Storage daemons, especially if they have incompatible media.

For example, if you specify a Media Type of "DDS-4" then during the restore, Bareos will be able to
choose any Storage Daemon that handles ”"DDS-4”. If you have an autochanger, you might want to
name the Media Type in a way that is unique to the autochanger, unless you wish to possibly use the
Volumes in other drives. You should also ensure to have unique Media Type names if the Media is not
compatible between drives. This specification is required for all devices.

In addition, if you are using disk storage, each Device resource will generally have a different mount
point or directory. In order for Bareos to select the correct Device resource, each one must have a
unique Media Type.

Minimum Block Size = <positive-integer>
This statement applies only to non-random access devices (e.g. tape drives). Blocks written by the
storage daemon to a non-random archive device will never be smaller than the given size. The Storage
daemon will attempt to efficiently fill blocks with data received from active sessions but will, if necessary,
add padding to a block to achieve the required minimum size.

164

To force the block size to be fixed, as is the case for some non-random access devices (tape drives),
set the Minimum block size and the Maximum block size to the same value. The default is that
both the minimum and maximum block size are zero and the default block size is 64,512 bytes.

For example, suppose you want a fixed block size of 100K bytes, then you would specify:

Minimum block size = 100K
Maximum block size =

Please note that if you specify a fixed block size as shown above, the tape drive must either be in
variable block size mode, or if it is in fixed block size mode, the block size (generally defined by mt)
must be identical to the size specified in Bareos — otherwise when you attempt to re-read your Volumes,
you will get an error.

If you want the block size to be variable but with a 63K minimum and 200K maximum (and default
as well), you would specify:

63K
200K

Minimum block size
Maximum block size

Mount Command = <strname>
This directive specifies the command that must be executed to mount devices such as many USB
devices. Before the command is executed, %a is replaced with the Archive Device, and %m with the
Mount Point.

See the Edit Codes for Mount and Unmount Directives section below for more details of the editing
codes that can be used in this directive.

If you need to specify multiple commands, create a shell script.

Mount Point = <strname>
Directory where the device can be mounted. This directive is used only for devices that have Requires
Mount enabled such as USB file devices.

Name = <name> (required)
Unique identifier of the resource.

Specifies the Name that the Director will use when asking to backup or restore to or from to this
device. This is the logical Device name, and may be any string up to 127 characters in length.
It is generally a good idea to make it correspond to the English name of the backup device. The
physical name of the device is specified on the Archive Device §! . directive. The name you spec-
ify here is also used in your Director’s configuration file on the Storage Resource in its Storage resource.

No Rewind On Close = <yes|no> (default: yes)
If Yes the storage daemon will not try to rewind the device on closing the device e.g. when shutting
down the Storage daemon. This allows you to do an emergency shutdown of the Daemon without
the need to wait for the device to rewind. On restarting and opening the device it will get a rewind
anyhow and this way services don’t have to wait forever for a tape to spool back.

Offline On Unmount = <yes|no> (default: no)
If Yes the archive device must support the MTOFFL ioctl to rewind and take the volume offline. In
this case, Bareos will issue the offline (eject) request before closing the device during the unmount
command. If No Bareos will not attempt to offline the device before unmounting it. After an offline is
issued, the cassette will be ejected thus requiring operator intervention to continue, and on some
systems require an explicit load command to be issued (mt -f /dev/xxx load) before the system will
recognize the tape. If you are using an autochanger, some devices require an offline to be issued prior
to changing the volume. However, most devices do not and may get very confused.

If you are using a Linux 2.6 kernel or other OSes such as FreeBSD or Solaris, the Offline On Unmount
will leave the drive with no tape, and Bareos will not be able to properly open the drive and may fail
the job.

165

Query Crypto Status = <yes|no>
The default for this directive is No. If Yes the storage daemon may query the tape device
for it security status. This only makes sense when Drive Crypto Enabled is also set to yes as the
actual query is performed by the same Storage Daemon plugin and using the same SCSI SPIN protocol.

Random Access = <yes|no> (default: no)
If Yes, the archive device is assumed to be a random access medium which supports the lseek (or
lseek64 if Largefile is enabled during configuration) facility. This should be set to Yes for all file
systems such as USB, and fixed files. It should be set to No for non-random access devices such as
tapes and named pipes.

Removable Media = <yes|no> (default: yes)
If Yes, this device supports removable media (for example tapes). If No, media cannot be removed
(for example, an intermediate backup area on a hard disk). If Removable media is enabled on a
File device (as opposed to a tape) the Storage daemon will assume that device may be something like
a USB device that can be removed or a simply a removable harddisk. When attempting to open such
a device, if the Volume is not found (for File devices, the Volume name is the same as the Filename),
then the Storage daemon will search the entire device looking for likely Volume names, and for each
one found, it will ask the Director if the Volume can be used. If so, the Storage daemon will use the
first such Volume found. Thus it acts somewhat like a tape drive — if the correct Volume is not found,
it looks at what actually is found, and if it is an appendable Volume, it will use it.

If the removable medium is not automatically mounted (e.g. udev), then you might consider using
additional Storage daemon device directives such as Requires Mount, Mount Point, Mount Com-
mand, and Unmount Command, all of which can be used in conjunction with Removable Media.

Requires Mount = <yes|no> (default: no)
When this directive is enabled, the Storage daemon will submit a Mount Command before
attempting to open the device. You must set this directive to yes for removable file systems such as
USB devices that are not automatically mounted by the operating system when plugged in or opened
by Bareos. It should be set to no for all other devices such as tapes and fixed filesystems. It should also
be set to no for any removable device that is automatically mounted by the operating system when
opened (e.g. USB devices mounted by udev or hotplug). This directive indicates if the device requires
to be mounted using the Mount Command. To be able to write devices need a mount, the follow-
ing directives must also be defined: Mount Point, Mount Command, and Unmount Command.

Spool Directory = <path>
specifies the name of the directory to be used to store the spool files for this device. This directory
is also used to store temporary part files when writing to a device that requires mount (USB). The
default is to use the working directory.

Two Eof = <yes|no> (default: no)
If Yes, Bareos will write two end of file marks when terminating a tape — i.e. after the last job or at
the end of the medium. If No, Bareos will only write one end of file to terminate the tape.

Unmount Command = <strname>
This directive specifies the command that must be executed to unmount devices such as many USB
devices. Before the command is executed, %a is replaced with the Archive Device, and %m with the
Mount Point.

Most frequently, you will define it as follows:

Unmount Command = "/bin/umount %m"

See the Edit Codes for Mount and Unmount Directives section below for more details of the editing
codes that can be used in this directive.

If you need to specify multiple commands, create a shell script.

166

Use Mtiocget = <yes|no> (default: yes)
If No, the operating system is not required to support keeping track of the file number and reporting
it in the (MTIOCGET ioctl). If you must set this to No, Bareos will do the proper file position
determination, but it is very unfortunate because it means that tape movement is very inefficient.
Fortunately, this operation system deficiency seems to be the case only on a few *BSD systems.
Operating systems known to work correctly are Solaris, Linux and FreeBSD.

Volume Capacity = <Size64>

Volume Poll Interval = <time> (default: 300)
If the time specified on this directive is non-zero, Bareos will periodically poll (or read) the drive at
the specified interval to see if a new volume has been mounted. If the time interval is zero, no polling
will occur. This directive can be useful if you want to avoid operator intervention via the console.
Instead, the operator can simply remove the old volume and insert the requested one, and Bareos on
the next poll will recognize the new tape and continue. Please be aware that if you set this interval
too small, you may excessively wear your tape drive if the old tape remains in the drive, since Bareos
will read it on each poll.

Write Part Command = <strname>
Please note! This directive is deprecated.

10.4.1 Edit Codes for Mount and Unmount Directives

Before submitting the Mount Command, or Unmount Command directives to the operating system,
Bareos performs character substitution of the following characters:

Bl = "h

%a = Archive device name

%e = erase (set if cannot mount and first part)
%n = part number

%m = mount point

%v = last part name (i.e. filename)

10.4.2 Devices that require a mount (USB)

24 e You must set this directive to yes for removable devices such as USB unless they
are automounted, and to no for all other devices (tapes/files). This directive indicates if the device
requires to be mounted to be read, and if it must be written in a special way. If it set, Mount Point
o Mount Command 32 .~ and Unmount Command 3 . = directives must also be defined.

Device? Device Device

Requires Mount £¢

Mount Point 8¢

Device

Directory where the device can be mounted.

Mount Command 2¢ .~ Command that must be executed to mount the device. Before the command is
Device

executed, %a is replaced with the Archive Device, and %m with the Mount Point.
Most frequently, you will define it as follows:
Mount Command = "/bin/mount -t iso09660 -o ro %a %m"

Configuration 10.3:

For some media, you may need multiple commands. If so, it is recommended that you use a shell script
instead of putting them all into the Mount Command. For example, instead of this:

Mount Command = "/usr/local/bin/mymount"

Configuration 10.4:

Where that script contains:

167

#!/bin/sh

ndasadmin enable -s 1 -o w

sleep 2

mount /dev/ndas-00323794-0pl /backup

Commands 10.5:

Similar consideration should be given to all other Command parameters.

Unmount Command 3¢, = Command that must be executed to unmount the device. Before the command

is executed, %a is replaced with the Archive Device, and %m with the Mount Point.
Most frequently, you will define it as follows:
Unmount Command = "/bin/umount %m"

Configuration 10.6:

If you need to specify multiple commands, create a shell script.

10.5 Autochanger Resource

The Autochanger resource supports single or multiple drive autochangers by grouping one or more Device
resources into one unit called an autochanger in Bareos (often referred to as a ”tape library” by autochanger
manufacturers).

If you have an Autochanger, and you want it to function correctly, you must have an Autochanger resource
in your Storage conf file, and your Director’s Storage directives that want to use an Autochanger must refer
to the Autochanger resource name.

configuration directive name | type of data | default value | remark
Changer Command = strname required
Changer Device = strname required
Description = string
Device = Resourcelist required
Name = name required
Changer Command = <strname> (required)

This command specifies an external program to be called that will automatically change volumes
as required by Bareos. Most frequently, you will specify the Bareos supplied mtx-changer script as
follows. If it is specified here, it needs not to be specified in the Device resource. If it is also spec-
ified in the Device resource, it will take precedence over the one specified in the Autochanger resource.

Changer Device = <strname> (required)
The specified name-string gives the system file name of the autochanger device name. If specified
in this resource, the Changer Device name is not needed in the Device resource. If it is specified in
the Device resource (see above), it will take precedence over one specified in the Autochanger resource.

Description = <string>

Device = <ResourcelList> (required)
Specifies the names of the Device resource or resources that correspond to the autochanger drive. If
you have a multiple drive autochanger, you must specify multiple Device names, each one referring
to a separate Device resource that contains a Drive Index specification that corresponds to the drive
number base zero. You may specify multiple device names on a single line separated by commas,
and/or you may specify multiple Device directives.

168

Name = <name> (required)
Specifies the Name of the Autochanger. This name is used in the Director’s Storage definition to refer
to the autochanger.

The following is an example of a valid Autochanger resource definition:

Autochanger {
Name = "DDS-4-changer"
Device = DDS-4-1, DDS-4-2, DDS-4-3
Changer Device = /dev/sg0
Changer Command = "/usr/lib/bareos/scripts/mtx-changer %c %o %S %a %d"

}

Device {
Name = "DDS-4-1"
Drive Index = O
Autochanger = yes

}

Device {

Name = "DDS-4-2"
Drive Index 1
Autochanger = yes

Device {
Name = "DDS-4-3"
Drive Index 2
Autochanger = yes
Autoselect = no

Configuration 10.7: Autochanger Configuration Example

Please note that it is important to include the Autochanger = yes directive in each Device definition that
belongs to an Autochanger. A device definition should not belong to more than one Autochanger resource.
Also, your Device directive in the Storage resource of the Director’s conf file should have the Autochanger’s
resource name rather than a name of one of the Devices.

If you have a drive that physically belongs to an Autochanger but you don’t want to have it automatically
used when Bareos references the Autochanger for backups, for example, you want to reserve it for restores,
you can add the directive:

Autoselect = no

to the Device resource for that drive. In that case, Bareos will not automatically select that drive when
accessing the Autochanger. You can still use the drive by referencing it by the Device name directly rather
than the Autochanger name. An example of such a definition is shown above for the Device DDS-4-3, which
will not be selected when the name DDS-4-changer is used in a Storage definition, but will be used if DDS-4-3
is used.

10.6 Messages Resource

For a description of the Messages Resource, please see the Messages Resource chapter of this manual.

10.7 Example Storage Daemon Configuration File

A example Storage Daemon configuration file might be the following:

Default Bareos Storage Daemon Configuration file
For Bareos release 12.4.4 (12 June 2013) -- suse SUSE Linux Enterprise Server 11 (x86_64)

You may need to change the name of your tape drive
on the "Archive Device" directive in the Device
resource. If you change the Name and/or the
"Media Type" in the Device resource, please ensure
that dird.conf has corresponding changes.

H OH B OH O HEH R H

169

Storage { # definition of myself
Name = bareos-storage-sd
Maximum Concurrent Jobs = 20

remove comment in next line to load plugins from specified directory
Plugin Directory = /usr/lib64/bareos/plugins
b

#
List Directors who are permitted to contact Storage daemon
#
Director {
Name = bareos-dir
Password = "XXX_REPLACE_WITH_STORAGE_PASSWORD_XXX"
}

#

Restricted Director, used by tray-monitor to get the

status of the storage daemon

#

Director {
Name = bareos-storage-mon
Password = "XXX_REPLACE_WITH_STORAGE_MONITOR_PASSWORD_XXX"
Monitor = yes

[}

Note, for a list of additional Device templates please

see the directory <bareos-source>/examples/devices

Or follow the following link:
http://bareos.svn.sourceforge.net/viewvc/bareos/trunk/bareos/examples/devices/

H OH O H OH

Devices supported by this Storage daemon
To connect, the Director’s bareos-dir.conf must have the
same Name and MediaType.

H H o O

Device {
Name = FileStorage
Media Type = File
Archive Device = /var/lib/bareos/storage

LabelMedia = yes; # lets Bareos label unlabeled media
Random Access = Yes;
AutomaticMount = yes; # when device opened, read it

RemovableMedia = no;
AlwaysOpen = no;

}

#

An autochanger device with two drives

#

#Autochanger {

Name = Autochanger

Device = Drive-1

Device = Drive-2

Changer Command = "/usr/lib/bareos/scripts/mtx-changer %c %o %S %a %d"
Changer Device = /dev/sg0

H H H H

+*
[}

#Device {

Name = Drive-1 #

Drive Index = 0O

Media Type = DLT-8000

Archive Device = /dev/nst0

AutomaticMount = yes; # when device opened, read it
AlwaysOpen = yes;

RemovableMedia = yes;

RandomAccess = no;

AutoChanger = yes

#

Enable the Alert command only if you have the mtx package loaded
Note, apparently on some systems, tapeinfo resets the SCSI controller
thus if you turn this on, make sure it does not reset your SCSI

H OH B H O HHHHHHE R

170

controller. I have never had any problems, and smartctl does
not seem to cause such problems.

#

Alert Command = "sh -c ’tapeinfo -f %c |grep TapeAlert|cat’"

If you have smartctl, enable this, it has more info than tapeinfo
Alert Command = "sh -c ’smartctl -H -1 error %c’"

#}

#Device {

Name = Drive-2

Drive Index = 1

Media Type = DLT-8000

Archive Device = /dev/nstl

AutomaticMount = yes; # when device opened, read it
AlwaysOpen = yes;

RemovableMedia = yes;

RandomAccess = no;

AutoChanger = yes

Enable the Alert command only if you have the mtx package loaded
Alert Command = "sh -c ’tapeinfo -f %c |grep TapeAlert|cat’"

If you have smartctl, enable this, it has more info than tapeinfo
Alert Command = "sh -c ’smartctl -H -1 error %c’"

#}

#

A Linux or Solaris LTO0-2 tape drive

#

#Device {

Name = LTO0-2

Media Type = LT0-2

Archive Device = /dev/nstO

AutomaticMount = yes; # when device opened, read it
AlwaysOpen = yes;

RemovableMedia = yes;

RandomAccess = no;

Maximum File Size = 3GB

Changer Command = "/usr/lib/bareos/scripts/mtx-changer %c %o %S %a %d"
Changer Device = /dev/sg0

AutoChanger = yes

Enable the Alert command only if you have the mtx package loaded
Alert Command = "sh -c ’tapeinfo -f %c |grep TapeAlert|cat’"

If you have smartctl, enable this, it has more info than tapeinfo
Alert Command = "sh -c ’smartctl -H -1 error %c’"

#}

#

A Linux or Solaris LTO0-3 tape drive

#

#Device {

Name = LTO0-3

Media Type = LTO0-3

Archive Device = /dev/nst0O

AutomaticMount = yes; # when device opened, read it
AlwaysOpen = yes;

RemovableMedia = yes;

RandomAccess = no;

Maximum File Size = 4GB

Changer Command = "/usr/lib/bareos/scripts/mtx-changer %c %o %S %a %d"
Changer Device = /dev/sg0

AutoChanger = yes

Enable the Alert command only if you have the mtx package loaded
Alert Command = "sh -c ’tapeinfo -f %c |grep TapeAlert|cat’"

If you have smartctl, enable this, it has more info than tapeinfo
Alert Command = "sh -c ’smartctl -H -1 error %c’"

#}

#

A Linux or Solaris LT0-4 tape drive

#

#Device {

Name = LT0-4

Media Type = LT0-4

Archive Device = /dev/nstO

AutomaticMount = yes; # when device opened, read it
AlwaysOpen = yes;

RemovableMedia = yes;

RandomAccess = no;

Maximum File Size = 5GB

Changer Command = "/usr/lib/bareos/scripts/mtx-changer %c %o %S %a %d"
Changer Device = /dev/sg0

AutoChanger = yes

Enable the Alert command only if you have the mtx package loaded
Alert Command = "sh -c ’tapeinfo -f %c |grep TapeAlert|cat’"

If you have smartctl, enable this, it has more info than tapeinfo
Alert Command = "sh -c ’smartctl -H -1 error %c’"

#}

#

A FreeBSD tape drive

#

#Device {

Name = DDS-4

Description = "DDS-4 for FreeBSD"

Media Type = DDS-4

Archive Device = /dev/nsal

AutomaticMount = yes; # when device opened, read it
AlwaysOpen = yes

O0ffline On Unmount = no

Hardware End of Medium = no

BSF at EOM = yes

Backward Space Record = no

Fast Forward Space File = no

TWO EOF = yes

If you have smartctl, enable this, it has more info than tapeinfo
Alert Command = "sh -c ’smartctl -H -1 error %c’"

#}

#

Send all messages to the Director,
mount messages also are sent to the email address

#

Messages {

}

Name = Standard
director = bareos-dir = all

171

172

Chapter 11

Client /File Daemon Configuration

The Client (or File Daemon) Configuration is one of the simpler ones to specify. Generally, other than
changing the Client name so that error messages are easily identified, you will not need to modify the default
Client configuration file.

For a general discussion of configuration file and resources including the data types recognized by Bareos,
please see the Configuration chapter of this manual. The following Client Resource definitions must be

defined:

e Client — to define what Clients are to be backed up.

e Director — to define the Director’s name and its access password.

e Messages — to define where error and information messages are to be sent.

11.1 Client Resource

The Client Resource (or FileDaemon) resource defines the name of the Client (as used by the Director) as
well as the port on which the Client listens for Director connections.
Start of the Client records. There must be one and only one Client resource in the configuration file, since
it defines the properties of the current client program.

configuration directive name | type of data default value remark
Absolute Job Timeout = positive-integer

Allow Bandwidth Bursting = yes|no no

Allowed Job Command = string-list

Allowed Script Dir = DirectoryList

Always Use LMDB = yes|no no

Compatible = yes|no no

Description = string

FD Address = net-address 9102

FD Addresses = net-addresses 9102

FD Port = net-port 9102

FD Source Address = net-address 0

Heartbeat Interval = time 0

LMDB Threshold = positive-integer

Log Timestamp Format = string

Maximum Bandwidth Per Job = speed

Maximum Concurrent Jobs = positive-integer 20

Maximum Connections = positive-integer 42

Maximum Network Buffer Size | = positive-integer

Messages = resource-name

Name = name required
Pid Directory = path /var /lib/bareos (platform specific)
Pki Cipher = EncryptionCipher | aesl128

Pki Encryption = yes|no no

Pki Key Pair = path

173

174

Pki Master Key

Pki Signatures

Pki Signer

Plugin Directory
Plugin Names

Scripts Directory

SD Connect Timeout
Secure Erase Command
Sub Sys Directory

TLS Allowed CN

TLS Authenticate

TLS CA Certificate Dir
TLS CA Certificate File
TLS Certificate

TLS Certificate Revocation List
TLS Cipher List

TLS DH File

TLS Enable

TLS Key

TLS Require

TLS Verify Peer

Ver 1d

Working Directory

= Directorylist
= yes|no

= DirectoryList
= path

= PluginNames
= path

= time

= string

= path

= string-list

= yes|no

= path

= path

no

1800

no

no

no
yes

/var/lib/bareos (platform specific)

deprecated

Absolute Job Timeout = <positive-integer>

Allow Bandwidth Bursting = <yes|no>
This option sets if there is Bandwidth Limiting in effect if the limiting code can use bursting e.g. when
from a certain timeslice not all bandwidth is used this bandwidth can be used in a next timeslice.
Which mean you will get a smoother limiting which will be much closer to the actual limit set but it
also means that sometimes the bandwidth will be above the setting here.

Allowed Job Command = <string-list>
This directive filters what type of jobs the filedaemon should allow. Until now we had the -b (backup
only) and -r (restore only) flags which could be specified at the startup of the filedaemon.

(default: no)

Allowed Job Command can be defined globally for all directors by adding it to the global filedaemon
resource or for a specific director when added to the director resource.

You specify all commands you want to be executed by the filedaemon. When you don’t specify the
option it will be empty which means all commands are allowed.

The following example shows how to use this functionality:

Director {
Name = <name>
Password = <password>
Allowed Job Command

"backup"

Allowed Job Command = "runscript"

}

All commands that are allowed are specified each on a new line with the Allowed Job Command

keyword.

The following job commands are recognized:

backup allow backups to be made

restore allow restores to be done

verify allow verify jobs to be done

estimate allow estimate cmds to be executed

175

runscript allow runscripts to run

Only the important commands the filedaemon can perform are filtered, as some commands are part of
the above protocols and by disallowing the action the other commands are not invoked at all.

If runscripts are not needed it would be recommended as a security measure to disable running those
or only allow the commands that you really want to be used.

Runscripts are particularly a problem as they allow the Bareos File Daemon to run arbitrary
commands. You may also look into the Allowed Script Dir g, keyword to limit the impact of the
runscript command.

Allowed Script Dir = <DirectoryList>
This directive limits the impact of the runscript command of the filedaemon.

It can be specified either for all directors by adding it to the global filedaemon resource or for a specific
director when added to the director resource.

All directories in which the scripts or commands are located that you allow to be run by the runscript
command of the filedaemon. Any program not in one of these paths (or subpaths) cannot be used.
The implementation checks if the full path of the script starts with one of the specified paths.

The following example shows how to use this functionality:

bareos-fd.conf
Director {

Name = <name>

Password = <password>

Allowed Script Dir = "/etc/bareos"

Allowed Script Dir = "/path/that/is/also/allowed"
}

bareos-dir.conf
Job {
Name = "<name>"
JobDefs = "DefaultJob"
Client Run Before Job = "/etc/bareos/runbeforejob.sh" # this will run
Client Run Before Job = "/tmp/runbeforejob.sh" # this will be blocked

Always Use LMDB = <yes|no> (default: no)

Compatible = <yes|no> (default: no)
This directive enables the compatible mode of the file daemon. In this mode the file daemon will try to
be as compatible to a native Bacula file daemon as possible. Enabling this option means that certain
new options available in Bareos cannot be used as they would lead to data not being able to be restored
by a Native Bareos file daemon.

The default value for this directive was changed from yes to no since Bareos Version >= 15.2.0.

When you want to use bareos-only features, the value of compatible must be no.

Description = <string>

FD Address = <net-address> (default: 9102)
This record is optional, and if it is specified, it will cause the File daemon server (for Director
connections) to bind to the specified IP-Address, which is either a domain name or an IP address
specified as a dotted quadruple.

176

FD Addresses = <net-addresses> (default: 9102)
Specify the ports and addresses on which the File daemon listens for Director connections. Probably
the simplest way to explain is to show an example:

FDAddresses = {
ip = { addr = 1.2.3.4; port = 1205; }

ipv4 = {
addr = 1.2.3.4; port = http; }
ipvé = {
addr = 1.2.3.4;
port = 1205;
}
ip = {
addr = 1.2.3.4
port = 1205
}
ip = { addr = 1.2.3.4 }
ip = {
addr = 201:220:222::2
}
ip = {
addr = bluedot.thun.net
}

}

where ip, ip4, ip6, addr, and port are all keywords. Note, that the address can be specified as either a
dotted quadruple, or IPv6 colon notation, or as a symbolic name (only in the ip specification). Also,
the port can be specified as a number or as the mnemonic value from the /etc/services file. If a port
is not specified, the default will be used. If an ip section is specified, the resolution can be made either
by IPv4 or IPv6. If ip4 is specified, then only IPv4 resolutions will be permitted, and likewise with ip6.

FD Port = <net-port> (default: 9102)
This specifies the port number on which the Client listens for Director connections. It must agree
with the FDPort specified in the Client resource of the Director’s configuration file.

FD Source Address = <net-address> (default: 0)
If specified, the Bareos File Daemon will bind to the specified address when creating outbound
connections. If this record is not specified, the kernel will choose the best address according to the
routing table (the default).

Heartbeat Interval = <time> (default: 0)
This record defines an interval of time in seconds. For each heartbeat that the File daemon receives
from the Storage daemon, it will forward it to the Director. In addition, if no heartbeat has been
received from the Storage daemon and thus forwarded the File daemon will send a heartbeat signal
to the Director and to the Storage daemon to keep the channels active. Setting the interval to 0
(zero) disables the heartbeat. This feature is particularly useful if you have a router that does not
follow Internet standards and times out a valid connection after a short duration despite the fact that
keepalive is set. This usually results in a broken pipe error message.

LMDB Threshold = <positive-integer>

Log Timestamp Format = <string>

Version >= 15.2.3

Maximum Bandwidth Per Job = <speed>
The speed parameter specifies the maximum allowed bandwidth that a job may use.

Maximum Concurrent Jobs = <positive-integer> (default: 20)
This directive specifies the maximum number of Jobs that should run concurrently. Each contact from

177

the Director (e.g. status request, job start request) is considered as a Job, so if you want to be able
to do a status request in the console at the same time as a Job is running, you will need to set this
value greater than 1.

Maximum Connections = <positive-integer> (default: 42)

Version >= 15.2.3

Maximum Network Buffer Size = <positive-integer>
This directive specifies the initial network buffer size to use. This size will be adjusted down if it is
too large until it is accepted by the OS. Please use care in setting this value since if it is too large, it
will be trimmed by 512 bytes until the OS is happy, which may require a large number of system calls.
The default value is 65,536 bytes.

Note, on certain Windows machines, there are reports that the transfer rates are very slow and this
seems to be related to the default 65,536 size. On systems where the transfer rates seem abnormally
slow compared to other systems, you might try setting the Maximum Network Buffer Size to 32,768
in both the File daemon and in the Storage daemon.

Messages = <resource-name>

Name = <name> (required)
The name of this resource. It is used to reference to it.

The client name that must be used by the Director when connecting. Generally, it is a good idea to
use a name related to the machine so that error messages can be easily identified if you have multiple
Clients. This directive is required.

Pid Directory = <path> (default: /var/lib/bareos (platform specific))
This directive specifies a directory in which the File Daemon may put its process Id file files. The
process Id file is used to shutdown Bareos and to prevent multiple copies of Bareos from running
simultaneously.

The Bareos file daemon uses a platform specific default value, that is defined at compile time.
Typically on Linux systems, it is set to /var/lib/bareos/ or /var/run/.

Pki Cipher = <EncryptionCipher> (default: aes128)
See the Data Encryption chapter of this manual.

Depending on the openssl library version different ciphers are available. To choose the desired ci-
pher, you can use the PKI Cipher option in the filedaemon configuration. Note that you have to set

: Fd _ .

Compatible £ . = no:

FileDaemon {
Name = clientl-fd

encryption configuration

PKI Signatures = Yes # Enable Data Signing

PKI Encryption = Yes # Enable Data Encryption

PKI Keypair = "/etc/bareos/clientl-fd.pem" # Public and Private Keys

PKI Master Key = "/etc/bareos/master.cert" # ONLY the Public Key

PKI Cipher = aesl28 # specify desired PKI Cipher here

The available options (and ciphers) are:

e aesl28
e aesl92
e aes256
e camellial28

e camellial92

178

e camellia256
e aesl128hmacshal
e aes2b6hmacshal

e blowfish

They depend on the version of the openssl library installed.

For decryption of encrypted data, the right decompression algorithm should be automatically chosen.

Pki Encryption = <yes|no> (default: no)
See Data Encryption.

Pki Key Pair = <path>
See Data Encryption.

Pki Master Key = <DirectoryList>
See Data Encryption.

Pki Signatures = <yes|no> (default: no)
See Data Encryption.

Pki Signer = <DirectoryList>
See Data Encryption.

Plugin Directory = <path>
This directive specifies a directory in which the File Daemon searches for plugins with the name
<pluginname>-fd.so which it will load at startup. Typically on Linux systems, plugins are installed
to /usr/lib/bareos/plugins/ or /usr/1ib64/bareos/plugins/.

Plugin Names = <PluginNames>
If a Plugin Directory L . is specified Plugin Names defines, which File Daemon Plugins get loaded.

Client

If Plugin Names is not defined, all plugins get loaded, otherwise the defined ones.

Scripts Directory = <path>

SD Connect Timeout = <time> (default: 1800)
This record defines an interval of time that the File daemon will try to connect to the Storage daemon.
If no connection is made in the specified time interval, the File daemon cancels the Job.

Secure Erase Command = <string>
Specify command that will be called when bareos unlinks files.

When files are no longer needed, Bareos will delete (unlink) them. With this directive, it will call the
specified command to delete these files. See Secure Erase Command for details.
Version >= 15.2.1

Sub Sys Directory = <path>
Please note! This directive is deprecated.

179

TLS Allowed CN = <string-list>
”Common Name”s (CNs) of the allowed peer certificates.

TLS Authenticate = <yes|no> (default: no)
Use TLS only to authenticate, not for encryption.

TLS CA Certificate Dir = <path>
Path of a TLS CA certificate directory.

TLS CA Certificate File = <path>
Path of a PEM encoded TLS CA certificate(s) file.

TLS Certificate = <path>
Path of a PEM encoded TLS certificate.

TLS Certificate Revocation List = <path>
Path of a Certificate Revocation List file.

TLS Cipher List = <string>
List of valid TLS Ciphers.

TLS DH File = <path>
Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange
will be used for the ephemeral keying, allowing for forward secrecy of communications.

TLS Enable = <yes|no> (default: no)
Enable TLS support.

Bareos can be configured to encrypt all its network traffic. See chapter TLS Configuration Directives
to see how the Bareos Director (and the other components) have to be configured to use TLS.

TLS Key = <path>
Path of a PEM encoded private key. It must correspond to the specified ” TLS Certificate”.

TLS Require = <yes|no> (default: no)
Without setting this to yes, Bareos can fall back to use unencryption connections. Enabling this
implicietly sets " TLS Enable = yes”.

180

TLS Verify Peer = <yes|no>

must the Address or in the ”TLS Allowed CN” list.

Ver 1Id = <string>

Working Directory = <path>

On Win32 systems, in some circumstances you may need to specify a drive letter in the specified
working directory path. Also, please be sure that this directory is writable by the SYSTEM user
otherwise restores may fail (the bootstrap file that is transferred to the File daemon from the Director
is temporarily put in this directory before being passed to the Storage daemon).

(default: /var/lib/bareos (platform specific))
This directive is optional and specifies a directory in which the File daemon may put its status files.

The following is an example of a valid Client resource definition:

Client {

this is me

Name = rufus-fd

}

11.2

The Director resource defines the name and password of the Directors that are permitted to contact this

Client.

Director Resource

(default: yes)
If disabled, all certificates signed by a known CA will be accepted. If enabled, the CN of a certificate

configuration directive name

type of data

| default value | remark

Address

Allowed Job Command
Allowed Script Dir

Connection From Client To Director
Connection From Director To Client
Description

Maximum Bandwidth Per Job
Monitor

Name

Password

Port

TLS Allowed CN

TLS Authenticate

TLS CA Certificate Dir

TLS CA Certificate File

TLS Certificate

TLS Certificate Revocation List
TLS Cipher List

TLS DH File

TLS Enable

TLS Key

TLS Require

TLS Verify Peer

= string

= string-list

= Directorylist
= yes|no

= yes|no

= string

= speed

= yes|no

= name

= Mdb5password
= positive-integer
= string-list

= yes|no

= path

= path

= path

= path

= string

= path

= yes|no

= path

= yes|no

= yes|no

no
yes

no

9101

no

no

no
yes

required
required

Address = <string>

Director Network Address. Only required if ” Connection From Client To Director” is enabled.

181

Allowed Job Command = <string-list>

see Allowed Job Command £,

Allowed Script Dir = <DirectoryList>
see Allowed Script Dir £2

Client

Connection From Client To Director = <yes|no> (default: no)
Let the Filedaemon initiate network connections to the Director.

For details, see Client Initiated Connection.
Version >= 16.2.2

Connection From Director To Client = <yes|no> (default: yes)
This Client will accept incoming network connection from this Director.

Version >= 16.2.2

Description = <string>

Maximum Bandwidth Per Job = <speed>
The speed parameter specifies the maximum allowed bandwidth that a job may use when started from
this Director. The speed parameter should be specified in k/s, Kb/s, m/s or Mb/s.

Monitor = <yes|no> (default: no)
If Monitor is set to no, this director will have full access to this Client. If Monitor is set to yes, this
director will only be able to fetch the current status of this Client.

Please note that if this director is being used by a Monitor, we highly recommend to set this directive
to yes to avoid serious security problems.

Name = <name> (required)
The name of the Director that may contact this Client. This name must be the same as the name
specified on the Director resource in the Director’s configuration file. Note, the case (upper/lower) of
the characters in the name are significant (i.e. S is not the same as s). This directive is required.

Password = <Md5password> (required)
Specifies the password that must be supplied for a Director to be authorized. This password must be
the same as the password specified in the Client resource in the Director’s configuration file. This
directive is required.

Port = <positive-integer> (default: 9101)
Director Network Port. Only used if ” Connection From Client To Director” is enabled.

Version >= 16.2.2

TLS Allowed CN = <string-list>
”Common Name”s (CNs) of the allowed peer certificates.

TLS Authenticate = <yes|no> (default: no)
Use TLS only to authenticate, not for encryption.

182

TLS CA Certificate Dir = <path>
Path of a TLS CA certificate directory.

TLS CA Certificate File = <path>
Path of a PEM encoded TLS CA certificate(s) file.

TLS Certificate = <path>
Path of a PEM encoded TLS certificate.

TLS Certificate Revocation List = <path>
Path of a Certificate Revocation List file.

TLS Cipher List = <string>
List of valid TLS Ciphers.

TLS DH File = <path>
Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange
will be used for the ephemeral keying, allowing for forward secrecy of communications.

TLS Enable = <yes|no> (default: no)
Enable TLS support.

Bareos can be configured to encrypt all its network traffic. See chapter TLS Configuration Directives
to see how the Bareos Director (and the other components) have to be configured to use TLS.

TLS Key = <path>
Path of a PEM encoded private key. It must correspond to the specified ” TLS Certificate”.

TLS Require = <yes|no> (default: no)
Without setting this to yes, Bareos can fall back to use unencryption connections. Enabling this
implicietly sets ”TLS Enable = yes”.

TLS Verify Peer = <yes|no> (default: yes)
If disabled, all certificates signed by a known CA will be accepted. If enabled, the CN of a certificate
must the Address or in the "TLS Allowed CN” list.

Thus multiple Directors may be authorized to use this Client’s services. Each Director will have a different
name, and normally a different password as well.
The following is an example of a valid Director resource definition:

183

#
List Directors who are permitted to contact the File daemon
#
Director {

Name = HeadMan

Password = very_good # password HeadMan must supply
}
Director {

Name = Worker

Password = not_as_good

Monitor = Yes

}

11.3 Messages Resource

Please see the Messages Resource Chapter of this manual for the details of the Messages Resource.
There must be at least one Message resource in the Client configuration file.

11.4 Example Client Configuration File

An example File Daemon configuration file might be the following:

#

Default Bareos File Daemon Configuration file

#

For Bareos release 12.4.4 (12 June 2013)

#

There is not much to change here except perhaps the
File daemon Name to

#

#

List Directors who are permitted to contact this File daemon
#

Director {

Name = bareos-dir

Password = "aEODFz89JgUbWpuG6hP40TuAoMviM1PaJw0+ShXGqXsP"
}

#

Restricted Director, used by tray-monitor to get the

status of the file daemon

#

Director {
Name = clientl-mon
Password = "8BoVwTju2TQlafdHFExRIJmUcHUMoIyIqPJjbvcSO61P"
Monitor = yes

}
#
"Global" File daemon configuration specifications
#
FileDaemon { # this is me

Name = clientl-fd
Maximum Concurrent Jobs = 20

remove comment in next line to load plugins from specified directory
Plugin Directory = /usr/lib64/bareos/plugins
}

Send all messages except skipped files back to Director
Messages {

Name = Standard

director = clientl-dir = all, !skipped, !restored

}

184

Chapter 12

Messages Resource

The Messages resource defines how messages are to be handled and destinations to which they should be
sent.

Even though each daemon has a full message handler, within the File daemon and the Storage daemon,
you will normally choose to send all the appropriate messages back to the Director. This permits all the
messages associated with a single Job to be combined in the Director and sent as a single email message to
the user, or logged together in a single file.

Each message that Bareos generates (i.e. that each daemon generates) has an associated type such as INFO,
WARNING, ERROR, FATAL, etc. Using the message resource, you can specify which message types you
wish to see and where they should be sent. In addition, a message may be sent to multiple destinations.
For example, you may want all error messages both logged as well as sent to you in an email. By defining
multiple messages resources, you can have different message handling for each type of Job (e.g. Full backups
versus Incremental backups).

In general, messages are attached to a Job and are included in the Job report. There are some rare cases,
where this is not possible, e.g. when no job is running, or if a communications error occurs between a daemon
and the director. In those cases, the message may remain in the system, and should be flushed at the end of
the next Job. However, since such messages are not attached to a Job, any that are mailed will be sent to
/usr/lib/sendmail. On some systems, such as FreeBSD, if your sendmail is in a different place, you may
want to link it to the the above location.

The records contained in a Messages resource consist of a destination specification followed by a list of
message-types in the format:

destination = message-typel, message-type2, message-type3, ...
or for those destinations that need and address specification (e.g. email):

destination = address = message-typel, message-type2, message-type3, ...

where

destination is one of a predefined set of keywords that define where the message is to be sent (Append
o Console 1" File Mail D),

Messages? Messages Messages) Messages? *

address varies according to the destination keyword, but is typically an email address or a filename,

message-type is one of a predefined set of keywords that define the type of message generated by
Bareos: ERROR, WARNING, FATAL, ...

configuration directive name | type of data | default value | remark
Append = [address = | message-type [, message-type |*

Catalog = [address = | message-type [, message-type |*

Console = [address = | message-type [, message-type |*

Description = string

Director = [address = | message-type [, message-type |*

File = [address = | message-type [, message-type |*

Mail = [address = | message-type [, message-type |*

Mail Command = string

185

186

Mail On Error = [address = | message-type [, message-type |*
Mail On Success = [address = | message-type [, message-type |*
Name = name
Operator = [address = | message-type [, message-type |*
Operator Command = string
Stderr = [address = | message-type [, message-type |*
Stdout = [address =] message-type [, message-type |*
Syslog = [address = | message-type [, message-type |*
Timestamp Format = string

Append = <[address = | message-type [, message-type |* >
Append the message to the filename given in the address field. If the file already exists, it will be
appended to. If the file does not exist, it will be created.

Catalog = <[address = | message-type [, message-type |* >
Send the message to the Catalog database. The message will be written to the table named Log and
a timestamp field will also be added. This permits Job Reports and other messages to be recorded in
the Catalog so that they can be accessed by reporting software. Bareos will prune the Log records
associated with a Job when the Job records are pruned. Otherwise, Bareos never uses these records
internally, so this destination is only used for special purpose programs (e.g. frontend programs).

Console = <[address = | message-type [, message-type |* >
Send the message to the Bareos console. These messages are held until the console program connects
to the Director.

Description = <string>

Director = <[address = | message-type [, message-type |* >
Send the message to the Director whose name is given in the address field. Note, in the current imple-
mentation, the Director Name is ignored, and the message is sent to the Director that started the Job.

File = <[address = | message-type [, message-type |* >
Send the message to the filename given in the address field. If the file already exists, it will be
overwritten.

Mail = <[address = | message-type [, message-type |* >
Send the message to the email addresses that are given as a comma separated list in the address
field. Mail messages are grouped together during a job and then sent as a single email message when
the job terminates. The advantage of this destination is that you are notified about every Job that
runs. However, if you backup mutliple machines every night, the number of email messages can be
annoying. Some users use filter programs such as procmail to automatically file this email based on
the Job termination code (see Mail Command P).

Messages

Mail Command = <string>
In the absence of this resource, Bareos will send all mail using the following command:

mail -s ”Bareos Message” <recipients>

In many cases, depending on your machine, this command may not work. However, by using the
Mail Command, you can specify exactly how to send the mail. During the processing of the command
part, normally specified as a quoted string, the following substitutions will be used:

o %% =%

o %c = Client’s name

187

e %d = Director’s name

e %e = Job Exit code (OK, Error, ...)
e %h = Client address

e %i = JobId

e %j = Unique Job name

e %1 = Job level

e %n = Job name

e %r = Recipients

e %s = Since time

e %t = Job type (e.g. Backup, ...)

e %v = Read Volume name (Only on director side)

e %V = Write Volume name (Only on director side)

Please note: any Mail Command directive must be specified in the Messages resource before the
desired Mail 3>, Mail On Success 3, .. or Mail On Error 3 directive. In fact, each of those
directives may be preceded by a different Mail Command.

A default installation will use the program bsmtp as Mail Command. The program bsmtp is provided

by Bareos and unifies the usage of a mail client to a certain degree:

Mail Command = "/usr/sbin/bsmtp -h mail.example.com -f \"\(Bareos\) \%r\" -s \"Bareos: \%t \%e of \%c \%L\" \%r"

The bsmtp program is provided as part of Bareos. For additional details, please see the bsmtp
section. Please test any Mail Command that you use to ensure that your smtp gateway accepts the
addressing form that you use. Certain programs such as Exim can be very selective as to what forms
are permitted particularly in the from part.

Mail On Error = <[address = | message-type [, message-type |* >
Send the message to the email addresses that are given as a comma separated list in the address field
if the Job terminates with an error condition. Mail On Error messages are grouped together during
a job and then sent as a single email message when the job terminates. This destination differs from
the mail destination in that if the Job terminates normally, the message is totally discarded (for this
destination). If the Job terminates in error, it is emailed. By using other destinations such as append
you can ensure that even if the Job terminates normally, the output information is saved.

Mail On Success = <[address = | message-type [, message-type |* >
Send the message to the email addresses that are given as a comma separated list in the address field
if the Job terminates normally (no error condition). Mail On Success messages are grouped together
during a job and then sent as a single email message when the job terminates. This destination differs
from the mail destination in that if the Job terminates abnormally, the message is totally discarded
(for this destination). If the Job terminates normally, it is emailed.

Name = <name>
The name of the Messages resource. The name you specify here will be used to tie this Messages
resource to a Job and/or to the daemon.

Operator = <[address = | message-type [, message-type |* >
Send the message to the email addresses that are specified as a comma separated list in the address
field. This is similar to mail above, except that each message is sent as received. Thus there is one
email per message. This is most useful for mount messages (see below).

Operator Command = <string>
This resource specification is similar to the Mail Command ;7 . except that it is used for Operator
messages. The substitutions performed for the Mail Command J | are also done for this command.
Dir

Normally, you will set this command to the same value as specified for the Mail Command 3> ..

188

Dir
Messages

The Operator Command directive must appear in the Messages resource before the Operator
directive.

Stderr = <[address = | message-type [, message-type |* >
Send the message to the standard error output (normally not used).

Stdout = <[address =]| message-type [, message-type |* >
Send the message to the standard output (normally not used).

Syslog = <[address = | message-type [, message-type |* >
Send the message to the system log (syslog).

Since Version >= 14.4.0 the facility can be specified in the address field and the loglevel correspond
to the Bareos Message Types. The defaults are DAEMON and LOG_ERR.

Although the syslog destination is not used in the default Bareos config files, in certain cases where
Bareos encounters errors in trying to deliver a message, as a last resort, it will send it to the system
syslog to prevent loss of the message, so you might occassionally check the syslog for Bareos output.

Timestamp Format = <string>

12.1 Message Types

For any destination, the message-type field is a comma separated list of the following types or classes of
messages:

info
General information messages.

warning
Warning messages. Generally this is some unusual condition but not expected to be serious.

error
Non-fatal error messages. The job continues running. Any error message should be investigated as it
means that something went wrong.

fatal
Fatal error messages. Fatal errors cause the job to terminate.

terminate
Message generated when the daemon shuts down.

notsaved
Files not saved because of some error. Usually because the file cannot be accessed (i.e. it does not
exist or is not mounted).

skipped
Files that were skipped because of a user supplied option such as an incremental backup or a file that
matches an exclusion pattern. This is not considered an error condition such as the files listed for the
notsaved type because the configuration file explicitly requests these types of files to be skipped. For
example, any unchanged file during an incremental backup, or any subdirectory if the no recursion
option is specified.

mount
Volume mount or intervention requests from the Storage daemon. These requests require a specific
operator intervention for the job to continue.

restored
The Is style listing generated for each file restored is sent to this message class.

189

all
All message types.

security
Security info/warning messages principally from unauthorized connection attempts.

alert
Alert messages. These are messages generated by tape alerts.

volmgmt
Volume management messages. Currently there are no volume mangement messages generated.

audit

Audit messages. Interacting with the Bareos Director will be audited. Can be configured with in
resource Auditing D

Director*

The following is an example of a valid Messages resource definition, where all messages except files explicitly
skipped or daemon termination messages are sent by email to backupoperator@example.com. In addition
all mount messages are sent to the operator (i.e. emailed to backupoperator@example.com). Finally all
messages other than explicitly skipped files and files saved are sent to the console:

Messages {
Name = Standard
Mail = backupoperator@example.com = all, !skipped, !terminate
Operator = backupoperator@example.com = mount
Console = all, !skipped, !saved

Configuration 12.1: Message resource

With the exception of the email address, an example Director’s Messages resource is as follows:

Messages {

Name = Standard

Mail Command = "/usr/sbin/bsmtp -h mail.example.com -f \"\(Bareos\) %r\" -s \"Bareos: %t %e of %c %1\" %
q I.II

Operator Command = "/usr/sbin/bsmtp -h mail.example.com -f \"\(Bareos\) %r\" -s \"Bareos: Intervention ,/
< needed for %j\" %r"

Mail On Error = backupoperator@example.com = all, !skipped, !terminate

Append = "/var/log/bareos/bareos.log" = all, !skipped, !terminate

Operator = backupoperator@example.com = mount

Console = all, !skipped, !saved

Configuration 12.2: Message resource

190

Chapter 13

Console Configuration

The Console configuration file is the simplest of all the configuration files, and in general, you should not need
to change it except for the password. It simply contains the information necessary to contact the Director
or Directors.

For a general discussion of the syntax of configuration files and their resources including the data types
recognized by Bareos, please see the Configuration chapter of this manual.

The following Console Resource definition must be defined:

13.1 Director Resource

The Director resource defines the attributes of the Director running on the network. You may have multiple
Director resource specifications in a single Console configuration file. If you have more than one, you will be
prompted to choose one when you start the Console program.

configuration directive name | type of data | default value | remark
Address = string
Description = string
Dir Port = positive-integer | 9101
Heartbeat Interval = time 0
Name = name required
Password = Md5password required
TLS Allowed CN = string-list
TLS Authenticate = yes|no no
TLS CA Certificate Dir = path
TLS CA Certificate File = path
TLS Certificate = path
TLS Certificate Revocation List | = path
TLS Cipher List = string
TLS DH File = path
TLS Enable = yes|no no
TLS Key = path
TLS Require = yes|no no
TLS Verify Peer = yes|no yes

Address = <string>
Where the address is a host name, a fully qualified domain name, or a network address used to connect
to the Director.

Description = <string>

Dir Port = <positive-integer> (default: 9101)

191

192

This port must be identical to the Dir Port DI specified in the Director Configuration file.

Director

Heartbeat Interval = <time> (default: 0)

Name = <name> (required)
The director name used to select among different Directors, otherwise, this name is not used.

Password = <Mdb5password> (required)
This password is used to authenticate when connecting to the Bareos Director as default console. It
must correspond to Password Pi*

Director®

TLS Allowed CN = <string-list>
”Common Name”s (CNs) of the allowed peer certificates.

TLS Authenticate = <yes|no> (default: no)
Use TLS only to authenticate, not for encryption.

TLS CA Certificate Dir = <path>
Path of a TLS CA certificate directory.

TLS CA Certificate File = <path>
Path of a PEM encoded TLS CA certificate(s) file.

TLS Certificate = <path>
Path of a PEM encoded TLS certificate.

TLS Certificate Revocation List = <path>
Path of a Certificate Revocation List file.

TLS Cipher List = <string>
List of valid TLS Ciphers.

TLS DH File = <path>
Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange
will be used for the ephemeral keying, allowing for forward secrecy of communications.

TLS Enable = <yes|no> (default: no)
Enable TLS support.

Bareos can be configured to encrypt all its network traffic. See chapter TLS Configuration Directives
to see how the Bareos Director (and the other components) have to be configured to use TLS.

193

TLS Key = <path>
Path of a PEM encoded private key. It must correspond to the specified ” TLS Certificate”.

TLS Require = <yes|no> (default: no)
Without setting this to yes, Bareos can fall back to use unencryption connections. FEnabling this
implicietly sets " TLS Enable = yes”.

TLS Verify Peer = <yes|no> (default: yes)
If disabled, all certificates signed by a known CA will be accepted. If enabled, the CN of a certificate
must the Address or in the ”TLS Allowed CN” list.

An actual example might be:

Director {
Name = HeadMan
address = rufus.cats.com
password = xyzlerploit

}

13.2 Console Resource

There are three different kinds of consoles, which the administrator or user can use to interact with the
Director. These three kinds of consoles comprise three different security levels.

e The first console type is an admin or anonymous or default console, which has full privileges. There
is no console resource necessary for this type since the password is specified in the Director resource.
Typically you would use this console only for administrators.

e The second type of console is a "named” or ”restricted” console defined within a Console resource in
both the Director’s configuration file and in the Console’s configuration file. Both the names and the
passwords in these two entries must match much as is the case for Client programs.

This second type of console begins with absolutely no privileges except those explicitly specified in the
Director’s Console resource. Note, the definition of what these restricted consoles can do is determined
by the Director’s conf file.

Thus you may define within the Director’s conf file multiple Consoles with different names and pass-
words, sort of like multiple users, each with different privileges. As a default, these consoles can do
absolutely nothing — no commands what so ever. You give them privileges or rather access to com-
mands and resources by specifying access control lists in the Director’s Console resource. This gives
the administrator fine grained control over what particular consoles (or users) can do.

e The third type of console is similar to the above mentioned restricted console in that it requires a
Console resource definition in both the Director and the Console. In addition, if the console name,
provided on the Name = directive, is the same as a Client name, the user of that console is permitted
to use the SetIP command to change the Address directive in the Director’s client resource to the IP
address of the Console. This permits portables or other machines using DHCP (non-fixed IP addresses)
to "notify” the Director of their current IP address.

The Console resource is optional and need not be specified. However, if it is specified, you can use ACLs
(Access Control Lists) in the Director’s configuration file to restrict the particular console (or user) to see
only information pertaining to his jobs or client machine.

You may specify as many Console resources in the console’s conf file. If you do so, generally the first Console
resource will be used. However, if you have multiple Director resources (i.e. you want to connect to different
directors), you can bind one of your Console resources to a particular Director resource, and thus when you
choose a particular Director, the appropriate Console configuration resource will be used. See the ”Director”
directive in the Console resource described below for more information.

Note, the Console resource is optional, but can be useful for restricted consoles as noted above.

194

configuration directive name type of data | default value | remark
Description = string
Director = string
Heartbeat Interval = time 0
History File = path
History Length = positive-integer | 100
Name = name required
Password = Md5password required
Rc File = path
TLS Allowed CN = string-list
TLS Authenticate = yes|no no
TLS CA Certificate Dir = path
TLS CA Certificate File = path
TLS Certificate = path
TLS Certificate Revocation List | = path
TLS Cipher List = string
TLS DH File = path
TLS Enable = yes|no no
TLS Key = path
TLS Require = yes|no no
TLS Verify Peer = yes|no yes

Description = <string>

Director = <string>
If this directive is specified, this Console resource will be used by bconsole when that particular
director is selected when first starting bconsole. Il.e. it binds a particular console resource with its
name and password to a particular director.

Heartbeat Interval = <time> (default: 0)
This directive is optional and if specified will cause the Console to set a keepalive interval (heartbeat)
in seconds on each of the sockets to communicate with the Director. It is implemented only on systems
(Linux, ...) that provide the setsockopt TCP_KEEPIDLE function. If the value is set to 0 (zero), no
change is made to the socket.

History File = <path>
If this directive is specified and the console is compiled with readline support, it will use the given
filename as history file. If not specified, the history file will be named ~/.bconsole_history

History Length = <positive-integer> (default: 100)
If this directive is specified the history file will be truncated after HistoryLength entries.

Name = <name> (required)
The name of this resource.

The Console name used to allow a restricted console to change its IP address using the SetIP
command. The SetIP command must also be defined in the Director’s conf CommandACL list.

Password = <Mdb5password> (required)
If this password is supplied, then the password specified in the Director resource of you Console conf
will be ignored. See below for more details.

195

Rc File = <path>

TLS Allowed CN = <string-list>
”Common Name”s (CNs) of the allowed peer certificates.

TLS Authenticate = <yes|no> (default: no)
Use TLS only to authenticate, not for encryption.

TLS CA Certificate Dir = <path>
Path of a TLS CA certificate directory.

TLS CA Certificate File = <path>
Path of a PEM encoded TLS CA certificate(s) file.

TLS Certificate = <path>
Path of a PEM encoded TLS certificate.

TLS Certificate Revocation List = <path>
Path of a Certificate Revocation List file.

TLS Cipher List = <string>
List of valid TLS Ciphers.

TLS DH File = <path>
Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange
will be used for the ephemeral keying, allowing for forward secrecy of communications.

TLS Enable = <yes|no> (default: no)
Enable TLS support.

Bareos can be configured to encrypt all its network traffic. See chapter TLS Configuration Directives
to see how the Bareos Director (and the other components) have to be configured to use TLS.

TLS Key = <path>
Path of a PEM encoded private key. It must correspond to the specified ” TLS Certificate”.

TLS Require = <yes|no> (default: no)
Without setting this to yes, Bareos can fall back to use unencryption connections. Enabling this
implicietly sets ”TLS Enable = yes”.

196

TLS Verify Peer = <yes|no> (default: yes)
If disabled, all certificates signed by a known CA will be accepted. If enabled, the CN of a certificate
must the Address or in the "TLS Allowed CN” list.

13.3 Example Console Configuration File

A Console configuration file might look like this:

Director {

Name = "bareos.example.com-dir"
address = "bareos.example.com"
Password = "PASSWORD"

}

Configuration 13.1: bconsole configuration

With this configuration, the console program (e.g. bconsole) will try to connect to a Bareos Director
named bareos.example.com-dir at the network address bareos.example.com and authenticate to the
admin console using the password PASSWORD.

13.3.1 Using Named Consoles

The following configuration files were supplied by Phil Stracchino.
To use named consoles from bconsole, use a bconsole.conf configuration file like this:

Director {
Name = bareos-dir
Address = myserver
Password = "XXXXXXXXXXX"

}
Console {
Name = restricted-user
Password = "RUPASSWORD"
}

Configuration 13.2: bconsole: restricted-user

Where the Password in the Director section is deliberately incorrect and the Console resource is given a
name, in this case restricted-user. Then in the Director configuration (not directly accessible by the user),
we define:

Console {
Name = restricted-user
Password = "RUPASSWORD"
JobACL = "Restricted Client Save"
ClientACL = restricted-client
StorageACL = main-storage
ScheduleACL = *allx*
PoolACL = *all*

FileSetACL = "Restricted Client’s FileSet"
CatalogACL = MyCatalog
CommandACL = run

Resource 13.3: bareos-dir.d/console/restricted-user.conf

The user login into the Director from his Console will get logged in as restricted-userl” . and
he will only be able to see or access a Job with the name Restricted Client Save, a Client with
the name restricted-client, a storage device main-storage, any Schedule or Pool, a FileSet named
Restricted Client’s FileSet, a Catalog named MyCatalog and the only command he can use in the
Console is the run command. In other words, this user is rather limited in what he can see and do with
Bareos. For details how to configure ACLs, see the acl data type description.

The following is an example of a bconsole.conf file that can access several Directors and has different
Consoles depending on the Director:

197

Director {

Name = bareos-dir

Address = myserver

Password = "XXXXXXXXXXX" # no, really. this is not obfuscation.
}

Director {

Name = SecondDirector

Address = secondserver

Password = "XXXXXXXXXXX" # no, really. this is not obfuscation.
}

Console {
Name = restricted-user
Password = "RUPASSWORD"
Director = MyDirector

}
Console {
Name = restricted-user2
Password = "OTHERPASSWORD"
Director = SecondDirector
}
Configuration 13.4: bconsole: multiple consoles
The second Director referenced at secondserverl . might look like the following:
Console {
Name = restricted-user2
Password = "OTHERPASSWORD"
JobACL = "Restricted Client Save"
ClientACL = restricted-client
StorageACL = second-storage
ScheduleACL = *allx
PoolACL = *allx*
FileSetACL = "Restricted Client’s FileSet"
CatalogACL = RestrictedCatalog
CommandACL = run, restore
WhereACL = "/"
}

Resource 13.5: bareos-dir.d/console/restricted-user2.conf

198

Chapter 14

Monitor Configuration

The Monitor configuration file is a stripped down version of the Director configuration file, mixed with a
Console configuration file. It simply contains the information necessary to contact Directors, Clients, and
Storage daemons you want to monitor.

For a general discussion of configuration file and resources including the data types recognized by Bareos,
please see the Configuration chapter of this manual.

The following Monitor Resource definition must be defined:

e Monitor — to define the Monitor’s name used to connect to all the daemons and the password used to
connect to the Directors. Note, you must not define more than one Monitor resource in the Monitor
configuration file.

e At least one Client, Storage or Director resource, to define the daemons to monitor.

14.1 Monitor Resource

The Monitor resource defines the attributes of the Monitor running on the network. The parameters you
define here must be configured as a Director resource in Clients and Storages configuration files, and as a
Console resource in Directors configuration files.

configuration directive name | type of data | default value | remark

Description = string

Dir Connect Timeout = time 10

FD Connect Timeout = time 10

Name = name required
Password = Mdb5password required
Refresh Interval = time 60

Require SSL = yes|no no

SD Connect Timeout = time 10

Description = <string>

Dir Connect Timeout = <time> (default: 10)
FD Connect Timeout = <time> (default: 10)
Name = <name> (required)

Specifies the Director name used to connect to Client and Storage, and the Console name used to

199

200

connect to Director. This record is required.

Password = <Md5password> (required)
Where the password is needed for Directors to accept the Console connection. This password must be
identical to the Password specified in the Console resource of the Director’s configuration file. This
record is required if you wish to monitor Directors.

Refresh Interval = <time> (default: 60)
Specifies the time to wait between status requests to each daemon. It can’t be set to less than 1
second or more than 10 minutes.

Require SSL = <yes|no> (default: no)

SD Connect Timeout = <time> (default: 10)

14.2 Director Resource

The Director resource defines the attributes of the Directors that are monitored by this Monitor.

As you are not permitted to define a Password in this resource, to avoid obtaining full Director privileges,
you must create a Console resource in the Director’s configuration file, using the Console Name and Password
defined in the Monitor resource. To avoid security problems, you should configure this Console resource to
allow access to no other daemons, and permit the use of only two commands: status and .status (see below
for an example).

You may have multiple Director resource specifications in a single Monitor configuration file.

configuration directive name | type of data | default value | remark
Address = string required
Description = string
Dir Port = positive-integer | 9101
Enable SSL = yes|no no
Name = name required
Address = <string> (required)

Where the address is a host name, a fully qualified domain name, or a network address used to connect
to the Director. This record is required.

Description = <string>

Dir Port = <positive-integer> (default: 9101)
Specifies the port to use to connect to the Director. This port must be identical to the DIRport
specified in the Director resource of the Director Configuration file.

Enable SSL = <yes|no> (default: no)

Name = <name> (required)
The Director name used to identify the Director in the list of monitored daemons. It is not required

201

to be the same as the one defined in the Director’s configuration file. This record is required.

14.3 Client Resource

The Client resource defines the attributes of the Clients that are monitored by this Monitor.

You must create a Director resource in the Client’s configuration file, using the Director Name defined in the
Monitor resource. To avoid security problems, you should set the Monitor directive to Yes in this Director
resource.

You may have multiple Director resource specifications in a single Monitor configuration file.

configuration directive name | type of data | default value | remark
Address = string required
Description = string
Enable SSL = yes|no no
FD Port = positive-integer | 9102
Name = name required
Password = Mdbpassword required

Address = <string> (required)

Where the address is a host name, a fully qualified domain name, or a network address in dotted quad
notation for a Bareos File daemon. This record is required.

Description = <string>

Enable SSL = <yes|no> (default: no)

FD Port = <positive-integer> (default: 9102)
Where the port is a port number at which the Bareos File daemon can be contacted.

Name = <name> (required)
The Client name used to identify the Director in the list of monitored daemons. It is not required to
be the same as the one defined in the Client’s configuration file. This record is required.

Password = <Mdb5password> (required)
This is the password to be used when establishing a connection with the File services, so the Client
configuration file on the machine to be backed up must have the same password defined for this
Director. This record is required.

14.4 Storage Resource

The Storage resource defines the attributes of the Storages that are monitored by this Monitor.

You must create a Director resource in the Storage’s configuration file, using the Director Name defined in
the Monitor resource. To avoid security problems, you should set the Monitor directive to Yes in this
Director resource.

You may have multiple Director resource specifications in a single Monitor configuration file.

configuration directive name | type of data | default value | remark

202

Address = string required
Description = string
Enable SSL = yes|no no
Name = name required
Password = Mdbpassword required
SD Address = string
SD Password = Md5password
SD Port = positive-integer | 9103
Address = <string> (required)

Where the address is a host name, a fully qualified domain name, or a network address in dotted quad
notation for a Bareos Storage daemon. This record is required.

Description = <string>

Enable SSL = <yes|no> (default: no)

Name = <name> (required)
The Storage name used to identify the Director in the list of monitored daemons. It is not required to
be the same as the one defined in the Storage’s configuration file. This record is required.

Password = <Md5password> (required)
This is the password to be used when establishing a connection with the Storage services. This same
password also must appear in the Director resource of the Storage daemon’s configuration file. This
record is required.

SD Address = <string>

SD Password = <Md5password>

SD Port = <positive-integer> (default: 9103)
Where port is the port to use to contact the storage daemon for information and to start jobs. This
same port number must appear in the Storage resource of the Storage daemon’s configuration file.

14.5 Tray Monitor

Tray Monitor Security

There is no security problem in relaxing the permissions on tray-monitor.conf as long as FD, SD and DIR
are configured properly, so the passwords contained in this file only gives access to the status of the daemons.
It could be a security problem if you consider the status information as potentially dangerous (most people
consider this as not being dangerous).

Concerning Director’s configuration:

In tray-monitor.conf, the password in the Monitor resource must point to a restricted console in bareos-
dir.conf (see the documentation). So, if you use this password with bconsole, you’ll only have access to the
status of the director (commands status and .status). It could be a security problem if there is a bug in the
ACL code of the director.

203

Concerning File and Storage Daemons’ configuration:

In tray-monitor.conf, the Name in the Monitor resource must point to a Director resource in bareos-
fd/sd.conf, with the Monitor directive set to Yes (see the documentation). It could be a security problem if
there is a bug in the code which check if a command is valid for a Monitor (this is very unlikely as the code
is pretty simple).

Example Tray Monitor configuration

An example Tray Monitor configuration file might be the following:

#
Bareos Tray Monitor Configuration File
#
Monitor {
Name = rufus-mon # password for Directors

Password = "GNOuRo7PTUmlMbqrJ2Gr1pOfkOHQJTxwnFyE4WSST3MWZseR"
RefreshInterval = 10 seconds

}

Client {
Name = rufus-fd
Address = rufus

FDPort = 9102 # password for FileDaemon

Password = "FYpq4yyIly562EMS35bA0JOQCOM2L3t5cZ0bxT3XQxgxppTn"
}
Storage {

Name = rufus-sd

Address = rufus

SDPort = 9103 # password for StorageDaemon

Password = "9usxgc307dMbe7 jbD16vOPX1hD64UVasIDDODH2WAujcDsc6"
}
Director {

Name = rufus-dir

DIRport = 9101

address = rufus

}

Configuration 14.1: Example tray-monitor.conf

Example File daemon’s Director record

#

Restricted Director, used by tray-monitor to get the

status of the file daemon

#

Director {
Name = rufus-mon
Password = "FYpq4yyIly562EMS35bA0JOQCOM2L3t5cZ0bxT3XQxgxppTn"
Monitor = yes

}

Configuration 14.2: Example Monitor resource

A full example can be found at Example Client Configuration File.

Example Storage daemon’s Director record

#

Restricted Director, used by tray-monitor to get the

status of the storage daemon

#

Director {
Name = rufus-mon
Password = "9usxgc307dMbe7 jbD16vOPX1hD64UVasIDDODH2WAujcDsc6"
Monitor = yes

}

Configuration 14.3: Example Monitor resource

A full example can be found at Example Storage Daemon Configuration File.

204

Example Director’s Console record

#
Restricted console used by tray-monitor to get the status of the director
#
Console {
Name = Monitor
Password = "GNOuRo7PTUmlMbqrJ2Gr1p0fkOHQJTxwnFyE4WSST3MWZseR"
CommandACL = status, .status

}

Configuration 14.4: Example Monitor resource

A full example can be found at Example Director Configuration File.

Part 111

Tasks and Concepts

205

Chapter 15

Bareos Console

The Bareos Console (bconsole) is a program that allows the user or the System Administrator, to interact
with the Bareos Director daemon while the daemon is running.

The current Bareos Console comes as a shell interface (TTY style). It permit the administrator or authorized
users to interact with Bareos. You can determine the status of a particular job, examine the contents of the
Catalog as well as perform certain tape manipulations with the Console program.

Since the Console program interacts with the Director through the network, your Console and Director
programs do not necessarily need to run on the same machine.

In fact, a certain minimal knowledge of the Console program is needed in order for Bareos to be able to write
on more than one tape, because when Bareos requests a new tape, it waits until the user, via the Console
program, indicates that the new tape is mounted.

15.1 Console Configuration

When the Console starts, it reads a standard Bareos configuration file named bconsole.conf unless you
specify the -¢ command line option (see below). This file allows default configuration of the Console, and
at the current time, the only Resource Record defined is the Director resource, which gives the Console the
name and address of the Director. For more information on configuration of the Console program, please
see the Console Configuration chapter of this document.

15.2 Running the Console Program

The console program can be run with the following options:

root@linux:~# bconsole -7
Usage: bconsole [-s] [-c config file] [-d debug_levell]

-D <dir> select a Director

-1 list Directors defined

-c <file> set configuration file to file

-d <nn> set debug level to <nn>

-dt print timestamp in debug output

-n no conio

-s no signals

-u <nn> set command execution timeout to <nn> seconds
-t test - read configuration and exit

-7 print this message.

Command 1: bconsole command line options
After launching the Console program (bconsole), it will prompt you for the next command with an asterisk
(*). Generally, for all commands, you can simply enter the command name and the Console program will
prompt you for the necessary arguments. Alternatively, in most cases, you may enter the command followed
by arguments. The general format is:

<command> <keywordl>[=<argument1>] <keyword2>[=<argument2>] ...

where command is one of the commands listed below; keyword is one of the keywords listed below (usually
followed by an argument); and argument is the value. The command may be abbreviated to the shortest
unique form. If two commands have the same starting letters, the one that will be selected is the one that

207

208

appears first in the help listing. If you want the second command, simply spell out the full command. None
of the keywords following the command may be abbreviated.
For example:

list files jobid=23
will list all files saved for Jobld 23. Or:

show pools

will display all the Pool resource records.
The maximum command line length is limited to 511 characters, so if you are scripting the console, you may
need to take some care to limit the line length.

15.2.1 Exit the Console Program

Normally, you simply enter quit or exit and the Console program will terminate. However, it waits until the
Director acknowledges the command. If the Director is already doing a lengthy command (e.g. prune), it
may take some time. If you want to immediately terminate the Console program, enter the .quit command.
There is currently no way to interrupt a Console command once issued (i.e. Ctrl-C does not work). However,
if you are at a prompt that is asking you to select one of several possibilities and you would like to abort the
command, you can enter a period (.), and in most cases, you will either be returned to the main command
prompt or if appropriate the previous prompt (in the case of nested prompts). In a few places such as where
it is asking for a Volume name, the period will be taken to be the Volume name. In that case, you will most
likely be able to cancel at the next prompt.

15.2.2 Running the Console from a Shell Script

You can automate many Console tasks by running the console program from a shell script. For example, if
you have created a file containing the following commands:

bconsole -c ./bconsole.conf <<END_OF_DATA
unmount storage=DDS-4

quit

END_OF_DATA

when that file is executed, it will unmount the current DDS-4 storage device. You might want to run this
command during a Job by using the RunBeforeJob or RunAfterJob records.
It is also possible to run the Console program from file input where the file contains the commands as follows:

bconsole -c ./bconsole.conf <filename

where the file named filename contains any set of console commands.
As a real example, the following script is part of the Bareos regression tests. It labels a volume (a disk
volume), runs a backup, then does a restore of the files saved.

bconsole <<END_OF_DATA

Qoutput /dev/null

messages

Qoutput /tmp/logl.out

label volume=TestVolume0O1

run job=Clientl yes

wait

messages

o#

©@# now do a restore

o#

Qoutput /tmp/log2.out

restore current all

yes

wait

messages

Qoutput

quit

END_OF _DATA

The output from the backup is directed to /tmp/logl.out and the output from the restore is directed to
/tmp/log2.out. To ensure that the backup and restore ran correctly, the output files are checked with:
grep "~ *Termination: *Backup OK" /tmp/logl.out
backupstat=$?

grep "~ xTermination: *Restore OK" /tmp/log2.out
restorestat=$7

209

15.3 Console Keywords

Unless otherwise specified, each of the following keywords takes an argument, which is specified after the
keyword following an equal sign. For example:

jobid=536
all Permitted on the status and show commands to specify all components or resources respectively.

allfrompool Permitted on the update command to specify that all Volumes in the pool (specified on the
command line) should be updated.

allfrompools Permitted on the update command to specify that all Volumes in all pools should be updated.
before Used in the restore command.

bootstrap Used in the restore command.

catalog Allowed in the use command to specify the catalog name to be used.

catalogs Used in the show command. Takes no arguments.

client | fd

clients Used in the show, list, and llist commands. Takes no arguments.

counters Used in the show command. Takes no arguments.

current Used in the restore command. Takes no argument.

days Used to define the number of days the 1ist nextvol command should consider when looking for jobs
to be run. The days keyword can also be used on the status dir command so that it will display jobs
scheduled for the number of days you want. It can also be used on the rerun command, where it will
automatically select all failed jobids in the last number of days for rerunning.

devices Used in the show command. Takes no arguments.

director | dir

directors Used in the show command. Takes no arguments.

directory Used in the restore command. Its argument specifies the directory to be restored.

enabled This keyword can appear on the update volume as well as the update slots commands, and can
allows one of the following arguments: yes, true, no, false, archived, 0, 1, 2. Where 0 corresponds to
no or false, 1 corresponds to yes or true, and 2 corresponds to archived. Archived volumes will not be
used, nor will the Media record in the catalog be pruned. Volumes that are not enabled, will not be
used for backup or restore.

done Used in the restore command. Takes no argument.

file Used in the restore command.

files Used in the list and llist commands. Takes no arguments.

fileset

filesets Used in the show command. Takes no arguments.

help Used in the show command. Takes no arguments.

hours Used on the rerun command to select all failed jobids in the last number of hours for rerunning.
jobs Used in the show, list and llist commands. Takes no arguments.

jobmedia Used in the list and llist commands. Takes no arguments.

jobtotals Used in the list and llist commands. Takes no arguments.

210

jobid The Jobld is the numeric jobid that is printed in the Job Report output. It is the index of the
database record for the given job. While it is unique for all the existing Job records in the catalog
database, the same Jobld can be reused once a Job is removed from the catalog. Probably you will
refer specific Jobs that ran using their numeric Jobld.

Jobld can be used on the rerun command to select all jobs failed after and including the given jobid
for rerunning.

job | jobname The Job or Jobname keyword refers to the name you specified in the Job resource, and
hence it refers to any number of Jobs that ran. It is typically useful if you want to list all jobs of a
particular name.

level

listing Permitted on the estimate command. Takes no argument.
limit

messages Used in the show command. Takes no arguments.

media Used in the list and llist commands. Takes no arguments.
nextvolume | nextvol Used in the list and llist commands. Takes no arguments.
on Takes no keyword.

off Takes no keyword.

pool

pools Used in the show, list, and llist commands. Takes no arguments.
select Used in the restore command. Takes no argument.

limit Used in the setbandwidth command. Takes integer in KB/s unit.
schedules Used in the show command. Takes no arguments.

storage | store | sd

storages Used in the show command. Takes no arguments.

ujobid The ujobid is a unique job identification that is printed in the Job Report output. At the current
time, it consists of the Job name (from the Name directive for the job) appended with the date and
time the job was run. This keyword is useful if you want to completely identify the Job instance run.

volume
volumes Used in the list and llist commands. Takes no arguments.
where Used in the restore command.

yes Used in the restore command. Takes no argument.

15.4 Console Commands
The following commands are currently implemented:

add This command is used to add Volumes to an existing Pool. That is, it creates the Volume name in the
catalog and inserts into the Pool in the catalog, but does not attempt to access the physical Volume.
Once added, Bareos expects that Volume to exist and to be labeled. This command is not normally
used since Bareos will automatically do the equivalent when Volumes are labeled. However, there may
be times when you have removed a Volume from the catalog and want to later add it back.

The full form of this command is:
add [pool=<pool-name>] [storage=<storage>] [jobid=<JobId>]

bconsole 15.1: add

211

Normally, the 1abel command is used rather than this command because the label command labels
the physical media (tape, disk,, ...) and does the equivalent of the add command. The add command
affects only the Catalog and not the physical media (data on Volumes). The physical media must exist
and be labeled before use (usually with the label command). This command can, however, be useful
if you wish to add a number of Volumes to the Pool that will be physically labeled at a later time. It
can also be useful if you are importing a tape from another site. Please see the label command for
the list of legal characters in a Volume name.

autodisplay This command accepts on or off as an argument, and turns auto-display of messages on or off
respectively. The default for the console program is off, which means that you will be notified when
there are console messages pending, but they will not automatically be displayed.

When autodisplay is turned off, you must explicitly retrieve the messages with the messages command.
When autodisplay is turned on, the messages will be displayed on the console as they are received.

automount This command accepts on or off as the argument, and turns auto-mounting of the Volume
after a label command on or off respectively. The default is on. If automount is turned off, you
must explicitly mount tape Volumes after a label command to use it.

cancel This command is used to cancel a job and accepts jobid=nnn or job=xxx as an argument where
nnn is replaced by the Jobld and xxx is replaced by the job name. If you do not specify a keyword,
the Console program will prompt you with the names of all the active jobs allowing you to choose one.

The full form of this command is:
cancel [jobid=<number> job=<job-name> ujobid=<unique-jobid>]

bconsole 15.2: cancel

Once a Job is marked to be cancelled, it may take a bit of time (generally within a minute but up
to two hours) before the Job actually terminates, depending on what operations it is doing. Don’t be
surprised that you receive a Job not found message. That just means that one of the three daemons
had already canceled the job. Messages numbered in the 1000’s are from the Director, 2000’s are from
the File daemon and 3000’s from the Storage daemon.

It is possible to cancel multiple jobs at once. Therefore, the following extra options are available for
the job-selection:

all jobs

e all jobs with a created state
e all jobs with a blocked state
e all jobs with a waiting state

e all jobs with a running state

Usage:

cancel all
cancel all state=<created|blocked|waiting|running>

bceonsole 15.3: cancel all

Sometimes the Director already removed the job from its running queue, but the storage daemon still
thinks it is doing a backup (or another job) - so you cannot cancel the job from within a console
anymore. Therefore it is possible to cancel a job by Jobld on the storage daemon. It might be helpful
to execute a status storage on the Storage Daemon to make sure what job you want to cancel.

Usage:
cancel storage=<Storage Daemon> Jobid=<JobId>

bceonsole 15.4: cancel on Storage Daemon

This way you can also remove a job that blocks any other jobs from running without the need to restart
the whole storage daemon.

212

create This command is not normally used as the Pool records are automatically created by the Director
when it starts based on what it finds in the configuration. If needed, this command can be used, to
create a Pool record in the database using the Pool resource record defined in the Director’s config-
uration file. So in a sense, this command simply transfers the information from the Pool resource in
the configuration file into the Catalog. Normally this command is done automatically for you when
the Director starts providing the Pool is referenced within a Job resource. If you use this command on
an existing Pool, it will automatically update the Catalog to have the same information as the Pool
resource. After creating a Pool, you will most likely use the label command to label one or more
volumes and add their names to the Media database.

The full form of this command is:
create [pool=<pool-name>]

bconsole 15.5: create

When starting a Job, if Bareos determines that there is no Pool record in the database, but there is a
Pool resource of the appropriate name, it will create it for you. If you want the Pool record to appear
in the database immediately, simply use this command to force it to be created.

configure Configures director resources during runtime. The first configure subcommands are configure
add and configure export. Other subcommands may follow in later releases.

configure add This command allows to add resources during runtime. Usage:

configure add <resourcetype> name=<resourcename> <directivel>=<valuel>
— <directive2>=<value2> ...

bconsole 15.6:

The command generates and loads a new, valid resource. As the new resource is also stored at
<CONFIGDIR>/bareos-dir.d/<resourcetype>/<resourcename>.conf

(see Resource file conventions) it is persistent upon reload and restart.

This feature requires Subdirectory Configuration Scheme.

All kinds of resources can be added. When adding a client resource, the Director Resource for
the Bareos File Daemon is also created and stored at:

<CONFIGDIR>/bareos-dir-export/client/<clientname>/bareos-fd.d/director/
<clientname>.conf

xconfigure add client name=client2-fd address=192.168.0.2 password=secret
Created resource config file "/etc/bareos/bareos-dir.d/client/client2-fd.conf":
Client {

Name = client2-fd

Address = 192.168.0.2

Password = secret
}
xconfigure add job name=client2-job client=client2-fd jobdefs=DefaultJob
Created resource config file "/etc/bareos/bareos-dir.d/job/client2-job.conf":
Job {

Name = client2-job

Client = client2-fd

JobDefs = DefaultJob
}

bconsole 15.7: Example: adding a client and a job resource during runtime

These two commands create three resource configuration files:

e /etc/bareos/bareos-dir.d/client/client2-fd.conf

e /etc/bareos/bareos-dir-export/client/client2-fd/bareos-fd.d/director/
bareos-dir.conf (assuming your director resource is named bareos-dir)

e /etc/bareos/bareos-dir.d/job/client2-job.conf

The files in bareos-dir-export/client/ directory are not used by the Bareos Director. However,
they can be copied to new clients to configure these clients for the Bareos Director.

213

Please note! Don’t be confused by the extensive output of help configure. As configure add
allows configuring arbitrary resources, the output of help configure lists all the resources, each
with all valid directives. The same data is also used for bconsole command line completion.
Available since Bareos Version >= 16.2.4.

configure export This command allows to export the Director®™ resource for clients already con-
figured in the Bareos Director.

Usage:

configure export client=bareos-fd
Exported resource file [/
— "/etc/bareos/bareos-dir-export/client/bareos-fd/bareos-fd.d/director/bareos-dir.conf":
Director {
Name = bareos-dir
Password = "[md5]932d1d3ef3c298047809119510f4bee6"
}

bconsole 15.8: Export the bareos-fd Director resource for the client bareos-fd

To use it, copy the Director®™ resource file to the client machine (on Linux: to /etc/bareos/
bareos-fd.d/director/) and restart the Bareos File Daemon.

Available since Bareos Version >= 16.2.4.

delete The delete command is used to delete a Volume, Pool or Job record from the Catalog as well as
all associated catalog Volume records that were created. This command operates only on the Catalog
database and has no effect on the actual data written to a Volume. This command can be dangerous
and we strongly recommend that you do not use it unless you know what you are doing.

If the keyword Volume appears on the command line, the named Volume will be deleted from the
catalog, if the keyword Pool appears on the command line, a Pool will be deleted, and if the keyword
Job appears on the command line, a Job and all its associated records (File and JobMedia) will be
deleted from the catalog.

The full form of this command is:

delete pool=<pool-name>

delete volume=<volume-name> pool=<pool-name>
delete JobId=<job-id> JobId=<job-id2> ...
delete Job JobId=n,m,o-r,t ...

bconsole 15.9: delete

The first form deletes a Pool record from the catalog database. The second form deletes a Volume
record from the specified pool in the catalog database. The third form deletes the specified Job record
from the catalog database. The last form deletes Jobld records for Joblds n, m, o, p, q, r, and t.
Where each one of the n,m,... is, of course, a number. That is a ”delete jobid” accepts lists and ranges
of jobids.

disable This command permits you to disable a Job for automatic scheduling. The job may have been
previously enabled with the Job resource Enabled directive or using the console enable command.
The next time the Director is reloaded or restarted, the Enable/Disable state will be set to the value
in the Job resource (default enabled) as defined in the Bareos Director configuration.

The full form of this command is:
disable job=<job-name>

bconsole 15.10: disable

enable This command permits you to enable a Job for automatic scheduling. The job may have been
previously disabled with the Job resource Enabled directive or using the console disable command.
The next time the Director is reloaded or restarted, the Enable/Disable state will be set to the value
in the Job resource (default enabled) as defined in the Bareos Director configuration.

The full form of this command is:
enable job=<job-name>

bconsole 15.11: enable

214

estimate Using this command, you can get an idea how many files will be backed up, or if you are unsure
about your Include statements in your FileSet, you can test them without doing an actual backup. The
default is to assume a Full backup. However, you can override this by specifying a level=Incremental
or level=Differential on the command line. A Job name must be specified or you will be prompted
for one, and optionally a Client and FileSet may be specified on the command line. It then contacts
the client which computes the number of files and bytes that would be backed up. Please note that
this is an estimate calculated from the number of blocks in the file rather than by reading the actual
bytes. As such, the estimated backup size will generally be larger than an actual backup.

The estimate command can use the accurate code to detect changes and give a better estimation.
You can set the accurate behavior on command line using accurate=yes/no or use the Job setting as
default value.

Optionally you may specify the keyword listing in which case, all the files to be backed up will be
listed. Note, it could take quite some time to display them if the backup is large. The full form is:

The full form of this command is:

estimate job=<job-name> listing client=<client-name> accurate=<yes|no> [/
— fileset=<fileset-name> level=<level-name>

bconsole 15.12: estimate

Specification of the job is sufficient, but you can also override the client, fileset, accurate and/or level
by specifying them on the estimate command line.

As an example, you might do:

Qoutput /tmp/listing
estimate job=NightlySave listing level=Incremental
Q@output

bconsole 15.13: estimate: redirected output

which will do a full listing of all files to be backed up for the Job NightlySave during an Incremental
save and put it in the file /tmp/listing. Note, the byte estimate provided by this command is based
on the file size contained in the directory item. This can give wildly incorrect estimates of the actual
storage used if there are sparse files on your systems. Sparse files are often found on 64 bit systems for
certain system files. The size that is returned is the size Bareos will backup if the sparse option is not
specified in the FileSet. There is currently no way to get an estimate of the real file size that would be
found should the sparse option be enabled.

exit This command terminates the console program.

export The export command is used to export tapes from an autochanger. Most Automatic Tapechangers
offer special slots for importing new tape cartridges or exporting written tape cartridges. This can
happen without having to set the device offline.

The full form of this command is:

export storage=<storage-name> srcslots=<slot-selection> [dstslots=<slot-selection> [/
— volume=<volume-name> scan]

bconsole 15.14: export

The export command does exactly the opposite of the import command. You can specify which slots
should be transferred to import/export slots. The most useful application of the export command is
the possibility to automatically transfer the volumes of a certain backup into the import/export slots
for external storage.

To be able to to this, the export command also accepts a list of volume names to be exported.
Example:

export volume=A00020L4|A00007L4|A0O0005L4

bconsole 15.15: export volume

215

Instead of exporting volumes by names you can also select a number of slots via the srcslots keyword
and export those to the slots you specify in dstslots. The export command will check if the slots have
content (e.g. otherwise there is not much to export) and if there are enough export slots and if those
are really import/export slots.

Example:
export srcslots=1-2 dstslots=37-38

bconsole 15.16: export slots

To automatically export the Volumes used by a certain backup job, you can use the following RunScript
in that job:

RunScript {
Console = "export storage=TandbergT40 volume=%V"
RunsWhen = After
RunsOnClient = no

bconsole 15.17: automatic export

To send an e-mail notification via the Messages resource regarding export tapes you can use the Variable
%V substitution in the Messages resource, which is implemented in Bareos 13.2. However, it does also
work in earlier releases inside the job resources. So in versions prior to Bareos 13.2 the following
workaround can be used:

RunAfterJob = "/bin/bash -c \"/bin/echo Remove Tape %V | \
/usr/sbin/bsmtp -h localhost -f root@localhost -s ’Remove Tape %V’ root@localhost \""

beonsole 15.18: e-mail notification via messages resource regarding export tapes

gui Invoke the non-interactive gui mode. This command is only used when bconsole is commanded by an
external program.

help This command displays the list of commands available.

import The import command is used to import tapes into an autochanger. Most Automatic Tapechangers
offer special slots for importing new tape cartridges or exporting written tape cartridges. This can
happen without having to set the device offline.

The full form of this command is:

import storage=<storage-name> [srcslots=<slot-selection> dstslots=<slot-selection> [/
— volume=<volume-name> scan]

bconsole 15.19: import

To import new tapes into the autochanger, you only have to load the new tapes into the import/export
slots and call import from the cmdline.

The import command will automatically transfer the new tapes into free slots of the autochanger. The
slots are filled in order of the slot numbers. To import all tapes, there have to be enough free slots to
load all tapes.

Example with a Library with 36 Slots and 3 Import/Export Slots:

*import storage=TandbergT40

Connecting to Storage daemon TandbergT40 at bareos:9103 ...
3306 Issuing autochanger "slots" command.

Device "Drive-1" has 39 slots.

Connecting to Storage daemon TandbergT40 at bareos:9103 ...
3306 Issuing autochanger "listall" command.

Connecting to Storage daemon TandbergT40 at bareos:9103 ...
3306 Issuing autochanger transfer command.

3308 Successfully transfered volume from slot 37 to 20.
Connecting to Storage daemon TandbergT40 at bareos:9103 ...
3306 Issuing autochanger transfer command.

3308 Successfully transfered volume from slot 38 to 21.

216

Connecting to Storage daemon TandbergT40 at bareos:9103 ...
3306 Issuing autochanger transfer command.
3308 Successfully transfered volume from slot 39 to 25.

bconsole 15.20: import example

You can also import certain slots when you don’t have enough free slots in your autochanger to put
all the import/export slots in.

Example with a Library with 36 Slots and 3 Import/Export Slots importing one slot:

*import storage=TandbergT40 srcslots=37 dstslots=20
Connecting to Storage daemon TandbergT40 at bareos:9103 ...
3306 Issuing autochanger "slots" command.

Device "Drive-1" has 39 slots.

Connecting to Storage daemon TandbergT40 at bareos:9103 ...
3306 Issuing autochanger "listall" command.

Connecting to Storage daemon TandbergT40 at bareos:9103 ...
3306 Issuing autochanger transfer command.

3308 Successfully transfered volume from slot 37 to 20.

bconsole 15.21: import example

label This command is used to label physical volumes. The full form of this command is:

label storage=<storage-name> volume=<volume-name> slot=<slot>

bconsole 15.22: label

If you leave out any part, you will be prompted for it. The media type is automatically taken from the
Storage resource definition that you supply. Once the necessary information is obtained, the Console
program contacts the specified Storage daemon and requests that the Volume be labeled. If the Volume
labeling is successful, the Console program will create a Volume record in the appropriate Pool.

The Volume name is restricted to letters, numbers, and the special characters hyphen (-), underscore
(_), colon (:), and period (.). All other characters including a space are invalid. This restriction is to
ensure good readability of Volume names to reduce operator errors.

Please note, when labeling a blank tape, Bareos will get read I/O error when it attempts to ensure
that the tape is not already labeled. If you wish to avoid getting these messages, please write an EOF
mark on your tape before attempting to label it:

mt rewind
mt weof

The label command can fail for a number of reasons:

1. The Volume name you specify is already in the Volume database.

2. The Storage daemon has a tape or other Volume already mounted on the device, in which case
you must unmount the device, insert a blank tape, then do the label command.

3. The Volume in the device is already a Bareos labeled Volume. (Bareos will never relabel a Bareos
labeled Volume unless it is recycled and you use the relabel command).

4. There is no Volume in the drive.

There are two ways to relabel a volume that already has a Bareos label. The brute force method is to
write an end of file mark on the tape using the system mt program, something like the following:

mt -f /dev/st0 rewind
mt -f /dev/st0 weof

For a disk volume, you would manually delete the Volume.

Then you use the label command to add a new label. However, this could leave traces of the old
volume in the catalog.

The preferable method to relabel a Volume is to first purge the volume, either automatically, or
explicitly with the purge command, then use the relabel command described below.

217

If your autochanger has barcode labels, you can label all the Volumes in your autochanger one after
another by using the label barcodes command. For each tape in the changer containing a barcode,
Bareos will mount the tape and then label it with the same name as the barcode. An appropriate
Media record will also be created in the catalog. Any barcode that begins with the same characters
as specified on the ”CleaningPrefix=xxx" (default is " CLN”) directive in the Director’s Pool resource,
will be treated as a cleaning tape, and will not be labeled. However, an entry for the cleaning tape
will be created in the catalog. For example with:

Pool {
Name ...
Cleaning Prefix = "CLN"

Configuration 15.23: Cleaning Tape

Any slot containing a barcode of CLNxxxx will be treated as a cleaning tape and will not be mounted.
Note, the full form of the command is:

label storage=xxx pool=yyy slots=1-5,10 barcodes

bconsole 15.24: label

list The list command lists the requested contents of the Catalog. The various fields of each record are
listed on a single line. The various forms of the list command are:

list jobs

list jobid=<id> (list jobid id)

list ujobid=<unique job name> (list job with unique name)
list job=<job-name> (list all jobs with "job-name")
list jobname=<job-name> (same as above)

In the above, you can add "limit=nn" to limit the output to nn jobs.
list joblog jobid=<id> (list job output if recorded in the catalog)
list jobmedia
list jobmedia jobid=<id>
list jobmedia job=<job-name>
list files jobid=<id>
list files job=<job-name>
list pools
list clients
list jobtotals
list volumes
list volumes jobid=<id>
list volumes pool=<pool-name>
list volumes job=<job-name>
list volume=<volume-name>
list nextvolume job=<job-name>
list nextvol job=<job-name>
list nextvol job=<job-name> days=nnn

bconsole 15.25: list

What most of the above commands do should be more or less obvious. In general if you do not specify
all the command line arguments, the command will prompt you for what is needed.

The list nextvol command will print the Volume name to be used by the specified job. You should
be aware that exactly what Volume will be used depends on a lot of factors including the time and what
a prior job will do. It may fill a tape that is not full when you issue this command. As a consequence,
this command will give you a good estimate of what Volume will be used but not a definitive answer.
In addition, this command may have certain side effect because it runs through the same algorithm
as a job, which means it may automatically purge or recycle a Volume. By default, the job specified
must run within the next two days or no volume will be found. You can, however, use the days=nnn
specification to specify up to 50 days. For example, if on Friday, you want to see what Volume will be
needed on Monday, for job MyJob, you would use 1list nextvol job=MyJob days=3.

If you wish to add specialized commands that list the contents of the catalog, you can do so by adding
them to the query.sql file. However, this takes some knowledge of programming SQL. Please see the

218

query command below for additional information. See below for listing the full contents of a catalog
record with the 11ist command.

As an example, the command list pools might produce the following output:

*list pools

e + —+- +———— Hommm o Hommm o +
| PoId | Name | NumVols | MaxVols | PoolType | LabelFormat |
et e + + + + +
| 1 | Default | 0 | 0 | Backup | * |
| 2 | Recycle | 0 | 8 | Backup | File |
et e + + + + +

bconsole 15.26: list pools

As mentioned above, the list command lists what is in the database. Some things are put into the
database immediately when Bareos starts up, but in general, most things are put in only when they
are first used, which is the case for a Client as with Job records, etc.

Bareos should create a client record in the database the first time you run a job for that client. Doing
a status will not cause a database record to be created. The client database record will be created
whether or not the job fails, but it must at least start. When the Client is actually contacted, additional
info from the client will be added to the client record (a "uname -a” output).

If you want to see what Client resources you have available in your conf file, you use the Console
command show clients.

llist The llist or ”long list” command takes all the same arguments that the list command described above

does. The difference is that the llist command list the full contents of each database record selected.
It does so by listing the various fields of the record vertically, with one field per line. It is possible to
produce a very large number of output lines with this command.

If instead of the list pools as in the example above, you enter llist pools you might get the following
output:

*1list pools
PoollId: 1
Name: Default
NumVols: O
MaxVols: O
UseOnce: O
UseCatalog: 1
AcceptAnyVolume: 1
VolRetention: 1,296,000
VolUseDuration: 86,400
MaxVolJobs: 0O
MaxVolBytes: O
AutoPrune: 0O
Recycle: 1
PoolType: Backup
LabelFormat: *

PoollId: 2

Name: Recycle
NumVols:
MaxVols:
UseOnce:
UseCatalog:
AcceptAnyVolume:
VolRetention:
VolUseDuration:
MaxVolJobs:
MaxVolBytes:
AutoPrune:
Recycle:
PoolType: Backup

LabelFormat: File

[0 e))
o O
o O

= O O, WWkRK P~ O W o

beonsole 15.27: llist pools

219

messages This command causes any pending console messages to be immediately displayed.
memory Print current memory usage.

mount The mount command is used to get Bareos to read a volume on a physical device. It is a way to
tell Bareos that you have mounted a tape and that Bareos should examine the tape. This command
is normally used only after there was no Volume in a drive and Bareos requests you to mount a new
Volume or when you have specifically unmounted a Volume with the unmount console command,
which causes Bareos to close the drive. If you have an autoloader, the mount command will not cause
Bareos to operate the autoloader unless you specify a slot and possibly a drive. The various forms of
the mount command are:

mount storage=<storage-name> [slot=<num>] [
drive=<num>]
mount [jobid=<id> | job=<job-name>]

bconsole 15.28: mount

If you have specified Automatic Mount = yes in the Storage daemon’s Device resource, under most
circumstances, Bareos will automatically access the Volume unless you have explicitly unmount ed it
in the Console program.

move The move command allows to move volumes between slots in an autochanger without having to leave
the bconsole.

To move a volume from slot 32 to slots 33, use:

*move storage=TandbergT40 srcslots=32 dstslots=33
Connecting to Storage daemon TandbergT40 at bareos:9103 ...
3306 Issuing autochanger "slots" command.

Device "Drive-1" has 39 slots.

Connecting to Storage daemon TandbergT40 at bareos:9103 ...
3306 Issuing autochanger "listall" command.

Connecting to Storage daemon TandbergT40 at bareos:9103 ...
3306 Issuing autochanger transfer command.

3308 Successfully transfered volume from slot 32 to 33.

bconsole 15.29: move

prune The Prune command allows you to safely remove expired database records from Jobs, Volumes and
Statistics. This command works only on the Catalog database and does not affect data written to
Volumes. In all cases, the Prune command applies a retention period to the specified records. You can
Prune expired File entries from Job records; you can Prune expired Job records from the database,
and you can Prune both expired Job and File records from specified Volumes.

prune files|jobs|volume|stats client=<client-name> volume=<volume-name>

bconsole 15.30: prune

For a Volume to be pruned, the VolStatus must be Full, Used, or Append, otherwise the pruning will
not take place.

purge The Purge command will delete associated Catalog database records from Jobs and Volumes without
considering the retention period. Purge works only on the Catalog database and does not affect data
written to Volumes. This command can be dangerous because you can delete catalog records associated
with current backups of files, and we recommend that you do not use it unless you know what you are
doing. The permitted forms of purge are:

purge files jobid=<jobid>|job=<job-name> | client=<client-name>
purge jobs client=<client-name> (of all jobs)
purge volume|volume=<vol-name> (of all jobs)

beonsole 15.31: purge

For the purge command to work on Volume Catalog database records the VolStatus must be Append,
Full, Used, or Error.

220

The actual data written to the Volume will be unaffected by this command unless you are using the
ActionOnPurge=Truncate option on those Media.

To ask Bareos to truncate your Purged volumes, you need to use the following command in interactive
mode or in a RunScript:

*purge volume action=truncate storage=File allpools
or by default, action=all
*purge volume action storage=File pool=Default

bconsole 15.32: purge example

It is possible to specify the volume name, the media type, the pool, the storage, etc. .. (see help purge).
Be sure that your storage device is idle when you decide to run this command.

resolve In the configuration files, Addresses can (and normally should) be specified as DNS names. As
the different components of Bareos will establish network connections to other Bareos components, it
is important that DNS name resolution works on involved components and delivers the same results.
The resolve command can be used to test DNS resolution of a given hostname on director, storage
daemonm or client.

*resolve www.bareos.com
bareos-dir resolves www.bareos.com to host[ipv4:84.44.166.242]

*resolve client=client1l-fd www.bareos.com
clientl-fd resolves www.bareos.com to host[ipv4:84.44.166.242]

*resolve storage=File www.bareos.com
bareos-sd resolves www.bareos.com to host[ipv4:84.44.166.242]

bconsole 15.33: resolve example

query This command reads a predefined SQL query from the query file (the name and location of the
query file is defined with the QueryFile resource record in the Director’s configuration file). You are
prompted to select a query from the file, and possibly enter one or more parameters, then the command
is submitted to the Catalog database SQL engine.

quit This command terminates the console program. The console program sends the quit request to the
Director and waits for acknowledgment. If the Director is busy doing a previous command for you that
has not terminated, it may take some time. You may quit immediately by issuing the .quit command
(i.e. quit preceded by a period).

relabel This command is used to label physical volumes.

The full form of this command is:

relabel storage=<storage-name> oldvolume=<old-volume-name> volume=<newvolume-name>}

bconsole 15.34: relabel

If you leave out any part, you will be prompted for it. In order for the Volume (old-volume-name) to
be relabeled, it must be in the catalog, and the volume status must be marked Purged or Recycle.
This happens automatically as a result of applying retention periods, or you may explicitly purge the
volume using the purge command.

Once the volume is physically relabeled, the old data previously written on the Volume is lost and
cannot be recovered.

release This command is used to cause the Storage daemon to release (and rewind) the current tape in the
drive, and to re-read the Volume label the next time the tape is used.

release storage=<storage-name>

bconsole 15.35: release

221

After a release command, the device is still kept open by Bareos (unless Always Open £¢ . =No) so
it cannot be used by another program. However, with some tape drives, the operator can remove the
current tape and to insert a different one, and when the next Job starts, Bareos will know to re-read
the tape label to find out what tape is mounted. If you want to be able to use the drive with another
program (e.g. mt), you must use the unmount command to cause Bareos to completely release (close)

the device.

reload The reload command causes the Director to re-read its configuration file and apply the new values.
The new values will take effect immediately for all new jobs. However, if you change schedules, be
aware that the scheduler pre-schedules jobs up to two hours in advance, so any changes that are to
take place during the next two hours may be delayed. Jobs that have already been scheduled to run
(i.e. surpassed their requested start time) will continue with the old values. New jobs will use the
new values. Each time you issue a reload command while jobs are running, the prior config values
will queued until all jobs that were running before issuing the reload terminate, at which time the
old config values will be released from memory. The Directory permits keeping up to ten prior set of
configurations before it will refuse a reload command. Once at least one old set of config values has
been released it will again accept new reload commands.

While it is possible to reload the Director’s configuration on the fly, even while jobs are executing, this
is a complex operation and not without side effects. Accordingly, if you have to reload the Director’s
configuration while Bareos is running, it is advisable to restart the Director at the next convenient
opportunity.

rerun The rerun command allows you to re-run a Job with exactly the same setting as the original Job. In
Bareos, the job configuration is often altered by job overrides. These overrides alter the configuration
of the job just for one job run. If because of any reason, a job with overrides fails, it is not easy to
restart a new job that is exactly configured as the job that failed. The whole job configuration is
automatically set to the defaults and it is hard to configure everything like it was.

By using the rerun command, it is much easier to rerun a job exactly as it was configured. You only
have to specify the Jobld of the failed job.

rerun jobid=<jobid> since_jobid=<jobid> days=<nr_days> hours=<nr_hours> yes

bconsole 15.36: rerun

You can select the jobid(s) to rerun by using one of the selection criteria. Using jobid= will automati-
cally select all jobs failed after and including the given jobid for rerunning. By using days= or hours=,
you can select all failed jobids in the last number of days or number of hours respectively for rerunning.

restore The restore command allows you to select one or more Jobs (Joblds) to be restored using various
methods. Once the Joblds are selected, the File records for those Jobs are placed in an internal Bareos
directory tree, and the restore enters a file selection mode that allows you to interactively walk up
and down the file tree selecting individual files to be restored. This mode is somewhat similar to the
standard Unix restore program’s interactive file selection mode.

restore storage=<storage-name> client=<backup-client-name>
where=<path> pool=<pool-name> fileset=<fileset-name>
restoreclient=<restore-client-name>
restorejob=<job-name>
select current all dome

bconsole 15.37: restore

Where current, if specified, tells the restore command to automatically select a restore to the most
current backup. If not specified, you will be prompted. The all specification tells the restore command
to restore all files. If it is not specified, you will be prompted for the files to restore. For details of the
restore command, please see the Restore Chapter of this manual.

The client keyword initially specifies the client from which the backup was made and the client to
which the restore will be make. However, if the restoreclient keyword is specified, then the restore is
written to that client.

The restore job rarely needs to be specified, as bareos installations commonly only have a single restore
job configured. However, for certain cases, such as a varying list of RunScript specifications, multiple
restore jobs may be configured. The restorejob argument allows the selection of one of these jobs.

For more details, see the Restore chapter.

222

run This command allows you to schedule jobs to be run immediately.

The full form of the command is:

run job=<job-name> client=<client-name>
fileset=<FileSet-name> level=<level-keyword>
storage=<storage-name> where=<directory-prefix>
when=<universal-time-specification> spooldata=yes|no yes

bconsole 15.38: run

Any information that is needed but not specified will be listed for selection, and before starting the
job, you will be prompted to accept, reject, or modify the parameters of the job to be run, unless you
have specified yes, in which case the job will be immediately sent to the scheduler.

If you wish to start a job at a later time, you can do so by setting the When time. Use the mod option
and select When (no. 6). Then enter the desired start time in YYYY-MM-DD HH:MM:SS format.

The spooldata argument of the run command cannot be modified through the menu and is only
accessible by setting its value on the intial command line. If no spooldata flag is set, the job, storage
or schedule flag is used.

setbandwidth This command (Version >= 12.4.1) is used to limit the bandwidth of a running job or a
client.

setbandwidth limit=<nb> [jobid=<id> | client=<cli>]

bconsole 15.39: setbandwidth

setdebug This command is used to set the debug level in each daemon. The form of this command is:

setdebug level=nnn [trace=0/1 client=<client-name> | dir | director |
— storage=<storage-name> | all]

bconsole 15.40: setdebug

Each of the daemons normally has debug compiled into the program, but disabled. There are two ways
to enable the debug output.

One is to add the -d nnn option on the command line when starting the daemon. The nnn is the
debug level, and generally anything between 50 and 200 is reasonable. The higher the number, the
more output is produced. The output is written to standard output.

The second way of getting debug output is to dynamically turn it on using the Console using the
setdebug level=nnn command. If none of the options are given, the command will prompt you. You
can selectively turn on/off debugging in any or all the daemons (i.e. it is not necessary to specify all
the components of the above command).

If trace=1 is set, then tracing will be enabled, and the daemon will be placed in trace mode, which
means that all debug output as set by the debug level will be directed to his trace file in the current
directory of the daemon. When tracing, each debug output message is appended to the trace file. You
must explicitly delete the file when you are done.

xsetdebug level=100 trace=1 dir
level=100 trace=1 hangup=0 timestamp=0 /
— tracefilename=/var/lib/bareos/bareos-dir.example.com.trace

bconsole 15.41: set Director debug level to 100 and get messages written to his trace file

setip Sets new client address — if authorized.

A console is authorized to use the SetIP command only if it has a Console resource definition in both
the Director and the Console. In addition, if the console name, provided on the Name = directive,
must be the same as a Client name, the user of that console is permitted to use the SetIP command
to change the Address directive in the Director’s client resource to the IP address of the Console. This
permits portables or other machines using DHCP (non-fixed IP addresses) to "notify” the Director of
their current IP address.

223

show The show command will list the Director’s resource records as defined in the Director’s configura-
tion. This command is used mainly for debugging purposes by developers. The following keywords
are accepted on the show command line: catalogs, clients, counters, devices, directors, filesets, jobs,
messages, pools, schedules, storages, all, help. Please don’t confuse this command with the list, which
displays the contents of the catalog.

sqlquery The sqlquery command puts the Console program into SQL query mode where each line you
enter is concatenated to the previous line until a semicolon (;) is seen. The semicolon terminates the
command, which is then passed directly to the SQL database engine. When the output from the SQL
engine is displayed, the formation of a new SQL command begins. To terminate SQL query mode and
return to the Console command prompt, you enter a period (.) in column 1.

Using this command, you can query the SQL catalog database directly. Note you should really know
what you are doing otherwise you could damage the catalog database. See the query command below
for simpler and safer way of entering SQL queries.

Depending on what database engine you are using (MySQL, PostgreSQL or SQLite), you will have
somewhat different SQL commands available. For more detailed information, please refer to the
MySQL, PostgreSQL or SQLite documentation.

status This command will display the status of all components. For the director, it will display the next
jobs that are scheduled during the next 24 hours as well as the status of currently running jobs. For
the Storage Daemon, you will have drive status or autochanger content. The File Daemon will give you
information about current jobs like average speed or file accounting. The full form of this command is:

status [all | dir=<dir-name> | director | scheduler | schedule=<schedule-name> |
client=<client-name> | storage=<storage-name> slots | subscriptions]

bconsole 15.42: status

If you do a status dir, the console will list any currently running jobs, a summary of all jobs scheduled
to be run in the next 24 hours, and a listing of the last ten terminated jobs with their statuses. The
scheduled jobs summary will include the Volume name to be used. You should be aware of two things:
1. to obtain the volume name, the code goes through the same code that will be used when the job
runs, but it does not do pruning nor recycling of Volumes; 2. The Volume listed is at best a guess.
The Volume actually used may be different because of the time difference (more durations may expire
when the job runs) and another job could completely fill the Volume requiring a new one.

In the Running Jobs listing, you may find the following types of information:

2507 Catalog MatouVerify.2004-03-13_05.05.02 is waiting execution

5349 Full CatalogBackup.2004-03-13_01.10.00 is waiting for higher
priority jobs to finish

5348 Differe Minou.2004-03-13_01.05.09 is waiting on max Storage jobs

5343 Full Rufus.2004-03-13_01.05.04 is running

bconsole 15.43:

Looking at the above listing from bottom to top, obviously Jobld 5343 (Rufus) is running. Jobld 5348
(Minou) is waiting for JobId 5343 to finish because it is using the Storage resource, hence the ”waiting
on max Storage jobs”. Jobld 5349 has a lower priority than all the other jobs so it is waiting for higher
priority jobs to finish, and finally, Jobld 2507 (MatouVerify) is waiting because only one job can run
at a time, hence it is simply ”waiting execution”

If you do a status dir, it will by default list the first occurrence of all jobs that are scheduled today
and tomorrow. If you wish to see the jobs that are scheduled in the next three days (e.g. on Friday
you want to see the first occurrence of what tapes are scheduled to be used on Friday, the weekend,
and Monday), you can add the days=3 option. Note, a days=0 shows the first occurrence of jobs
scheduled today only. If you have multiple run statements, the first occurrence of each run statement
for the job will be displayed for the period specified.

If your job seems to be blocked, you can get a general idea of the problem by doing a status dir, but you
can most often get a much more specific indication of the problem by doing a status storage=xxx.
For example, on an idle test system, when I do status storage=File, I get:

*status storage=Flile
Connecting to Storage daemon File at 192.168.68.112:8103

224

rufus-sd Version: 1.39.6 (24 March 2006) i686-pc-linux-gnu redhat (Stentz)
Daemon started 26-Mar-06 11:06, O Jobs run since started.

Running Jobs:
No Jobs running.

Jobs waiting to reserve a drive:

Terminated Jobs:
JobId Level Files Bytes Status Finished Name

59 Full 234 4,417,599 0K 15-Jan-06 11:54 usersave

Device status:
Autochanger "DDS-4-changer" with devices:
"DDS-4" (/dev/nst0)
Device "DDS-4" (/dev/nst0) is mounted with Volume="TestVolume002"
Pool="*unknownx*"
Slot 2 is loaded in drive O.
Total Bytes Read=0 Blocks Read=0 Bytes/block=0
Positioned at File=0 Block=0

Device "File" (/tmp) is not open.

In Use Volume status:

bconsole 15.44: status storage

Now, what this tells me is that no jobs are running and that none of the devices are in use. Now, if
I unmount the autochanger, which will not be used in this example, and then start a Job that uses
the File device, the job will block. When I re-issue the status storage command, I get for the Device
status:

*status storage=File

Device status:

Autochanger "DDS-4-changer" with devices:
"DDS-4" (/dev/nst0)

Device "DDS-4" (/dev/nst0) is not open.
Device is BLOCKED. User unmounted.
Drive O is not loaded.

Device "File" (/tmp) is not open.
Device is BLOCKED waiting for media.

bconsole 15.45: status storage

Now, here it should be clear that if a job were running that wanted to use the Autochanger (with two
devices), it would block because the user unmounted the device. The real problem for the Job I started
using the ”File” device is that the device is blocked waiting for media — that is Bareos needs you to
label a Volume.

The command status scheduler (Version >= 12.4.4) can be used to check when a certain schedule
will trigger. This gives more information than status director .

Called without parameters, status scheduler shows a preview for all schedules for the next 14 days.
It first shows a list of the known schedules and the jobs that will be triggered by these jobs, and next,
a table with date (including weekday), schedule name and applied overrides is displayed:

*status scheduler

Scheduler Jobs:

Schedule Jobs Triggered
WeeklyCycle

BackupClient1
WeeklyCycleAfterBackup

BackupCatalog
Scheduler Preview for 14 days:
Date Schedule Overrides
Di 04-Jun-2013 21:00 WeeklyCycle Level=Incremental
Di 04-Jun-2013 21:10 WeeklyCycleAfterBackup Level=Full
Mi 05-Jun-2013 21:00 WeeklyCycle Level=Incremental
Mi 05-Jun-2013 21:10 WeeklyCycleAfterBackup Level=Full
Do 06-Jun-2013 21:00 WeeklyCycle Level=Incremental
Do 06-Jun-2013 21:10 WeeklyCycleAfterBackup Level=Full
Fr 07-Jun-2013 21:00 WeeklyCycle Level=Incremental
Fr 07-Jun-2013 21:10 WeeklyCycleAfterBackup Level=Full
Sa 08-Jun-2013 21:00 WeeklyCycle Level=Differential
Mo 10-Jun-2013 21:00 WeeklyCycle Level=Incremental
Mo 10-Jun-2013 21:10 WeeklyCycleAfterBackup Level=Full
Di 11-Jun-2013 21:00 WeeklyCycle Level=Incremental
Di 11-Jun-2013 21:10 WeeklyCycleAfterBackup Level=Full
Mi 12-Jun-2013 21:00 WeeklyCycle Level=Incremental
Mi 12-Jun-2013 21:10 WeeklyCycleAfterBackup Level=Full
Do 13-Jun-2013 21:00 WeeklyCycle Level=Incremental
Do 13-Jun-2013 21:10 WeeklyCycleAfterBackup Level=Full
Fr 14-Jun-2013 21:00 WeeklyCycle Level=Incremental
Fr 14-Jun-2013 21:10 WeeklyCycleAfterBackup Level=Full
Sa 15-Jun-2013 21:00 WeeklyCycle Level=Differential
Mo 17-Jun-2013 21:00 WeeklyCycle Level=Incremental
Mo 17-Jun-2013 21:10 WeeklyCycleAfterBackup Level=Full

bconsole 15.46: status scheduler

status scheduler accepts the following parameters:

client=clientname shows only the schedules that affect the given client.

job=jobname shows only the schedules that affect the given job.

schedule=schedulename shows only the given schedule.

days=number of days shows only the number of days in the scheduler preview. Positive numbers
show the future, negative numbers show the past. days can be combined with the other selection
criteria. days= can be combined with the other selection criteria.

In case you are running a maintained version of Bareos, the command status subscriptions (Version
>= 12.4.4) can help you to keep the overview over the subscriptions that are used.

To enable this functionality, just add the configuration directive subscriptions to the director configu-
ration in the director resource:

The number of subscribed clients can be set in the director resource, for example:

Director {

Subscriptions = 50

}

Configuration 15.47: enable subscription check

226

Using the console command status subscriptions , the status of the subscriptions can be checked
any time interactively:

*status subscriptions
Ok: available subscriptions: 8 (42/50) (used/total)

bconsole 15.48: status subscriptions
Also, the number of subscriptions is checked after every job. If the number of clients is bigger than the
configured limit, a Job warning is created a message like this:
JobId 7: Warning: Subscriptions exceeded: (used/total) (51/50)
bconsole 15.49: subscriptions warning

Please note: Nothing else than the warning is issued, no enforcement on backup, restore or any other
operation will happen.

Setting the value for Subscriptions to 0 disables this functionality:

Director {

Subscriptions = 0

}
Configuration 15.50: disable subscription check

Not configuring the directive at all also disables it, as the default value for the Subscriptions directive
is zero.

time The time command shows the current date, time and weekday.

trace Turn on/off trace to file.

umount Alias for unmount .

unmount This command causes the indicated Bareos Storage daemon to unmount the specified device.

The forms of the command are the same as the mount command:

unmount storage=<storage-name> [drive=<num>]
unmount [jobid=<id> | job=<job-name>]

bconsole 15.51: unmount

Once you unmount a storage device, Bareos will no longer be able to use it until you issue a mount
command for that device. If Bareos needs to access that device, it will block and issue mount requests
periodically to the operator.

If the device you are unmounting is an autochanger, it will unload the drive you have specified on the
command line. If no drive is specified, it will assume drive 1.

In most cases, it is preferable to use the release instead.

update This command will update the catalog for either a specific Pool record, a Volume record, or the Slots

in an autochanger with barcode capability. In the case of updating a Pool record, the new information
will be automatically taken from the corresponding Director’s configuration resource record. It can be
used to increase the maximum number of volumes permitted or to set a maximum number of volumes.
The following main keywords may be specified:

media, volume, pool, slots, stats

In the case of updating a Volume, you will be prompted for which value you wish to change. The
following Volume parameters may be changed:

Volume Status

Volume Retention Period
Volume Use Duration
Maximum Volume Jobs
Maximum Volume Files
Maximum Volume Bytes

227

Recycle Flag

Recycle Pool

Slot

InChanger Flag

Pool

Volume Files

Volume from Pool

A1l Volumes from Pool

A1l Volumes from all Pools

For slots update slots, Bareos will obtain a list of slots and their barcodes from the Storage daemon,
and for each barcode found, it will automatically update the slot in the catalog Media record to
correspond to the new value. This is very useful if you have moved cassettes in the magazine, or if
you have removed the magazine and inserted a different one. As the slot of each Volume is updated,
the InChanger flag for that Volume will also be set, and any other Volumes in the Pool that were last
mounted on the same Storage device will have their InChanger flag turned off. This permits Bareos to
know what magazine (tape holder) is currently in the autochanger.

If you do not have barcodes, you can accomplish the same thing by using the update slots scan
command. The scan keyword tells Bareos to physically mount each tape and to read its VolumeName.

For Pool update pool, Bareos will move the Volume record from its existing pool to the pool specified.

For Volume from Pool, All Volumes from Pool and All Volumes from all Pools, the follow-
ing values are updated from the Pool record: Recycle, RecyclePool, VolRetention, VolUseDuration,
MaxVolJobs, MaxVolFiles, and MaxVolBytes.

The full form of the update command with all command line arguments is:

update volume=<volume-name> pool=<poolname>
slots volstatus=<volume-status> VolRetention=<volume-retention>
VolUse=<volume-use-period> MaxVolJobs=nnn MaxVolBytes=nnn Recycle=yes|no
slot=nnn enabled=n recyclepool=<pool-name>

bconsole 15.52: update

use This command allows you to specify which Catalog database to use. Normally, you will be using only
one database so this will be done automatically. In the case that you are using more than one database,
you can use this command to switch from one to another.

use [catalog=<catalog>]

bconsole 15.53: use

var This command takes a string or quoted string and does variable expansion on it mostly the same way
variable expansion is done on the Label Format . string. The difference between the var command
and the actual Label Format P process is that during the var command, no job is running so dummy
values are used in place of Job specific variables.

version The command prints the Director’s version.

wait The wait command causes the Director to pause until there are no jobs running. This command is
useful in a batch situation such as regression testing where you wish to start a job and wait until that
job completes before continuing. This command now has the following options:

wait [jobid=<jobid>] [jobuid=<unique id>] [job=<job name>]
bconsole 15.54: wait

If specified with a specific Jobld, ... the wait command will wait for that particular job to terminate
before continuing.

15.4.1 Special dot (.) Commands

There is a list of commands that are prefixed with a period (.). These commands are intended to be used
either by batch programs or graphical user interface front-ends. They are not normally used by interactive
users. For details, see Bareos Developer Guide (dot-commands) .

http://doc.bareos.org/master/html/bareos-developer-guide.html#dot-commands

228

15.4.2 Special At (@) Commands

Normally, all commands entered to the Console program are immediately forwarded to the Director, which
may be on another machine, to be executed. However, there is a small list of at commands, all beginning with
an at character (@), that will not be sent to the Director, but rather interpreted by the Console program
directly. Note, these commands are implemented only in the TTY console program and not in the Bat
Console. These commands are:

@input <filename> Read and execute the commands contained in the file specified.

@output <filename> <w|a> Send all following output to the filename specified either overwriting the
file (w) or appending to the file (a). To redirect the output to the terminal, simply enter @output
without a filename specification. WARNING: be careful not to overwrite a valid file. A typical example
during a regression test might be:

@Qoutput /dev/null
commands ...
Qoutput

@tee <filename> <w|a> Send all subsequent output to both the specified file and the terminal. It is
turned off by specifying @tee or @output without a filename.

@sleep <seconds> Sleep the specified number of seconds.
@time Print the current time and date.

@version Print the console’s version.

@quit quit

@exit quit

@# anything Comment

@help Get the list of every special @ commands.

@separator <char> When using bconsole with readline, you can set the command separator to one
of those characters to write commands who require multiple input on one line, or to put multiple
commands on a single line.

V%&” O*+,-/;<>7 1~ {1}~

Note, if you use a semicolon (;) as a separator character, which is common, you will not be able to use
the sql command, which requires each command to be terminated by a semicolon.

15.5 Adding Volumes to a Pool

TODO: move to another chapter

If you have used the label command to label a Volume, it will be automatically added to the Pool, and you
will not need to add any media to the pool.

Alternatively, you may choose to add a number of Volumes to the pool without labeling them. At a later
time when the Volume is requested by Bareos you will need to label it.

Before adding a volume, you must know the following information:

1. The name of the Pool (normally ”Default”)

2. The Media Type as specified in the Storage Resource in the Director’s configuration file (e.g.
”DLT8000”)

3. The number and names of the Volumes you wish to create.

For example, to add media to a Pool, you would issue the following commands to the console program:

*add

Enter name of Pool to add Volumes to: Default

Enter the Media Type: DLT8000

Enter number of Media volumes to create. Max=1000: 10

Enter base volume name: Save

Enter the starting number: 1

10 Volumes created in pool Default

*

To see what you have added, enter:

*list media pool=Default

MedId	VolumeNa	MediaTypl	VolStat	Bytes	LastWritten
11	Save0001	DLT8000	Append	0	0000-00-00 00:00
12	Save0002	DLT8000	Append	0	0000-00-00 00:00
13	Save0003	DLT8000	Append	0	0000-00-00 00:00
14	Save0004	DLT8000	Append	0	0000-00-00 00:00
15	Save0005	DLT8000	Append	0	0000-00-00 00:00
16	Save0006	DLT8000	Append	0	0000-00-00 00:00
17	Save0007	DLT8000	Append	0	0000-00-00 00:00
18	Save0008	DLT8000	Append	0	0000-00-00 00:00
19	Save0009	DLT8000	Append	0	0000-00-00 00:00
20	Save0010	DLT8000	Append	0	0000-00-00 00:00
*

229

Notice that the console program automatically appended a number to the base Volume name that you specify
(Save in this case). If you don’t want it to append a number, you can simply answer 0 (zero) to the question
”Enter number of Media volumes to create. Max=1000:", and in this case, it will create a single Volume
with the exact name you specify.

230

Chapter 16

The Restore Command

16.1 General

Below, we will discuss restoring files with the Console restore command, which is the recommended way of
doing restoring files. It is not possible to restore files by automatically starting a job as you do with Backup,
Verify, ... jobs. However, in addition to the console restore command, there is a standalone program named
bextract, which also permits restoring files. For more information on this program, please see the Bareos
Utility Programs chapter of this manual. We don’t particularly recommend the bextract program because
it lacks many of the features of the normal Bareos restore, such as the ability to restore Win32 files to Unix
systems, and the ability to restore access control lists (ACL). As a consequence, we recommend, wherever
possible to use Bareos itself for restores as described below.

You may also want to look at the bls program in the same chapter, which allows you to list the contents
of your Volumes. Finally, if you have an old Volume that is no longer in the catalog, you can restore the
catalog entries using the program named bscan, documented in the same Bareos Utility Programs chapter.
In general, to restore a file or a set of files, you must run a restore job. That is a job with Type =
Restore. As a consequence, you will need a predefined restore job in your bareos-dir.conf (Director’s
config) file. The exact parameters (Client, FileSet, ...) that you define are not important as you can either
modify them manually before running the job or if you use the restore command, explained below, Bareos
will automatically set them for you. In fact, you can no longer simply run a restore job. You must use the
restore command.

Since Bareos is a network backup program, you must be aware that when you restore files, it is up to you to
ensure that you or Bareos have selected the correct Client and the correct hard disk location for restoring
those files. Bareos will quite willingly backup client A, and restore it by sending the files to a different
directory on client B. Normally, you will want to avoid this, but assuming the operating systems are not too
different in their file structures, this should work perfectly well, if so desired. By default, Bareos will restore
data to the same Client that was backed up, and those data will be restored not to the original places but
to /tmp/bareos-restores. This is configured in the default restore command resource in bareos-dir.conf.
You may modify any of these defaults when the restore command prompts you to run the job by selecting
the mod option.

16.2 The Restore Command

Since Bareos maintains a catalog of your files and on which Volumes (disk or tape), they are stored, it can
do most of the bookkeeping work, allowing you simply to specify what kind of restore you want (current,
before a particular date), and what files to restore. Bareos will then do the rest.

This is accomplished using the restore command in the Console. First you select the kind of restore you
want, then the Joblds are selected, the File records for those Jobs are placed in an internal Bareos directory
tree, and the restore enters a file selection mode that allows you to interactively walk up and down the file
tree selecting individual files to be restored. This mode is somewhat similar to the standard Unix restore
program’s interactive file selection mode.

If a Job’s file records have been pruned from the catalog, the restore command will be unable to find any
files to restore. Bareos will ask if you want to restore all of them or if you want to use a regular expression
to restore only a selection while reading media. See FileRegex option and below for more details on this.
Within the Console program, after entering the restore command, you are presented with the following
selection prompt:

231

232

* restore

First you select one or more JobIds that contain files
to be restored. You will be presented several methods
of specifying the JobIds. Then you will be allowed to
select which files from those JobIds are to be restored.

To select the JobIds, you have the following choices:

1: List last 20 Jobs run

List Jobs where a given File is saved

Enter list of comma separated JobIds to select

Enter SQL list command

Select the most recent backup for a client

Select backup for a client before a specified time

Enter a list of files to restore

Enter a list of files to restore before a specified time
Find the JobIds of the most recent backup for a client

: Find the Joblds for a backup for a client before a specified time
: Enter a list of directories to restore for found JoblIds
: Select full restore to a specified Job date

13: Cancel

© 00 N O O W N

I
N = O

Select item: (1-13):

bconsole 16.1: restore

There are a lot of options, and as a point of reference, most people will want to select item 5 (the most
recent backup for a client). The details of the above options are:

e Item 1 will list the last 20 jobs run. If you find the Job you want, you can then select item 3 and enter

its JobId(s).

Item 2 will list all the Jobs where a specified file is saved. If you find the Job you want, you can then
select item 3 and enter the Jobld.

Item 3 allows you the enter a list of comma separated Joblds whose files will be put into the directory
tree. You may then select which files from those Joblds to restore. Normally, you would use this option
if you have a particular version of a file that you want to restore and you know its Jobld. The most
common options (5 and 6) will not select a job that did not terminate normally, so if you know a file
is backed up by a Job that failed (possibly because of a system crash), you can access it through this
option by specifying the Jobld.

Item 4 allows you to enter any arbitrary SQL command. This is probably the most primitive way of
finding the desired Joblds, but at the same time, the most flexible. Once you have found the JoblId(s),
you can select item 3 and enter them.

Item 5 will automatically select the most recent Full backup and all subsequent incremental and
differential backups for a specified Client. These are the Jobs and Files which, if reloaded, will restore
your system to the most current saved state. It automatically enters the Joblds found into the directory
tree in an optimal way such that only the most recent copy of any particular file found in the set of
Jobs will be restored. This is probably the most convenient of all the above options to use if you wish
to restore a selected Client to its most recent state.

There are two important things to note. First, this automatic selection will never select a job that
failed (terminated with an error status). If you have such a job and want to recover one or more files
from it, you will need to explicitly enter the Jobld in item 3, then choose the files to restore.

If some of the Jobs that are needed to do the restore have had their File records pruned, the restore
will be incomplete. Bareos currently does not correctly detect this condition. You can however, check
for this by looking carefully at the list of Jobs that Bareos selects and prints. If you find Jobs with the
JobFiles column set to zero, when files should have been backed up, then you should expect problems.

If all the File records have been pruned, Bareos will realize that there are no file records in any of the
Joblds chosen and will inform you. It will then propose doing a full restore (non-selective) of those
Joblds. This is possible because Bareos still knows where the beginning of the Job data is on the
Volumes, even if it does not know where particular files are located or what their names are.

233

e Item 6 allows you to specify a date and time, after which Bareos will automatically select the most
recent Full backup and all subsequent incremental and differential backups that started before the
specified date and time.

e Item 7 allows you to specify one or more filenames (complete path required) to be restored. Each
filename is entered one at a time or if you prefix a filename with the less-than symbol (<) Bareos will
read that file and assume it is a list of filenames to be restored. If you prefix the filename with a
question mark (?7), then the filename will be interpreted as an SQL table name, and Bareos will include
the rows of that table in the list to be restored. The table must contain the Jobld in the first column
and the FileIndex in the second column. This table feature is intended for external programs that
want to build their own list of files to be restored. The filename entry mode is terminated by entering
a blank line.

e Item 8 allows you to specify a date and time before entering the filenames. See Item 7 above for more
details.

e Item 9 allows you find the Joblds of the most recent backup for a client. This is much like option 5
(it uses the same code), but those Joblds are retained internally as if you had entered them manually.
You may then select item 11 (see below) to restore one or more directories.

e Item 10 is the same as item 9, except that it allows you to enter a before date (as with item 6). These
Joblds will then be retained internally.

e Item 11 allows you to enter a list of Joblds from which you can select directories to be restored. The
list of Joblds can have been previously created by using either item 9 or 10 on the menu. You may
then enter a full path to a directory name or a filename preceded by a less than sign (<). The filename
should contain a list of directories to be restored. All files in those directories will be restored, but if
the directory contains subdirectories, nothing will be restored in the subdirectory unless you explicitly
enter its name.

e Item 12 is a full restore to a specified job date.
e Item 13 allows you to cancel the restore command.

As an example, suppose that we select item 5 (restore to most recent state). If you have not specified a
client=xxx on the command line, it it will then ask for the desired Client, which on my system, will print
all the Clients found in the database as follows:

Select item: (1-13): 5
Defined clients:

: Rufus

Matou

Polymatou
Minimatou
Minou
MatouVerify
PmatouVerify
RufusVerify
Watchdog

Select Client (File daemon) resource (1-9): 1

[

© 00 N O O W N

bconsole 16.2: restore: select client

The listed clients are only examples, yours will look differently. If you have only one Client, it will be
automatically selected. In this example, I enter 1 for Rufus to select the Client. Then Bareos needs to know
what FileSet is to be restored, so it prompts with:

The defined FileSet resources are:
1: Full Set
2: Other Files

Select FileSet resource (1-2):

If you have only one FileSet defined for the Client, it will be selected automatically. I choose item 1, which is
my full backup. Normally, you will only have a single FileSet for each Job, and if your machines are similar
(all Linux) you may only have one FileSet for all your Clients.
At this point, Bareos has all the information it needs to find the most recent set of backups. It will then
query the database, which may take a bit of time, and it will come up with something like the following.
Note, some of the columns are truncated here for presentation:

234

+ +
+ +

+

+ + + + +

JobId	Levl	JobFiles	StartTime	VolumeName	File	SesId	VolSesTime
1,792	F	128,374	08-03 01:58	DLT-19Jul02	67	18	1028042998
1,792	F	128,374	08-03 01:58	DLT-04Aug02	0	18	1028042998
1,797	I	254	08-04 13:53	DLT-04Aug02	5	23	1028042998
1,798	1	15	08-05 01:05	DLT-04AugO2	6	24	1028042998

You have selected the following JobId: 1792,1792,1797
Building directory tree for JobId 1792 ...

Building directory tree for JobId 1797 ...

Building directory tree for JobId 1798 ...

cwd is: /

$

”

Depending on the number of JobFiles for each Jobld, the “Building directory tree can take a bit
of time. If you notice ath all the JobFiles are zero, your Files have probably been pruned and you will not
be able to select any individual files — it will be restore everything or nothing.

In our example, Bareos found four Jobs that comprise the most recent backup of the specified Client and
FileSet. Two of the Jobs have the same Jobld because that Job wrote on two different Volumes. The third
Job was an incremental backup to the previous Full backup, and it only saved 254 Files compared to 128,374
for the Full backup. The fourth Job was also an incremental backup that saved 15 files.

Next Bareos entered those Jobs into the directory tree, with no files marked to be restored as a default, tells
you how many files are in the tree, and tells you that the current working directory (cwd) is /. Finally,
Bareos prompts with the dollar sign ($) to indicate that you may enter commands to move around the
directory tree and to select files.

If you want all the files to automatically be marked when the directory tree is built, you could have entered
the command restore all, or at the $§ prompt, you can simply enter mark *.

Instead of choosing item 5 on the first menu (Select the most recent backup for a client), if we had chosen
item 3 (Enter list of Joblds to select) and we had entered the Joblds 1792,1797,1798 we would have arrived
at the same point.

One point to note, if you are manually entering Joblds, is that you must enter them in the order they were
run (generally in increasing Jobld order). If you enter them out of order and the same file was saved in two
or more of the Jobs, you may end up with an old version of that file (i.e. not the most recent).

Directly entering the Joblds can also permit you to recover data from a Job that wrote files to tape but that
terminated with an error status.

While in file selection mode, you can enter help or a question mark (?) to produce a summary of the
available commands:

Command Description

cd change current directory

count count marked files in and below the cd

dir long list current directory, wildcards allowed
done leave file selection mode

estimate estimate restore size

exit same as done command

find find files, wildcards allowed

help print help

1s list current directory, wildcards allowed
1lsmark list the marked files in and below the cd

mark mark dir/file to be restored recursively in dirs
markdir mark directory name to be restored (no files)
pwd print current working directory

unmark unmark dir/file to be restored recursively in dir
unmarkdir unmark directory name only no recursion

quit quit and do not do restore

? print help

As a default no files have been selected for restore (unless you added all to the command line. If you want
to restore everything, at this point, you should enter mark *, and then done and Bareos will write the
bootstrap records to a file and request your approval to start a restore job.

If you do not enter the above mentioned mark * command, you will start with an empty state. Now you
can simply start looking at the tree and mark particular files or directories you want restored. It is easy to
make a mistake in specifying a file to mark or unmark, and Bareos’s error handling is not perfect, so please
check your work by using the ls or dir commands to see what files are actually selected. Any selected file
has its name preceded by an asterisk.

To check what is marked or not marked, enter the count command, which displays:

235

128401 total files. 128401 marked to be restored.

Each of the above commands will be described in more detail in the next section. We continue with the
above example, having accepted to restore all files as Bareos set by default. On entering the done command,
Bareos prints:

Run Restore job

JobName: RestoreFiles
Bootstrap: /var/lib/bareos/clientl.restore.3.bsr
Where: /tmp/bareos-restores
Replace: Always

FileSet: Full Set

Backup Client: clientl

Restore Client: clientl

Format: Native

Storage: File

When: 2013-06-28 13:30:08
Catalog: MyCatalog

Priority: 10

Plugin Options: *Nonex
0K to run? (yes/mod/mno):

Please examine each of the items very carefully to make sure that they are correct. In particular, look at
Where, which tells you where in the directory structure the files will be restored, and Client, which tells
you which client will receive the files. Note that by default the Client which will receive the files is the Client
that was backed up. These items will not always be completed with the correct values depending on which
of the restore options you chose. You can change any of these default items by entering mod and responding
to the prompts.

The above assumes that you have defined a Restore Job resource in your Director’s configuration file.
Normally, you will only need one Restore Job resource definition because by its nature, restoring is a manual
operation, and using the Console interface, you will be able to modify the Restore Job to do what you want.
An example Restore Job resource definition is given below.

Returning to the above example, you should verify that the Client name is correct before running the Job.
However, you may want to modify some of the parameters of the restore job. For example, in addition to
checking the Client it is wise to check that the Storage device chosen by Bareos is indeed correct. Although
the FileSet is shown, it will be ignored in restore. The restore will choose the files to be restored either by
reading the Bootstrap file, or if not specified, it will restore all files associated with the specified backup
Jobld (i.e. the Jobld of the Job that originally backed up the files).

Finally before running the job, please note that the default location for restoring files is not their original
locations, but rather the directory /tmp/bareos-restores. You can change this default by modifying your
bareos-dir.conf file, or you can modify it using the mod option. If you want to restore the files to their
original location, you must have Where set to nothing or to the root, i.e. /.

If you now enter yes, Bareos will run the restore Job.

16.3 Selecting Files by Filename

If you have a small number of files to restore, and you know the filenames, you can either put the list of
filenames in a file to be read by Bareos, or you can enter the names one at a time. The filenames must
include the full path and filename. No wild cards are used.

To enter the files, after the restore, you select item number 7 from the prompt list:

* restore

First you select one or more Joblds that contain files
to be restored. You will be presented several methods
of specifying the JobIds. Then you will be allowed to
select which files from those JobIds are to be restored.

To select the Joblds, you have the following choices:
1: List last 20 Jobs run
List Jobs where a given File is saved
Enter list of comma separated JobIds to select
Enter SQL list command
Select the most recent backup for a client
Select backup for a client before a specified time

o O WN

236

Enter a list of files to restore
Enter a list of files to restore before a specified time
Find the JobIds of the most recent backup for a client
10: Find the JobIds for a backup for a client before a specified time
11: Enter a list of directories to restore for found Joblds
12: Select full restore to a specified Job date
13: Cancel
Select item: (1-13): 7

© 00

bconsole 16.3: restore list of files

which then prompts you for the client name:

Defined Clients:
1: clientil
2: Tibs
3: Rufus
Select the Client (1-3): 3

Of course, your client list will be different, and if you have only one client, it will be automatically selected.
And finally, Bareos requests you to enter a filename:

Enter filename:

At this point, you can enter the full path and filename

Enter filename: /etc/resolv.conf
Enter filename:

as you can see, it took the filename. If Bareos cannot find a copy of the file, it prints the following:

Enter filename: junk filename
No database record found for: junk filename
Enter filename:

If you want Bareos to read the filenames from a file, you simply precede the filename with a less-than symbol
(<).

It is possible to automate the selection by file by putting your list of files in say /tmp/file-list, then using
the following command:

restore client=clientl file=</tmp/file-list

If in modifying the parameters for the Run Restore job, you find that Bareos asks you to enter a Job number,
this is because you have not yet specified either a Job number or a Bootstrap file. Simply entering zero will
allow you to continue and to select another option to be modified.

16.4 Replace Options

When restoring, you have the option to specify a Replace option. This directive determines the action to be
taken when restoring a file or directory that already exists. This directive can be set by selecting the mod
option. You will be given a list of parameters to choose from. Full details on this option can be found in the
Job Resource section of the Director documentation.

16.5 Command Line Arguments

If all the above sounds complicated, you will probably agree that it really isn’t after trying it a few times.
It is possible to do everything that was shown above, with the exception of selecting the FileSet, by using
command line arguments with a single command by entering:

restore client=Rufus select current all done yes

The client=Rufus specification will automatically select Rufus as the client, the current tells Bareos
that you want to restore the system to the most current state possible, and the yes suppresses the final
yes/mod/no prompt and simply runs the restore.

The full list of possible command line arguments are:

237

e all — select all Files to be restored.
e select — use the tree selection method.
e done — do not prompt the user in tree mode.

e copies — instead of using the actual backup jobs for restoring use the copies which were made of these
backup Jobs. This could mean that on restore the client will contact a remote storage daemon if the
data is copied to a remote storage daemon as part of your copy Job scheme.

e current — automatically select the most current set of backups for the specified client.

e client=xxxx — initially specifies the client from which the backup was made and the client to which
the restore will be make. See also ”restoreclient” keyword.

e restoreclient=xxxx — if the keyword is specified, then the restore is written to that client.
e jobid=nnn - specify a Jobld or comma separated list of Joblds to be restored.

e before=YYYY-MM-DD HH:MM:SS - specify a date and time to which the system should be
restored. Only Jobs started before the specified date/time will be selected, and as is the case for cur-
rent Bareos will automatically find the most recent prior Full save and all Differential and Incremental
saves run before the date you specify. Note, this command is not too user friendly in that you must
specify the date/time exactly as shown.

e file=filename — specify a filename to be restored. You must specify the full path and filename.
Prefixing the entry with a less-than sign (<) will cause Bareos to assume that the filename is on your
system and contains a list of files to be restored. Bareos will thus read the list from that file. Multiple
file=xxx specifications may be specified on the command line.

e jobid=nnn - specify a Jobld to be restored.

e pool=pool-name — specify a Pool name to be used for selection of Volumes when specifying options
5 and 6 (restore current system, and restore current system before given date). This permits you to
have several Pools, possibly one offsite, and to select the Pool to be used for restoring.

e where=/tmp/bareos-restore — restore files in where directory.

e yes — automatically run the restore without prompting for modifications (most useful in batch scripts).
e strip_prefix=/prod — remove a part of the filename when restoring.

e add_prefix=/test — add a prefix to all files when restoring (like where) (can’t be used with where=).
¢ add_suffix=.0ld — add a suffix to all your files.

e regexwhere=!a.pdf!a.bkp.pdf! — do complex filename manipulation like with sed unix command.
Will overwrite other filename manipulation. For details, see the regexwhere section.

e restorejob—=jobname — Pre-chooses a restore job. Bareos can be configured with multiple restore jobs
(”Type = Restore” in the job definition). This allows the specification of different restore properties,
including a set of RunScripts. When more than one job of this type is configured, during restore,
Bareos will ask for a user selection interactively, or use the given restorejob.

16.6 Using File Relocation

Introduction

The where= option is simple, but not very powerful. With file relocation, Bareos can restore a file to the
same directory, but with a different name, or in an other directory without recreating the full path.

You can also do filename and path manipulations, such as adding a suffix to all your files, renaming files or
directories, etc. Theses options will overwrite where= option.

For example, many users use OS snapshot features so that file /home/eric/mbox will be backed up from the
directory /.snap/home/eric/mbox, which can complicate restores. If you use where=/tmp, the file will
be restored to /tmp/.snap/home/eric/mbox and you will have to move the file to /home/eric/mbox.bkp
by hand.

238

However, case, you could use the strip_prefix=/.snap and add_suffix=.bkp options and Bareos will
restore the file to its original location — that is /home/eric/mbox.

To use this feature, there are command line options as described in the restore section of this manual; you
can modify your restore job before running it; or you can add options to your restore job in as described in
Strip Prefix ¥ and Add Prefix 2

Job Job*

Parameters to modify:
1: Level
2: Storage

10: File Relocation

Select parameter to modify (1-12):

This will replace your current Where value
1: Strip prefix

Add prefix

Add file suffix

Enter a regexp

Test filename manipulation

: Use this 7

Select parameter to modify (1-6):

o Ok WN

RegexWhere Format

The format is very close to that used by sed or Perl (s/replace this/by that/) operator. A valid
regexwhere expression has three fields :

e a search expression (with optional submatch)
e a replacement expression (with optionnal back references $1 to $9)
e a set of search options (only case-insensitive “i” at this time)

Each field is delimited by a separator specified by the user as the first character of the expression. The
separator can be one of the following:

<separator-keyword> = / ! ; % : , T # =&

You can use several expressions separated by a commas.

Examples
’ Orignal filename \ New filename \ RegexWhere \ Comments
c:/system.ini c:/system.old.ini /.ini$/.o0ld.ini/ $ matches end of name
/prod/u01/pdata/ /rect/ul0l/rdata /prod/rect/,/pdata/rdata/ uses two regexp
/prod/u0l/pdata/ /rect/ul0l/rdata !/prod/!/rect/!,/pdata/rdata/ | use ! as separator
C:/WINNT d:/WINNT /c:/d:/1 case insensitive pattern match

16.7 Restoring Directory Attributes

Depending how you do the restore, you may or may not get the directory entries back to their original state.
Here are a few of the problems you can encounter, and for same machine restores, how to avoid them.

e You backed up on one machine and are restoring to another that is either a different OS or doesn’t
have the same users/groups defined. Bareos does the best it can in these situations. Note, Bareos has
saved the user/groups in numeric form, which means on a different machine, they may map to different
user/group names.

e You are restoring into a directory that is already created and has file creation restrictions. Bareos tries
to reset everything but without walking up the full chain of directories and modifying them all during
the restore, which Bareos does and will not do, getting permissions back correctly in this situation
depends to a large extent on your OS.

239

e You are doing a recursive restore of a directory tree. In this case Bareos will restore a file before
restoring the file’s parent directory entry. In the process of restoring the file Bareos will create the
parent directory with open permissions and ownership of the file being restored. Then when Bareos tries
to restore the parent directory Bareos sees that it already exists (Similar to the previous situation). If
you had set the Restore job’s ”Replace” property to ”never” then Bareos will not change the directory’s
permissions and ownerships to match what it backed up, you should also notice that the actual number
of files restored is less then the expected number. If you had set the Restore job’s ”Replace” property to
"always” then Bareos will change the Directory’s ownership and permissions to match what it backed
up, also the actual number of files restored should be equal to the expected number.

e You selected one or more files in a directory, but did not select the directory entry to be restored.
In that case, if the directory is not on disk Bareos simply creates the directory with some default
attributes which may not be the same as the original. If you do not select a directory and all its
contents to be restored, you can still select items within the directory to be restored by individually
marking those files, but in that case, you should individually use the "markdir” command to select all
higher level directory entries (one at a time) to be restored if you want the directory entries properly
restored.

16.8 Restoring on Windows

If you are restoring on Windows systems, Bareos will restore the files with the original ownerships and
permissions as would be expected. This is also true if you are restoring those files to an alternate directory
(using the Where option in restore). However, if the alternate directory does not already exist, the Bareos
File daemon (Client) will try to create it. In some cases, it may not create the directories, and if it does since
the File daemon runs under the SYSTEM account, the directory will be created with SYSTEM ownership
and permissions. In this case, you may have problems accessing the newly restored files.

To avoid this problem, you should create any alternate directory before doing the restore. Bareos will not
change the ownership and permissions of the directory if it is already created as long as it is not one of the
directories being restored (i.e. written to tape).

The default restore location is /tmp/bareos-restores/ and if you are restoring from drive E:, the default
will be /tmp/bareos-restores/e/, so you should ensure that this directory exists before doing the restore,
or use the mod option to select a different where directory that does exist.

Some users have experienced problems restoring files that participate in the Active Directory. They also
report that changing the userid under which Bareos (bareos-fd.exe) runs, from SYSTEM to a Domain Admin
userid, resolves the problem.

16.9 Restore Errors

There are a number of reasons why there may be restore errors or warning messages. Some of the more
common ones are:

file count mismatch This can occur for the following reasons:

e You requested Bareos not to overwrite existing or newer files.

e A Bareos miscount of files/directories. This is an on-going problem due to the complications of
directories, soft/hard link, and such. Simply check that all the files you wanted were actually
restored.

file size error When Bareos restores files, it checks that the size of the restored file is the same as the file
status data it saved when starting the backup of the file. If the sizes do not agree, Bareos will print
an error message. This size mismatch most often occurs because the file was being written as Bareos
backed up the file. In this case, the size that Bareos restored will be greater than the status size. This
often happens with log files.

If the restored size is smaller, then you should be concerned about a possible tape error and check the
Bareos output as well as your system logs.

16.10 Example Restore Job Resource

Job {

240

Name = "RestoreFiles"
Type = Restore
Client = Any-client
FileSet = "Any-FileSet"
Storage = Any-storage
Where = /tmp/bareos-restores
Messages = Standard
Pool = Default
}

If Where is not specified, the default location for restoring files will be their original locations.

16.11 File Selection Commands

After you have selected the Jobs to be restored and Bareos has created the in-memory directory tree, you
will enter file selection mode as indicated by the dollar sign ($) prompt. While in this mode, you may use
the commands listed above. The basic idea is to move up and down the in memory directory structure with
the cd command much as you normally do on the system. Once you are in a directory, you may select the
files that you want restored. As a default no files are marked to be restored. If you wish to start with all
files, simply enter: c¢d / and mark *. Otherwise proceed to select the files you wish to restore by marking
them with the mark command. The available commands are:

cd The cd command changes the current directory to the argument specified. It operates much like the
Unix c¢d command. Wildcard specifications are not permitted.

Note, on Windows systems, the various drives (c:, d:, ...) are treated like a directory within the file
tree while in the file selection mode. As a consequence, you must do a cd c: or possibly in some cases
a cd C: (note upper case) to get down to the first directory.

dir The dir command is similar to the ls command, except that it prints it in long format (all details).
This command can be a bit slower than the Is command because it must access the catalog database
for the detailed information for each file.

estimate The estimate command prints a summary of the total files in the tree, how many are marked to
be restored, and an estimate of the number of bytes to be restored. This can be useful if you are short
on disk space on the machine where the files will be restored.

find The find command accepts one or more arguments and displays all files in the tree that match that
argument. The argument may have wildcards. It is somewhat similar to the Unix command find /
-name arg.

Is The Is command produces a listing of all the files contained in the current directory much like the Unix
Is command. You may specify an argument containing wildcards, in which case only those files will be
listed.

Any file that is marked to be restored will have its name preceded by an asterisk (*). Directory names
will be terminated with a forward slash (/) to distinguish them from filenames.

Ismark The Ismark command is the same as the lIs except that it will print only those files marked for
extraction. The other distinction is that it will recursively descend into any directory selected.

mark The mark command allows you to mark files to be restored. It takes a single argument which is the
filename or directory name in the current directory to be marked for extraction. The argument may
be a wildcard specification, in which case all files that match in the current directory are marked to
be restored. If the argument matches a directory rather than a file, then the directory and all the files
contained in that directory (recursively) are marked to be restored. Any marked file will have its name
preceded with an asterisk (*) in the output produced by the Is or dir commands. Note, supplying a
full path on the mark command does not work as expected to select a file or directory in the current
directory. Also, the mark command works on the current and lower directories but does not touch
higher level directories.

After executing the mark command, it will print a brief summary:

No files marked.

241

If no files were marked, or:

nn files marked.

if some files are marked.

unmark The unmark is identical to the mark command, except that it unmarks the specified file or files
so that they will not be restored. Note: the unmark command works from the current directory, so
it does not unmark any files at a higher level. First do a cd / before the unmark * command if you
want to unmark everything.

pwd The pwd command prints the current working directory. It accepts no arguments.

count The count command prints the total files in the directory tree and the number of files marked to be
restored.

done This command terminates file selection mode.

exit This command terminates file selection mode (the same as done).

quit This command terminates the file selection and does not run the restore job.
help This command prints a summary of the commands available.

? This command is the same as the help command.

If your filename contains some weird caracters, you can use ?, * or \\. For example, if your filename contains
a '\, you can use \\\\.

* mark weird_file\\\\with-backslash

242

Chapter 17

Volume Management

This chapter presents most all the features needed to do Volume management. Most of the concepts apply
equally well to both tape and disk Volumes. However, the chapter was originally written to explain backing
up to disk, so you will see it is slanted in that direction, but all the directives presented here apply equally
well whether your volume is disk or tape.

If you have a lot of hard disk storage or you absolutely must have your backups run within a small time
window, you may want to direct Bareos to backup to disk Volumes rather than tape Volumes. This chapter
is intended to give you some of the options that are available to you so that you can manage either disk or
tape volumes.

17.1 Key Concepts and Resource Records

Getting Bareos to write to disk rather than tape in the simplest case is rather easy. In the Storage daemon’s
configuration file, you simply define an Archive Device 3¢ . to be a directory. The default directory to store
backups on disk is /var/lib/bareos/storage:

Device {
Name = FileBackup
Media Type = File
Archive Device = /var/lib/bareos/storage
Random Access = Yes;
AutomaticMount = yes;
RemovableMedia = no;
AlwaysOpen = no;

}

Assuming you have the appropriate Storage resource in your Director’s configuration file that references the
above Device resource,

Storage {
Name = FileStorage
Address = ...
Password = ...
Device = FileBackup
Media Type = File

}

Bareos will then write the archive to the file /var/lib/bareos/storage/<volume-name> where <volume-
name> is the volume name of a Volume defined in the Pool. For example, if you have labeled a Volume
named Vol001, Bareos will write to the file /var/lib/bareos/storage/Vol001. Although you can later
move the archive file to another directory, you should not rename it or it will become unreadable by Bareos.
This is because each archive has the filename as part of the internal label, and the internal label must agree
with the system filename before Bareos will use it.

Although this is quite simple, there are a number of problems. The first is that unless you specify otherwise,
Bareos will always write to the same volume until you run out of disk space. This problem is addressed
below.

In addition, if you want to use concurrent jobs that write to several different volumes at the same time, you
will need to understand a number of other details. An example of such a configuration is given at the end
of this chapter under Concurrent Disk Jobs.

243

244

17.1.1 Pool Options to Limit the Volume Usage

Some of the options you have, all of which are specified in the Pool record, are:

e Maximum Volume Jobs 2" : write only the specified number of jobs on each Volume.

Dir - Jimit the maximum size of each Volume.

e Maximum Volume Bytes 2 :

Note, if you use disk volumes you should probably limit the Volume size to some reasonable value. If

you ever have a partial hard disk failure, you are more likely to be able to recover more data if they

are in smaller Volumes.

e Volume Use Duration 2 : restrict the time between first and last data written to Volume.

Note that although you probably would not want to limit the number of bytes on a tape as you would on a
disk Volume, the other options can be very useful in limiting the time Bareos will use a particular Volume
(be it tape or disk). For example, the above directives can allow you to ensure that you rotate through a set
of daily Volumes if you wish.
As mentioned above, each of those directives is specified in the Pool or Pools that you use for your Volumes.
In the case of Maximum Volume Jobs 2 | Maximum Volume Bytes P and Volume Use Duration R, you
can actually specify the desired value on a Volume by Volume basis. The value specified in the Pool record
becomes the default when labeling new Volumes. Once a Volume has been created, it gets its own copy
of the Pool defaults, and subsequently changing the Pool will have no effect on existing Volumes. You can
either manually change the Volume values, or refresh them from the Pool defaults using the update volume
command in the Console. As an example of the use of one of the above, suppose your Pool resource contains:

Pool {
Name = File
Pool Type = Backup
Volume Use Duration = 23h

}

Configuration 17.1: Volume Use Duration

then if you run a backup once a day (every 24 hours), Bareos will use a new Volume for each backup, because
each Volume it writes can only be used for 23 hours after the first write. Note, setting the use duration to
23 hours is not a very good solution for tapes unless you have someone on-site during the weekends, because
Bareos will want a new Volume and no one will be present to mount it, so no weekend backups will be done
until Monday morning.

17.1.2 Automatic Volume Labeling

Use of the above records brings up another problem — that of labeling your Volumes. For automated disk
backup, you can either manually label each of your Volumes, or you can have Bareos automatically label
new Volumes when they are needed.

Please note that automatic Volume labeling can also be used with tapes, but it is not nearly so practical since
the tapes must be pre-mounted. This requires some user interaction. Automatic labeling from templates
does NOT work with autochangers since Bareos will not access unknown slots. There are several methods of
labeling all volumes in an autochanger magazine. For more information on this, please see the Autochanger
Support chapter.

Automatic Volume labeling is enabled by making a change to both the PoolP" resource and to the Device®?
resource shown above. In the case of the Pool resource, you must provide Bareos with a label format that it
will use to create new names. In the simplest form, the label format is simply the Volume name, to which
Bareos will append a four digit number. This number starts at 0001 and is incremented for each Volume the
catalog contains. Thus if you modify your Pool resource to be:

Pool {
Name = File
Pool Type = Backup
Volume Use Duration = 23h
Label Format = "Vol"
}

Configuration 17.2: Label Format

245

Bareos will create Volume names Vol0001, Vol0002, and so on when new Volumes are needed. Much more
complex and elaborate labels can be created using variable expansion defined in the Variable Expansion
chapter of this manual.

The second change that is necessary to make automatic labeling work is to give the Storage daemon permis-
sion to automatically label Volumes. Do so by adding Label Media 3! . = yes to the Device resource as
follows:

Device {
Name = File
Media Type = File
Archive Device = /var/lib/bareos/storage/
Random Access = yes
Automatic Mount = yes
Removable Media = no
Always Open
Label Media

no
yes

Configuration 17.3: Label Media = yes

See Label Format 2 for details about the labeling format.

17.1.3 Restricting the Number of Volumes and Recycling

Automatic labeling discussed above brings up the problem of Volume management. With the above scheme,
a new Volume will be created every day. If you have not specified Retention periods, your Catalog will
continue to fill keeping track of all the files Bareos has backed up, and this procedure will create one new
archive file (Volume) every day.

The tools Bareos gives you to help automatically manage these problems are the following:

e File Retention 2 .: catalog file record retention period.

Client *

e Job Retention 2 : catalog job record retention period.

Dir
Client

e Auto Prune = yes: permit the application of the above two retention periods.

Dir

e Volume Retention 2

Dir
Pool

Dir

e Auto Prune = yes: permit the application of the Volume Retention 2 period.

Dir

Dir = yes: permit automatic recycling of Volumes whose Volume retention period has expired.

e Recycle

e Recycle Oldest Volume D = yes: prune the oldest volume in the Pool, and if all files were pruned,

recycle this volume and use it.
e Recycle Current Volume 2 = yes: prune the currently mounted volume in the Pool, and if all files
were pruned, recycle this volume and use it.

Dir
Pool

e Purge Oldest Volume
needed.
Please note! This record ignores retention periods! We highly recommend not to use this record, but
instead use Recycle Oldest Volume 2"

Pool*

= yes: permits a forced recycling of the oldest Volume when a new one is

Dir .

pir ¢ limitthe number of Volumes that can be created.

e Maximum Volumes

The first three records (File Retention 2 ., Job Retention 27 and Auto Prune 2) determine the amount
of time that Job and File records will remain in your Catalog and they are discussed in detail in the Automatic
Volume Recycling chapter.

Volume Retention P , Auto Prune 2 and Recycle 2 determine how long Bareos will keep your Volumes
before reusing them and they are also discussed in detail in the Automatic Volume Recycling chapter.

The Maximum Volumes 2 record can also be used in conjunction with the Volume Retention 2 period
to limit the total number of archive Volumes that Bareos will create. By setting an appropriate Volume
Retention P period, a Volume will be purged just before it is needed and thus Bareos can cycle through
a fixed set of Volumes. Cycling through a fixed set of Volumes can also be done by setting Purge Oldest
Volume 2 = yes or Recycle Current Volume . = yes. In this case, when Bareos needs a new Volume, it

will prune the specified volume.

246

17.2 Concurrent Disk Jobs

Above, we discussed how you could have a single device named FileBackup;? , . that writes to volumes in
/var/lib/bareos/storage/. You can, in fact, run multiple concurrent jobs using the Storage definition
given with this example, and all the jobs will simultaneously write into the Volume that is being written.
Now suppose you want to use multiple Pools, which means multiple Volumes, or suppose you want each
client to have its own Volume and perhaps its own directory such as /home/bareos/clientl and /home-
/bareos/client2 With the single Storage and Device definition above, neither of these two is possible.
Why? Because Bareos disk storage follows the same rules as tape devices. Only one Volume can be mounted
on any Device at any time. If you want to simultaneously write multiple Volumes, you will need multiple
Device resources in your Bareos Storage Daemon configuration and thus multiple Storage resources in your
Bareos Director configuration.

Okay, so now you should understand that you need multiple Device definitions in the case of different
directories or different Pools, but you also need to know that the catalog data that Bareos keeps contains
only the Media Type and not the specific storage device. This permits a tape for example to be re-read on any
compatible tape drive. The compatibility being determined by the Media Type (Media Type g, . and Media
Type £2....). The same applies to disk storage. Since a volume that is written by a Device in say directory
/home/bareos/backups cannot be read by a Device with an Archive Device §! . = = /home/bareos/clientl,
you will not be able to restore all your files if you give both those devices Media Type ! . == File. During
the restore, Bareos will simply choose the first available device, which may not be the correct one. If this is
confusing, just remember that the Directory has only the Media Type and the Volume name. It does not
know the Archive Device 3¢ . (or the full path) that is specified in the Bareos Storage Daemon. Thus you

Device

must explicitly tie your Volumes to the correct Device by using the Media Type.

17.2.1 Example for two clients, separate devices and recycling

The following example is not very practical, but can be used to demonstrate the proof of concept in a
relatively short period of time.

The example consists of a two clients that are backed up to a set of 12 Volumes for each client into different
directories on the Storage machine. Each Volume is used (written) only once, and there are four Full saves
done every hour (so the whole thing cycles around after three hours).

What is key here is that each physical device on the Bareos Storage Daemon has a different Media Type.
This allows the Director to choose the correct device for restores.

The Bareos Director configuration is as follows:

Director {
Name = bareos-dir
QueryFile = "/usr/lib/bareos/scripts/query.sql"
Password = "<secret>"

}

Schedule {
Name = "FourPerHour"
Run = Level=Full hourly at 0:05
Run = Level=Full hourly at 0:20
Run = Level=Full hourly at 0:35
Run = Level=Full hourly at 0:50
}

FileSet {
Name = "Example FileSet"
Include {

Options {
compression=GZIP
signature=SHA1

}

File = /etc

}
}

Job {
Name = "RecycleExample"
Type = Backup
Level = Full
Client = clientl-fd
FileSet= "Example FileSet"
Messages = Standard
Storage = FileStorage

}
Job {
Name = "RecycleExample2"
Type = Backup
Level = Full
Client = client2-fd
FileSet= "Example FileSet"
Messages = Standard
Storage = FileStorage2
Pool = Recycle2
Schedule = FourPerHour
}
Client {
Name = clientl-fd
Address = clientl.example.com
Password = clientl_password
}
Client {
Name = client2-fd
Address = client2.example.com
Password = client2_password
}
Storage {
Name = FileStorage
Address = bareos-sd.example.com
Password = local_storage_password
Device = RecycleDir
Media Type = File
}
Storage {
Name = FileStorage2
Address = bareos-sd.example.com
Password = local_storage_password
Device = RecycleDir2
Media Type = Filel
}
Catalog {

Pool = Recycle
Schedule = FourPerHour

Name = MyCatalog

}

Messages {

Name = Standard

}

Pool {

}

Name = Recycle

Pool Type = Backup

Label Format = "Recycle-"
Auto Prune = yes

Use Volume Once = yes
Volume Retention = 2h
Maximum Volumes = 12
Recycle = yes

Pool {

Name = Recycle2

Pool Type = Backup

Label Format = "Recycle2-"
Auto Prune = yes

Use Volume Once = yes
Volume Retention = 2h
Maximum Volumes = 12
Recycle = yes

247

248

Configuration 17.4:

and the Bareos Storage Daemon configuration is:

Storage {
Name = bareos-sd
Maximum Concurrent Jobs = 10

}

Director {
Name = bareos-dir
Password = local_storage_password

}

Device {
Name = RecycleDir
Media Type = File
Archive Device = /home/bareos/backups
LabelMedia = yes;
Random Access = Yes;
AutomaticMount = yes;
RemovableMedia = no;
AlwaysOpen = no;

}

Device {
Name = RecycleDir2
Media Type = File2
Archive Device = /home/bareos/backups2
LabelMedia = yes;
Random Access = Yes;
AutomaticMount = yes;
RemovableMedia = no;
AlwaysOpen = no;

}

Messages {
Name = Standard
director = bareos-dir = all

}
Configuration 17.5:

With a little bit of work, you can change the above example into a weekly or monthly cycle (take care about
the amount of archive disk space used).

17.2.2 Using Multiple Storage Devices

Bareos treats disk volumes similar to tape volumes as much as it can. This means that you can only have a
single Volume mounted at one time on a disk as defined in your Device®? resource.

If you use Bareos without Data Spooling, multiple concurrent backup jobs can be written to a Volume using
interleaving. However, interleaving has disadvantages, see Concurrent Jobs.

Also the Device®® will be in use. If there are other jobs, requesting other Volumes, these jobs have to wait.
On a tape (or autochanger), this is a physical limitation of the hardware. However, when using disk storage,
this is only a limitation of the software.

To enable Bareos to run concurrent jobs (on disk storage), define as many Device®® as concurrent jobs should
run. All these Device®s can use the same Archive Device 3 = directory. Set Maximum Concurrent Jobs
sd =1 for all these devices.

Device

Example: use four storage devices pointing to the same directory

Director {
Name = bareos-dir.example.com
QueryFile = "/usr/lib/bareos/scripts/query.sql"
Maximum Concurrent Jobs = 10
Password = "<secret>"

}

Storage {
Name = File

Address = bareos-sd.bareos.com

Password = "<sd-secret>"

Device = FileStoragel

Device = FileStorage2

Device = FileStorage3

Device = FileStorage4

number of devices = Maximum Concurrent Jobs
Maximum Concurrent Jobs = 4

Media Type = File

}
[...]

Configuration 17.6: Bareos Director configuration: using 4 storage devices
Storage {

Name = bareos-sd.example.com
any number >= 4
Maximum Concurrent Jobs = 20

}

Director {
Name = bareos-dir.example.com
Password = "<sd-secret>"

}

Device {
Name = FileStoragel
Media Type = File
Archive Device = /var/lib/bareos/storage
LabelMedia = yes
Random Access = yes
AutomaticMount = yes
RemovableMedia = no
AlwaysOpen = no
Maximum Concurrent Jobs = 1

}

Device {
Name = FileStorage2
Media Type = File
Archive Device = /var/lib/bareos/storage
LabelMedia = yes
Random Access = yes
AutomaticMount = yes
RemovableMedia = no
AlwaysOpen = no
Maximum Concurrent Jobs = 1

}

Device {
Name = FileStorage3
Media Type = File
Archive Device = /var/lib/bareos/storage
LabelMedia = yes
Random Access = yes
AutomaticMount = yes
RemovableMedia = no
AlwaysOpen = no
Maximum Concurrent Jobs = 1

}

Device {
Name = FileStorage4
Media Type = File
Archive Device = /var/lib/bareos/storage
LabelMedia = yes
Random Access = yes
AutomaticMount = yes
RemovableMedia no
AlwaysOpen = no
Maximum Concurrent Jobs = 1

Configuration 17.7: Bareos Storage Daemon configuraton:

using 4 storage devices

249

250

17.3 Automatic Volume Recycling

By default, once Bareos starts writing a Volume, it can append to the volume, but it will not overwrite the
existing data thus destroying it. However when Bareos recycles a Volume, the Volume becomes available for
being reused and Bareos can at some later time overwrite the previous contents of that Volume. Thus all
previous data will be lost. If the Volume is a tape, the tape will be rewritten from the beginning. If the
Volume is a disk file, the file will be truncated before being rewritten.

You may not want Bareos to automatically recycle (reuse) tapes. This would require a large number of tapes
though, and in such a case, it is possible to manually recycle tapes. For more on manual recycling, see the
Manually Recycling Volumes chapter.

Most people prefer to have a Pool of tapes that are used for daily backups and recycled once a week, another
Pool of tapes that are used for Full backups once a week and recycled monthly, and finally a Pool of tapes
that are used once a month and recycled after a year or two. With a scheme like this, the number of tapes
in your pool or pools remains constant.

By properly defining your Volume Pools with appropriate Retention periods, Bareos can manage the recycling
(such as defined above) automatically.

Automatic recycling of Volumes is controlled by four records in the PoolP™ resource definition. These four
records are:

Di —
e Auto Prune D = yes

e Volume Retention P

e Recycle 2 = yes

e Recycle Pool 2|

The above three directives are all you need assuming that you fill each of your Volumes then wait the Volume
Retention period before reusing them. If you want Bareos to stop using a Volume and recycle it before it is
full, you can use one or more additional directives such as:

e Volume Use Duration 2|

Dir

e Maximum Volume Jobs 2

Dir

e Maximum Volume Bytes 2

Please see below and the Basic Volume Management chapter of this manual for complete examples.
Automatic recycling of Volumes is performed by Bareos only when it wants a new Volume and no appendable
Volumes are available in the Pool. It will then search the Pool for any Volumes with the Recycle flag set
and the Volume Status is Purged. At that point, it will choose the oldest purged volume and recycle it.

If there are no volumes with status Purged, then the recycling occurs in two steps:

1. The Catalog for a Volume must be pruned of all Jobs (i.e. Purged).
2. The actual recycling of the Volume.

Only Volumes marked Full or Used will be considerd for pruning. The Volume will be purged if the
Volume Retention period has expired. When a Volume is marked as Purged, it means that no Catalog
records reference that Volume and the Volume can be recycled.

Until recycling actually occurs, the Volume data remains intact. If no Volumes can be found for recycling
for any of the reasons stated above, Bareos will request operator intervention (i.e. it will ask you to label a
new volume).

A key point mentioned above, that can be a source of frustration, is that Bareos will only recycle purged
Volumes if there is no other appendable Volume available. Otherwise, it will always write to an appendable
Volume before recycling even if there are Volume marked as Purged. This preserves your data as long
as possible. So, if you wish to “force” Bareos to use a purged Volume, you must first ensure that no
other Volume in the Pool is marked Append. If necessary, you can manually set a volume to Full. The
reason for this is that Bareos wants to preserve the data on your old tapes (even though purged from the
catalog) as long as absolutely possible before overwriting it. There are also a number of directives such as
Volume Use Duration that will automatically mark a volume as Used and thus no longer appendable.

251

17.3.1 Automatic Pruning

As Bareos writes files to tape, it keeps a list of files, jobs, and volumes in a database called the catalog. Among
other things, the database helps Bareos to decide which files to back up in an incremental or differential
backup, and helps you locate files on past backups when you want to restore something. However, the catalog
will grow larger and larger as time goes on, and eventually it can become unacceptably large.

Bareos’s process for removing entries from the catalog is called Pruning. The default is Automatic Pruning,
which means that once an entry reaches a certain age (e.g. 30 days old) it is removed from the catalog.
Note that Job records that are required for current restore and File records are needed for VirtualFull and
Accurate backups won’t be removed automatically.

Once a job has been pruned, you can still restore it from the backup tape, but one additional step is required:
scanning the volume with bscan.

The alternative to Automatic Pruning is Manual Pruning, in which you explicitly tell Bareos to erase the
catalog entries for a volume. You’d usually do this when you want to reuse a Bareos volume, because there’s
no point in keeping a list of files that USED TO BE on a tape. Or, if the catalog is starting to get too
big, you could prune the oldest jobs to save space. Manual pruning is done with the prune command in the
console.

17.3.2 Pruning Directives

There are three pruning durations. All apply to catalog database records and not to the actual data in a
Volume. The pruning (or retention) durations are for: Volumes (Media records), Jobs (Job records), and
Files (File records). The durations inter-depend because if Bareos prunes a Volume, it automatically removes
all the Job records, and all the File records. Also when a Job record is pruned, all the File records for that

Job are also pruned (deleted) from the catalog.

Having the File records in the database means that you can examine all the files backed up for a particular

Job. They take the most space in the catalog (probably 90-95% of the total). When the File records are

pruned, the Job records can remain, and you can still examine what Jobs ran, but not the details of the Files

backed up. In addition, without the File records, you cannot use the Console restore command to restore
the files.

When a Job record is pruned, the Volume (Media record) for that Job can still remain in the database, and

if you do a list volumes, you will see the volume information, but the Job records (and its File records)

will no longer be available.

In each case, pruning removes information about where older files are, but it also prevents the catalog from

growing to be too large. You choose the retention periods in function of how many files you are backing up

and the time periods you want to keep those records online, and the size of the database. It is possible to
re-insert the records (with 98% of the original data) by using bscan to scan in a whole Volume or any part
of the volume that you want.

By setting Auto Prune 2 = yes you will permit the Bareos Director to automatically prune all Volumes in

the Pool when a Job needs another Volume. Volume pruning means removing records from the catalog. It

does not shrink the size of the Volume or affect the Volume data until the Volume gets overwritten. When

a Job requests another volume and there are no Volumes with Volume status Append available, Bareos will

begin volume pruning. This means that all Jobs that are older than the Volume Retention period will be

pruned from every Volume that has Volume status Full or Used and has Recycle = yes. Pruning consists
of deleting the corresponding Job, File, and JobMedia records from the catalog database. No change to the
physical data on the Volume occurs during the pruning process. When all files are pruned from a Volume

(i.e. no records in the catalog), the Volume will be marked as Purged implying that no Jobs remain on the

volume. The Pool records that control the pruning are described below.

Auto Prune P = yes: when running a Job and it needs a new Volume but no appendable volumes are
available, apply the Volume retention period. At that point, Bareos will prune all Volumes that can
be pruned in an attempt to find a usable volume. If during the autoprune, all files are pruned from
the Volume, it will be marked with Volume status Purged.

Note, that although the File and Job records may be pruned from the catalog, a Volume will only be
marked Purged (and hence ready for recycling) if the Volume status is Append, Full, Used, or Error.
If the Volume has another status, such as Archive, Read-Only, Disabled, Busy or Cleaning, the
Volume status will not be changed to Purged.

Volume Retention ;" defines the length of time that Bareos will guarantee that the Volume is not reused

counting from the time the last job stored on the Volume terminated. A key point is that this time
period is not even considered as long at the Volume remains appendable. The Volume Retention period

252

count down begins only when the Append status has been changed to some other status (Full, Used,
Purged, ...).

When this time period expires and if Auto Prune P = yes and a new Volume is needed, but no
appendable Volume is available, Bareos will prune (remove) Job records that are older than the specified
Volume Retention period.

The Volume Retention period takes precedence over any Job Retention 2)7 = period you have specified
in the Client resource. It should also be noted, that the Volume Retention period is obtained by
reading the Catalog Database Media record rather than the Pool resource record. This means that if you
change the Volume Retention P in the Pool resource record, you must ensure that the corresponding
change is made in the catalog by using the update pool command. Doing so will insure that any new
Volumes will be created with the changed Volume Retention period. Any existing Volumes will have
their own copy of the Volume Retention period that can only be changed on a Volume by Volume

basis using the update volume command.

When all file catalog entries are removed from the volume, its Volume status is set to Purged. The
files remain physically on the Volume until the volume is overwritten.

Recycle 2 defines whether or not the particular Volume can be recycled (i.e. rewritten). If Recycle is
set to no, then even if Bareos prunes all the Jobs on the volume and it is marked Purged, it will not
consider the tape for recycling. If Recycle is set to yes and all Jobs have been pruned, the volume
status will be set to Purged and the volume may then be reused when another volume is needed. If the

volume is reused, it is relabeled with the same Volume Name, however all previous data will be lost.

17.3.3 Recycling Algorithm

After all Volumes of a Pool have been pruned (as mentioned above, this happens when a Job needs a new
Volume and no appendable Volumes are available), Bareos will look for the oldest Volume that is Purged
(all Jobs and Files expired), and if the Recycle = yes for that Volume, Bareos will relabel it and write new
data on it.

As mentioned above, there are two key points for getting a Volume to be recycled. First, the Volume must no
longer be marked Append (there are a number of directives to automatically make this change), and second
since the last write on the Volume, one or more of the Retention periods must have expired so that there are
no more catalog backup job records that reference that Volume. Once both those conditions are satisfied,
the volume can be marked Purged and hence recycled.

The full algorithm that Bareos uses when it needs a new Volume is:

The algorithm described below assumes that Auto Prune is enabled, that Recycling is turned on, and that
you have defined appropriate Retention periods or used the defaults for all these items.

1. If the request is for an Autochanger device, look only for Volumes in the Autochanger (i.e. with
InChanger set and that have the correct Storage device).

2. Search the Pool for a Volume with Volume status=Append (if there is more than one, the Volume with
the oldest date last written is chosen. If two have the same date then the one with the lowest Mediald
is chosen).

3. Search the Pool for a Volume with Volume status=Recycle and the InChanger flag is set true (if there
is more than one, the Volume with the oldest date last written is chosen. If two have the same date
then the one with the lowest Mediald is chosen).

4. Try recycling any purged Volumes.

5. Prune volumes applying Volume retention period (Volumes with VolStatus Full, Used, or Append are
pruned). Note, even if all the File and Job records are pruned from a Volume, the Volume will not be
marked Purged until the Volume retention period expires.

6. Search the Pool for a Volume with VolStatus=Purged

7. If a Pool named Scratchp” exists, search for a Volume and if found move it to the current Pool for
the Job and use it. Note, when the Scratch Volume is moved into the current Pool, the basic Pool
defaults are applied as if it is a newly labeled Volume (equivalent to an update volume from pool

command).

8. If we were looking for Volumes in the Autochanger, go back to step 2 above, but this time, look for
any Volume whether or not it is in the Autochanger.

253

9. Attempt to create a new Volume if automatic labeling enabled. If the maximum number of Volumes
specified for the pool is reached, no new Volume will be created.

10. Prune the oldest Volume if Recycle Oldest Volume R =yes (the Volume with the oldest LastWritten
date and VolStatus equal to Full, Recycle, Purged, Used, or Append is chosen). This record ensures
that all retention periods are properly respected.

11. Purge the oldest Volume if Purge Oldest Volume p* =yes (the Volume with the oldest LastWritten
date and VolStatus equal to Full, Recycle, Purged, Used, or Append is chosen). Please note! We
strongly recommend against the use of Purge Oldest Volume as it can quite easily lead to loss of
current backup data.

12. Give up and ask operator.

The above occurs when Bareos has finished writing a Volume or when no Volume is present in the drive.
On the other hand, if you have inserted a different Volume after the last job, and Bareos recognizes the
Volume as valid, it will request authorization from the Director to use this Volume. In this case, if you have
set Recycle Current Volume 2 = yes and the Volume is marked as Used or Full, Bareos will prune the
volume and if all jobs were removed during the pruning (respecting the retention periods), the Volume will
be recycled and used.

The recycling algorithm in this case is:

e If the Volume status is Append or Recycle, the volume will be used.

e If Recycle Current Volume P = yes and the volume is marked Full or Used, Bareos will prune the

volume (applying the retention period). If all Jobs are pruned from the volume, it will be recycled.

This permits users to manually change the Volume every day and load tapes in an order different from what
is in the catalog, and if the volume does not contain a current copy of your backup data, it will be used.
A few points from Alan Brown to keep in mind:

Dir

Dir is not set, Bareos will prefer to demand new volumes over forcibly purging

o If Maximum Volumes
older volumes.

o If volumes become free through pruning and the Volume retention period has expired, then they get
marked as Purged and are immediately available for recycling - these will be used in preference to
creating new volumes.

17.3.4 Recycle Status

Each Volume inherits the Recycle status (yes or no) from the Pool resource record when the Media record
is created (normally when the Volume is labeled). This Recycle status is stored in the Media record of the
Catalog. Using the Console program, you may subsequently change the Recycle status for each Volume. For
example in the following output from list volumes:

VolumeNa	Media	VolSta	VolByte	LastWritte	VolRet	Rec
File0001	File	Full	4190055	2002-05-25	14400	1
File0002	File	Full	1896460	2002-05-26	14400	1
File0003	File	Full	1896460	2002-05-26	14400	1
File0004	File	Full	1896460	2002-05-26	14400	1
File0005	File	Full	1896460	2002-05-26	14400	1
File0006	File	Full	1896460	2002-05-26	14400	1
File0007	File	Purged	1896466	2002-05-26	14400	1

all the volumes are marked as recyclable, and the last Volume, File0007 has been purged, so it may be
immediately recycled. The other volumes are all marked recyclable and when their Volume Retention period
(14400 seconds or four hours) expires, they will be eligible for pruning, and possibly recycling. Even though
Volume File0007 has been purged, all the data on the Volume is still recoverable. A purged Volume simply
means that there are no entries in the Catalog. Even if the Volume Status is changed to Recycle, the data
on the Volume will be recoverable. The data is lost only when the Volume is re-labeled and re-written.

To modify Volume File0001 so that it cannot be recycled, you use the update volume pool=File com-
mand in the console program, or simply update and Bareos will prompt you for the information.

254

+ +
+ +

+

+
+

+ + +

VolumeNa	Medial VolStal VolByte	LastWritten	VolRet	Rec		
File0001	File	Full	4190055	2002-05-25	14400	O
File0002	File	Full	1897236	2002-05-26	14400	1
File0003	File	Full	1896460	2002-05-26	14400	1
File0004	File	Full	1896460	2002-05-26	14400	1
File0005	File	Full	1896460	2002-05-26	14400	1
File0006	File	Full	1896460	2002-05-26	14400	1
File0007	File	Purged	1896466	2002-05-26	14400	1

In this case, File0001 will never be automatically recycled. The same effect can be achieved by setting the
Volume Status to Read-Only.

As you have noted, the Volume Status (VolStatus) column in the catalog database contains the current
status of the Volume, which is normally maintained automatically by Bareos. To give you an idea of some
of the values it can take during the life cycle of a Volume, here is a picture created by Arno Lehmann:

A typical volume life cycle is like this:

because job count or size limit exceeded

Append > Used/Full
B |
| First Job writes to Retention time passed |
| the volume and recycling takes |
| place |
| v
Recycled < Purged

Volume is selected for reuse

17.3.5 Daily, Weekly, Monthly Tape Usage Example

This example is meant to show you how one could define a fixed set of volumes that Bareos will rotate
through on a regular schedule. There are an infinite number of such schemes, all of which have various
advantages and disadvantages.

We start with the following assumptions:

e A single tape has more than enough capacity to do a full save.

e There are ten tapes that are used on a daily basis for incremental backups. They are prelabeled Daily1
... Daily10.

e There are four tapes that are used on a weekly basis for full backups. They are labeled Weekl ...
Week4.

e There are 12 tapes that are used on a monthly basis for full backups. They are numbered Monthl ...
Month12

e A full backup is done every Saturday evening (tape inserted Friday evening before leaving work).
e No backups are done over the weekend (this is easy to change).
e The first Friday of each month, a Monthly tape is used for the Full backup.

e Incremental backups are done Monday - Friday (actually Tue-Fri mornings).

We start the system by doing a Full save to one of the weekly volumes or one of the monthly volumes. The
next morning, we remove the tape and insert a Daily tape. Friday evening, we remove the Daily tape and
insert the next tape in the Weekly series. Monday, we remove the Weekly tape and re-insert the Daily tape.
On the first Friday of the next month, we insert the next Monthly tape in the series rather than a Weekly
tape, then continue. When a Daily tape finally fills up, Bareos will request the next one in the series, and
the next day when you notice the email message, you will mount it and Bareos will finish the unfinished
incremental backup.

What does this give? Well, at any point, you will have the last complete Full save plus several Incremental
saves. For any given file you want to recover (or your whole system), you will have a copy of that file every
day for at least the last 14 days. For older versions, you will have at least three and probably four Friday

255

full saves of that file, and going back further, you will have a copy of that file made on the beginning of the
month for at least a year.

So you have copies of any file (or your whole system) for at least a year, but as you go back in time, the
time between copies increases from daily to weekly to monthly.

What would the Bareos configuration look like to implement such a scheme?

Schedule {
Name = "NightlySave"
Run = Level=Full Pool=Monthly 1st sat at 03:05

Run = Level=Full Pool=Weekly 2nd-5th sat at 03:05
Run = Level=Incremental Pool=Daily tue-fri at 03:05
}
Job {

Name = "NightlySave"
Type = Backup
Level = Full
Client = LocalMachine
FileSet = "File Set"
Messages = Standard
Storage = DDS-4
Pool = Daily
Schedule = "NightlySave"
}
Definition of file storage device
Storage {
Name = DDS-4
Address = localhost
SDPort = 9103
Password = XXXXXXXXXXXXX
Device = FileStorage
Media Type = 8mm
}
FileSet {
Name = "File Set"
Include {
Options {
signature=MD5
}
File = fffffffffffffffff
}
Exclude { File=*.o0 }
}
Pool {
Name = Daily
Pool Type = Backup
AutoPrune = yes
VolumeRetention
Maximum Volumes
Recycle = yes
}
Pool {
Name = Weekly
Use Volume Once = yes
Pool Type = Backup
AutoPrune = yes
VolumeRetention = 30d # recycle in 30 days (default)
Recycle = yes
}
Pool {
Name = Monthly
Use Volume Once = yes
Pool Type = Backup
AutoPrune = yes
VolumeRetention = 365d # recycle in 1 year
Recycle = yes

10d # recycle in 10 days
10

17.3.6 Automatic Pruning and Recycling Example

Perhaps the best way to understand the various resource records that come into play during automatic
pruning and recycling is to run a Job that goes through the whole cycle. If you add the following resources
to your Director’s configuration file:

Schedule {

256

Name = "30 minute cycle"
Run = Level=Full Pool=File Messages=Standard Storage=File
hourly at 0:05
Run = Level=Full Pool=File Messages=Standard Storage=File
hourly at 0:35
}
Job {
Name = "Filetest"
Type = Backup
Level = Full
Client=XXXXXXXXXX
FileSet="Test Files"
Messages = Standard
Storage = File

Pool = File

Schedule = "30 minute cycle"
}
Definition of file storage device
Storage {

Name = File
Address = XXXXXXXXXXX
SDPort = 9103
Password = XXXXXXXXXXXXX
Device = FileStorage
Media Type = File
}
FileSet {
Name = "File Set"
Include {
Options {
signature=MD5
}
File = fffffffffffffffff
}
Exclude { File=*.o }
}
Pool {
Name = File
Use Volume Once = yes
Pool Type = Backup
LabelFormat = "File"
AutoPrune = yes
VolumeRetention
Maximum Volumes
Recycle = yes

4h
12

Where you will need to replace the fHFffffff’s by the appropriate files to be saved for your configuration. For
the FileSet Include, choose a directory that has one or two megabytes maximum since there will probably
be approximately eight copies of the directory that Bareos will cycle through.

In addition, you will need to add the following to your Storage daemon’s configuration file:

Device {
Name = FileStorage
Media Type = File
Archive Device = /tmp
LabelMedia = yes;
Random Access = Yes;
AutomaticMount = yes;
RemovableMedia = no;
AlwaysOpen = no;

With the above resources, Bareos will start a Job every half hour that saves a copy of the directory you
chose to /tmp/File0001 ... /tmp/File0012. After 4 hours, Bareos will start recycling the backup Volumes
(/tmp/File0001 ...). You should see this happening in the output produced. Bareos will automatically create
the Volumes (Files) the first time it uses them.

To turn it off, either delete all the resources you've added, or simply comment out the Schedule record in
the Job resource.

257

17.3.7 Manually Recycling Volumes

Although automatic recycling of Volumes is implemented (see the Automatic Volume Recycling chapter of
this manual), you may want to manually force reuse (recycling) of a Volume.

Assuming that you want to keep the Volume name, but you simply want to write new data on the tape, the
steps to take are:

e Use the update volume command in the Console to ensure that Recycle = yes.

e Use the purge jobs volume command in the Console to mark the Volume as Purged. Check by using
list volumes.

Once the Volume is marked Purged, it will be recycled the next time a Volume is needed.

If you wish to reuse the tape by giving it a new name, use the relabel instead of the purge command.
Please note! The delete command can be dangerous. Once it is done, to recover the File records, you must
either restore your database as it was before the delete command or use the bscan utility program to scan
the tape and recreate the database entries.

258

Chapter 18

Automated Disk Backup

If you manage five or ten machines and have a nice tape backup, you don’t need Pools, and you may wonder
what they are good for. In this chapter, you will see that Pools can help you optimize disk storage space.
The same techniques can be applied to a shop that has multiple tape drives, or that wants to mount various
different Volumes to meet their needs.

The rest of this chapter will give an example involving backup to disk Volumes, but most of the information
applies equally well to tape Volumes.

Given is a scenario, where the size of a full backup is about 15GB.

It is required, that backup data is available for six months. Old files should be available on a daily basis
for a week, a weekly basis for a month, then monthly for six months. In addition, offsite capability is not
needed. The daily changes amount to about 300MB on the average, or about 2GB per week.

As a consequence, the total volume of data they need to keep to meet their needs is about 100GB (15GB x
6 +2GB x5+ 0.3x7)=102.1GB.

The chosen solution was to use a 120GB hard disk — far less than 1/10th the price of a tape drive and the
cassettes to handle the same amount of data, and to have the backup software write to disk files.

The rest of this chapter will explain how to setup Bareos so that it would automatically manage a set of
disk files with the minimum sysadmin intervention.

18.1 Overall Design

Getting Bareos to write to disk rather than tape in the simplest case is rather easy.

One needs to consider about what happens if we have only a single large Bareos Volume defined on our
hard disk. Everything works fine until the Volume fills, then Bareos will ask you to mount a new Volume.
This same problem applies to the use of tape Volumes if your tape fills. Being a hard disk and the only one
you have, this will be a bit of a problem. It should be obvious that it is better to use a number of smaller
Volumes and arrange for Bareos to automatically recycle them so that the disk storage space can be reused.
As mentioned, the solution is to have multiple Volumes, or files on the disk. To do so, we need to limit the
use and thus the size of a single Volume, by time, by number of jobs, or by size. Any of these would work,
but we chose to limit the use of a single Volume by putting a single job in each Volume with the exception
of Volumes containing Incremental backup where there will be 6 jobs (a week’s worth of data) per volume.
The details of this will be discussed shortly. This is a single client backup, so if you have multiple clients
you will need to multiply those numbers by the number of clients, or use a different system for switching
volumes, such as limiting the volume size.

TODO: This chapter will get rewritten. Instead of limiting a Volume to one job, we will utilize
Maxz Use Duration = 24 hours. This prevents problems when adding more clients, because otherwise
each job has to run seperat.

The next problem to resolve is recycling of Volumes. As you noted from above, the requirements are to be
able to restore monthly for 6 months, weekly for a month, and daily for a week. So to simplify things, why
not do a Full save once a month, a Differential save once a week, and Incremental saves daily. Now since
each of these different kinds of saves needs to remain valid for differing periods, the simplest way to do this
(and possibly the only) is to have a separate Pool for each backup type.

The decision was to use three Pools: one for Full saves, one for Differential saves, and one for Incremental
saves, and each would have a different number of volumes and a different Retention period to accomplish
the requirements.

259

260

18.1.1 Full Pool

Putting a single Full backup on each Volume, will require six Full save Volumes, and a retention period of
six months. The Pool needed to do that is:

Pool {
Name = Full-Pool
Pool Type = Backup
Recycle = yes
AutoPrune = yes
Volume Retention = 6 months
Maximum Volume Jobs = 1
Label Format = Full-
Maximum Volumes = 9

Configuration 18.1: Full-Pool

Since these are disk Volumes, no space is lost by having separate Volumes for each backup (done once a
month in this case). The items to note are the retention period of six months (i.e. they are recycled after
six months), that there is one job per volume (Maximum Volume Jobs = 1), the volumes will be labeled
Full-0001, ... Full-0006 automatically. One could have labeled these manually from the start, but why not
use the features of Bareos.

Six months after the first volume is used, it will be subject to pruning and thus recycling, so with a maximum
of 9 volumes, there should always be 3 volumes available (note, they may all be marked used, but they will
be marked purged and recycled as needed).

If you have two clients, you would want to set Maximum Volume Jobs to 2 instead of one, or set a limit
on the size of the Volumes, and possibly increase the maximum number of Volumes.

18.1.2 Differential Pool

For the Differential backup Pool, we choose a retention period of a bit longer than a month and ensure that
there is at least one Volume for each of the maximum of five weeks in a month. So the following works:

Pool {
Name = Diff-Pool
Pool Type = Backup
Recycle = yes
AutoPrune = yes
Volume Retention = 40 days
Maximum Volume Jobs = 1
Label Format = Diff-
Maximum Volumes = 10

Configuration 18.2: Differential Pool

As you can see, the Differential Pool can grow to a maximum of 9 volumes, and the Volumes are retained
40 days and thereafter they can be recycled. Finally there is one job per volume. This, of course, could be
tightened up a lot, but the expense here is a few GB which is not too serious.

If a new volume is used every week, after 40 days, one will have used 7 volumes, and there should then
always be 3 volumes that can be purged and recycled.

See the discussion above concering the Full pool for how to handle multiple clients.

18.1.3 Incremental Pool

Finally, here is the resource for the Incremental Pool:

Pool {
Name = Inc-Pool
Pool Type = Backup
Recycle = yes
AutoPrune = yes
Volume Retention = 20 days
Maximum Volume Jobs = 6
Label Format = Inc-
Maximum Volumes = 7

Configuration 18.3: Incremental Pool

261

We keep the data for 20 days rather than just a week as the needs require. To reduce the proliferation of
volume names, we keep a week’s worth of data (6 incremental backups) in each Volume. In practice, the
retention period should be set to just a bit more than a week and keep only two or three volumes instead of
five. Again, the lost is very little and as the system reaches the full steady state, we can adjust these values
so that the total disk usage doesn’t exceed the disk capacity.

If you have two clients, the simplest thing to do is to increase the maximum volume jobs from 6 to 12. As
mentioned above, it is also possible limit the size of the volumes. However, in that case, you will need to
have a better idea of the volume or add sufficient volumes to the pool so that you will be assured that in
the next cycle (after 20 days) there is at least one volume that is pruned and can be recycled.

18.2 Configuration Files

The following example shows you the actual files used, with only a few minor modifications to simplify
things.
The Director’s configuration file is as follows:

Director { # define myself
Name = bareos-dir
QueryFile = "/usr/lib/bareos/scripts/query.sql"
Maximum Concurrent Jobs = 1
Password = "#*x CHANGE ME x**x"
Messages = Standard

}

JobDefs {
Name = "DefaultJob"
Type = Backup
Level = Incremental
Client = bareos-fd
FileSet = "Full Set"
Schedule = "WeeklyCycle"
Storage = File
Messages = Standard
Pool = Inc-Pool
Full Backup Pool = Full-Pool
Incremental Backup Pool = Inc-Pool
Differential Backup Pool = Diff-Pool
Priority = 10
Write Bootstrap = "/var/lib/bareos/%c.bsr"
}

Job {
Name = client
Client = client-fd
JobDefs = "DefaultJob"
FileSet = "Full Set"

}

Backup the catalog database (after the nightly save)
Job {
Name = "BackupCatalog"
Client = client-fd
JobDefs = "DefaultJob"
Level = Full
FileSet="Catalog"
Schedule = "WeeklyCycleAfterBackup"
This creates an ASCII copy of the catalog
Arguments to make_catalog_backup.pl are:
make_catalog_backup.pl <catalog-name>
RunBeforeJob = "/usr/lib/bareos/scripts/make_catalog_backup.pl MyCatalog"
This deletes the copy of the catalog
RunAfterJob = "/usr/lib/bareos/scripts/delete_catalog_backup"
This sends the bootstrap via mail for disaster recovery.
Should be sent to another system, please change recipient accordingly

Write Bootstrap = "|/usr/sbin/bsmtp -h localhost -f \"\(Bareos\) \" -s \"Bootstrap for Job %j\"
< root@localhost"
Priority = 11 # run after main backup

}

Standard Restore template, to be changed by Console program
Job {
Name = "RestoreFiles"

262

Type = Restore

Client = client-fd
FileSet="Full Set"

Storage = File

Messages = Standard

Pool = Default

Where = /tmp/bareos-restores

b
List of files to be backed up
FileSet {
Name = "Full Set"
Include = {
Options {

signature=SHA1;
compression=GZIP9

¥

File = /
File = /usr
File = /home

File = /boot
File = /var

File = /opt
}
Exclude = {
File = /proc
File = /tmp
File = /.journal
File = /.fsck
}
}
Schedule {

Name = "WeeklyCycle"

Run = Level=Full 1st sun at 2:05
Run = Level=Differential 2nd-5th sun at 2:05
Run = Level=Incremental mon-sat at 2:05

}

This schedule does the catalog. It starts after the WeeklyCycle
Schedule {

Name = "WeeklyCycleAfterBackup"

Run = Level=Full sun-sat at 2:10
}

This is the backup of the catalog
FileSet {
Name = "Catalog"
Include {
Options {
signature = MD5
}
File = "/var/lib/bareos/bareos.sql" # database dump
File = "/etc/bareos" # configuration

}

}

Client {
Name = client-fd
Address = client
FDPort = 9102
Password = " *%x CHANGE ME x**x"
AutoPrune = yes # Prune expired Jobs/Files
Job Retention = 6 months
File Retention = 60 days
}

Storage {
Name = File
Address = localhost
Password = " *%%x CHANGE ME x**x"
Device = FileStorage
Media Type = File

263

Catalog {
Name = MyCatalog

dbname = bareos; user = bareos; password = ""

}

Pool {
Name = Full-Pool
Pool Type = Backup
Recycle = yes # automatically recycle Volumes
AutoPrune = yes # Prune expired volumes
Volume Retention = 6 months
Maximum Volume Jobs = 1
Label Format = Full-
Maximum Volumes = 9

}

Pool {
Name = Inc-Pool
Pool Type = Backup
Recycle = yes # automatically recycle Volumes
AutoPrune = yes # Prune expired volumes
Volume Retention = 20 days
Maximum Volume Jobs = 6
Label Format = Inc-
Maximum Volumes = 7

}

Pool {
Name = Diff-Pool
Pool Type = Backup
Recycle = yes
AutoPrune = yes
Volume Retention = 40 days
Maximum Volume Jobs = 1
Label Format = Diff-
Maximum Volumes = 10

}

Messages {
Name = Standard

mailcommand = "bsmtp -h mail.domain.com -f \"\(Bareos\) J%r\"
-s \"Bareos: %t %e of %c %L\" %"
operatorcommand = "bsmtp -h mail.domain.com -f \"\(Bareos\) %r\"

-s \"Bareos: Intervention needed for %j\" %r"
mail = root@domain.com = all, !skipped
operator = root@domain.com = mount
console = all, !skipped, !saved
append = "/home/bareos/bin/log" = all, !skipped

Configuration 18.4: bareos-dir.conf

and the Storage daemon’s configuration file is:

Storage { # definition of myself
Name = bareos-sd

}

Director {

Name = bareos-dir

Password = " ***x CHANGE ME **x"
}

Device {
Name = FileStorage
Media Type = File
Archive Device = /var/lib/bareos/storage

LabelMedia = yes; # lets Bareos label unlabeled media
Random Access = yes;
AutomaticMount = yes; # when device opened, read it

RemovableMedia = no;
AlwaysOpen = no;

}

Messages {
Name = Standard

264

director = bareos-dir = all

}

Configuration 18.5: bareos-sd.conf

Chapter 19

Autochanger Support

Bareos provides autochanger support for reading and writing tapes. In order to work with an autochanger,
Bareos requires a number of things, each of which is explained in more detail after this list:

e The package bareos-storage-tape must be installed.

e A script that actually controls the autochanger according to commands sent by Bareos. Bareos contains
the script mtx-changer, that utilize the command mtx. It’s config file is normally located at /etc/
bareos/mtx-changer. conf

e That each Volume (tape) to be used must be defined in the Catalog and have a Slot number assigned
to it so that Bareos knows where the Volume is in the autochanger. This is generally done with the
label command, but can also done after the tape is labeled using the update slots command. See
below for more details. You must pre-label the tapes manually before using them.

e Modifications to your Storage daemon’s Device configuration resource to identify that the device is a
changer, as well as a few other parameters.

e You should also modify your Storage resource definition in the Director’s configuration file so that you
are automatically prompted for the Slot when labeling a Volume.

e You need to ensure that your Storage daemon has access permissions to both the tape drive and the
control device. On Linux, the system user bareos is added to the groups disk and tape, so that it
should have the permission to access the library.

e You need to have Autochanger = yes in your Storage resource in your bareos-dir.conf file so that
you will be prompted for the slot number when you label Volumes.

Bareos uses its own mtx-changer script to interface with a program that actually does the tape changing.
Thus in principle, mtx-changer can be adapted to function with any autochanger program, or you can call
any other script or program. The current version of mtx-changer works with the mtx program. FreeBSD
users might need to adapt this script to use chio. For more details, refer to the Testing Autochanger chapter.
Bareos also supports autochangers with barcode readers. This support includes two Console commands:
label barcodes and update slots. For more details on these commands, see the chapter about Barcode
Support.

Current Bareos autochanger support does not include cleaning, stackers, or silos. Stackers and silos are not
supported because Bareos expects to be able to access the Slots randomly. However, if you are very careful
to setup Bareos to access the Volumes in the autochanger sequentially, you may be able to make Bareos
work with stackers (gravity feed and such).

In principle, if mtx will operate your changer correctly, then it is just a question of adapting the mtx-
changer script (or selecting one already adapted) for proper interfacing.

If you are having troubles, please use the auto command in the btape program to test the functioning of
your autochanger with Bareos. Please remember, that on most distributions, the Storage daemon runs as
user bareos and not as root. You will need to ensure that the Storage daemon has sufficient permissions
to access the autochanger.

Some users have reported that the the Storage daemon blocks under certain circumstances in trying to mount
a volume on a drive that has a different volume loaded. As best we can determine, this is simply a matter
of waiting a bit. The drive was previously in use writing a Volume, and sometimes the drive will remain
BLOCKED for a good deal of time (up to 7 minutes on a slow drive) waiting for the cassette to rewind and
to unload before the drive can be used with a different Volume.

265

266

19.1 Knowing What SCSI Devices You Have

19.1.1 Linux

Under Linux, you can

cat /proc/scsi/scsi

to see what SCSI devices you have available. You can also:

cat /proc/scsi/sg/device_hdr /proc/scsi/sg/devices

to find out how to specify their control address (/dev/sg0 for the first, /dev/sgl for the second, ...) on

the Changer Device = Bareos directive.
You can also use the excellent 1Isscsi tool.

$ lsscsi -g
[1:0:2:0] tape SEAGATE ULTRIUM06242-XXX 1619 /dev/stO /dev/sg9
[1:0:14:0] mediumx STK L180 0315 /dev/schO /dev/sgl0
[2:0:3:0] tape HP Ultrium 3-SCSI G24S /dev/stl /dev/sgll
[3:0:0:0] enclosu HP A62554 HPO4 - /dev/sg3
[3:0:1:0] disk HP 36.4G ST336753FC HPOO /dev/sdd /dev/sgéd

19.1.2 FreeBSD

Under FreeBSD, use the following command to list the SCSI devices as well as the /dev/passn that you
will use on the Bareos Changer Device = directive:

camcontrol devlist

Please check that your Storage daemon has permission to access this device.
The following tip for FreeBSD users comes from Danny Butroyd: on reboot Bareos will NOT have permission
to control the device /dev/passO (assuming this is your changer device). To get around this just edit the

/ete/devfs.conf file and add the following to the bottom:

own passO root:bareos
perm passO 0666
own nsa0.0 root:bareos

perm nsa0.0 0666

This gives the bareos group permission to write to the nsa0.0 device too just to be on the safe side. To bring
these changes into effect just run:-

/etc/re.d/devfs restart

Basically this will stop you having to manually change permissions on these devices to make Bareos work
when operating the AutoChanger after a reboot.

19.2 Slots

To properly address autochangers, Bareos must know which Volume is in each slot of the autochanger. Slots
are where the changer cartridges reside when not loaded into the drive. Bareos numbers these slots from one
to the number of cartridges contained in the autochanger.

Bareos will not automatically use a Volume in your autochanger unless it is labeled and the slot number is
stored in the catalog and the Volume is marked as InChanger. This is because it must know where each
volume is to be able to load the volume. For each Volume in your changer, you will, using the Console
program, assign a slot. This information is kept in Bareos’s catalog database along with the other data for
the volume. If no slot is given, or the slot is set to zero, Bareos will not attempt to use the autochanger even
if all the necessary configuration records are present. When doing a mount command on an autochanger,
you must specify which slot you want mounted. If the drive is loaded with a tape from another slot, it will
unload it and load the correct tape, but normally, no tape will be loaded because an unmount command
causes Bareos to unload the tape in the drive.

You can check if the Slot number and InChanger flag are set by doing a:

list Volumes

in the Console program.

267

19.3 Multiple Devices

Some autochangers have more than one read/write device (drive). The Autochanger resource permits you to
group Device resources, where each device represents a drive. The Director may still reference the Devices
(drives) directly, but doing so, bypasses the proper functioning of the drives together. Instead, the Director
(in the Storage resource) should reference the Autochanger resource name. Doing so permits the Storage
daemon to ensure that only one drive uses the mtx-changer script at a time, and also that two drives don’t
reference the same Volume.

Multi-drive requires the use of the Drive Index directive in the Device resource of the Storage daemon’s
configuration file. Drive numbers or the Device Index are numbered beginning at zero, which is the default.
To use the second Drive in an autochanger, you need to define a second Device resource and set the Drive
Index to 1 for that device. In general, the second device will have the same Changer Device (control
channel) as the first drive, but a different Archive Device.

As a default, Bareos jobs will prefer to write to a Volume that is already mounted. If you have a multiple
drive autochanger and you want Bareos to write to more than one Volume in the same Pool at the same
time, you will need to set Prefer Mounted Volumes 't in the Directors Job resource to no. This will cause
the Storage daemon to maximize the use of drives.

19.4 Device Configuration Records

Configuration of autochangers within Bareos is done in the Device resource of the Storage daemon. Four
records: Autochanger, Changer Device, Changer Command, and Maximum Changer Wait control
how Bareos uses the autochanger.

These four records, permitted in Device resources, are described in detail below. Note, however, that the
Changer Device and the Changer Command directives are not needed in the Device resource if they
are present in the Autochanger resource.

Autochanger = <yes | no> (default: no)
The Autochanger record specifies if the current device belongs to an autochanger resource.

Changer Device = <device-name> In addition to the Archive Device name, you must specify a
Changer Device name. This is because most autochangers are controlled through a different de-
vice than is used for reading and writing the cartridges. For example, on Linux, one normally uses
the generic SCSI interface for controlling the autochanger, but the standard SCSI interface for read-
ing and writing the tapes. On Linux, for the Archive Device = /dev/nst0, you would typically
have Changer Device = /dev/sg0. Note, some of the more advanced autochangers will locate the
changer device on /dev/sgl. Such devices typically have several drives and a large number of tapes.

On FreeBSD systems, the changer device will typically be on /dev/pass0 through /dev/passN.
On Solaris, the changer device will typically be some file under /dev/rdsk.
Please ensure that your Storage daemon has permission to access this device.

Changer Command = <command> This record is used to specify the external program to call and
what arguments to pass to it. The command is assumed to be a standard program or shell script that
can be executed by the operating system. This command is invoked each time that Bareos wishes to

manipulate the autochanger. The following substitutions are made in the command before it is sent
to the operating system for execution:

W =h

%a = archive device name

%c = changer device name

%d = changer drive index base 0

%f = Client’s name

%j = Job name

%0 = command (loaded, load, or unload)
%s = Slot base 0

%S = Slot base 1

%v = Volume name

An actual example for using mtx with the mtx-changer script (part of the Bareos distribution) is:

Changer Command = "/usr/lib/bareos/scripts/mtx-changer Yc %o %S %a %d4d"

268

Details of the three commands currently used by Bareos (loaded, load, unload) as well as the output
expected by Bareos are given in the Bareos Autochanger Interface section.

Maximum Changer Wait = <time> This record is used to define the maximum amount of time that
Bareos will wait for an autoloader to respond to a command (e.g. load). The default is set to 120
seconds. If you have a slow autoloader you may want to set it longer.

If the autoloader program fails to respond in this time, it will be killed and Bareos will request operator
intervention.

Drive Index = <number> This record allows you to tell Bareos to use the second or subsequent drive

in an autochanger with multiple drives. Since the drives are numbered from zero, the second drive is
defined by

Device Index =1

To use the second drive, you need a second Device resource definition in the Bareos configuration file.
See the Multiple Drive section above in this chapter for more information.

In addition, for proper functioning of the Autochanger, you must define an Autochanger resource.

19.5 An Example Configuration File

The following two resources implement an autochanger:

Autochanger {
Name = Autochanger
Device = DDS-4
Changer Command = "/usr/lib/bareos/scripts/mtx-changer %c %o %S %a %d"
Changer Device = /dev/sg0
}

Device {
Name = DDS-4
Media Type = DDS-4
Archive Device = /dev/nstO # Normal archive device
Autochanger = yes
LabelMedia = no;
AutomaticMount = yes;
AlwaysOpen = yes;
}

where you will adapt the Archive Device, the Changer Device, and the path to the Changer Command
to correspond to the values used on your system.

19.6 A Multi-drive Example Configuration File

The following resources implement a multi-drive autochanger:

Autochanger {
Name = Autochanger
Device = Drive-0
Device = Drive-1
Changer Command = "/usr/lib/bareos/scripts/mtx-changer %c %o %S %a %d"
Changer Device = /dev/sg0
}

Device {
Name = Drive-0
Drive Index = 0
Media Type = DDS-4
Archive Device = /dev/nstO # Normal archive device
Autochanger = yes
LabelMedia = no;
AutomaticMount = yes;
AlwaysOpen = yes;

269

Device {
Name = Drive-1
Drive Index =1
Media Type = DDS-4
Archive Device = /dev/nstl # Normal archive device
Autochanger = yes
LabelMedia = no;
AutomaticMount = yes;
AlwaysOpen = yes;

where you will adapt the Archive Device and the Changer Device to correspond to the values used on
your system.

19.7 Specifying Slots When Labeling

If you add an Autochanger = yes record to the Storage resource in your Director’s configuration file, the
Bareos Console will automatically prompt you for the slot number when the Volume is in the changer when
you add or label tapes for that Storage device. If your mtx-changer script is properly installed, Bareos
will automatically load the correct tape during the label command.

You must also set Autochanger = yes in the Storage daemon’s Device resource as we have described above
in order for the autochanger to be used. Please see the Auto Changer 7 .~ in the Director’s chapter and
the Autochanger $! . in the Storage daemon chapter for more details on these records.

Thus all stages of dealing with tapes can be totally automated. It is also possible to set or change the Slot
using the update command in the Console and selecting Volume Parameters to update.

Even though all the above configuration statements are specified and correct, Bareos will attempt to access
the autochanger only if a slot is non-zero in the catalog Volume record (with the Volume name).

If your autochanger has barcode labels, you can label all the Volumes in your autochanger one after another
by using the label barcodes command. For each tape in the changer containing a barcode, Bareos will
mount the tape and then label it with the same name as the barcode. An appropriate Media record will
also be created in the catalog. Any barcode that begins with the same characters as specified on the
”CleaningPrefix=xxx" command, will be treated as a cleaning tape, and will not be labeled. For example
with:

Pool {
Name ...
Cleaning Prefix = "CLN"

}

Any slot containing a barcode of CLNxxxx will be treated as a cleaning tape and will not be mounted.

19.8 Changing Cartridges

If you wish to insert or remove cartridges in your autochanger or you manually run the mtx program, you
must first tell Bareos to release the autochanger by doing:

unmount
(change cartridges and/or run mtx)
mount

If you do not do the unmount before making such a change, Bareos will become completely confused about
what is in the autochanger and may stop function because it expects to have exclusive use of the autochanger
while it has the drive mounted.

19.9 Dealing with Multiple Magazines

If you have several magazines or if you insert or remove cartridges from a magazine, you should notify Bareos
of this. By doing so, Bareos will as a preference, use Volumes that it knows to be in the autochanger before
accessing Volumes that are not in the autochanger. This prevents unneeded operator intervention.

If your autochanger has barcodes (machine readable tape labels), the task of informing Bareos is simple.
Every time, you change a magazine, or add or remove a cartridge from the magazine, simply use following
commands in the Console program:

270

unmount

(remove magazine)
(insert new magazine)
update slots

mount

This will cause Bareos to request the autochanger to return the current Volume names in the magazine. This
will be done without actually accessing or reading the Volumes because the barcode reader does this during
inventory when the autochanger is first turned on. Bareos will ensure that any Volumes that are currently
marked as being in the magazine are marked as no longer in the magazine, and the new list of Volumes
will be marked as being in the magazine. In addition, the Slot numbers of the Volumes will be corrected in
Bareos’s catalog if they are incorrect (added or moved).

If you do not have a barcode reader on your autochanger, you have several alternatives.

1. You can manually set the Slot and InChanger flag using the update volume command in the Console
(quite painful).

2. You can issue a

update slots scan

command that will cause Bareos to read the label on each of the cartridges in the magazine in turn
and update the information (Slot, InChanger flag) in the catalog. This is quite effective but does take
time to load each cartridge into the drive in turn and read the Volume label.

19.10 Update Slots Command

If you change only one cartridge in the magazine, you may not want to scan all Volumes, so the update
slots command (as well as the update slots scan command) has the additional form:

update slots=nl1,n2,n3-n4, ...

where the keyword scan can be appended or not. The n1,n2, ... represent Slot numbers to be updated and
the form n3-n4 represents a range of Slot numbers to be updated (e.g. 4-7 will update Slots 4,5,6, and 7).
This form is particularly useful if you want to do a scan (time expensive) and restrict the update to one or
two slots.

For example, the command:

update slots=1,6 scan

will cause Bareos to load the Volume in Slot 1, read its Volume label and update the Catalog. It will do the
same for the Volume in Slot 6. The command:

update slots=1-3,6

will read the barcoded Volume names for slots 1,2,3 and 6 and make the appropriate updates in the Catalog.
If you don’t have a barcode reader the above command will not find any Volume names so will do nothing.

19.11 Using the Autochanger

Let’s assume that you have properly defined the necessary Storage daemon Device records, and you have
added the Autochanger = yes record to the Storage resource in your Director’s configuration file.

Now you fill your autochanger with say six blank tapes.

What do you do to make Bareos access those tapes?

One strategy is to prelabel each of the tapes. Do so by starting Bareos, then with the Console program,
enter the label command:

./bconsole

Connecting to Director rufus:8101

1000 OK: rufus-dir Version: 1.26 (4 October 2002)
*label

it will then print something like:

Using default Catalog name=BackupDB DB=bareos

The defined Storage resources are:
1: Autochanger
2: File
Select Storage resource (1-2): 1

I select the autochanger (1), and it prints:

Enter new Volume name:

Enter slot (0 for none): 1

where I entered TestVolumel for the tape name, and slot 1 for the slot. It then asks:

Defined Pools:
1: Default
2: File

Select the Pool (1-2): 1

TestVolumel

271

I select the Default pool. This will be automatically done if you only have a single pool, then Bareos will
proceed to unload any loaded volume, load the volume in slot 1 and label it. In this example, nothing was
in the drive, so it printed:

Connecting to Storage daemon Autochanger at localhost:9103 ...
Sending label command ...
3903 Issuing autochanger "load slot 1" command.
3000 OK label. Volume=TestVolumel Device=/dev/nst0

Media record for Volume=TestVolumel successfully created.

Requesting mount Autochanger ...
3001 Device /dev/nstO is mounted with Volume TestVolumel
You have messages.

*

You may then proceed to label the other volumes. The messages will change slightly because Bareos will

unload the volume (just labeled TestVolumel) before loading the next volume to be labeled.
Once all your Volumes are labeled, Bareos will automatically load them as they are needed.

To ”see” how you have labeled your Volumes, simply enter the list volumes command from the Console
program, which should print something like the following:

*{\bf list volumes}

Using default Catalog name=BackupDB DB=bareos

Defined Pools:
1: Default
2: File

Select the Pool (1-2): 1

+

+

+

+

MedId	VolName	MedTyp	VolStat	Bites	LstWrt	VolReten	Recyc	Slot
1	TestVoll	DDS-4	Append	O	0	30672000	O	1
2	TestVol2	DDS-4	Append	O	o	30672000	0	2
3	TestVol3	DDS-4	Append	O	0	30672000	O	3

+

+

19.12 Barcode Support

Bareos provides barcode support with two Console commands, label barcodes and update slots.

The label barcodes will cause Bareos to read the barcodes of all the cassettes that are currently installed
in the magazine (cassette holder) using the mtx-changer list command. Each cassette is mounted in turn
and labeled with the same Volume name as the barcode.
The update slots command will first obtain the list of cassettes and their barcodes from mtx-changer.
Then it will find each volume in turn in the catalog database corresponding to the barcodes and set its Slot
to correspond to the value just read. If the Volume is not in the catalog, then nothing will be done. This
command is useful for synchronizing Bareos with the current magazine in case you have changed magazines
or in case you have moved cassettes from one slot to another. If the autochanger is empty, nothing will be

done.

The Cleaning Prefix statement can be used in the Pool resource to define a Volume name prefix, which if
it matches that of the Volume (barcode) will cause that Volume to be marked with a VolStatus of Cleaning.

This will prevent Bareos from attempting to write on the Volume.

272

19.13 Use bconsole to display Autochanger content

The status slots storage=xxx command displays autochanger content.

Slot | Volume Name | Status | Type | Pool | Loaded |
+ + + + + |
1] 00001 | Append | DiskChangerMedia | Default | 0
2 | 00002 | Append | DiskChangerMedia | Default | 0
3% 00003 | Append | DiskChangerMedia | Scratch | 0
4 | | | | | 0 |

If you see a * near the slot number, you have to run update slots command to synchronize autochanger
content with your catalog.

19.14 Bareos Autochanger Interface

Bareos calls the autochanger script that you specify on the Changer Command statement. Normally
this script will be the mtx-changer script that we provide, but it can in fact be any program. The only
requirement for the script is that it must understand the commands that Bareos uses, which are loaded,
load, unload, list, and slots. In addition, each of those commands must return the information in the
precise format as specified below:

- Currently the changer commands used are:

loaded -- returns number of the slot that is loaded, base 1,
in the drive or O if the drive is empty.

load -- loads a specified slot (note, some autochangers
require a 30 second pause after this command) into
the drive.

unload -- unloads the device (returns cassette to its slot).

list -- returns one line for each cassette in the autochanger

in the format <slot>:<barcode>. Where
the {\bf slot} is the non-zero integer representing
the slot number, and {\bf barcode} is the barcode
associated with the cassette if it exists and if you
autoloader supports barcodes. Otherwise the barcode
field is blank.

slots -- returns total number of slots in the autochanger.

Bareos checks the exit status of the program called, and if it is zero, the data is accepted. If the exit status
is non-zero, Bareos will print an error message and request the tape be manually mounted on the drive.

19.15 Tapespeed and blocksizes

The Bareos Whitepaper Tape Speed Tuning shows that the two parameters Maximum File Size and
Maximum Block Size of the device have significant influence on the tape speed.

While it is no problem to change the Maximum File Size 3 . = parameter, unfortunately it is not possible
to change the Maximum Block Size $! .. parameter, because the previously written tapes would become
unreadable in the new setup. It would require that the Maximum Block Size 3! . = parameter is switched
back to the old value to be able to read the old volumes, but of course then the new volumes would be
unreadable.

Why is that the case?

The problem is that Bareos writes the label block (header) in the same block size that is configured in the
Maximum Block Size $¢ . parameter in the device. Per default, this value is 63k, so usually a tape written

Device

by Bareos looks like this:

|label block (63k) |

|data block 1(63k) |
|data block 2(63k) |
[... |
|data block n(63k) |

Setting the maximum block size to e.g. 512k, would lead to the following:

http://www.bareos.org/en/Whitepapers/articles/Speed_Tuning_of_Tape_Drives.html

273

|data block 1(512k) |
|data block 2(512k) |
[... |
|data block n(512k) |

As you can see, every block is written with the maximum block size, also the label block.

The problem that arises here is that reading a block header with a wrong block size causes a read error
which is interpreted as an non-existent label by Bareos.

This is a potential source of data loss, because in normal operation, Bareos refuses to relabel an already
labeled volume to be sure to not overwrite data that is still needed. If Bareos cannot read the volume label,
this security mechanism does not work and you might label tapes already labeled accidentally.

To solve this