
Bareos
Backup Archiving REcovery Open Sourced

Main Reference

Bareos GmbH & Co KG

This manual documents Bareos version master (October 27, 2016)

Copyright © 1999-2012, Free Software Foundation Europe e.V.
Copyright © 2010-2012, Planets Communications B.V.

Copyright © 2013-2016, Bareos GmbH & Co. KG
Bareos® is a registered trademark of Bareos GmbH & Co KG.

Bacula ® is a registered trademark of Kern Sibbald.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 published by the Free Software

Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A
copy of the license is included in the section entitled ”GNU Free Documentation License”.

Contents

I Introduction and Tutorial 1

1 What is Bareos? 3

1.1 History . 3

1.2 Who Needs Bareos? . 3

1.3 Bareos Components or Services . 3

1.4 Bareos Version Numbers and Releases . 4

1.5 Bareos Packages . 5

1.6 Quick Start . 6

1.7 Terminology . 6

1.8 What Bareos is Not . 8

1.9 Interactions Between the Bareos Services . 8

1.10 The Current State of Bareos . 10

1.10.1 What is Implemented . 10

1.10.2 Advantages Over Other Backup Programs . 11

1.10.3 Current Implementation Restrictions . 11

1.10.4 Design Limitations or Restrictions . 12

1.10.5 Items to Note . 12

2 Installing Bareos 13

2.1 Decide about the Bareos release to use . 13

2.2 Decide about the Database Backend . 13

2.3 Install the Bareos Software Packages . 14

2.3.1 Install on RedHat based Linux Distributions . 14

2.3.2 Install on SUSE based Linux Distributions . 15

2.3.3 Install on Debian based Linux Distributions . 15

2.3.4 Install on Univention Corporate Server . 16

2.4 Prepare Bareos database . 16

2.4.1 Debian based Linux Distributions . 16

2.4.2 Other Platforms . 17

2.5 Start the daemons . 17

3 Installing Bareos Webui 19

3.1 Features . 19

3.2 System Requirements . 20

3.2.1 Version < 16.2 . 20

3.3 Installation . 20

3.3.1 Adding the Bareos Repository . 20

3.3.2 Install the bareos-webui package . 20

3.3.3 Minimal Configuration . 21

3.3.4 Configuration Details . 21

3.4 Upgrade from 15.2 to 16.2 . 23

3.4.1 Console/Profile changes . 23

3.4.2 directors.ini . 24

3.4.3 configuration.ini . 24

3.5 Additional information . 24

3.5.1 NGINX . 24

i

ii CONTENTS

4 Updating Bareos 27
4.1 Updating the configuration files . 27
4.2 Updating the database scheme . 27

4.2.1 Debian based Linux Distributions . 27
4.2.2 Other Platforms . 27

5 Getting Started with Bareos 29
5.1 Understanding Jobs and Schedules . 29
5.2 Understanding Pools, Volumes and Labels . 29
5.3 Setting Up Bareos Configuration Files . 30
5.4 Testing your Configuration Files . 30

6 Tutorial 31
6.1 Starting the Database . 31
6.2 Installing Bareos . 31
6.3 Starting the Daemons . 31
6.4 Using the Director to Query and Start Jobs . 32
6.5 Running a Job . 33
6.6 Restoring Your Files . 36
6.7 Quitting the Console Program . 38
6.8 Adding a Client . 38
6.9 Patience When Starting Daemons or Mounting Blank Tapes 41
6.10 Pools . 41
6.11 Other Useful Console Commands . 42

7 Critical Items to Implement Before Production 43
7.1 Critical Items . 43
7.2 Recommended Items . 44

II Configuration 45

8 Customizing the Configuration 47
8.1 Configuration Path Layout . 47

8.1.1 What configuration will be used? . 48
8.1.2 Subdirectory Configuration Scheme . 48

8.2 Configuration File Format . 50
8.2.1 Character Sets . 51
8.2.2 Comments . 51
8.2.3 Semicolons . 51
8.2.4 Including other Configuration Files . 51

8.3 Resource . 52
8.3.1 Resource Directive . 52
8.3.2 Resource Directive Keyword . 52
8.3.3 Resource Directive Value . 52
8.3.4 Resource Types . 57

8.4 Names, Passwords and Authorization . 57

9 Director Configuration 61
9.1 Director Resource . 61
9.2 Job Resource . 67
9.3 JobDefs Resource . 89
9.4 Schedule Resource . 89

9.4.1 Technical Notes on Schedules . 92
9.5 FileSet Resource . 93

9.5.1 FileSet Include Ressource . 93
9.5.2 FileSet Exclude Ressource . 106
9.5.3 FileSet Examples . 107
9.5.4 Windows FileSets . 111
9.5.5 Testing Your FileSet . 112

9.6 Client Resource . 112

CONTENTS iii

9.7 Storage Resource . 118

9.8 Pool Resource . 123

9.8.1 Scratch Pool . 131

9.9 Catalog Resource . 131

9.10 Messages Resource . 134

9.11 Console Resource . 134

9.12 Profile Resource . 137

9.13 Counter Resource . 139

9.14 Example Director Configuration File . 140

10 Storage Daemon Configuration 145

10.1 Storage Resource . 145

10.2 Director Resource . 151

10.3 NDMP Resource . 153

10.4 Device Resource . 154

10.4.1 Edit Codes for Mount and Unmount Directives . 166

10.4.2 Devices that require a mount (USB) . 166

10.5 Autochanger Resource . 167

10.6 Messages Resource . 168

10.7 Example Storage Daemon Configuration File . 168

11 Client/File Daemon Configuration 173

11.1 Client Resource . 173

11.2 Director Resource . 180

11.3 Messages Resource . 183

11.4 Example Client Configuration File . 183

12 Messages Resource 185

12.1 Message Types . 188

13 Console Configuration 191

13.1 Director Resource . 191

13.2 Console Resource . 193

13.3 Example Console Configuration File . 196

13.3.1 Using Named Consoles . 196

14 Monitor Configuration 199

14.1 Monitor Resource . 199

14.2 Director Resource . 200

14.3 Client Resource . 201

14.4 Storage Resource . 201

14.5 Tray Monitor . 202

III Tasks and Concepts 205

15 Bareos Console 207

15.1 Console Configuration . 207

15.2 Running the Console Program . 207

15.2.1 Exit the Console Program . 208

15.2.2 Running the Console from a Shell Script . 208

15.3 Console Keywords . 209

15.4 Console Commands . 210

15.4.1 Special dot (.) Commands . 227

15.4.2 Special At (@) Commands . 228

15.5 Adding Volumes to a Pool . 228

iv CONTENTS

16 The Restore Command 231

16.1 General . 231

16.2 The Restore Command . 231

16.3 Selecting Files by Filename . 235

16.4 Replace Options . 236

16.5 Command Line Arguments . 236

16.6 Using File Relocation . 237

16.7 Restoring Directory Attributes . 238

16.8 Restoring on Windows . 239

16.9 Restore Errors . 239

16.10 Example Restore Job Resource . 239

16.11 File Selection Commands . 240

17 Volume Management 243

17.1 Key Concepts and Resource Records . 243

17.1.1 Pool Options to Limit the Volume Usage . 244

17.1.2 Automatic Volume Labeling . 244

17.1.3 Restricting the Number of Volumes and Recycling 245

17.2 Concurrent Disk Jobs . 246

17.2.1 Example for two clients, separate devices and recycling 246

17.2.2 Using Multiple Storage Devices . 248

17.3 Automatic Volume Recycling . 250

17.3.1 Automatic Pruning . 251

17.3.2 Pruning Directives . 251

17.3.3 Recycling Algorithm . 252

17.3.4 Recycle Status . 253

17.3.5 Daily, Weekly, Monthly Tape Usage Example . 254

17.3.6 Automatic Pruning and Recycling Example . 255

17.3.7 Manually Recycling Volumes . 257

18 Automated Disk Backup 259

18.1 Overall Design . 259

18.1.1 Full Pool . 260

18.1.2 Differential Pool . 260

18.1.3 Incremental Pool . 260

18.2 Configuration Files . 261

19 Autochanger Support 265

19.1 Knowing What SCSI Devices You Have . 266

19.1.1 Linux . 266

19.1.2 FreeBSD . 266

19.2 Slots . 266

19.3 Multiple Devices . 267

19.4 Device Configuration Records . 267

19.5 An Example Configuration File . 268

19.6 A Multi-drive Example Configuration File . 268

19.7 Specifying Slots When Labeling . 269

19.8 Changing Cartridges . 269

19.9 Dealing with Multiple Magazines . 269

19.10 Update Slots Command . 270

19.11 Using the Autochanger . 270

19.12 Barcode Support . 271

19.13 Use bconsole to display Autochanger content . 272

19.14 Bareos Autochanger Interface . 272

19.15 Tapespeed and blocksizes . 272

CONTENTS v

20 Using Tape Drives without Autochanger 277
20.1 Simple One Tape Backup . 277

20.1.1 Advantages . 277
20.1.2 Disadvantages . 277
20.1.3 Practical Details . 277

20.2 Manually Changing Tapes . 277
20.3 Daily Tape Rotation . 278

20.3.1 Advantages . 278
20.3.2 Disadvantages . 278
20.3.3 Practical Details . 279

21 Data Spooling 283
21.1 Data Spooling Directives . 283

21.1.1 Additional Notes . 284

22 Migration and Copy 285
22.1 Important Migration Considerations . 286
22.2 Configure Copy or Migration Jobs . 286

22.2.1 Example Migration Jobs . 287

23 Always Incremental Backup Scheme 291
23.1 Conventional Backup Scheme Drawbacks . 291
23.2 Always Incremental Concept . 292
23.3 How to configure in Bareos . 293

23.3.1 Always Incremental Backup Job . 293
23.3.2 Consolidate Job . 294
23.3.3 Storages and Pools . 294

23.4 How it works . 295
23.5 Enhancements for the Always Incremental Backup Scheme 297

23.5.1 The basic always incremental scheme . 297
23.5.2 Always Incremental Max Full Age . 297
23.5.3 Max Full Consolidations . 299

23.6 Long Term Storage of Always Incremental Jobs . 299
23.6.1 Copy Jobs . 301
23.6.2 Virtual Full Jobs . 301

24 How to manually transfer data/volumes 303
24.1 Import Data from a Remote Storage Daemon . 304
24.2 Import Data from a Independent Remote Full Bareos Installation 305

25 File Deduplication using Base Jobs 307

26 Plugins 309
26.1 File Daemon Plugins . 309

26.1.1 bpipe Plugin . 309
26.1.2 PGSQL Plugin . 310
26.1.3 MySQL Plugin . 310
26.1.4 MSSQL Plugin . 310
26.1.5 LDAP Plugin . 310
26.1.6 Cephfs Plugin . 310
26.1.7 Rados Plugin . 310
26.1.8 GlusterFS Plugin . 310
26.1.9 python-fd Plugin . 311
26.1.10 VMware Plugin . 311

26.2 Storage Daemon Plugins . 315
26.2.1 autoxflate-sd . 315
26.2.2 scsicrypto-sd . 316
26.2.3 scsitapealert-sd . 320
26.2.4 python-sd Plugin . 320

26.3 Director Plugins . 320
26.3.1 python-dir Plugin . 320

vi CONTENTS

27 The Windows Version of Bareos 323
27.1 Windows Installation . 323

27.1.1 Graphical Installation . 324
27.1.2 Command Line (Silent) Installation . 325

27.2 Dealing with Windows Problems . 326
27.2.1 Antivirus Program . 326
27.2.2 Enable Debuggging . 326

27.3 Windows Compatibility Considerations . 326
27.3.1 Exclusively Opened Files . 326
27.3.2 Backing up the Windows Registry . 326
27.3.3 Windows Reparse Points . 326
27.3.4 Hard Links . 328
27.3.5 FilesNotToBackup Registry Key . 328
27.3.6 Windows dedup support . 328
27.3.7 Store all file attributes . 328
27.3.8 Support for Windows EFS filesystems . 329

27.4 Volume Shadow Copy Service (VSS) . 329
27.4.1 VSS Problems . 330

27.5 Windows Firewalls . 330
27.5.1 Network TCP Port . 330

27.6 Windows Restore Problems . 330
27.7 Windows Backup Problems . 330
27.8 Windows Ownership and Permissions Problems . 331
27.9 Advanced Windows Configuration . 331

27.9.1 Windows Service . 331
27.9.2 Windows Specific Command Line Options . 332

28 Network setup 333
28.1 Client Initiated Connection . 333
28.2 Passive Clients . 334

28.2.1 Usage . 334

29 Transport Encryption 337
29.1 TLS Configuration Directives . 337
29.2 Getting TLS Certificates . 338
29.3 Example TLS Configuration Files . 338

30 Data Encryption 341
30.1 Encryption Technical Details . 341
30.2 Generating Private/Public Encryption Keys . 342
30.3 Example Data Encryption Configurations (bareos-fd.conf) 342
30.4 Decrypting with a Master Key . 342

31 NDMP Backups with Bareos 343
31.1 Example Setup for NDMP backup . 343

31.1.1 Enable NDMP on your storage appliance . 343
31.1.2 Bareos Director: Configure NDMP Client Resource 344
31.1.3 Bareos Storage Daemon: Configure NDMP . 345
31.1.4 Bareos Director: Configure a Paired Storage . 346
31.1.5 Bareos Director: Configure NDMP Fileset . 347
31.1.6 Bareos Director: Configure NDMP Jobs . 348

31.2 Run NDMP Backup . 349
31.2.1 NDMP Backup Level . 351

31.3 Run NDMP Restore . 351
31.3.1 Full Restore . 352
31.3.2 Restore files to original path . 352
31.3.3 Restore files to different path . 354

31.4 NDMP Copy Jobs . 354
31.4.1 Restore to NDMP Primary Storage System . 356

31.5 NDMP Debugging . 357
31.6 Limitations . 357

CONTENTS vii

31.6.1 NDMP Job limitations when scanning in volumes 357
31.6.2 Single file restore on incremental backups . 357
31.6.3 Restore always transfers the full main backup file to the Primary Storage System . 357
31.6.4 Temporary memory mapped database . 358

31.7 Tested Environments . 358

32 Catalog Maintenance 359
32.1 Catalog Database . 359

32.1.1 dbconfig-common (Debian) . 359
32.1.2 Manual Configuration . 360

32.2 Retention Periods . 365
32.3 PostgreSQL . 367

32.3.1 Compacting Your PostgreSQL Database . 367
32.3.2 Repairing Your PostgreSQL Database . 369

32.4 MySQL/MariaDB . 370
32.4.1 MySQL/MariaDB Support . 370
32.4.2 Compacting Your MySQL Database . 370
32.4.3 Repairing Your MySQL Database . 370
32.4.4 MySQL Table is Full . 370
32.4.5 MySQL Server Has Gone Away . 371
32.4.6 MySQL Temporary Tables . 371

32.5 Performance Issues Indexes . 371
32.5.1 PostgreSQL Indexes . 371
32.5.2 MySQL Indexes . 371
32.5.3 SQLite Indexes . 372

32.6 Backing Up Your Bareos Database . 372
32.7 Database Size . 373

33 Bareos Security Issues 375
33.1 Configuring and Testing TCP Wrappers . 375
33.2 Secure Erase Command . 375

IV Appendix 377

A System Requirements 379

B Operating Systems 381
B.1 . 382

B.1.1 Packages for the different Linux platforms . 382
B.1.2 Univention Corporate Server . 385
B.1.3 Debian.org / Ubuntu Universe . 390
B.1.4 Mac OS X . 391

C Bareos Programs 393
C.1 Parameter . 393

C.1.1 Specifying the Configuration File . 393
C.1.2 Specifying a Device Name For a Tape . 393
C.1.3 Specifying a Device Name For a File . 393
C.1.4 Specifying Volumes . 393

C.2 Bareos Daemons . 394
C.2.1 Daemon Command Line Options . 394
C.2.2 bareos-dir . 394
C.2.3 bareos-sd . 394
C.2.4 bareos-fd . 394

C.3 Interactive Programs . 394
C.3.1 bconsole . 394
C.3.2 bareos-webui . 394
C.3.3 bat . 395

C.4 Volume Utility Commands . 395
C.4.1 bls . 395

viii CONTENTS

C.4.2 bextract . 397
C.4.3 bscan . 399
C.4.4 bcopy . 402
C.4.5 btape . 403
C.4.6 bscrypto . 405

C.5 Other Programs . 406
C.5.1 bsmtp . 406
C.5.2 bareos-dbcheck . 407
C.5.3 bregex . 409
C.5.4 bwild . 409
C.5.5 bpluginfo . 409

D The Bootstrap File 411
D.1 Bootstrap File Format . 411
D.2 Automatic Generation of Bootstrap Files . 414
D.3 Bootstrap for bscan . 414
D.4 Bootstrap Example . 414

E Verify File Integrity with Bareos 415
E.1 The Details . 415
E.2 Running the Verify . 416
E.3 What To Do When Differences Are Found . 417
E.4 A Verify Configuration Example . 418

F Backward Compatibility 421
F.1 Tape Formats . 421
F.2 Compatibility between Bareos and Bacula . 421

F.2.1 Upgrade from Bacula 5.2 to Bareos . 422

G Catalog Tables 425
G.1 Job . 425

G.1.1 JobStatus . 425

H Howtos 427
H.1 Use a dummy device to test the backup . 427
H.2 Backup Of Third Party Databases . 427

H.2.1 Backup of MSSQL Databases with Bareos Plugin 427
H.2.2 Backup of a PostgreSQL Database . 436
H.2.3 Backup of a MySQL Database . 437

I Disaster Recovery Using Bareos 443
I.1 General . 443

I.1.1 Important Considerations . 443
I.2 Steps to Take Before Disaster Strikes . 443
I.3 Bare Metal Recovery of Bareos Clients . 444

I.3.1 Linux . 444
I.4 Restoring a Bareos Server . 445

J Troubleshooting 447
J.1 Debug Messages . 447
J.2 Client Access Problems . 447

J.2.1 Difficulties Connecting from the FD to the SD . 447
J.2.2 Authorization Errors . 448

J.3 Concurrent Jobs . 449
J.4 Tape Labels: ANSI or IBM . 450

J.4.1 Reading . 450
J.4.2 Writing . 450

J.5 Tape Drive . 450
J.5.1 Get Your Tape Drive Working . 450

J.6 Autochanger . 451
J.6.1 Testing Autochanger and Adapting mtx-changer script 451

CONTENTS ix

J.7 Restore . 453
J.7.1 Restore a pruned job using a pattern . 453
J.7.2 Problems Restoring Files . 453
J.7.3 Restoring Files Can Be Slow . 454
J.7.4 Restoring When Things Go Wrong . 454

K Debugging 459
K.1 Traceback . 459
K.2 Testing The Traceback . 459

K.2.1 Getting A Traceback On Other Systems . 460
K.3 Manually Running Bareos Under The Debugger . 460

L Release Notes 461

M Bareos Copyright, Trademark, and Licenses 467
M.1 Licenses Overview . 467
M.2 GNU Free Documentation License . 469
M.3 GNU Affero Gerneral Public License . 477
M.4 GNU Lesser Gerneral Public License . 489

V Index 493

General 495

Director 506

Storage Daemon 510

File Daemon 512

Console 513

Part I

Introduction and Tutorial

1

Chapter 1

What is Bareos?

Bareos is a set of computer programs that permits the system administrator to manage backup, recovery,
and verification of computer data across a network of computers of different kinds. Bareos can also run
entirely upon a single computer and can backup to various types of media, including tape and disk.

In technical terms, it is a network Client/Server based backup program. Bareos is relatively easy to use and
efficient, while offering many advanced storage management features that make it easy to find and recover
lost or damaged files. Due to its modular design, Bareos is scalable from small single computer systems to
systems consisting of hundreds of computers located over a large network.

1.1 History

Bareos is a fork of the open source project Bacula version 5.2. In 2010 the Bacula community developer
Marco van Wieringen started to collect rejected or neglected community contributions in his own branch.
This branch was later on the base of Bareos and since then was enriched by a lot of new features.

This documentation also bases on the original Bacula documentation, it is technically also a fork of the
documenation created following the rules of the GNU Free Documentation License.

Original author of Bacula and it’s documentation is Kern Sibbald. We thank Kern and all contributors to
Bacula and it’s documentation. We maintain a list of contributors to Bacula (until the time we’ve started
the fork) and Bareos in our AUTHORS file.

1.2 Who Needs Bareos?

If you are currently using a program such as tar, dump, or bru to backup your computer data, and you would
like a network solution, more flexibility, or catalog services, Bareos will most likely provide the additional
features you want. However, if you are new to Unix systems or do not have offsetting experience with a
sophisticated backup package, the Bareos project does not recommend using Bareos as it is much more
difficult to setup and use than tar or dump.

If you want Bareos to behave like the above mentioned simple programs and write over any tape that you
put in the drive, then you will find working with Bareos difficult. Bareos is designed to protect your data
following the rules you specify, and this means reusing a tape only as the last resort. It is possible to ”force”
Bareos to write over any tape in the drive, but it is easier and more efficient to use a simpler program for
that kind of operation.

If you would like a backup program that can write to multiple volumes (i.e. is not limited by your tape drive
capacity), Bareos can most likely fill your needs.

If you are currently using a sophisticated commercial package such as Legato Networker, ARCserveIT, Arkeia,
IBM Tivoli Storage Manager or PerfectBackup+, you may be interested in Bareos, which provides many of
the same features and is free software available under the GNU AGPLv3 software license.

1.3 Bareos Components or Services

Bareos is made up of the following major components or services: Director, Console, File, Storage, and
Monitor services.

3

http://www.bareos.org/en/faq/items/why_fork.html
http://www.bacula.org
http://www.bacula.org/5.2.x-manuals/en/main/main/
https://github.com/bareos/bareos/blob/master/AUTHORS

4

Bareos Director

The Director is the central control program for all the other daemons. It schedules and supervises all
the backup, restore, verify and archive operations. The system administrator uses the Bareos Director to
schedule backups and to recover files. The Director runs as a daemon (or service) in the background.

Bareos Console

The Bareos Console (bconsole) is the program that allows the administrator or user to communicate with
the Bareos Director. It runs in a shell window (i.e. TTY interface). Most system administrators will find
this completely adequate. For more details see the Bareos Console.

Bareos File Daemon

The Bareos File Daemon is a program that must be installed on each (Client) machine that should be backed
up. At the request of the Bareos Director, it finds the files to be backed up and sends them (their data) to
the Bareos Storage Daemon.
It is specific to the operating system on which it runs and is responsible for providing the file attributes and
data when requested by the Bareos Director.
The Bareos File Daemon is also responsible for the file system dependent part of restoring the file attributes
and data during a recovery operation. This program runs as a daemon on the machine to be backed up.

Bareos Storage Daemon

The Bareos Storage Daemon is responsible, at the Bareos Director request, for accepting data from a Bareos
File Daemon and storing the file attributes and data to the physical backup media or volumes. In the case
of a restore request, it is responsible to find the data and send it to the Bareos File Daemon.
There can be multiple Bareos Storage Daemon in your environment, all controlled by the same Bareos
Director.
The Storage services runs as a daemon on the machine that has the backup device (such as a tape drive).

Catalog

The Catalog services are comprised of the software programs responsible for maintaining the file indexes
and volume databases for all files backed up. The Catalog services permit the system administrator or user
to quickly locate and restore any desired file. The Catalog services sets Bareos apart from simple backup
programs like tar and bru, because the catalog maintains a record of all Volumes used, all Jobs run, and
all Files saved, permitting efficient restoration and Volume management. Bareos currently supports three
different databases, MySQL, PostgreSQL, and SQLite, one of which must be chosen when building Bareos.
The three SQL databases currently supported (MySQL, PostgreSQL or SQLite) provide quite a number of
features, including rapid indexing, arbitrary queries, and security. Although the Bareos project plans to sup-
port other major SQL databases, the current Bareos implementation interfaces only to MySQL, PostgreSQL
and SQLite.
To perform a successful save or restore, the following four daemons must be configured and running: the
Director daemon, the File daemon, the Storage daemon, and the Catalog service (MySQL, PostgreSQL or
SQLite).

1.4 Bareos Version Numbers and Releases

Bareos version numbers consists of three parts: YY.Q.C

YY year (last two digits)
Q quarter of the year
YY.Q year and quarter of the code freeze. After this, as a general rule, no new feature should

get introduced to this Bareos branch. Subsequent release are for bugfixing.
C Release counter. For every subsequent release, this counter is incremented. Beginning

with 16.2, numbers from 1 to 3 represents the month of the quarter during development.
After the code freeze, the number is set to 4. So, stable releases get number from 4
onwards. Maintenance releases get numbers starting from 5 onwards.

Following information can be determined from the Bareos release bareos-16.2.4:

5

� 16.2: Code freeze have been in the second quarter of 2016

� 4: this is the first stable release of the bareos-16.2 branch

1.5 Bareos Packages

Following Bareos Linux packages are available (release 14.2):

Package Name Description
bareos Backup Archiving REcovery Open Sourced - metapackage
bareos-bat Bareos Admin Tool (GUI)
bareos-bconsole Bareos administration console (CLI)
bareos-client Bareos client Meta-All-In-One package
bareos-common Common files, required by multiple Bareos packages
bareos-database-common Generic abstraction libs and files to connect to a database
bareos-database-mysql Libs and tools for mysql catalog
bareos-database-postgresql Libs and tools for postgresql catalog
bareos-database-sqlite3 Libs and tools for sqlite3 catalog
bareos-database-tools Bareos CLI tools with database dependencies (bareos-dbcheck, bscan)
bareos-devel Devel headers
bareos-director Bareos Director daemon
bareos-director-python-plugin Python plugin for Bareos Director daemon
bareos-filedaemon Bareos File daemon (backup and restore client)
bareos-filedaemon-ceph-plugin CEPH plugin for Bareos File daemon
bareos-filedaemon-glusterfs-plugin GlusterFS plugin for Bareos File daemon
bareos-filedaemon-ldap-python-plugin LDAP Python plugin for Bareos File daemon
bareos-filedaemon-python-plugin Python plugin for Bareos File daemon
bareos-storage Bareos Storage daemon
bareos-storage-ceph CEPH support for the Bareos Storage daemon
bareos-storage-fifo FIFO support for the Bareos Storage backend
bareos-storage-glusterfs GlusterFS support for the Bareos Storage daemon
bareos-storage-python-plugin Python plugin for Bareos Storage daemon
bareos-storage-tape Tape support for the Bareos Storage daemon
bareos-tools Bareos CLI tools (bcopy, bextract, bls, bregex, bwild)
bareos-traymonitor Bareos Tray Monitor (QT)
bareos-vadp-dumper VADP Dumper - vStorage APIs for Data Protection Dumper program
bareos-vmware-plugin Bareos VMware plugin
bareos-vmware-vix-disklib VMware vix disklib distributable libraries
bareos-webui Bareos Web User Interface

Not all packages (especially optional backends and plugins) are available on all platforms. For details, see
Packages for the different Linux platforms.

Additionally, packages containing debug information are available. These are named differently depending
on the distribution (bareos-debuginfo or bareos-dbg or . . .).

Not all packages are required to run Bareos.

� For the Bareos Director, the package bareos-director and one of bareos-database-postgresql,
bareos-database-mysql or bareos-database-sqlite3 are required (use bareos-database-sqlite3
only for testing).

� For the Bareos Storage Daemon, the package bareos-storage is required. If you plan to connect tape
drives to the storage director, also install the package bareos-storage-tape. This is kept separately,
because it has additional dependencies for tape tools.

� On a client, only the package bareos-filedaemon is required. If you run it on a workstation, the
packages bareos-traymonitor gives the user information about running backups.

� On a Backup Administration system you need to install at least bareos-bconsole to have an interac-
tive console to the Bareos Director.

6

1.6 Quick Start

To get Bareos up and running quickly, the author recommends that you first scan the Terminology section
below, then quickly review the next chapter entitled The Current State of Bareos, then the Installing Bareos,
the Getting Started with Bareos, which will give you a quick overview of getting Bareos running. After which,
you should proceed to the chapter How to Configure Bareos, and finally the chapter on Running Bareos.

1.7 Terminology

Administrator The person or persons responsible for administrating the Bareos system.

Backup The term Backup refers to a Bareos Job that saves files.

Bootstrap File The bootstrap file is an ASCII file containing a compact form of commands that allow
Bareos or the stand-alone file extraction utility (bextract) to restore the contents of one or more
Volumes, for example, the current state of a system just backed up. With a bootstrap file, Bareos can
restore your system without a Catalog. You can create a bootstrap file from a Catalog to extract any
file or files you wish.

Catalog The Catalog is used to store summary information about the Jobs, Clients, and Files that were
backed up and on what Volume or Volumes. The information saved in the Catalog permits the admin-
istrator or user to determine what jobs were run, their status as well as the important characteristics
of each file that was backed up, and most importantly, it permits you to choose what files to restore.
The Catalog is an online resource, but does not contain the data for the files backed up. Most of the
information stored in the catalog is also stored on the backup volumes (i.e. tapes). Of course, the
tapes will also have a copy of the file data in addition to the File Attributes (see below).

The catalog feature is one part of Bareos that distinguishes it from simple backup and archive programs
such as dump and tar.

Client In Bareos’s terminology, the word Client refers to the machine being backed up, and it is synonymous
with the File services or File daemon, and quite often, it is referred to it as the FD. A Client is defined
in a configuration file resource.

Console The program that interfaces to the Director allowing the user or system administrator to control
Bareos.

Daemon Unix terminology for a program that is always present in the background to carry out a designated
task. On Windows systems, as well as some Unix systems, daemons are called Services.

Directive The term directive is used to refer to a statement or a record within a Resource in a configuration
file that defines one specific setting. For example, the Name directive defines the name of the Resource.

Director The main Bareos server daemon that schedules and directs all Bareos operations. Occasionally,
the project refers to the Director as DIR.

Differential A backup that includes all files changed since the last Full save started. Note, other backup
programs may define this differently.

File Attributes The File Attributes are all the information necessary about a file to identify it and all its
properties such as size, creation date, modification date, permissions, etc. Normally, the attributes are
handled entirely by Bareos so that the user never needs to be concerned about them. The attributes
do not include the file’s data.

File daemon The daemon running on the client computer to be backed up. This is also referred to as the
File services, and sometimes as the Client services or the FD.

FileSet A FileSet is a Resource contained in a configuration file that defines the files to be backed up. It
consists of a list of included files or directories, a list of excluded files, and how the file is to be stored
(compression, encryption, signatures). For more details, see the FileSet Resource in the Director
chapter of this document.

Incremental A backup that includes all files changed since the last Full, Differential, or Incremental backup
started. It is normally specified on the Level directive within the Job resource definition, or in a
Schedule resource.

7

Job A Bareos Job is a configuration resource that defines the work that Bareos must perform to backup
or restore a particular Client. It consists of the Type (backup, restore, verify, etc), the Level (full,
differential, incremental, etc.), the FileSet, and Storage the files are to be backed up (Storage device,
Media Pool). For more details, see the Job Resource in the Director chapter of this document.

Monitor The program that interfaces to all the daemons allowing the user or system administrator to
monitor Bareos status.

Resource A resource is a part of a configuration file that defines a specific unit of information that is
available to Bareos. It consists of several directives (individual configuration statements). For example,
the Job resource defines all the properties of a specific Job: name, schedule, Volume pool, backup type,
backup level, ...

Restore A restore is a configuration resource that describes the operation of recovering a file from backup
media. It is the inverse of a save, except that in most cases, a restore will normally have a small set
of files to restore, while normally a Save backs up all the files on the system. Of course, after a disk
crash, Bareos can be called upon to do a full Restore of all files that were on the system.

Schedule A Schedule is a configuration resource that defines when the Bareos Job will be scheduled for
execution. To use the Schedule, the Job resource will refer to the name of the Schedule. For more
details, see the Schedule Resource in the Director chapter of this document.

Service This is a program that remains permanently in memory awaiting instructions. In Unix environ-
ments, services are also known as daemons.

Storage Coordinates The information returned from the Storage Services that uniquely locates a file
on a backup medium. It consists of two parts: one part pertains to each file saved, and the other
part pertains to the whole Job. Normally, this information is saved in the Catalog so that the user
doesn’t need specific knowledge of the Storage Coordinates. The Storage Coordinates include the File
Attributes (see above) plus the unique location of the information on the backup Volume.

Storage Daemon The Storage daemon, sometimes referred to as the SD, is the code that writes the
attributes and data to a storage Volume (usually a tape or disk).

Session Normally refers to the internal conversation between the File daemon and the Storage daemon.
The File daemon opens a session with the Storage daemon to save a FileSet or to restore it. A session
has a one-to-one correspondence to a Bareos Job (see above).

Verify A verify is a job that compares the current file attributes to the attributes that have previously been
stored in the Bareos Catalog. This feature can be used for detecting changes to critical system files
similar to what a file integrity checker like Tripwire does. One of the major advantages of using Bareos
to do this is that on the machine you want protected such as a server, you can run just the File daemon,
and the Director, Storage daemon, and Catalog reside on a different machine. As a consequence, if
your server is ever compromised, it is unlikely that your verification database will be tampered with.

Verify can also be used to check that the most recent Job data written to a Volume agrees with what
is stored in the Catalog (i.e. it compares the file attributes), *or it can check the Volume contents
against the original files on disk.

Retention Period There are various kinds of retention periods that Bareos recognizes. The most important
are the File Retention Period, Job Retention Period, and the Volume Retention Period. Each of
these retention periods applies to the time that specific records will be kept in the Catalog database.
This should not be confused with the time that the data saved to a Volume is valid.

The File Retention Period determines the time that File records are kept in the catalog database. This
period is important for two reasons: the first is that as long as File records remain in the database,
you can ”browse” the database with a console program and restore any individual file. Once the File
records are removed or pruned from the database, the individual files of a backup job can no longer be
”browsed”. The second reason for carefully choosing the File Retention Period is because the volume
of the database File records use the most storage space in the database. As a consequence, you must
ensure that regular ”pruning” of the database file records is done to keep your database from growing
too large. (See the Console prune command for more details on this subject).

The Job Retention Period is the length of time that Job records will be kept in the database. Note,
all the File records are tied to the Job that saved those files. The File records can be purged leaving
the Job records. In this case, information will be available about the jobs that ran, but not the details

8

of the files that were backed up. Normally, when a Job record is purged, all its File records will also
be purged.

The Volume Retention Period is the minimum of time that a Volume will be kept before it is reused.
Bareos will normally never overwrite a Volume that contains the only backup copy of a file. Under
ideal conditions, the Catalog would retain entries for all files backed up for all current Volumes. Once
a Volume is overwritten, the files that were backed up on that Volume are automatically removed
from the Catalog. However, if there is a very large pool of Volumes or a Volume is never overwritten,
the Catalog database may become enormous. To keep the Catalog to a manageable size, the backup
information should be removed from the Catalog after the defined File Retention Period. Bareos
provides the mechanisms for the catalog to be automatically pruned according to the retention periods
defined.

Scan A Scan operation causes the contents of a Volume or a series of Volumes to be scanned. These
Volumes with the information on which files they contain are restored to the Bareos Catalog. Once
the information is restored to the Catalog, the files contained on those Volumes may be easily restored.
This function is particularly useful if certain Volumes or Jobs have exceeded their retention period and
have been pruned or purged from the Catalog. Scanning data from Volumes into the Catalog is done
by using the bscan program. See the bscan section of the Bareos Utilities chapter of this manual for
more details.

Volume A Volume is an archive unit, normally a tape or a named disk file where Bareos stores the data
from one or more backup jobs. All Bareos Volumes have a software label written to the Volume by
Bareos so that it identifies what Volume it is really reading. (Normally there should be no confusion
with disk files, but with tapes, it is easy to mount the wrong one.)

1.8 What Bareos is Not

Bareos is a backup, restore and verification program and is not a complete disaster recovery system in itself,
but it can be a key part of one if you plan carefully and follow the instructions included in the Disaster
Recovery chapter of this manual.

1.9 Interactions Between the Bareos Services

The following block diagram shows the typical interactions between the Bareos Services for a backup job.
Each block represents in general a separate process (normally a daemon). In general, the Director oversees
the flow of information. It also maintains the Catalog.

9

10

1.10 The Current State of Bareos

1.10.1 What is Implemented

� Job Control

– Network backup/restore with centralized Director.

– Internal scheduler for automatic Job execution.

– Scheduling of multiple Jobs at the same time.

– You may run one Job at a time or multiple simultaneous Jobs (sometimes called multiplexing).

– Job sequencing using priorities.

– Console interface to the Director allowing complete control. Some GUIs are also available.

� Security

– Verification of files previously cataloged, permitting a Tripwire like capability (system break-in
detection).

– CRAM-MD5 password authentication between each component (daemon).

– Configurable TLS (SSL) communications encryption between each component.

– Configurable Data (on Volume) encryption on a Client by Client basis.

– Computation of MD5 or SHA1 signatures of the file data if requested.

� Restore Features

– Restore of one or more files selected interactively either for the current backup or a backup prior
to a specified time and date.

– Listing and Restoration of files using stand-alone bls and bextract tool programs. Among other
things, this permits extraction of files when Bareos and/or the catalog are not available. Note, the
recommended way to restore files is using the restore command in the Console. These programs
are designed for use as a last resort.

– Ability to restore the catalog database rapidly by using bootstrap files (previously saved).

– Ability to recreate the catalog database by scanning backup Volumes using the bscan program.

� SQL Catalog

– Catalog database facility for remembering Volumes, Pools, Jobs, and Files backed up.

– Support for PostgreSQL, MySQL and SQLite Catalog databases.

– User extensible queries to the PostgreSQL, MySQL and SQLite databases.

� Advanced Volume and Pool Management

– Labeled Volumes, preventing accidental overwriting (at least by Bareos).

– Any number of Jobs and Clients can be backed up to a single Volume. That is, you can backup
and restore Linux, Unix and Windows machines to the same Volume.

– Multi-volume saves. When a Volume is full, Bareos automatically requests the next Volume and
continues the backup.

– Pool and Volume library management providing Volume flexibility (e.g. monthly, weekly, daily
Volume sets, Volume sets segregated by Client, ...).

– Machine independent Volume data format. Linux, Solaris, and Windows clients can all be backed
up to the same Volume if desired.

– The Volume data format is upwards compatible so that old Volumes can always be read.

– A flexible message handler including routing of messages from any daemon back to the Director
and automatic email reporting.

– Data spooling to disk during backup with subsequent write to tape from the spooled disk files.
This prevents tape ”shoe shine” during Incremental/Differential backups.

� Advanced Support for most Storage Devices

11

– Autochanger support using a simple shell interface that can interface to virtually any autoloader
program. A script for mtx is provided.

– Support for autochanger barcodes – automatic tape labeling from barcodes.

– Automatic support for multiple autochanger magazines either using barcodes or by reading the
tapes.

– Support for multiple drive autochangers.

– Raw device backup/restore. Restore must be to the same device.

– All Volume blocks contain a data checksum.

– Migration support – move data from one Pool to another or one Volume to another.

� Multi-Operating System Support

– Programmed to handle arbitrarily long filenames and messages.

– Compression on a file by file basis done by the Client program if requested before network transit.

– Saves and restores POSIX ACLs and Extended Attributes on most OSes if enabled.

– Access control lists for Consoles that permit restricting user access to only their data.

– Support for save/restore of files larger than 2GB.

– Support ANSI and IBM tape labels.

– Support for Unicode filenames (e.g. Chinese) on Win32 machines

– Consistent backup of open files on Win32 systems using Volume Shadow Copy (VSS).

– Support for path/filename lengths of up to 64K on Win32 machines (unlimited on Unix/Linux
machines).

� Miscellaneous

– Multi-threaded implementation.

1.10.2 Advantages Over Other Backup Programs

� Bareos handles multi-volume backups.

� A full comprehensive SQL standard database of all files backed up. This permits online viewing of files
saved on any particular Volume.

� Automatic pruning of the database (removal of old records) thus simplifying database administration.

� The modular but integrated design makes Bareos very scalable.

� Bareos has a built-in Job scheduler.

� The Volume format is documented and there are simple C programs to read/write it.

� Bareos uses well defined (IANA registered) TCP/IP ports – no rpcs, no shared memory.

� Bareos installation and configuration is relatively simple compared to other comparable products.

� Aside from several GUI administrative interfaces, Bareos has a comprehensive shell administrative
interface, which allows the administrator to use tools such as ssh to administrate any part of Bareos
from anywhere.

1.10.3 Current Implementation Restrictions

� It is possible to configure the Bareos Director to use multiple Catalogs. However, this is neither advised,
nor supported. Multiple catalogs require more management because in general you must know what
catalog contains what data, e.g. currently, all Pools are defined in each catalog.

� Bareos can generally restore any backup made from one client to any other client. However, if the
architecture is significantly different (i.e. 32 bit architecture to 64 bit or Win32 to Unix), some
restrictions may apply (e.g. Solaris door files do not exist on other Unix/Linux machines; there are
reports that Zlib compression written with 64 bit machines does not always read correctly on a 32 bit
machine).

12

1.10.4 Design Limitations or Restrictions

� Names (resource names, volume names, and such) defined in Bareos configuration files are limited to a
fixed number of characters. Currently the limit is defined as 127 characters. Note, this does not apply
to filenames, which may be arbitrarily long.

� Command line input to some of the stand alone tools – e.g. btape, bconsole is restricted to several
hundred characters maximum. Normally, this is not a restriction, except in the case of listing multiple
Volume names for programs such as bscan. To avoid this command line length restriction, please use
a .bsr file to specify the Volume names.

� Bareos configuration files for each of the components can be any length. However, the length of an
individual line is limited to 500 characters after which it is truncated. If you need lines longer than 500
characters for directives such as ACLs where they permit a list of names are character strings simply
specify multiple short lines repeating the directive on each line but with different list values.

1.10.5 Items to Note

� Bareos’s Differential and Incremental normal backups are based on time stamps. Consequently, if you
move files into an existing directory or move a whole directory into the backup fileset after a Full
backup, those files will probably not be backed up by an Incremental save because they will have
old dates. This problem is corrected by using Accurate mode backups or by explicitly updating the
date/time stamp on all moved files.

� In non Accurate mode, files deleted after a Full save will be included in a restoration. This is typical
for most similar backup programs. To avoid this, use Accurate mode backup.

Chapter 2

Installing Bareos

If you are like me, you want to get Bareos running immediately to get a feel for it, then later you want to go
back and read about all the details. This chapter attempts to accomplish just that: get you going quickly
without all the details.
Bareos comes prepackaged for a number of Linux distributions. So the easiest way to get to a running Bareos
installation, is to use a platform where prepacked Bareos packages are available. Additional information can
be found in the chapter Operating Systems.
If Bareos is available as a package, only 5 steps are required to get to a running Bareos System:

1. Decide about the Bareos release to use

2. Decide about the Database Backend

3. Install the Bareos Software Packages

4. Prepare Bareos database

5. Start the daemons

This will start a very basic Bareos installation which will regularly backup a directory to disk. In order to
fit it to your needs, you’ll have to adapt the configuration and might want to backup other clients.

2.1 Decide about the Bareos release to use

� http://download.bareos.org/bareos/release/latest/

You’ll find Bareos binary package repositories at http://download.bareos.org/. The latest stable released
version is available at http://download.bareos.org/bareos/release/latest/.
The public key to verify the repository is also in repository directory (Release.key for Debian based distri-
butions, repodata/repomd.xml.key for RPM based distributions).
Section Install the Bareos Software Packages describes how to add the software repository to your system.

2.2 Decide about the Database Backend

Next you have to decide, what database backend you want to use. Bareos supports following database
backends:

� PostgreSQL by package bareos-database-postgresql

� MariaDB/MySQL by package bareos-database-mysql

� Sqlite by package bareos-database-sqlite3

Please note! The Sqlite backend is only intended for testing, not for productive use.

PostgreSQL is the default backend. If you have no other preferences, you should use this one.

MariaDB/MySQL backend is also supported. If your system offers both, you should use MariaDB, see
MySQL/MariaDB Support.

13

http://download.bareos.org/bareos/release/latest/
http://download.bareos.org/
http://download.bareos.org/bareos/release/latest/

14

Sqlite backend is intended for testing purposes only.
The Bareos database packages have there dependencies only to the database client packages, therefore the
database itself must be installed manually.

2.3 Install the Bareos Software Packages

You will have to install the package bareos and the database backend package (bareos-database-*) you
want to use. The corresponding database should already be installed and running, see Decide about the
Database Backend.
If you do not explicitly choose a database backend, your operating system installer will choose one for
you. The default should be PostgreSQL, but depending on your operating system and the already installed
packages, this may differ.
The package bareos is only a meta package, that contains dependencies to the main components of Bareos,
see Bareos Packages. If you want to setup a distributed environment (like one Director, separate database
server, multiple Storage daemons) you have to choose the corresponding Bareos packages to install on each
hosts instead of just installing the bareos package.

2.3.1 Install on RedHat based Linux Distributions

RHEL≥7, CentOS≥7, Fedora

Bareos Version >= 15.2.0 requires the Jansson library package. On RHEL 7 it is available through the
RHEL Server Optional channel. On CentOS 7 and Fedora is it included on the main repository.

#

define parameter

#

DIST=RHEL_7

or

DIST=Fedora_24

DIST=CentOS_7

DATABASE=postgresql

or

DATABASE=mysql

add the Bareos repository

URL=http://download.bareos.org/bareos/release/latest/$DIST

wget -O /etc/yum.repos.d/bareos.repo $URL/bareos.repo

install Bareos packages

yum install bareos bareos-database-$DATABASE

Commands 2.1: Bareos installation on RHEL ≥ 7 / CentOS ≥ 7 / Fedora

RHEL 6, CentOS 6

Bareos Version >= 15.2.0 requires the Jansson library package. This package is available on EPEL 6. Make
sure, it is available on your system.

#

define parameter

#

DIST=RHEL_6

DIST=CentOS_6

DATABASE=postgresql

or

DATABASE=mysql

add the Bareos repository

URL=http://download.bareos.org/bareos/release/latest/$DIST

wget -O /etc/yum.repos.d/bareos.repo $URL/bareos.repo

install Bareos packages

yum install bareos bareos-database-$DATABASE

https://fedoraproject.org/wiki/EPEL

15

Commands 2.2: Bareos installation on RHEL ≥ 6 / CentOS ≥ 6

RHEL 5, CentOS 5

yum in RHEL 5/CentOS 5 has slightly different behaviour as far as dependency resolving is concerned: it
sometimes install a dependent package after the one that has the dependency defined. To make sure that it
works, install the desired Bareos database backend package first in a separate step:

#

define parameter

#

DIST=RHEL_5

or

DIST=CentOS_5

DATABASE=postgresql

or

DATABASE=mysql

add the Bareos repository

URL=http://download.bareos.org/bareos/release/latest/$DIST

wget -O /etc/yum.repos.d/bareos.repo $URL/bareos.repo

install Bareos packages

yum install bareos-database-$DATABASE

yum install bareos

Commands 2.3: Bareos installation on RHEL 5 / CentOS 5

2.3.2 Install on SUSE based Linux Distributions

SUSE Linux Enterprise Server (SLES), openSUSE

#

define parameter

#

DIST=SLE_12_SP1

or

DIST=SLE_11_SP4

DIST=openSUSE_Leap_42.1

DIST=openSUSE_13.2

DATABASE=postgresql

or

DATABASE=mysql

add the Bareos repository

URL=http://download.bareos.org/bareos/release/latest/$DIST

zypper addrepo --refresh $URL/bareos.repo

install Bareos packages

zypper install bareos bareos-database-$DATABASE

Commands 2.4: Bareos installation on SLES / openSUSE

2.3.3 Install on Debian based Linux Distributions

Debian / Ubuntu

Bareos Version >= 15.2.0 requires the Jansson library package. On Ubuntu is it available in Ubuntu Universe.
In Debian, is it included in the main repository.

#

define parameter

#

DIST=Debian_8.0

16

or

DIST=Debian_7.0

DIST=xUbuntu_16.04

DIST=xUbuntu_14.04

DIST=xUbuntu_12.04

DATABASE=postgresql

or

DATABASE=mysql

URL=http://download.bareos.org/bareos/release/latest/$DIST/

add the Bareos repository

printf "deb $URL /\n" > /etc/apt/sources.list.d/bareos.list

add package key

wget -q $URL/Release.key -O- | apt-key add -

install Bareos packages

apt-get update

apt-get install bareos bareos-database-$DATABASE

Commands 2.5: Bareos installation on Debian / Ubuntu

If you prefer using the versions of Bareos directly integrated into the distributions, please note that there
are some differences, see Limitations of the Debian.org/Ubuntu Universe version of Bareos.

2.3.4 Install on Univention Corporate Server

Bareos offers additional functionality and integration into an Univention Corporate Server environment.
Please follow the intructions in Univention Corporate Server.

If you are not interested in this additional functionality, the commands described in Install on Debian based
Linux Distributions will also work for Univention Corporate Servers.

2.4 Prepare Bareos database

We assume that you have already your database installed and basically running. Currently the database
backends PostgreSQL and MySQL are recommended. The Sqlite database backend is only intended for
testing purposes.

The easiest way to set up a database is using an system account that have passwordless local access to the
database. Often this is the user root for MySQL and the user postgres for PostgreSQL.

For details, see chapter Catalog Maintenance.

2.4.1 Debian based Linux Distributions

Since Bareos Version >= 14.2.0 the Debian (and Ubuntu) based packages support the dbconfig-common

mechanism to create and update the Bareos database.

Follow the instructions during install to configure it according to your needs.

If you decide not to use dbconfig-common (selecting <No> on the initial dialog), follow the instructions for
Other Platforms.

The selectable database backends depend on the bareos-database-* packages installed.

For details see dbconfig-common (Debian).

17

2.4.2 Other Platforms

PostgreSQL

If your are using PostgreSQL and your PostgreSQL administration user is postgres (default), use following
commands:

su postgres -c /usr/lib/bareos/scripts/create_bareos_database

su postgres -c /usr/lib/bareos/scripts/make_bareos_tables

su postgres -c /usr/lib/bareos/scripts/grant_bareos_privileges

Commands 2.6: Setup Bareos catalog with PostgreSQL

MySQL/MariaDB

Make sure, that root has direct access to the local MySQL server. Check if the command mysql connects
to the database without defining the password. This is the default on RedHat and SUSE distributions. On
other systems (Debian, Ubuntu), create the file ~/.my.cnf with your authentication informations:

[client]

host=localhost

user=root

password=YourPasswordForAccessingMysqlAsRoot

Configuration 2.7: MySQL credentials file .my.cnf

It is recommended, to secure the Bareos database connection with a password. See Catalog Maintenance –
MySQL about how to archieve this. For testing, using a password-less MySQL connection is probable okay.
Setup the Bareos database tables by following commands:

/usr/lib/bareos/scripts/create_bareos_database

/usr/lib/bareos/scripts/make_bareos_tables

/usr/lib/bareos/scripts/grant_bareos_privileges

Commands 2.8: Setup Bareos catalog with MySQL

As some Bareos updates require a database schema update, therefore the file /root/.my.cnf might also be
useful in the future.

2.5 Start the daemons

service bareos-dir start

service bareos-sd start

service bareos-fd start

Commands 2.9: Start the Bareos Daemons

You will eventually have to allow access to the ports 9101-9103, used by Bareos.
Now you should be able to access the director using the bconsole.
When you want to use the bareos-webui, please refer to the chapter Installing Bareos Webui.

18

Chapter 3

Installing Bareos Webui

This chapter addresses the installation process of the Bareos Webui.
Since Version >= 15.2.0 bareos-webui is part of the Bareos project and available for a number of platforms.

3.1 Features

� Intuitive web interface

� Multilinugual (English/German/French/Russian)

� Can access multiple directors and catalogs

� Individual accounts and ACL support via Bareos restricted named consoles

� Tape Autochanger management, with the possibility to label, import/export media and update your
autochanger slot status

� Temporarly enable or disable jobs, clients and schedules and also see their current state

� Show

– Detailed information about Jobs, Clients, Filesets, Pools, Volumes, Storages, Schedules, Logs and
Director messages

– Filedaemon, Storage- and Director updates

– Client, Director, Storage and Scheduler status

� Backup Jobs

– Start, cancel, rerun and restore from.

– Show the file list of backup jobs

� Restore files by browsing through a filetree of your backup jobs.

19

20

– Merge your backup jobs history and filesets of a client or use a single backup job for restore.

– Restore files to a different client instead of the origin

� bconsole interface (limited to non-interactive commands)

3.2 System Requirements

� A platform, for which the bareos-webui package is available, see Bareos Packages.

� A working Bareos environment.

� Bareos Director version >= Bareos Webui version.

� The Bareos Webui can be installed on any host. It does not have to be installed on the same as the
Bareos Director.

� The default installation uses an Apache 2.x webserver with mod-rewrite, mod-php5 and mod-setenv.

� PHP >= 5.3.23

3.2.1 Version < 16.2

Bareos Webui Version >= 16.2.4 incorporates the required Zend Framework 2 components, no extra Zend
Framework installation is required. For older versions of bareos-webui, you must install Zend Framework
separately. Unfortunately, not all distributions offer Zend Framework 2 packages. The following list shows
where to get the Zend Framework 2 package:

� RHEL, CentOS

– https://fedoraproject.org/wiki/EPEL

– https://apps.fedoraproject.org/packages/php-ZendFramework2

� Fedora

– https://apps.fedoraproject.org/packages/php-ZendFramework2

� SUSE, Debian, Ubuntu

– http://download.bareos.org/bareos

Also be aware, that older versions of Bareos Director do not support the Subdirectory Configuration Scheme
and therefore Bareos configuration resource files must be included manually.

3.3 Installation

3.3.1 Adding the Bareos Repository

If not already done, add the Bareos repository that is matching your Linux distribution. Please have a look
at the chapter Install the Bareos Software Packages for more information on how to achieve this.

3.3.2 Install the bareos-webui package

After adding the repository simply install the bareos-webui package via your package manager.

� RHEL, CentOS and Fedora

yum install bareos-webui

Commands 3.1:

or

dnf install bareos-webui

Commands 3.2:

https://fedoraproject.org/wiki/EPEL
https://apps.fedoraproject.org/packages/php-ZendFramework2
https://apps.fedoraproject.org/packages/php-ZendFramework2
http://download.bareos.org/bareos

21

� SUSE Linux Enterprise Server (SLES), openSUSE

zypper install bareos-webui

Commands 3.3:

� Debian, Ubuntu

apt-get install bareos-webui

Commands 3.4:

3.3.3 Minimal Configuration

This assumes, Bareos Director and Bareos Webui are installed on the same host.

1. If you are using SELinux, allow HTTPD scripts and modules make network connections:

setsebool -P httpd_can_network_connect on

Commands 3.5:

For details, see SELinux.

2. Restart Apache (to load configuration provided by bareos-webui, see Configure your Apache Webserver)

3. Use bconsole to create a user with name admin and password secret and permissions defined in
webui-adminDir

Profile:

*configure add console name=admin password=secret profile=webui-admin

bconsole 3.6: add a named console

Of course, you can choose other names and passwords. For details, see Create a restricted consoles.

4. Login to http://HOSTNAME/bareos-webui with username and password as created in 3.

3.3.4 Configuration Details

Create a restricted consoles

There is not need, that Bareos Webui itself provide a user management. Instead it uses so named ConsoleDir

defined in the Bareos Director. You can have multiple consoles with different names and passwords, sort of
like multiple users, each with different privileges.
At least one ConsoleDir is required to use the Bareos Webui.
To allow a user with name admin and password secret to access the Bareos Director with permissions
defined in the webui-adminDir

Profile (see Configuration of profile resources), either

� create a file /etc/bareos/bareos-dir.d/console/admin.conf with following content:

Console {

Name = "admin"

Password = "secret"

Profile = "webui-admin"

}

Resource 3.7: bareos-dir.d/console/admin.conf

To enable this, reload or restart your Bareos Director.

� or use the bconsole:

*configure add console name=admin password=secret profile=webui-admin

bconsole 3.8: add console

For details, please read Console Resource.

22

Configuration of profile resources

The package bareos-webui comes with a predefined profile for Bareos Webui: webui-adminDir
Profile.

If your Bareos Webui is installed on another system then the Bareos Director, you have to copy the profile
to the Bareos Director.
This is the default profile, giving access to all Bareos resources and allowing all commands used by the
Bareos Webui:

Profile {

Name = webui-admin

CommandACL = !.bvfs_clear_cache, !.exit, !.sql, !configure, !create, !delete, !purge, !sqlquery, !umount, ↙
↪→ !unmount, *all*

Job ACL = *all*

Schedule ACL = *all*

Catalog ACL = *all*

Pool ACL = *all*

Storage ACL = *all*

Client ACL = *all*

FileSet ACL = *all*

Where ACL = *all*

Plugin Options ACL = *all*

}

Resource 3.9: bareos-dir.d/profile/webui-admin.conf

The ProfileDir itself does not give any access to the Bareos Director, but can be used by ConsoleDir, which
do give access to the Bareos Director, see Create a restricted consoles.
For details, please read Profile Resource.

SELinux

To use Bareos Director on a system with SELinux enabled, permission must be given to HTTPD to make
network connections:

setsebool -P httpd_can_network_connect on

Commands 3.10:

Configure your Apache Webserver

The package bareos-webui provides a default configuration for Apache. Depending on your distribution,
it is installed at /etc/apache2/conf.d/bareos-webui.conf, /etc/httpd/conf.d/bareos-webui.conf or
/etc/apache2/available-conf/bareos-webui.conf.
The required Apache modules, setenv, rewrite and php are enabled via package postinstall script. However,
after installing the bareos-webui package, you need to restart your Apache webserver manually.

Configure your /etc/bareos-webui/directors.ini

Configure your directors in /etc/bareos-webui/directors.ini to match your settings.
The configuration file /etc/bareos-webui/directors.ini should look similar to this:

;

; Bareos WebUI Configuration

; File: /etc/bareos-webui/directors.ini

;

;

; Section bareos-dir

;

[bareos-dir]

; Enable or disable director. Possible values are "yes" or "no", the default is "yes".

enabled = "yes"

; Fill in the IP-Address or FQDN of your director.

diraddress = "localhost"

; Default value is 9101

dirport = 9101

; Set catalog to explicit value if you have multiple catalogs,

23

; the default value is "MyCatalog".

;catalog = "MyCatalog"

;

; Section remote-dir

;

[remote-dir]

enabled = "no"

diraddress = "hostname"

;dirport = 9101

;catalog = "MyCatalog"

;tls_verify_peer = false

;server_can_do_tls = false

;server_requires_tls = false

;client_can_do_tls = false

;client_requires_tls = false

;ca_file = ""

;cert_file = ""

;cert_file_passphrase = ""

;allowed_cns = ""

Configuration 3.11: /etc/bareos-webui/directors.ini

You can add as many directors as you want, also the same host with a different name and different catalog,
if you have multiple catalogs.

Configure your /etc/bareos-webui/configuration.ini

Since Version >= 16.2.2 you are able to configure some parameters of the Bareos Webui to your needs.

[session]

Default: 3600 seconds

timeout=3600

[tables]

Define a list of pagination values.

Default: 10,25,50,100

pagination_values=10,25,50,100

Default number of rows per page

for possible values see pagination_values

Default: 25

pagination_default_value=25

State saving - restore table state on page reload.

Default: false

save_previous_state=false

[autochanger]

Pooltype for label to use as filter.

See pooltype in output of bconsole: list pools

Default: none

labelpooltype=scratch

Configuration 3.12: /etc/bareos-webui/configuration.ini

3.4 Upgrade from 15.2 to 16.2

3.4.1 Console/Profile changes

The Bareos Webui Director profile shipped with Bareos 15.2 (webuiDir
Profile in the file /etc/bareos/

bareos-dir.d/webui-profiles.conf) is not sufficient to use the Bareos Webui 16.2. This has several
reasons:

1. The handling of acls is more strict in Bareos 16.2 then it has been in Bareos 15.2. Substring matching
is no longer enabled, therefore you need to change .bvfs_* to .bvfs_.* in your Command ACL Dir

Profile

to have a proper regular expression. Otherwise the restore module won’t work any longer, especially
the file browser.

2. The Bareos Webui 16.2 uses following additional commands:

24

� .help

� .schedule

� .pools

� import

� export

� update

� release

� enable

� disable

If you used an unmodified /etc/bareos/bareos-dir.d/webui-profiles.conf file, the easiest way is to
overwrite it with the new profile file /etc/bareos/bareos-dir.d/profile/webui-admin.conf. The new
webui-adminDir

Profile allows all commands, except of the dangerous ones, see Configuration of profile resources.

3.4.2 directors.ini

Since 16.2 it is possible to work with different catalogs. Therefore the catalog parameter has been introduced.
If you don’t set a catalog explicitly the default MyCatalogDir

Catalog will be used. Please see Configure your
/etc/bareos-webui/directors.ini for more details.

3.4.3 configuration.ini

Since 16.2 the Bareos Webui introduced an additional configuration file besides the directors.ini file named
configuration.ini where you are able to adjust some parameters of the webui to your needs. Please see
Configure your /etc/bareos-webui/directors.ini for more details.

3.5 Additional information

3.5.1 NGINX

If you prefer to use Bareos Webui on Nginx with php5-fpm instead of Apache, a basic working configuration
could look like this:

server {

listen 9100;

server_name bareos;

root /var/www/bareos-webui/public;

location / {

index index.php;

try_files $uri $uri/ /index.php?$query_string;

}

location ~ .php$ {

include snippets/fastcgi-php.conf;

php5-cgi alone:

pass the PHP

scripts to FastCGI server

listening on 127.0.0.1:9000

#fastcgi_pass 127.0.0.1:9000;

php5-fpm:

fastcgi_pass unix:/var/run/php5-fpm.sock;

APPLICATION_ENV: set to ’development’ or ’production’

#fastcgi_param APPLICATION_ENV development;

fastcgi_param APPLICATION_ENV production;

}

}

Configuration 3.13: bareos-webui on nginx

25

This will make the Bareos Webui accessible at http://bareos:9100/ (assuming your DNS resolve the hostname
bareos to the NGINX server).

26

Chapter 4

Updating Bareos

In most cases, a Bareos update is simply done by a package update of the distribution. Please remind, that
Bareos Director and Bareos Storage Daemon must always have the same version. The version of the File
Daemon may differ, see chapter about backward compatibility.

4.1 Updating the configuration files

When updating Bareos through the distribution packaging mechanism, the existing configuration kept as
they are.
If you don’t want to modify the bahaviour, there is normally no need to modify the configuration.
However, in some rare cases, configuration changes are required. These cases are described in the Release
Notes.
With Bareos version 16.2.4 the default configuration uses the Subdirectory Configuration Scheme. This
scheme offers various improvements. However, if your are updating from earlier versions, your existing
single configuration files (/etc/bareos/bareos-*.conf) stay in place and are contentiously used by Bareos.
The new default configuration resource files will also be installed (/etc/bareos/bareos-*.d/*/*.conf).
However, they will only be used, when the legacy configuration file does not exist.
See Updates from Bareos < 16.2.4 for details and how to migrate to Subdirectory Configuration Scheme.

4.2 Updating the database scheme

Sometimes improvements in Bareos make it necessary to update the database scheme.
Please note! If the Bareos catalog database does not have the current schema, the Bareos Director refuses to
start.
Detailed information can then be found in the log file /var/log/bareos/bareos.log.
Take a look into the Release Notes to see which Bareos updates do require a database scheme update.

4.2.1 Debian based Linux Distributions

Since Bareos Version >= 14.2.0 the Debian (and Ubuntu) based packages support the dbconfig-common

mechanism to create and update the Bareos database. If this is properly configured, the database schema
will be automatically adapted by the Bareos packages.
Please note! When using the PostgreSQL backend and updating to Bareos < 14.2.3, it is necessary to
manually grant database permissions, normally by using

root@linux:~# su - postgres -c /usr/lib/bareos/scripts/grant bareos privileges

Commands 4.1:

For details see dbconfig-common (Debian).
If you disabled the usage of dbconfig-common, follow the instructions for Other Platforms.

4.2.2 Other Platforms

This has to be done as database administrator. On most platforms Bareos knows only about the credentials
to access the Bareos database, but not about the database administrator to modify the database schema.

27

28

The task of updating the database schema is done by the script /usr/lib/bareos/scripts/update_bareos_
tables.
However, this script requires administration access to the database. Depending on your distribution and your
database, this requires different preparations. More details can be found in chapter Catalog Maintenance.
Please note! If you’re updating to Bareos <= 13.2.3 and have configured the Bareos database during install
using Bareos environment variables (db_ name , db_ user or db_ password , see Catalog Maintenance), make
sure to have these variables defined in the same way when calling the update and grant scripts. Newer
versions of Bareos read these variables from the Director configuration file /etc/ bareos/ bareos-dir.

conf . However, make sure that the user running the database scripts has read access to this file (or set the
environment variables). The postgres user normally does not have the required permissions.

PostgreSQL

If your are using PostgreSQL and your PostgreSQL administrator is postgres (default), use following
commands:

su postgres -c /usr/lib/bareos/scripts/update_bareos_tables

su postgres -c /usr/lib/bareos/scripts/grant_bareos_privileges

Commands 4.2: Update PostgreSQL database schema

The grant_bareos_privileges command is required, if new databases tables are introduced. It does not
hurt to run it multiple times.
After this, restart the Bareos Director and verify it starts without problems.

MySQL/MariaDB

Make sure, that root has direct access to the local MySQL server. Check if the command mysql without
parameter connects to the database. If not, you may be required to adapt your local MySQL configuration
file ~/.my.cnf. It should look similar to this:

[client]

host=localhost

user=root

password=YourPasswordForAccessingMysqlAsRoot

Configuration 4.3: MySQL credentials file .my.cnf

If you are able to connect via the mysql to the database, run the following script from the Unix prompt:

/usr/lib/bareos/scripts/update_bareos_tables

Commands 4.4: Update MySQL database schema

Currently on MySQL is it not necessary to run grant_bareos_privileges, because access to the database
is already given using wildcards.
After this, restart the Bareos Director and verify it starts without problems.

Chapter 5

Getting Started with Bareos

5.1 Understanding Jobs and Schedules

In order to make Bareos as flexible as possible, the directions given to Bareos are specified in several pieces.
The main instruction is the job resource, which defines a job. A backup job generally consists of a FileSet,
a Client, a Schedule for one or several levels or times of backups, a Pool, as well as additional instructions.
Another way of looking at it is the FileSet is what to backup; the Client is who to backup; the Schedule
defines when, and the Pool defines where (i.e. what Volume).
Typically one FileSet/Client combination will have one corresponding job. Most of the directives, such as
FileSets, Pools, Schedules, can be mixed and matched among the jobs. So you might have two different Job
definitions (resources) backing up different servers using the same Schedule, the same Fileset (backing up
the same directories on two machines) and maybe even the same Pools. The Schedule will define what type
of backup will run when (e.g. Full on Monday, incremental the rest of the week), and when more than one
job uses the same schedule, the job priority determines which actually runs first. If you have a lot of jobs,
you might want to use JobDefs, where you can set defaults for the jobs, which can then be changed in the
job resource, but this saves rewriting the identical parameters for each job. In addition to the FileSets you
want to back up, you should also have a job that backs up your catalog.
Finally, be aware that in addition to the backup jobs there are restore, verify, and admin jobs, which have
different requirements.

5.2 Understanding Pools, Volumes and Labels

If you have been using a program such as tar to backup your system, Pools, Volumes, and labeling may be
a bit confusing at first. A Volume is a single physical tape (or possibly a single file) on which Bareos will
write your backup data. Pools group together Volumes so that a backup is not restricted to the length of a
single Volume (tape). Consequently, rather than explicitly naming Volumes in your Job, you specify a Pool,
and Bareos will select the next appendable Volume from the Pool and mounts it.
Although the basic Pool options are specified in the Director’s Pool resource, the real Pool is maintained
in the Bareos Catalog. It contains information taken from the Pool resource (configuration file) as well as
information on all the Volumes that have been added to the Pool.
For each Volume, Bareos maintains a fair amount of catalog information such as the first write date/time,
the last write date/time, the number of files on the Volume, the number of bytes on the Volume, the number
of Mounts, etc.
Before Bareos will read or write a Volume, the physical Volume must have a Bareos software label so that
Bareos can be sure the correct Volume is mounted. Depending on your configuration, this is either done
automatically by Bareos or manually using the label command in the Console program.
The steps for creating a Pool, adding Volumes to it, and writing software labels to the Volumes, may seem
tedious at first, but in fact, they are quite simple to do, and they allow you to use multiple Volumes (rather
than being limited to the size of a single tape). Pools also give you significant flexibility in your backup
process. For example, you can have a ”Daily” Pool of Volumes for Incremental backups and a ”Weekly”
Pool of Volumes for Full backups. By specifying the appropriate Pool in the daily and weekly backup Jobs,
you thereby insure that no daily Job ever writes to a Volume in the Weekly Pool and vice versa, and Bareos
will tell you what tape is needed and when.
For more on Pools, see the Pool Resource section of the Director Configuration chapter, or simply read on,
and we will come back to this subject later.

29

30

5.3 Setting Up Bareos Configuration Files

On Unix, Bareos configuration files are usually located in the /etc/bareos/ directory and are named ac-
cordingly to the programs that use it. Since Bareos Version >= 16.2.4 the default configuration is stored as
one file per resource in subdirectories under bareos-dir.d, bareos-sd.d or bareos-fd.d. For details, see
Customizing the Configuration and Subdirectory Configuration Scheme.

5.4 Testing your Configuration Files

You can test if your configuration file is syntactically correct by running the appropriate daemon with the
-t option. The daemon will process the configuration file and print any error messages then terminate.
As the Bareos Director and Bareos Storage Daemon runs as user bareos, testing the configuration should
be done as bareos.
This is especially required to test the Bareos Director, as it also connects to the database and checks if the
catalog schema version is correct. Depending on your database, only the bareos has permission to access it.

su bareos -s /bin/sh -c "/usr/sbin/bareos-dir -t"

su bareos -s /bin/sh -c "/usr/sbin/bareos-sd -t"

bareos-fd -t

bconsole -t

bareos-tray-monitor -t

Commands 5.1: Testing Configuration Files

Chapter 6

Tutorial

This chapter will guide you through running Bareos. To do so, we assume you have installed Bareos.
However, we assume that you have not modified the configuration. The examples in this chapter use the
default configuration files and will write the volumes to disk in your /var/lib/bareos/storage/ directory.

The general flow of running Bareos is:

1. Start the Database (if using PostgreSQL or MySQL/MariaDB)

2. Installing Bareos

3. Start the Bareos Daemons

4. Start the Console program to interact with the Bareos Director

5. Run a job

6. Test recovering some files from the Volume just written to ensure the backup is good and that you
know how to recover. Better test before disaster strikes

7. Add a second client.

Each of these steps is described in more detail below.

6.1 Starting the Database

If you are using PostgreSQL or MySQL/MariaDB as the Bareos database, you should start it before you
install Bareos. If you are using Sqlite you need do nothing. Sqlite is automatically started by the Bareos
Director.

6.2 Installing Bareos

For installing Bareos, follow the instructions from the Installing Bareos chapter.

6.3 Starting the Daemons

Assuming you have installed the packages, to start the three daemons, from your installation directory,
simply enter:

service bareos-dir start

service bareos-sd start

service bareos-fd start

31

32

6.4 Using the Director to Query and Start Jobs

To communicate with the Bareos Director and to query the state of Bareos or run jobs, the bconsole

program can be used as a textual interface. Alternatively, for most purposes, also the Bareos Webui can be
used, but for simplicity, here we will describe only the bconsole program.
The bconsole runs the Bareos Console program, which connects to the Bareos Director. Since Bareos is a
network program, you can run the Console program anywhere on your network. Most frequently, however,
one runs it on the same machine as the Bareos Director. Normally, the Console program will print something
similar to the following:

root@linux:~# bconsole
Connecting to Director bareos:9101

Enter a period to cancel a command.

*

Commands 6.1: bconsole

The asterisk is the console command prompt.
Type help to see a list of available commands:

*help
Command Description

======= ===========

add Add media to a pool

autodisplay Autodisplay console messages

automount Automount after label

cancel Cancel a job

create Create DB Pool from resource

delete Delete volume, pool or job

disable Disable a job

enable Enable a job

estimate Performs FileSet estimate, listing gives full listing

exit Terminate Bconsole session

export Export volumes from normal slots to import/export slots

gui Non-interactive gui mode

help Print help on specific command

import Import volumes from import/export slots to normal slots

label Label a tape

list List objects from catalog

llist Full or long list like list command

messages Display pending messages

memory Print current memory usage

mount Mount storage

move Move slots in an autochanger

prune Prune expired records from catalog

purge Purge records from catalog

quit Terminate Bconsole session

query Query catalog

restore Restore files

relabel Relabel a tape

release Release storage

reload Reload conf file

rerun Rerun a job

run Run a job

status Report status

setbandwidth Sets bandwidth

setdebug Sets debug level

setip Sets new client address -- if authorized

show Show resource records

sqlquery Use SQL to query catalog

time Print current time

trace Turn on/off trace to file

unmount Unmount storage

umount Umount - for old-time Unix guys, see unmount

update Update volume, pool or stats

use Use specific catalog

var Does variable expansion

33

version Print Director version

wait Wait until no jobs are running

bconsole 6.2: help

Details of the console program’s commands are explained in the Bareos Console chapter.

6.5 Running a Job

At this point, we assume you have done the following:

� Started the Database

� Installed Bareos

� Prepared the database for Bareos

� Started Bareos Director, Storage Daemon and File Daemon

� Invoked the Console program with bconsole

Furthermore, we assume for the moment you are using the default configuration files.
At this point, enter the show filesets and you should get something similar this:

*show filesets
...

FileSet {

Name = "SelfTest"

Include {

Options {

Signature = MD5

}

File = "/usr/sbin"

}

}

FileSet {

Name = "Catalog"

Include {

Options {

Signature = MD5

}

File = "/var/lib/bareos/bareos.sql"

File = "/etc/bareos"

}

}

...

bconsole 6.3: show filesets

One of the FileSets is the pre-defined SelfTestDir
FileSet FileSet that will backup the /usr/sbin directory. For

testing purposes, we have chosen a directory of moderate size (about 30 Megabytes) and complexity without
being too big. The FileSet CatalogDir

FileSet is used for backing up Bareos’s catalog and is not of interest to us
for the moment. You can change what is backed up by editing the configuration and changing the File =

line in the FileSetDir resource.
Now is the time to run your first backup job. We are going to backup your Bareos source directory to a File
Volume in your /var/lib/bareos/storage/ directory just to show you how easy it is. Now enter:

*status dir
bareos-dir Version: 13.2.0 (09 April 2013) x86_64-pc-linux-gnu debian Debian GNU/Linux 6.0 ↙

↪→ (squeeze)

Daemon started 23-May-13 13:17. Jobs: run=0, running=0 mode=0

Heap: heap=270,336 smbytes=59,285 max_bytes=59,285 bufs=239 max_bufs=239

Scheduled Jobs:

Level Type Pri Scheduled Name Volume

===

34

Incremental Backup 10 23-May-13 23:05 BackupClient1 testvol

Full Backup 11 23-May-13 23:10 BackupCatalog testvol

====

Running Jobs:

Console connected at 23-May-13 13:34

No Jobs running.

====

bconsole 6.4: status dir

where the times and the Director’s name will be different according to your setup. This shows that an Incre-
mental job is scheduled to run for the Job BackupClient1Dir

Job at 1:05am and that at 1:10, a BackupCatalogDir
Job

is scheduled to run.
Now enter:

*status client
Automatically selected Client: bareos-fd

Connecting to Client bareos-fd at bareos:9102

bareos-fd Version: 13.2.0 (09 April 2013) x86_64-pc-linux-gnu debian Debian GNU/Linux 6.0 ↙
↪→ (squeeze)

Daemon started 23-May-13 13:17. Jobs: run=0 running=0.

Heap: heap=135,168 smbytes=26,000 max_bytes=26,147 bufs=65 max_bufs=66

Sizeof: boffset_t=8 size_t=8 debug=0 trace=0 bwlimit=0kB/s

Running Jobs:

Director connected at: 23-May-13 13:58

No Jobs running.

====

bconsole 6.5: status client

In this case, the client is named bareos-fdDir
Client your name might be different, but the line beginning with

bareos-fd Version is printed by your Bareos File Daemon, so we are now sure it is up and running.
Finally do the same for your Bareos Storage Daemon with:

*status storage
Automatically selected Storage: File

Connecting to Storage daemon File at bareos:9103

bareos-sd Version: 13.2.0 (09 April 2013) x86_64-pc-linux-gnu debian Debian GNU/Linux 6.0 (squeeze)

Daemon started 23-May-13 13:17. Jobs: run=0, running=0.

Heap: heap=241,664 smbytes=28,574 max_bytes=88,969 bufs=73 max_bufs=74

Sizes: boffset_t=8 size_t=8 int32_t=4 int64_t=8 mode=0 bwlimit=0kB/s

Running Jobs:

No Jobs running.

====

Device status:

Device "FileStorage" (/var/lib/bareos/storage) is not open.

==

====

Used Volume status:

====

====

bconsole 6.6: status storage

You will notice that the default Bareos Storage Daemon device is named FileDir
Storage and that it will use

device /var/lib/bareos/storage, which is not currently open.
Now, let’s actually run a job with:

run

35

you should get the following output:

Automatically selected Catalog: MyCatalog

Using Catalog "MyCatalog"

A job name must be specified.

The defined Job resources are:

1: BackupClient1

2: BackupCatalog

3: RestoreFiles

Select Job resource (1-3):

Here, Bareos has listed the three different Jobs that you can run, and you should choose number 1 and type
enter, at which point you will get:

Run Backup job

JobName: BackupClient1

Level: Incremental

Client: bareos-fd

Format: Native

FileSet: SelfTest

Pool: Full (From Job resource)

NextPool: *None* (From unknown source)

Storage: File (From Job resource)

When: 2013-05-23 14:50:04

Priority: 10

OK to run? (yes/mod/no):

At this point, take some time to look carefully at what is printed and understand it. It is asking you if it is
OK to run a job named BackupClient1Dir

Job with FileSet SelfTestDir
FileSet as an Incremental job on your Client,

and to use Storage FileDir
Storage and Pool FullDir

Pool, and finally, it wants to run it now (the current time should
be displayed by your console).
Here we have the choice to run (yes), to modify one or more of the above parameters (mod), or to not
run the job (no). Please enter yes, at which point you should immediately get the command prompt (an
asterisk).
If you wait a few seconds, then enter the command messages you will get back something like:
TODO: Replace bconsole output by current version of Bareos.

*messages
28-Apr-2003 14:30 bareos-sd: Wrote label to prelabeled Volume

"TestVolume001" on device /var/lib/bareos/storage

28-Apr-2003 14:30 rufus-dir: Bareos 1.30 (28Apr03): 28-Apr-2003 14:30

JobId: 1

Job: BackupClient1.2003-04-28_14.22.33

FileSet: Full Set

Backup Level: Full

Client: bareos-fd

Start time: 28-Apr-2003 14:22

End time: 28-Apr-2003 14:30

Files Written: 1,444

Bytes Written: 38,988,877

Rate: 81.2 KB/s

Software Compression: None

Volume names(s): TestVolume001

Volume Session Id: 1

Volume Session Time: 1051531381

Last Volume Bytes: 39,072,359

FD termination status: OK

SD termination status: OK

Termination: Backup OK

28-Apr-2003 14:30 rufus-dir: Begin pruning Jobs.

28-Apr-2003 14:30 rufus-dir: No Jobs found to prune.

28-Apr-2003 14:30 rufus-dir: Begin pruning Files.

28-Apr-2003 14:30 rufus-dir: No Files found to prune.

28-Apr-2003 14:30 rufus-dir: End auto prune.

bconsole 6.7: run

If you don’t see the output immediately, you can keep entering messages until the job terminates.
Instead of typing messages multiple times, you can also ask bconsole to wait, until a specific job is finished:

36

*wait jobid=1

bconsole 6.8: wait

or just wait , which waits for all running jobs to finish.
Another useful command is autodisplay on. With autodisplay activated, messages will automatically be
displayed as soon as they are ready.
If you do an ls -l of your /var/lib/bareos/storage directory, you will see that you have the following
item:

-rw-r----- 1 bareos bareos 39072153 Apr 28 14:30 Full-001

This is the file Volume that you just wrote and it contains all the data of the job just run. If you run
additional jobs, they will be appended to this Volume unless you specify otherwise.
If you would like to stop here, you can simply enter quit in the Console program.
If you would like to try restoring the files that you just backed up, read the following section.

6.6 Restoring Your Files

If you have run the default configuration and run the job as demonstrated above, you can restore the backed
up files in the Console program by entering:

*restore all
First you select one or more JobIds that contain files

to be restored. You will be presented several methods

of specifying the JobIds. Then you will be allowed to

select which files from those JobIds are to be restored.

To select the JobIds, you have the following choices:

1: List last 20 Jobs run

2: List Jobs where a given File is saved

3: Enter list of comma separated JobIds to select

4: Enter SQL list command

5: Select the most recent backup for a client

6: Select backup for a client before a specified time

7: Enter a list of files to restore

8: Enter a list of files to restore before a specified time

9: Find the JobIds of the most recent backup for a client

10: Find the JobIds for a backup for a client before a specified time

11: Enter a list of directories to restore for found JobIds

12: Select full restore to a specified Job date

13: Cancel

Select item: (1-13):

bconsole 6.9: restore

As you can see, there are a number of options, but for the current demonstration, please enter 5 to do a
restore of the last backup you did, and you will get the following output:

Automatically selected Client: bareos-fd

The defined FileSet resources are:

1: Catalog

2: Full Set

Select FileSet resource (1-2):

As you can see, Bareos knows what client you have, and since there was only one, it selected it automatically.
Select 2, because you want to restore files from the file set.

+-------+-------+----------+------------+---------------------+---------------+

| jobid | level | jobfiles | jobbytes | starttime | volumename |

+-------+-------+----------+------------+---------------------+---------------+

| 1 | F | 166 | 19,069,526 | 2013-05-05 23:05:02 | TestVolume001 |

+-------+-------+----------+------------+---------------------+---------------+

You have selected the following JobIds: 1

Building directory tree for JobId(s) 1 ... +++

165 files inserted into the tree and marked for extraction.

37

You are now entering file selection mode where you add (mark) and

remove (unmark) files to be restored. No files are initially added, unless

you used the "all" keyword on the command line.

Enter "done" to leave this mode.

cwd is: /

$

where I have truncated the listing on the right side to make it more readable.
Then Bareos produced a listing containing all the jobs that form the current backup, in this case, there
is only one, and the Storage daemon was also automatically chosen. Bareos then took all the files that
were in Job number 1 and entered them into a directory tree (a sort of in memory representation of your
filesystem). At this point, you can use the cd and ls or dir commands to walk up and down the directory
tree and view what files will be restored. For example, if you enter cd /usr/sbin and then enter dir you
will get a listing of all the files in the /usr/sbin/ directory. On your system, the path might be somewhat
different. For more information on this, please refer to the Restore Command Chapter of this manual for
more details.
To exit this mode, simply enter:

done

and you will get the following output:

Bootstrap records written to

/home/user/bareos/testbin/working/restore.bsr

The restore job will require the following Volumes:

TestVolume001

1444 files selected to restore.

Run Restore job

JobName: RestoreFiles

Bootstrap: /home/user/bareos/testbin/working/restore.bsr

Where: /tmp/bareos-restores

Replace: always

FileSet: Full Set

Backup Client: rufus-fd

Restore Client: rufus-fd

Storage: File

JobId: *None*

When: 2005-04-28 14:53:54

OK to run? (yes/mod/no):

Bootstrap records written to /var/lib/bareos/bareos-dir.restore.1.bsr

The job will require the following

Volume(s) Storage(s) SD Device(s)

===

TestVolume001 File FileStorage

Volumes marked with "*" are online.

166 files selected to be restored.

Run Restore job

JobName: RestoreFiles

Bootstrap: /var/lib/bareos/bareos-dir.restore.1.bsr

Where: /tmp/bareos-restores

Replace: Always

FileSet: Full Set

Backup Client: bareos-fd

Restore Client: bareos-fd

Format: Native

Storage: File

When: 2013-05-23 15:56:53

Catalog: MyCatalog

Priority: 10

Plugin Options: *None*

OK to run? (yes/mod/no):

If you answer yes your files will be restored to /tmp/bareos-restores. If you want to restore the files to
their original locations, you must use the mod option and explicitly set Where: to nothing (or to /). We

38

recommend you go ahead and answer yes and after a brief moment, enter messages , at which point you
should get a listing of all the files that were restored as well as a summary of the job that looks similar to
this:

23-May 15:24 bareos-dir JobId 2: Start Restore Job RestoreFiles.2013-05-23_15.24.01_10

23-May 15:24 bareos-dir JobId 2: Using Device "FileStorage" to read.

23-May 15:24 bareos-sd JobId 2: Ready to read from volume "TestVolume001" on device "FileStorage" (/var/lib/bareos/storage).

23-May 15:24 bareos-sd JobId 2: Forward spacing Volume "TestVolume001" to file:block 0:194.

23-May 15:58 bareos-dir JobId 3: Bareos bareos-dir 13.2.0 (09Apr13):

Build OS: x86_64-pc-linux-gnu debian Debian GNU/Linux 6.0 (squeeze)

JobId: 2

Job: RestoreFiles.2013-05-23_15.58.48_11

Restore Client: bareos-fd

Start time: 23-May-2013 15:58:50

End time: 23-May-2013 15:58:52

Files Expected: 166

Files Restored: 166

Bytes Restored: 19,069,526

Rate: 9534.8 KB/s

FD Errors: 0

FD termination status: OK

SD termination status: OK

Termination: Restore OK

After exiting the Console program, you can examine the files in /tmp/bareos-restores, which will contain
a small directory tree with all the files. Be sure to clean up at the end with:

root@linux:~# rm -rf /tmp/bareos-restore

Commands 6.10: remove restore directory

6.7 Quitting the Console Program

Simply enter the command quit .

6.8 Adding a Client

If you have gotten the example shown above to work on your system, you may be ready to add a second
Client (Bareos File Daemon). That is you have a second machine that you would like backed up. Lets
assume, following settings about the machine you want to add to your backup environment:

Hostname (FQDN) client2.example.com

IP Address 192.168.0.2

OS Linux (otherwise the paths may differ)

For this you have to make changes on the server side (Bareos Director) and the client side.

Client: install package

See Installing Bareos about how to add the Bareos repository. The only part you need installed on the other
machine is the bareos-filedaemon.

Director: configure client

Bareos Version >= 16.2.4 offers the configure add command to add resources to the Bareos Director.
Start the bconsole and use the configure add client command. Address must be a DNS resolvable name
or an IP address.

*configure add client name=client2-fd address=192.168.0.2 password=secret
Created resource config file "/etc/bareos/bareos-dir.d/client/client2-fd.conf":

Client {

Name = client2-fd

Address = 192.168.0.2

Password = secret

39

}

bconsole 6.11: add a client

This creates two resource configuration files:

� /etc/bareos/bareos-dir.d/client/client2-fd.conf

� /etc/bareos/bareos-dir-export/client/client2-fd/bareos-fd.d/director/bareos-dir.conf

(assuming your director resource is named bareos-dir)

The /etc/bareos/bareos-dir-export/client/client2-fd/bareos-fd.d/director/bareos-dir.conf

is the required resource needed on the Bareos File Daemon. You can copy it to the destination:

scp /etc/bareos/bareos-dir-export/client/client2-fd/bareos-fd.d/director/bareos-dir.conf ↙
↪→ root@client2.example.com:/etc/bareos/bareos-fd.d/director/

Commands 6.12: Copy the bareos-fd director resource to the new client

Manual configuration

Alternatively you can configure your resources manually. On the Bareos Director create the file

Client {

Name = client2-fd

Address = 192.168.0.2

Password = secret

}

Resource 6.13: bareos-dir.d/client/client2-fd.conf

Reload or restart your Bareos Director:

*reload
reloaded

bconsole 6.14: reload the Director configuration

The corresponding Bareos File Daemon director resource can be created directly on the client, see below.

Client: configure

The package bareos-filedaemon Version >= 16.2.4 brings several configuration files:

� /etc/bareos/bareos-fd.d/client/myself.conf

� /etc/bareos/bareos-fd.d/director/bareos-dir.conf

� /etc/bareos/bareos-fd.d/director/bareos-mon.conf

� /etc/bareos/bareos-fd.d/messages/Standard.conf

In detail:

client/myself.conf defines the name of the client. The default is <hostname>-fd. Changes are only
required, if you want to use another name or en- or disable special Bareos File Daemon features. See
Client Resource.

director/bareos-dir.conf gives the Bareos Director bareos-dir full access to this Bareos File Daemon.
During installation, the Password Fd

Director is set to a random default. Adapt the name and/or the
password to your Bareos Director. (The name bareos-dir is the default Bareos Director name since
Bareos Version >= 16.2.4.)

director/bareos-mon.conf gives the Bareos Director bareos-mon restricted access to this Bareos File
Daemon. During installation, the Password Fd

Director is set to a random value. This resource is intended
to be used by the local bareos-tray-monitor.

messages/Standard.conf defines, how messages should be handled. The default sends all relevant messages
to the Bareos Director.

40

If your Bareos Director is named bareos-dir, the /etc/bareos/bareos-fd.d/director/bareos-dir.conf
may already be overwritten by the file you copied from the Bareos Director. If your Director has another
name, an addition resource file will exists. You can define an arbitrary number of Bareos Director’s in your
Bareos File Daemon configuration. However, normally you will only have one DirectorFd with full control
of your Bareos File Daemon and optional one DirectorFd for monitoring (used by the Bareos Tray Monitor).
Anyhow, the resource will look similar to this:

Director {

Name = bareos-dir

Password = "[md5]5ebe2294ecd0e0f08eab7690d2a6ee69"

}

Resource 6.15: bareos-fd.d/director/bareos-dir.conf

After a restart of the Bareos File Daemon to reload the configuration this resource allows the access for a
Bareos Director with name bareos-dir and password secret (stored in MD5 format).

service bareos-fd restart

Commands 6.16: restart bareos-fd

Manual configuration

If you have not created the DirectorFd by configure , you can create it also manually. If your Bareos Direc-
tor is also named bareos-dir, modify or create the file /etc/bareos/bareos-fd.d/director/bareos-dir.
conf:

Director {

Name = "bareos-dir" # Name of your Bareos Director

Password = "secret" # Password (cleartext or MD5) must be identical

to the password of your client reosurce in the Direcotr

(bareos-dir.d/client/client2-fd.conf)

}

Resource 6.17: bareos-fd.d/director/bareos-dir.conf

See the relation between resource names and password of the different Bareos components in Names, Pass-
words and Authorization.
If your are not using the Subdirectory Configuration Scheme, make sure that this resource file gets included
in your Bareos File Daemon configuration. You can verify this by

bareos-fd -xc

Commands 6.18: show how bareos-fd would read the current configuration files

After modifying the file, you have to restart the Bareos File Daemon:

service bareos-fd restart

Commands 6.19: restart bareos-fd

Director: test client, add a job

The following example show how to

� Verify the network connection from Bareos Director to the Bareos File Daemon.

� Add a job resource.

� Dry-run the job (estimate listing).

� Run the job.

� Wait for the job to finish.

� Verify the job.

41

*status client=client2-fd
...

*configure add job name=client2-job client=client2-fd jobdefs=DefaultJob
Created resource config file "/etc/bareos/bareos-dir.d/job/client2-job.conf":

Job {

Name = client2-job

Client = client2-fd

JobDefs = DefaultJob

}

*estimate listing job=client2-job
...

*run job=client2-job
...

*wait jobid=...
...

*list joblog jobid=...
...

*list files jobid=...
...

*list volumes
...

bconsole 6.20: test the client and add a job resource

6.9 Patience When Starting Daemons or Mounting Blank Tapes

When you start the Bareos daemons, the Storage daemon attempts to open all defined storage devices and
verify the currently mounted Volume (if configured). Until all the storage devices are verified, the Storage
daemon will not accept connections from the Console program. If a tape was previously used, it will be
rewound, and on some devices this can take several minutes. As a consequence, you may need to have a bit
of patience when first contacting the Storage daemon after starting the daemons. If you can see your tape
drive, once the lights stop flashing, the drive will be ready to be used.
The same considerations apply if you have just mounted a blank tape in a drive. It can take a minute or
two before the drive properly recognizes that the tape is blank. If you attempt to mount the tape with the
Console program during this recognition period, it is quite possible that you will hang your SCSI driver. As
a consequence, you are again urged to have patience when inserting blank tapes. Let the device settle down
before attempting to access it.

6.10 Pools

Creating the Pool is automatically done when the Bareos Director starts, so if you understand Pools, you
can skip to the next section.
When you run a backup job, one of the things that Bareos must know is what Volumes to use. Instead of
specifying a Volume (tape) directly, you specify which Pool of Volumes you want Bareos to consult when
it wants a Volume for writing backups. Bareos will select the first available Volume from the Pool that is
appropriate for the Storage Dir

Job you have specified for the Job being run. When a volume has filled up with
data, Bareos will change its VolStatus from Append to Full, and then Bareos will use the next volume
and so on. If no appendable Volume exists in the Pool, the Director will attempt to recycle an old Volume.
For details, please read the Automatic Volume Recycling chapter.
If there are still no appendable Volumes available, Bareos will send a message requesting the operator to
create an appropriate Volume.
Bareos keeps track of the Pool name, the volumes contained in the Pool, and a number of attributes of each
of those Volumes.
When Bareos starts, it ensures that all Pool resource definitions have been recorded in the catalog. You can
verify this by entering:

*list pools
+--------+--------------+---------+---------+----------+---------------+

| PoolId | Name | NumVols | MaxVols | PoolType | LabelFormat |

+--------+--------------+---------+---------+----------+---------------+

| 1 | Full | 1 | 100 | Backup | Full- |

42

| 2 | Differential | 0 | 100 | Backup | Differential- |

| 3 | Incremental | 1 | 100 | Backup | Incremental- |

| 4 | Scratch | 0 | 0 | Backup | * |

+--------+--------------+---------+---------+----------+---------------+

bconsole 6.21: list pools

6.11 Other Useful Console Commands

help Show the list all all available commands.

help list Show detail information about a specific command, in this case the command list .

status dir Print a status of all running jobs and jobs scheduled in the next 24 hours.

status The console program will prompt you to select a daemon type, then will request the daemon’s status.

status jobid=nn Print a status of JobId nn if it is running. The Storage daemon is contacted and requested
to print a current status of the job as well.

list pools List the pools defined in the Catalog (normally only Default is used).

list volumes Lists all the media defined in the Catalog.

list jobs Lists all jobs in the Catalog that have run.

list jobid=nn Lists JobId nn from the Catalog.

list jobtotals Lists totals for all jobs in the Catalog.

list files jobid=nn List the files that were saved for JobId nn.

list jobmedia List the media information for each Job run.

messages Prints any messages that have been directed to the console.

quit Exit or quit the console program.

Most of the commands given above, with the exception of list, will prompt you for the necessary arguments
if you simply enter the command name.
The full list of commands is shown in the chapter Console Commands.

Chapter 7

Critical Items to Implement Before
Production

We recommend you take your time before implementing a production on a Bareos backup system since
Bareos is a rather complex program, and if you make a mistake, you may suddenly find that you cannot
restore your files in case of a disaster. This is especially true if you have not previously used a major backup
product.
If you follow the instructions in this chapter, you will have covered most of the major problems that can
occur. It goes without saying that if you ever find that we have left out an important point, please inform
us, so that we can document it to the benefit of everyone.

7.1 Critical Items

The following assumes that you have installed Bareos, you more or less understand it, you have at least
worked through the tutorial or have equivalent experience, and that you have set up a basic production
configuration. If you haven’t done the above, please do so and then come back here. The following is a sort
of checklist that points with perhaps a brief explanation of why you should do it. In most cases, you will
find the details elsewhere in the manual. The order is more or less the order you would use in setting up a
production system (if you already are in production, use the checklist anyway).

� Test your tape drive for compatibility with Bareos by using the test command of the btape program.

� Test the end of tape handling of your tape drive by using the fill command in the btape program.

� Do at least one restore of files. If you backup multiple OS types (Linux, Solaris, HP, MacOS, FreeBSD,
Win32, ...), restore files from each system type. The Restoring Files chapter shows you how.

� Write a bootstrap file to a separate system for each backup job. See Write Bootstrap Dir
Job directive

and more details are available in the The Bootstrap File chapter. Also, the default bareos-dir.conf
comes with a Write Bootstrap directive defined. This allows you to recover the state of your system
as of the last backup.

� Backup your catalog. An example of this is found in the default bareos-dir.conf file. The backup script
is installed by default and should handle any database, though you may want to make your own local
modifications. See also Backing Up Your Bareos Database for more information.

� Write a bootstrap file for the catalog. An example of this is found in the default bareos-dir.conf file.
This will allow you to quickly restore your catalog in the event it is wiped out – otherwise it is many
excruciating hours of work.

� Make a copy of the bareos-dir.conf, bareos-sd.conf, and bareos-fd.conf files that you are using on your
server. Put it in a safe place (on another machine) as these files can be difficult to reconstruct if your
server dies.

� Bareos assumes all filenames are in UTF-8 format. This is important when saving the filenames to the
catalog. For Win32 machine, Bareos will automatically convert from Unicode to UTF-8, but on Unix,
Linux, *BSD, and MacOS X machines, you must explicitly ensure that your locale is set properly.
Typically this means that the LANG environment variable must end in .UTF-8. A full example is

43

44

en US.UTF-8. The exact syntax may vary a bit from OS to OS, and exactly how you define it will
also vary.

On most modern Win32 machines, you can edit the conf files with notepad and choose output encoding
UTF-8.

7.2 Recommended Items

Although these items may not be critical, they are recommended and will help you avoid problems.

� Read the Getting Started with Bareos chapter

� After installing and experimenting with Bareos, read and work carefully through the examples in the
Tutorial chapter of this manual.

� Learn what each of the Bareos Programs does.

� Set up reasonable retention periods so that your catalog does not grow to be too big. See the following
three chapters:
Automatic Volume Recycling,
Volume Management,
Automated Disk Backup.

If you absolutely must implement a system where you write a different tape each night and take it offsite in
the morning. We recommend that you do several things:

� Write a bootstrap file of your backed up data and a bootstrap file of your catalog backup to a external
media like CDROM or USB stick, and take that with the tape. If this is not possible, try to write
those files to another computer or offsite computer, or send them as email to a friend. If none of that
is possible, at least print the bootstrap files and take that offsite with the tape. Having the bootstrap
files will make recovery much easier.

� It is better not to force Bareos to load a particular tape each day. Instead, let Bareos choose the tape.
If you need to know what tape to mount, you can print a list of recycled and appendable tapes daily,
and select any tape from that list. Bareos may propose a particular tape for use that it considers
optimal, but it will accept any valid tape from the correct pool.

Part II

Configuration

45

Chapter 8

Customizing the Configuration

Each Bareos component (Director, Client, Storage, Console) has its own configuration containing a set of
resource definitions. These resources are very similar from one service to another, but may contain different
directives (records) depending on the component. For example, in the Director configuration, the Director
Resource defines the name of the Director, a number of global Director parameters and his password. In
the File daemon configuration, the Director Resource specifies which Directors are permitted to use the File
daemon.
If you install all Bareos daemons (Director, Storage and File Daemon) onto one system, the Bareos package
tries its best to generate a working configuration as a basis for your individual configuration.
The details of each resource and the directives permitted therein are described in the following chapters.
The following configuration files must be present:

� Director Configuration – to define the resources necessary for the Director. You define all the Clients
and Storage daemons that you use in this configuration file.

� Storage Daemon Configuration – to define the resources to be used by each Storage daemon. Normally,
you will have a single Storage daemon that controls your disk storage or tape drives. However, if you
have tape drives on several machines, you will have at least one Storage daemon per machine.

� Client/File Daemon Configuration – to define the resources for each client to be backed up. That is,
you will have a separate Client resource file on each machine that runs a File daemon.

� Console Configuration – to define the resources for the Console program (user interface to the Director).
It defines which Directors are available so that you may interact with them.

8.1 Configuration Path Layout

When a Bareos component starts, it reads its configuration. In Bareos < 16.2.2 only configuration files
(which optionally can include other files) are supported. Since Bareos Version >= 16.2.2 also configuration
subdirectories are supported.

Naming

In this section, the following naming is used:

� $CONFIGDIR refers to the base configuration directory. Bareos Linux packages use /etc/bareos/.

� A component is one of the following Bareos programs:

– bareos-dir

– bareos-sd

– bareos-fd

– bareos-traymonitor

– bconsole

– bat (only legacy config file: bat.conf)

– Bareos tools, like Volume Utility Commands and others.

� $COMPONENT refers to one of the listed components.

47

48

8.1.1 What configuration will be used?

When starting a Bareos component, it will look for its configuration. Bareos components allow the configu-
ration file/directory to be specified as a command line parameter -c $PATH.

� configuration path parameter is not given (default)

– $CONFIGDIR/$COMPONENT.conf is a file

* the configuration is read from the file $CONFIGDIR/$COMPONENT.conf

– $CONFIGDIR/$COMPONENT.d/ is a directory

* the configuration is read from $CONFIGDIR/$COMPONENT.d/*/*.conf (subdirectory configu-
ration)

� configuration path parameter is given (-c $PATH)

– $PATH is a file

* the configuration is read from the file specified in $PATH

– $PATH is a directory

* the configuration is read from $PATH/$COMPONENT.d/*/*.conf (subdirectory configuration)

As the $CONFIGDIR differs between platforms or is overwritten by the path parameter, the documentation
will often refer to the configuration without the leading path (e.g. $COMPONENT.d/*/*.conf instead of
$CONFIGDIR/$COMPONENT.d/*/*.conf).

When subdirectory configuration is used, all files matching $PATH/$COMPONENT.d/*/*.conf will be read, see
Subdirectory Configuration Scheme.

Relation between Bareos components and configuration

Bareos component
Configuration File
(default path on Unix)

Subdirectory Configuration Scheme
(default path on Unix)
since Bareos >= 16.2.2

bareos-dir bareos-dir.conf bareos-dir.d

Director Configuration (/etc/bareos/bareos-dir.conf) (/etc/bareos/bareos-dir.d/)
bareos-sd bareos-sd.conf bareos-sd.d

Storage Daemon Configuration (/etc/bareos/bareos-sd.conf) (/etc/bareos/bareos-sd.d/)
bareos-fd bareos-fd.conf bareos-fd.d

Client/File Daemon Configuration (/etc/bareos/bareos-fd.conf) (/etc/bareos/bareos-fd.d/)
bconsole bconsole.conf bconsole.d

Console Configuration (/etc/bareos/bconsole.conf) (/etc/bareos/bconsole.d/)
bareos-traymonitor tray-monitor.conf tray-monitor.d

Monitor Configuration (/etc/bareos/tray-monitor.conf) (/etc/bareos/tray-monitor.d/)
bat bat.conf (not supported)

(/etc/bareos/bat.conf)
Volume Utility Commands bareos-sd.conf bareos-sd.d

(use the bareos-sd configuration) (/etc/bareos/bareos-sd.conf) (/etc/bareos/bareos-sd.d/)

8.1.2 Subdirectory Configuration Scheme

If the subdirectory configuration is used, instead of a single configuration file, all files matching $COMPONENT.

d/*/*.conf are read as a configuration, see What configuration will be used?.

49

Reason for the Subdirectory Configuration Scheme

In Bareos < 16.2.2, Bareos uses one configuration file per component.

Most larger Bareos environments split their configuration into separate files, making it easier to manage the
configuration.

Also some extra packages (bareos-webui, plugins, ...) require a configuration, which must be included into
the Bareos Director or Bareos Storage Daemon configuration. The subdirectory approach makes it easier to
add or modify the configuration resources of different Bareos packages.

The Bareos configure command requires a configuration directory structure, as provided by the subdirectory
approach.

From Bareos Version >= 16.2.4 on, new installations will use configuration subdirectories by default.

Resource file conventions

� Each configuration resource has to use its own configuration file.

� The path of a resource file is $COMPONENT.d/$RESOURCETYPE/$RESOURCENAME.conf.

� The name of the configuration file is identical with the resource name:

– e.g.

* bareos-dir.d/director/bareos-dir.conf

* bareos-dir.d/pool/Full.conf

– Exceptions:

* The resource file bareos-fd.d/client/myself.conf always has the file name myself.conf,
while the name is normally set to the hostname of the system.

� Example resource files:

– Additional packages can contain configuration files that are automatically included. However,
most additional configuration resources require configuration. When a resource file requires con-
figuration, it has to be included as an example file:

* $CONFIGDIR/$COMPONENT.d/$RESOURCE/$NAME.conf.example

* For example, the Bareos Webui entails one config resource and one config resource example
for the Bareos Director:

· $CONFIGDIR/bareos-director.d/profile/webui-admin.conf

· $CONFIGDIR/bareos-director.d/console/admin.conf.example

� Disable/remove configuration resource files:

– Normally you should not remove resources that are already in use (jobs, clients, ...). Instead
you should disable them by adding the directive Enable = no. Otherwise you take the risk that
orphaned entries are kept in the Bareos catalog. However, if a resource has not been used or all
references have been cleared from the database, they can also be removed from the configuration.
Please note! If you want to remove a configuration resource that is part of a Bareos package, replace
the resource configuration file by an empty file. This prevents the resource from reappearing in the
course of a package update.

Using Subdirectories Configuration Scheme

New installation

� The Subdirectories Configuration Scheme is used by default from Bareos Version >= 16.2.4 onwards.

� They will be usable immediately after installing a Bareos component.

� If additional packages entail example configuration files ($NAME.conf.example), copy them to $NAME.

conf, modify it as required and reload or restart the component.

50

Updates from Bareos < 16.2.4

� When updating to a Bareos version containing the Subdirectories Configuration, the existing configu-
ration will not be touched and is still the default configuration.

– Please note! Problems can occur if you have implemented an own wildcard mechanism to load
your configuration from the same subdirectories as used by the new packages (£CONFIGDIR/
£COMPONENT. d/ */ *. conf). In this case, newly installed configuration resource files can alter
your current configuration by adding resources. Best create a copy of your configuration directory
before updating Bareos and modify your existing configuration file to use that other directory.

� As long as the old configuration file ($CONFIGDIR/$COMPONENT.conf) exists, it will be used.

� The correct way of migrating to the new configuration scheme would be to split the configuration file
into resources, store them in the resource directories and then remove the original configuration file.

– For migrating the Bareos Director configuration, the script bareos-migrate-config.sh exists. Being
called, it connects via bconsole to a running Bareos Director and creates subdirectories with the
resource configuration files.

prepare temporary directory

mkdir /tmp/baroes-dir.d

cd /tmp/baroes-dir.d

download migration script

wget ↙
↪→ https://raw.githubusercontent.com/bareos/bareos-contrib/master/misc/bareos-migrate-config/bareos-migrate-config.sh

execute the script

bash bareos-migrate-config.sh

backup old configuration

mv /etc/bareos/bareos-dir.conf /etc/bareos/bareos-dir.conf.bak

mv /etc/bareos/bareos-dir.d /etc/bareos/bareos-dir.d.bak

make sure, that all packaged configuration resources exists,

otherwise they will be added when updating Bareos.

for i in ‘find /etc/bareos/bareos-dir.d.bak/ -name *.conf -type f -printf "%P\n"‘; do touch ↙
↪→ "$i"; done

install newly generated configuration

cp -a /tmp/bareos-dir.d /etc/bareos/

Commands 8.1: bareos-migrate-config.sh

Restart the Bareos Director and verify your configuration. Also make sure, that all resource config-
uration files coming from Bareos packages exists, in doubt as empty files, see remove configuration
resource files.

– Another way, without splitting the configuration into resource files is:
*

mkdir $CONFIGDIR/$COMPONENT.d/migrate && mv $CONFIGDIR/$COMPONENT.conf ↙
↪→ $CONFIGDIR/$COMPONENT.d/migrate

Commands 8.2: move configuration to subdirectory

* Resources defined in both, the new configuration directory scheme and the old configuration
file, must be removed from one of the places, best from the old configuration file, after verifying
that the settings are identical with the new settings.

8.2 Configuration File Format

A configuration file consists of one or more resources (see Resource).
Bareos programs can work with

� all resources defined in one configuration file

� configuration files that include other configuration files (see Including other Configuration Files)

� Subdirectory Configuration Scheme, where each configuration file contains exactly one resource defini-
tion

https://github.com/bareos/bareos-contrib/blob/master/misc/bareos-migrate-config/bareos-migrate-config.sh
https://github.com/bareos/bareos-contrib/blob/master/misc/bareos-migrate-config/bareos-migrate-config.sh

51

8.2.1 Character Sets

Bareos is designed to handle most character sets of the world, US ASCII, German, French, Chinese, ...
However, it does this by encoding everything in UTF-8, and it expects all configuration files (including those
read on Win32 machines) to be in UTF-8 format. UTF-8 is typically the default on Linux machines, but
not on all Unix machines, nor on Windows, so you must take some care to ensure that your locale is set
properly before starting Bareos.
To ensure that Bareos configuration files can be correctly read including foreign characters, the LANG
environment variable must end in .UTF-8. A full example is en US.UTF-8. The exact syntax may vary
a bit from OS to OS, so that the way you have to define it will differ from the example. On most newer
Win32 machines you can use notepad to edit the conf files, then choose output encoding UTF-8.
Bareos assumes that all filenames are in UTF-8 format on Linux and Unix machines. On Win32 they are in
Unicode (UTF-16) and will hence be automatically converted to UTF-8 format.

8.2.2 Comments

When reading a configuration, blank lines are ignored and everything after a hash sign (#) until the end of
the line is taken to be a comment.

8.2.3 Semicolons

A semicolon (;) is a logical end of line and anything after the semicolon is considered as the next statement.
If a statement appears on a line by itself, a semicolon is not necessary to terminate it, so generally in the
examples in this manual, you will not see many semicolons.

8.2.4 Including other Configuration Files

If you wish to break your configuration file into smaller pieces, you can do so by including other files using the
syntax @filename where filename is the full path and filename of another file. The @filename specification
can be given anywhere a primitive token would appear.

@/etc/bareos/extra/clients.conf

Configuration 8.3: include a configuration file

Since Bareos Version >= 16.2.1 wildcards in pathes are supported:

@/etc/bareos/extra/*.conf

Configuration 8.4: include multiple configuration files

By using @|command it is also possible to include the output of a script as a configuration:

@|"/etc/bareos/generate_configuration_to_stdout.sh"

Configuration 8.5: use the output of a script as configuration

or if a parameter should be used:

@|"sh -c ’/etc/bareos/generate_client_configuration_to_stdout.sh clientname=client1.example.com’"

Configuration 8.6: use the output of a script with parameter as a configuration

The scripts are called at the start of the daemon. You should use this with care.

8.3 Resource

A resource is defined as the resource type (see Resource Types), followed by an open brace ({), a number of
Resource Directives, and ended by a closing brace (})
Each resource definition MUST contain a Name directive. It can contain a Description directive. The Name

directive is used to uniquely identify the resource. The Description directive can be used during the display
of the Resource to provide easier human recognition. For example:

Director {

Name = "bareos-dir"

Description = "Main Bareos Director"

Query File = "/usr/lib/bareos/scripts/query.sql"

}

52

Configuration 8.7: Resource example

defines the Director resource with the name bareos-dir and a query file /usr/lib/bareos/scripts/query.
sql.

When naming resources, for some resource types naming conventions should be applied:

Client names should be postfixed with -fd

Storage names should be postfixed with -sd

Director names should be postfixed with -dir

These conventions helps a lot when reading log messages.

8.3.1 Resource Directive

Each directive contained within the resource (within the curly braces {}) is composed of a Resource Directive
Keyword followed by an equal sign (=) followed by a Resource Directive Value. The keywords must be one
of the known Bareos resource record keywords.

8.3.2 Resource Directive Keyword

A resource directive keyword is the part before the equal sign (=) in a Resource Directive. The following
sections will list all available directives by Bareos component resources.

Upper and Lower Case and Spaces

Case (upper/lower) and spaces are ignored in the resource directive keywords.

Within the keyword (i.e. before the equal sign), spaces are not significant. Thus the keywords: name,
Name, and N a m e are all identical.

8.3.3 Resource Directive Value

A resource directive value is the part after the equal sign (=) in a Resource Directive.

Spaces

Spaces after the equal sign and before the first character of the value are ignored. Other spaces within a
value may be significant (not ignored) and may require quoting.

Quotes

In general, if you want spaces in a name to the right of the first equal sign (=), you must enclose that name
within double quotes. Otherwise quotes are not generally necessary because once defined, quoted strings
and unquoted strings are all equal.

Within a quoted string, any character following a backslash (\) is taken as itself (handy for inserting back-
slashes and double quotes (”)).

Please note! If the configure directive is used to define a number, the number is never to be put between
surrounding quotes. This is even true if the number is specified together with its unit, like 365 days .

Numbers

Numbers are not to be quoted, see Quotes. Also do not prepend numbers by zeros (0), as these are not
parsed in the expected manner (write 1 instead of 01).

53

Data Types

When parsing the resource directives, Bareos classifies the data according to the types listed below.

acl This directive defines what is permitted to be accessed. It does this by using a list of regular expressions,
separated by commas (,) or using multiple directives. If ! is prepended, the expression is negated. The
special keyword *all* allows unrestricted access.

Depending on the type of the ACL, the regular expressions can be either resource names, paths or
console commands.

Since Bareos Version >= 16.2.4 regular expression are handled more strictly. Before also substring
matches has been accepted.

For clarification, we demonstrate the usage of ACLs by some examples for Command ACL Dir
Console:

Command ACL = help

Configuration 8.8: Allow only the help command

Command ACL = help, list

Configuration 8.9: Allow the help and the list command

Command ACL = help, iDoNotExist

Configuration 8.10: Allow the help and the (not existing) iDoNotExist command

Command ACL = *all*

Configuration 8.11: Allow all commands (special keyword)

Command ACL = !sqlquery, !u.*, *all*

Configuration 8.12: Allow all commands except sqlquery and commands starting with u

Same:

Command ACL = !sqlquery, !u.*

Command ACL = *all*

Configuration 8.13: Some as above. Specifying it in multiple lines doesn’t change the meaning

Command ACL = !sqlquery

Command ACL = !u.*

Comamnd ACL = !set(ip|debug)

Comamnd ACL = *all*

Configuration 8.14: Additional deny the setip and setdebug commands

Please note! ACL checking stops at the first match. So the following definition allows all commands,
which might not be what you expected:

WARNING: this configuration ignores !sqlquery, as *all* is matched before.

Command ACL = *all*, !sqlquery

Configuration 8.15: Wrong: Allows all commands

auth-type Specifies the authentication type that must be supplied when connecting to a backup protocol
that uses a specific authentication type. Currently only used for NDMP Resource.

The following values are allowed:

None - Use no password

Clear - Use clear text password

MD5 - Use MD5 hashing

integer A 32 bit integer value. It may be positive or negative.

Don’t use quotes around the number, see Quotes.

54

long integer A 64 bit integer value. Typically these are values such as bytes that can exceed 4 billion and
thus require a 64 bit value.

Don’t use quotes around the number, see Quotes.

name A keyword or name consisting of alphanumeric characters, including the hyphen, underscore, and
dollar characters. The first character of a name must be a letter. A name has a maximum length
currently set to 127 bytes.

Please note that Bareos resource names as well as certain other names (e.g. Volume names) must
contain only letters (including ISO accented letters), numbers, and a few special characters (space,
underscore, ...). All other characters and punctuation are invalid.

password This is a Bareos password and it is stored internally in MD5 hashed format.

path A path is either a quoted or non-quoted string. A path will be passed to your standard shell for
expansion when it is scanned. Thus constructs such as $HOME are interpreted to be their correct
values. The path can either reference to a file or a directory.

positive integer A 32 bit positive integer value.

Don’t use quotes around the number, see Quotes.

speed The speed parameter can be specified as k/s, kb/s, m/s or mb/s.

Don’t use quotes around the parameter, see Quotes.

string A quoted string containing virtually any character including spaces, or a non-quoted string. A string
may be of any length. Strings are typically values that correspond to filenames, directories, or system
command names. A backslash (\) turns the next character into itself, so to include a double quote in
a string, you precede the double quote with a backslash. Likewise to include a backslash.

string-list Multiple strings, specified in multiple directives, or in a single directive, separated by commas
(,).

strname is similar to a name, except that the name may be quoted and can thus contain additional
characters including spaces.

net-address is either a domain name or an IP address specified as a dotted quadruple in string or quoted
string format. This directive only permits a single address to be specified. The net-port must be
specificly separated. If multiple net-addresses are needed, please assess if it is also possible to specify
net-addresses (plural).

net-addresses Specify a set of net-addresses and net-ports. Probably the simplest way to explain this is
to show an example:

Addresses = {

ip = { addr = 1.2.3.4; port = 1205;}

ipv4 = {

addr = 1.2.3.4; port = http;}

ipv6 = {

addr = 1.2.3.4;

port = 1205;

}

ip = {

addr = 1.2.3.4

port = 1205

}

ip = { addr = 1.2.3.4 }

ip = { addr = 201:220:222::2 }

ip = {

addr = server.example.com

}

}

Configuration 8.16: net-addresses

55

where ip, ip4, ip6, addr, and port are all keywords. Note, that the address can be specified as either
a dotted quadruple, or in IPv6 colon notation, or as a symbolic name (only in the ip specification).
Also, the port can be specified as a number or as the mnemonic value from the /etc/services file.
If a port is not specified, the default one will be used. If an ip section is specified, the resolution can
be made either by IPv4 or IPv6. If ip4 is specified, then only IPv4 resolutions will be permitted, and
likewise with ip6.

net-port Specify a network port (a positive integer).

Don’t use quotes around the parameter, see Quotes.

resource A resource defines a relation to the name of another resource.

size A size specified as bytes. Typically, this is a floating point scientific input format followed by an optional
modifier. The floating point input is stored as a 64 bit integer value. If a modifier is present, it must
immediately follow the value with no intervening spaces. The following modifiers are permitted:

k 1,024 (kilobytes)

kb 1,000 (kilobytes)

m 1,048,576 (megabytes)

mb 1,000,000 (megabytes)

g 1,073,741,824 (gigabytes)

gb 1,000,000,000 (gigabytes)

Don’t use quotes around the parameter, see Quotes.

time A time or duration specified in seconds. The time is stored internally as a 64 bit integer value, but it is
specified in two parts: a number part and a modifier part. The number can be an integer or a floating
point number. If it is entered in floating point notation, it will be rounded to the nearest integer. The
modifier is mandatory and follows the number part, either with or without intervening spaces. The
following modifiers are permitted:

seconds

minutes (60 seconds)

hours (3600 seconds)

days (3600*24 seconds)

weeks (3600*24*7 seconds)

months (3600*24*30 seconds)

quarters (3600*24*91 seconds)

years (3600*24*365 seconds)

Any abbreviation of these modifiers is also permitted (i.e. seconds may be specified as sec or s). A
specification of m will be taken as months.

The specification of a time may have as many number/modifier parts as you wish. For example:

1 week 2 days 3 hours 10 mins

1 month 2 days 30 sec

are valid date specifications.

Don’t use quotes around the parameter, see Quotes.

audit-command-list Specifies the commands that should be logged on execution (audited). E.g.

Audit Events = label

Audit Events = restore

Configuration 8.17:

Based on the type string-list.

yes|no Either a yes or a no (or true or false).

56

Variable Expansion

Depending on the directive, Bareos will expand to the following variables:

Variable Expansion on Volume Labels When labeling a new volume (see Label Format Dir
Pool), following

Bareos internal variables can be used:
Internal
Variable

Description

$Year Year
$Month Month: 1-12
$Day Day: 1-31
$Hour Hour: 0-24
$Minute Minute: 0-59
$Second Second: 0-59
$WeekDay Day of the week: 0-6, using 0 for Sunday
$Job Name of the Job
$Dir Name of the Director
$Level Job Level
$Type Job Type
$JobId JobId
$JobName unique name of a job
$Storage Name of the Storage Daemon
$Client Name of the Clients
$NumVols Numbers of volumes in the pool
$Pool Name of the Pool
$Catalog Name of the Catalog
$MediaType Type of the media

Additional, normal environment variables can be used, e.g. $HOME oder $HOSTNAME.
With the exception of Job specific variables, you can trigger the variable expansion by using the var command.

Variable Expansion on RunScripts At the configuration of RunScripts following variables can be used:
Variable Description
\%c Client’s Name
\%d Director’s Name
\%e Job Exit Code
\%i JobId
\%j Unique JobId
\%l Job Level
\%n Unadorned Job Name
\%r Recipients
\%s Since Time
\%b Job Bytes
\%B Job Bytes in human readable format
\%f Job Files
\%t Job Type (Backup, ...)
\%v Read Volume Name (only on Director)
\%V Write Volume Name (only on Director)

Variable Expansion in Autochanger Commands At the configuration of autochanger commands the
following variables can be used:
Variable Description
\%a Archive Device Name
\%c Changer Device Name
\%d Changer Drive Index
\%f Client’s Name
\%j Job Name
\%o Command
\%s Slot Base 0
\%S Slot Base 1
\%v Volume Name

57

Variable Expansion in Mount Commands At the configuration of mount commands the following
variables can be used:
Variable Description
\%a Archive Device Name
\%e Erase
\%n Part Number
\%m Mount Point
\%v Last Part Name

Variable Expansion in Mail and Operator Commands At the configuration of mail and operator
commands the following variables can be used:
Variable Description
\%c Client’s Name
\%d Director’s Name
\%e Job Exit Code
\%i JobId
\%j Unique Job Id
\%l Job Level
\%n Unadorned Job Name
\%s Since Time
\%t Job Type (Backup, ...)
\%r Recipients
\%v Read Volume Name
\%V Write Volume Name
\%b Job Bytes
\%B Job Bytes in human readable format
\%F Job Files

8.3.4 Resource Types

The following table lists all current Bareos resource types. It shows what resources must be defined for each
service (daemon). The default configuration files will already contain at least one example of each permitted
resource.

Resource Director Client Storage Console

Autochanger x
Catalog x
Client x x
Console x x
Device x
Director x x x x
FileSet x
Job x
JobDefs x
Message x x x
NDMP x
Pool x
Profile x
Schedule x
Storage x x

8.4 Names, Passwords and Authorization

In order for one daemon to contact another daemon, it must authorize itself with a password. In most
cases, the password corresponds to a particular name, so both the name and the password must match to
be authorized. Passwords are plain text, any text. They are not generated by any special process; just use
random text.
The default configuration files are automatically defined for correct authorization with random passwords.
If you add to or modify these files, you will need to take care to keep them consistent.

58

Figure 8.1: Relation between resource names and passwords

59

In the left column, you can see the Director, Storage, and Client resources and their corresponding names
and passwords – these are all in bareos-dir.conf. In the right column the corresponding values in the
Console, Storage daemon (SD), and File daemon (FD) configuration files are shown.
Please note that the address fw-sd, that appears in the Storage resource of the Director, is passed to the
File daemon in symbolic form. The File daemon then resolves it to an IP address. For this reason you must
use either an IP address or a resolvable fully qualified name. A name such as localhost, not being a fully
qualified name, will resolve in the File daemon to the localhost of the File daemon, which is most likely
not what is desired. The password used for the File daemon to authorize with the Storage daemon is a
temporary password unique to each Job created by the daemons and is not specified in any .conf file.

60

Chapter 9

Director Configuration

Of all the configuration files needed to run Bareos, the Director’s is the most complicated and the one that
you will need to modify the most often as you add clients or modify the FileSets.
For a general discussion of configuration files and resources including the recognized data types see Cus-
tomizing the Configuration.
Everything revolves around a job and is tied to a job in one way or another.
The Bareos Director knows about following resource types:

� Director Resource – to define the Director’s name and its access password used for authenticating the
Console program. Only a single Director resource definition may appear in the Director’s configuration
file.

� Job Resource – to define the backup/restore Jobs and to tie together the Client, FileSet and Schedule
resources to be used for each Job. Normally, you will Jobs of different names corresponding to each
client (i.e. one Job per client, but a different one with a different name for each client).

� JobDefs Resource – optional resource for providing defaults for Job resources.

� Schedule Resource – to define when a Job has to run. You may have any number of Schedules, but
each job will reference only one.

� FileSet Resource – to define the set of files to be backed up for each Client. You may have any number
of FileSets but each Job will reference only one.

� Client Resource – to define what Client is to be backed up. You will generally have multiple Client
definitions. Each Job will reference only a single client.

� Storage Resource – to define on what physical device the Volumes should be mounted. You may have
one or more Storage definitions.

� Pool Resource – to define the pool of Volumes that can be used for a particular Job. Most people use
a single default Pool. However, if you have a large number of clients or volumes, you may want to have
multiple Pools. Pools allow you to restrict a Job (or a Client) to use only a particular set of Volumes.

� Catalog Resource – to define in what database to keep the list of files and the Volume names where
they are backed up. Most people only use a single catalog. It is possible, however not adviced and not
supported to use multiple catalogs, see Current Implementation Restrictions.

� Messages Resource – to define where error and information messages are to be sent or logged. You may
define multiple different message resources and hence direct particular classes of messages to different
users or locations (files, ...).

9.1 Director Resource

The Director resource defines the attributes of the Directors running on the network. Only a single Director
resource is allowed.
The following is an example of a valid Director resource definition:

61

62

Director {

Name = bareos-dir

Password = secretpassword

QueryFile = "/etc/bareos/query.sql"

Maximum Concurrent Jobs = 10

Messages = Daemon

}

Configuration 9.1: Director Resource example

configuration directive name type of data default value remark

Absolute Job Timeout = positive-integer
Audit Events = audit-command-list
Auditing = yes|no no
Backend Directory = DirectoryList /usr/lib/bareos/backends (platform specific)

Description = string
Dir Address = net-address 9101
Dir Addresses = net-addresses 9101
Dir Port = net-port 9101
Dir Source Address = net-address 0
FD Connect Timeout = time 180
Heartbeat Interval = time 0
Key Encryption Key = password
Log Timestamp Format = string
Maximum Concurrent Jobs = positive-integer 1
Maximum Connections = positive-integer 30
Maximum Console Connections = positive-integer 20
Messages = resource-name
Name = name required
NDMP Log Level = positive-integer 4
NDMP Snooping = yes|no
Omit Defaults = yes|no yes
Optimize For Size = yes|no no
Optimize For Speed = yes|no no
Password = password required
Pid Directory = path /var/lib/bareos (platform specific)

Plugin Directory = path
Plugin Names = PluginNames

Query File = path required
Scripts Directory = path
SD Connect Timeout = time 1800
Secure Erase Command = string
Statistics Collect Interval = positive-integer 150
Statistics Retention = time 160704000
Sub Sys Directory = path deprecated
Subscriptions = positive-integer 0
TLS Allowed CN = string-list
TLS Authenticate = yes|no no
TLS CA Certificate Dir = path
TLS CA Certificate File = path
TLS Certificate = path
TLS Certificate Revocation List = path
TLS Cipher List = string
TLS DH File = path
TLS Enable = yes|no no
TLS Key = path
TLS Require = yes|no no
TLS Verify Peer = yes|no yes
Ver Id = string
Working Directory = path /var/lib/bareos (platform specific)

63

Absolute Job Timeout = <positive-integer>

Version >= 14.2.0

Audit Events = <audit-command-list>
Specify which commands (see Console Commands) will be audited. If nothing is specified (and Auditing
Dir
Director is enabled), all commands will be audited.
Version >= 14.2.0

Auditing = <yes|no> (default: no)
This directive allows to en- or disable auditing of interaction with the Bareos Director. If enabled,
audit messages will be generated. The messages resource configured in Messages Dir

Director defines, how
these messages are handled.
Version >= 14.2.0

Backend Directory = <DirectoryList> (default: /usr/lib/bareos/backends (platform specific))
This directive specifies a directory from where the Bareos Director loads his dynamic backends.

Description = <string>
The text field contains a description of the Director that will be displayed in the graphical user
interface. This directive is optional.

Dir Address = <net-address> (default: 9101)
This directive is optional, but if it is specified, it will cause the Director server (for the Console
program) to bind to the specified address. If this and the Dir Addresses Dir

Director directives are not
specified, the Director will bind to any available address (the default).

Dir Addresses = <net-addresses> (default: 9101)
Specify the ports and addresses on which the Director daemon will listen for Bareos Console connec-
tions.

Please note that if you use the Dir Addresses Dir
Director directive, you must not use either a Dir Port

Dir
Director or a Dir Address Dir

Director directive in the same resource.

Dir Port = <net-port> (default: 9101)
Specify the port on which the Director daemon will listen for Bareos Console connections. This same
port number must be specified in the Director resource of the Console configuration file. This directive
should not be used if you specify Dir Addresses Dir

Director (N.B plural) directive.

Dir Source Address = <net-address> (default: 0)
This record is optional, and if it is specified, it will cause the Director server (when initiating
connections to a storage or file daemon) to source its connections from the specified address. Only a
single IP address may be specified. If this record is not specified, the Director server will source its
outgoing connections according to the system routing table (the default).

FD Connect Timeout = <time> (default: 180)
where time is the time that the Director should continue attempting to contact the File daemon to
start a job, and after which the Director will cancel the job.

Heartbeat Interval = <time> (default: 0)
This directive is optional and if specified will cause the Director to set a keepalive interval (heartbeat)
in seconds on each of the sockets it opens for the Client resource. This value will override any
specified at the Director level. It is implemented only on systems that provide the setsockopt
TCP KEEPIDLE function (Linux, ...). The default value is zero, which means no change is made to
the socket.

64

Key Encryption Key = <password>
This key is used to encrypt the Security Key that is exchanged between the Director and the Storage
Daemon for supporting Application Managed Encryption (AME). For security reasons each Director
should have a different Key Encryption Key.

Log Timestamp Format = <string>

Version >= 15.2.3

Maximum Concurrent Jobs = <positive-integer> (default: 1)
This directive specifies the maximum number of total Director Jobs that should run concurrently.

The Volume format becomes more complicated with multiple simultaneous jobs, consequently, restores
may take longer if Bareos must sort through interleaved volume blocks from multiple simultaneous
jobs. This can be avoided by having each simultaneous job write to a different volume or by using data
spooling, which will first spool the data to disk simultaneously, then write one spool file at a time to
the volume thus avoiding excessive interleaving of the different job blocks.

See also the section about Concurrent Jobs.

Maximum Connections = <positive-integer> (default: 30)

Maximum Console Connections = <positive-integer> (default: 20)
This directive specifies the maximum number of Console Connections that could run concurrently.

Messages = <resource-name>
The messages resource specifies where to deliver Director messages that are not associated with a
specific Job. Most messages are specific to a job and will be directed to the Messages resource specified
by the job. However, there are a messages that can occur when no job is running.

Name = <name> (required)
The name of the resource.

The director name used by the system administrator.

NDMP Log Level = <positive-integer> (default: 4)
This directive sets the loglevel for the NDMP protocol library.
Version >= 13.2.0

NDMP Snooping = <yes|no>
This directive enables the Snooping and pretty printing of NDMP protocol information in debugging
mode.
Version >= 13.2.0

Omit Defaults = <yes|no> (default: yes)
When showing the configuration, omit those parameter that have there default value assigned.

Optimize For Size = <yes|no> (default: no)
If set to yes this directive will use the optimizations for memory size over speed. So it will try to
use less memory which may lead to a somewhat lower speed. Its currently mostly used for keeping all
hardlinks in memory.

If none of Optimize For Size Dir
Director and Optimize For Speed Dir

Director is enabled, Optimize For Size Dir
Director

is enabled by default.

Optimize For Speed = <yes|no> (default: no)
If set to yes this directive will use the optimizations for speed over the memory size. So it will try to
use more memory which lead to a somewhat higher speed. Its currently mostly used for keeping all

65

hardlinks in memory. Its relates to the Optimize For Size Dir
Director option set either one to yes as they

are mutually exclusive.

Password = <password> (required)
Specifies the password that must be supplied for the default Bareos Console to be authorized. This
password correspond to Password Console

Director of the Console configuration file.

The password is plain text.

Pid Directory = <path> (default: /var/lib/bareos (platform specific))
This directive is optional and specifies a directory in which the Director may put its process Id file.
The process Id file is used to shutdown Bareos and to prevent multiple copies of Bareos from running
simultaneously. Standard shell expansion of the Directory is done when the configuration file is read
so that values such as $HOME will be properly expanded.

The PID directory specified must already exist and be readable and writable by the Bareos daemon
referencing it.

Typically on Linux systems, you will set this to: /var/run. If you are not installing Bareos in the
system directories, you can use the Working Directory as defined above.

Plugin Directory = <path>
Plugins are loaded from this directory. To load only specific plugins, use ’Plugin Names’.

Version >= 14.2.0

Plugin Names = <PluginNames>
List of plugins, that should get loaded from ’Plugin Directory’ (only basenames, ’-dir.so’ is added
automatically). If empty, all plugins will get loaded.

Version >= 14.2.0

Query File = <path> (required)
This directive is required and specifies a directory and file in which the Director can find the canned
SQL statements for the query command.

Scripts Directory = <path>
This directive is currently unused.

SD Connect Timeout = <time> (default: 1800)
where time is the time that the Director should continue attempting to contact the Storage daemon
to start a job, and after which the Director will cancel the job.

Secure Erase Command = <string>
Specify command that will be called when bareos unlinks files.

When files are no longer needed, Bareos will delete (unlink) them. With this directive, it will call the
specified command to delete these files. See Secure Erase Command for details.
Version >= 15.2.1

Statistics Collect Interval = <positive-integer> (default: 150)
Bareos offers the possibility to collect statistic information from its connected devices. To do so, Collect
Statistics Dir

Storage must be enabled. This interval defines, how often the Director connects to the attached
Storage Daemons to collect the statistic information.
Version >= 14.2.0

66

Statistics Retention = <time> (default: 160704000)
The Statistics Retention directive defines the length of time that Bareos will keep statistics job
records in the Catalog database after the Job End time (in JobHistory table). When this time period
expires, and if user runs prune stats command, Bareos will prune (remove) Job records that are older
than the specified period.

Theses statistics records aren’t use for restore purpose, but mainly for capacity planning, billings, etc.
See chapter about how to extract information from the catalog for additional information.

See the Configuration chapter of this manual for additional details of time specification.

Sub Sys Directory = <path>
Please note! This directive is deprecated.

Subscriptions = <positive-integer> (default: 0)
In case you want check that the number of active clients don’t exceed a specific number, you can define
this number here and check with the status subscriptions command.

However, this is only indended to give a hint. No active limiting is implemented.
Version >= 12.4.4

TLS Allowed CN = <string-list>
”Common Name”s (CNs) of the allowed peer certificates.

TLS Authenticate = <yes|no> (default: no)
Use TLS only to authenticate, not for encryption.

TLS CA Certificate Dir = <path>
Path of a TLS CA certificate directory.

TLS CA Certificate File = <path>
Path of a PEM encoded TLS CA certificate(s) file.

TLS Certificate = <path>
Path of a PEM encoded TLS certificate.

TLS Certificate Revocation List = <path>
Path of a Certificate Revocation List file.

TLS Cipher List = <string>
List of valid TLS Ciphers.

TLS DH File = <path>
Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange
will be used for the ephemeral keying, allowing for forward secrecy of communications.

67

TLS Enable = <yes|no> (default: no)
Enable TLS support.

Bareos can be configured to encrypt all its network traffic. See chapter TLS Configuration Directives
to see, how the Bareos Director (and the other components) must be configured to use TLS.

TLS Key = <path>
Path of a PEM encoded private key. It must correspond to the specified ”TLS Certificate”.

TLS Require = <yes|no> (default: no)
Without setting this to yes, Bareos can fall back to use unencryption connections. Enabling this
implicietly sets ”TLS Enable = yes”.

TLS Verify Peer = <yes|no> (default: yes)
If disabled, all certificates signed by a known CA will be accepted. If enabled, the CN of a certificate
must the Address or in the ”TLS Allowed CN” list.

Ver Id = <string>
where string is an identifier which can be used for support purpose. This string is displayed using
the version command.

Working Directory = <path> (default: /var/lib/bareos (platform specific))
This directive is optional and specifies a directory in which the Director may put its status files. This
directory should be used only by Bareos but may be shared by other Bareos daemons. Standard shell
expansion of the directory is done when the configuration file is read so that values such as $HOME
will be properly expanded.

The working directory specified must already exist and be readable and writable by the Bareos
daemon referencing it.

9.2 Job Resource

The Job resource defines a Job (Backup, Restore, ...) that Bareos must perform. Each Job resource definition
contains the name of a Client and a FileSet to backup, the Schedule for the Job, where the data are to be
stored, and what media Pool can be used. In effect, each Job resource must specify What, Where, How,
and When or FileSet, Storage, Backup/Restore/Level, and Schedule respectively. Note, the FileSet must be
specified for a restore job for historical reasons, but it is no longer used.
Only a single type (Backup, Restore, ...) can be specified for any job. If you want to backup multiple
FileSets on the same Client or multiple Clients, you must define a Job for each one.
Note, you define only a single Job to do the Full, Differential, and Incremental backups since the different
backup levels are tied together by a unique Job name. Normally, you will have only one Job per Client, but
if a client has a really huge number of files (more than several million), you might want to split it into to
Jobs each with a different FileSet covering only part of the total files.
Multiple Storage daemons are not currently supported for Jobs, so if you do want to use multiple storage
daemons, you will need to create a different Job and ensure that for each Job that the combination of Client
and FileSet are unique. The Client and FileSet are what Bareos uses to restore a client, so if there are
multiple Jobs with the same Client and FileSet or multiple Storage daemons that are used, the restore will
not work. This problem can be resolved by defining multiple FileSet definitions (the names must be different,
but the contents of the FileSets may be the same).

configuration directive name type of data default value remark

68

Accurate = yes|no no
Add Prefix = string
Add Suffix = string
Allow Duplicate Jobs = yes|no yes
Allow Higher Duplicates = yes|no yes
Allow Mixed Priority = yes|no no
Always Incremental = yes|no no
Always Incremental Job Retention = time 0
Always Incremental Keep Number = positive-integer 0
Always Incremental Max Full Age = time
Backup Format = string Native
Base = ResourceList

Bootstrap = path
Cancel Lower Level Duplicates = yes|no no
Cancel Queued Duplicates = yes|no no
Cancel Running Duplicates = yes|no no
Catalog = resource-name
Client = resource-name
Client Run After Job = RunscriptShort

Client Run Before Job = RunscriptShort

Description = string
Differential Backup Pool = resource-name
Differential Max Runtime = time
Differential Max Wait Time = time deprecated
Dir Plugin Options = string-list
Enabled = yes|no yes
FD Plugin Options = string-list
File History Size = Size64 10000000
File Set = resource-name
Full Backup Pool = resource-name
Full Max Runtime = time
Full Max Wait Time = time deprecated
Incremental Backup Pool = resource-name
Incremental Max Runtime = time
Incremental Max Wait Time = time deprecated
Job Defs = resource-name
Job To Verify = resource-name
Level = BackupLevel

Max Concurrent Copies = positive-integer 100
Max Diff Interval = time
Max Full Consolidations = positive-integer 0
Max Full Interval = time
Max Run Sched Time = time
Max Run Time = time
Max Start Delay = time
Max Virtual Full Interval = time
Max Wait Time = time
Maximum Bandwidth = speed
Maximum Concurrent Jobs = positive-integer 1
Messages = resource-name required
Name = name required
Next Pool = resource-name
Plugin Options = string-list alias, deprecated
Pool = resource-name required
Prefer Mounted Volumes = yes|no yes
Prefix Links = yes|no no
Priority = positive-integer 10
Protocol = ProtocolType Native
Prune Files = yes|no no

69

Prune Jobs = yes|no no
Prune Volumes = yes|no no
Purge Migration Job = yes|no no
Regex Where = string
Replace = ReplaceOption Always
Rerun Failed Levels = yes|no no
Reschedule Interval = time 1800
Reschedule On Error = yes|no no
Reschedule Times = positive-integer 5
Run = string-list
Run After Failed Job = RunscriptShort

Run After Job = RunscriptShort

Run Before Job = RunscriptShort

Run Script { Runscript }
Save File History = yes|no yes
Schedule = resource-name
SD Plugin Options = string-list
Selection Pattern = string
Selection Type = MigrationType

Spool Attributes = yes|no no
Spool Data = yes|no no
Spool Size = Size64

Storage = ResourceList

Strip Prefix = string
Type = JobType required
Verify Job = resource-name alias
Virtual Full Backup Pool = resource-name
Where = path
Write Bootstrap = path
Write Part After Job = yes|no deprecated
Write Verify List = path

Accurate = <yes|no> (default: no)
In accurate mode, the File daemon knowns exactly which files were present after the last backup. So
it is able to handle deleted or renamed files.

When restoring a FileSet for a specified date (including ”most recent”), Bareos is able to restore exactly
the files and directories that existed at the time of the last backup prior to that date including ensuring
that deleted files are actually deleted, and renamed directories are restored properly.

When doing VirtualFull backups, it is advised to use the accurate mode, otherwise the VirtualFull
might contain already deleted files.

However, using the accurate mode has also disadvantages:

� The File daemon must keep data concerning all files in memory. So If you do not have sufficient
memory, the backup may either be terribly slow or fail. For 500.000 files (a typical desktop linux
system), it will require approximately 64 Megabytes of RAM on your File daemon to hold the
required information.

Add Prefix = <string>
This directive applies only to a Restore job and specifies a prefix to the directory name of all files
being restored. This will use File Relocation feature.

Add Suffix = <string>
This directive applies only to a Restore job and specifies a suffix to all files being restored. This will
use File Relocation feature.

70

Using Add Suffix=.old, /etc/passwd will be restored to /etc/passwsd.old

Allow Duplicate Jobs = <yes|no> (default: yes)
A duplicate job in the sense we use it here means a second or subsequent job with the same name

Figure 9.1: Allow Duplicate Jobs usage

starts. This happens most frequently when the first job runs longer than expected because no tapes
are available.

If this directive is enabled duplicate jobs will be run. If the directive is set to no then only one job
of a given name may run at one time. The action that Bareos takes to ensure only one job runs is
determined by the directives

� Cancel Lower Level Duplicates Dir
Job

� Cancel Queued Duplicates Dir
Job

� Cancel Running Duplicates Dir
Job

If none of these directives is set to yes, Allow Duplicate Jobs is set to no and two jobs are present,
then the current job (the second one started) will be cancelled.

Allow Higher Duplicates = <yes|no> (default: yes)

Allow Mixed Priority = <yes|no> (default: no)
When set to yes, this job may run even if lower priority jobs are already running. This means a high
priority job will not have to wait for other jobs to finish before starting. The scheduler will only mix
priorities when all running jobs have this set to true.

Note that only higher priority jobs will start early. Suppose the director will allow two concurrent
jobs, and that two jobs with priority 10 are running, with two more in the queue. If a job with priority

71

5 is added to the queue, it will be run as soon as one of the running jobs finishes. However, new
priority 10 jobs will not be run until the priority 5 job has finished.

Always Incremental = <yes|no> (default: no)
Enable/disable always incremental backup scheme.

Version >= 16.2.4

Always Incremental Job Retention = <time> (default: 0)
Backup Jobs older than the specified time duration will be merged into a new Virtual backup.

Version >= 16.2.4

Always Incremental Keep Number = <positive-integer> (default: 0)
Guarantee that at least the specified number of Backup Jobs will persist, even if they are older than
”Always Incremental Job Retention”.

Version >= 16.2.4

Always Incremental Max Full Age = <time>
If ”AlwaysIncrementalMaxFullAge” is set, during consolidations only incremental backups will be
considered while the Full Backup remains to reduce the amount of data being consolidated. Only if
the Full Backup is older than ”AlwaysIncrementalMaxFullAge”, the Full Backup will be part of the
consolidation to avoid the Full Backup becoming too old .

Version >= 16.2.4

Backup Format = <string> (default: Native)
The backup format used for protocols which support multiple formats. By default, it uses the Bareos
Native Backup format. Other protocols, like NDMP supports different backup formats for instance:

� Dump

� Tar

� SMTape

Base = <ResourceList>
The Base directive permits to specify the list of jobs that will be used during Full backup as base.
This directive is optional. See the Base Job chapter for more information.

Bootstrap = <path>
The Bootstrap directive specifies a bootstrap file that, if provided, will be used during Restore Jobs
and is ignored in other Job types. The bootstrap file contains the list of tapes to be used in a restore
Job as well as which files are to be restored. Specification of this directive is optional, and if specified,
it is used only for a restore job. In addition, when running a Restore job from the console, this value
can be changed.

If you use the restore command in the Console program, to start a restore job, the bootstrap file will
be created automatically from the files you select to be restored.

For additional details see The Bootstrap File chapter.

Cancel Lower Level Duplicates = <yes|no> (default: no)
If Allow Duplicate Jobs Dir

Job is set to no and this directive is set to yes, Bareos will choose between
duplicated jobs the one with the highest level. For example, it will cancel a previous Incremental to
run a Full backup. It works only for Backup jobs. If the levels of the duplicated jobs are the same,
nothing is done and the directives Cancel Queued Duplicates Dir

Job and Cancel Running Duplicates Dir
Job

will be examined.

72

Cancel Queued Duplicates = <yes|no> (default: no)
If Allow Duplicate Jobs Dir

Job is set to no and if this directive is set to yes any job that is already queued
to run but not yet running will be canceled.

Cancel Running Duplicates = <yes|no> (default: no)
If Allow Duplicate Jobs Dir

Job is set to no and if this directive is set to yes any job that is already
running will be canceled.

Catalog = <resource-name>
This specifies the name of the catalog resource to be used for this Job. When a catalog is defined in a
Job it will override the definition in the client.
Version >= 13.4.0

Client = <resource-name>
The Client directive specifies the Client (File daemon) that will be used in the current Job. Only
a single Client may be specified in any one Job. The Client runs on the machine to be backed up,
and sends the requested files to the Storage daemon for backup, or receives them when restoring.
For additional details, see the Client Resource of this chapter. This directive is required For versions
before 13.3.0, this directive is required for all Jobtypes. For Version >= 13.3.0 it is required for all
Jobtypes but Copy or Migrate jobs.

Client Run After Job = <RunscriptShort>
This is a shortcut for the Run Script Dir

Job resource, that run on the client after a backup job.

Client Run Before Job = <RunscriptShort>
This is basically a shortcut for the Run Script Dir

Job resource, that run on the client before the backup
job.

Please note! For compatibility reasons, with this shortcut, the command is executed directly when the
client receive it. And if the command is in error, other remote runscripts will be discarded. To be sure
that all commands will be sent and executed, you have to use Run Script Dir

Job syntax.

Description = <string>

Differential Backup Pool = <resource-name>
The Differential Backup Pool specifies a Pool to be used for Differential backups. It will override any
Pool Dir

Job specification during a Differential backup.

Differential Max Runtime = <time>
The time specifies the maximum allowed time that a Differential backup job may run, counted from
when the job starts (not necessarily the same as when the job was scheduled).

Differential Max Wait Time = <time>
Please note! This directive is deprecated.
This directive has been deprecated in favor of Differential Max Runtime Dir

Job.

Dir Plugin Options = <string-list>
These settings are plugin specific, see Director Plugins.

Enabled = <yes|no> (default: yes)
En- or disable this resource.

This directive allows you to enable or disable automatic execution via the scheduler of a Job.

73

FD Plugin Options = <string-list>
These settings are plugin specific, see File Daemon Plugins.

File History Size = <Size64> (default: 10000000)
When using NDMP and Save File History Dir

Job is enabled, this directives controls the size of the internal
temporary database (LMDB) to translate NDMP file and directory information into Bareos file and
directory information.

File History Size must be greater the number of directories + files of this NDMP backup job.

Please note! This uses a large memory mapped file (File History Size ∗256 =⇒ around 2,3
GB for the File History Size = 10000000). On 32-bit systems or if a memory limit for the
user running the Bareos Director (normally bareos) exists (verify by su - bareos -s / bin/

sh -c "ulimit -a"), this may fail.
Version >= 15.2.4

File Set = <resource-name>
The FileSet directive specifies the FileSet that will be used in the current Job. The FileSet specifies
which directories (or files) are to be backed up, and what options to use (e.g. compression, ...). Only
a single FileSet resource may be specified in any one Job. For additional details, see the FileSet
Resource section of this chapter. This directive is required (For versions before 13.3.0 for all Jobtypes
and for versions after that for all Jobtypes but Copy and Migrate).

Full Backup Pool = <resource-name>
The Full Backup Pool specifies a Pool to be used for Full backups. It will override any Pool Dir

Job

specification during a Full backup.

Full Max Runtime = <time>
The time specifies the maximum allowed time that a Full backup job may run, counted from when
the job starts (not necessarily the same as when the job was scheduled).

Full Max Wait Time = <time>
Please note! This directive is deprecated.
This directive has been deprecated in favor of Full Max Runtime Dir

Job.

Incremental Backup Pool = <resource-name>
The Incremental Backup Pool specifies a Pool to be used for Incremental backups. It will override
any Pool Dir

Job specification during an Incremental backup.

Incremental Max Runtime = <time>
The time specifies the maximum allowed time that an Incremental backup job may run, counted from
when the job starts, (not necessarily the same as when the job was scheduled).

Incremental Max Wait Time = <time>
Please note! This directive is deprecated.
This directive has been deprecated in favor of Incremental Max Runtime Dir

Job

Job Defs = <resource-name>
If a Job Defs resource name is specified, all the values contained in the named Job Defs resource
will be used as the defaults for the current Job. Any value that you explicitly define in the current
Job resource, will override any defaults specified in the Job Defs resource. The use of this directive
permits writing much more compact Job resources where the bulk of the directives are defined in one
or more Job Defs. This is particularly useful if you have many similar Jobs but with minor variations
such as different Clients. To structure the configuration even more, Job Defs themselves can also refer
to other Job Defs.

74

Job To Verify = <resource-name>

Level = <BackupLevel>
The Level directive specifies the default Job level to be run. Each different Type Dir

Job (Backup, Restore,
Verify, ...) has a different set of Levels that can be specified. The Level is normally overridden by a
different value that is specified in the Schedule Resource. This directive is not required, but must be
specified either by this directive or as an override specified in the Schedule Resource.

Backup
For a Backup Job, the Level may be one of the following:

Full
When the Level is set to Full all files in the FileSet whether or not they have changed will

be backed up.

Incremental
When the Level is set to Incremental all files specified in the FileSet that have changed

since the last successful backup of the the same Job using the same FileSet and Client, will
be backed up. If the Director cannot find a previous valid Full backup then the job will be
upgraded into a Full backup. When the Director looks for a valid backup record in the catalog
database, it looks for a previous Job with:

� The same Job name.

� The same Client name.

� The same FileSet (any change to the definition of the FileSet such as adding or deleting
a file in the Include or Exclude sections constitutes a different FileSet.

� The Job was a Full, Differential, or Incremental backup.

� The Job terminated normally (i.e. did not fail or was not canceled).

� The Job started no longer ago than Max Full Interval.

If all the above conditions do not hold, the Director will upgrade the Incremental to a Full
save. Otherwise, the Incremental backup will be performed as requested.
The File daemon (Client) decides which files to backup for an Incremental backup by com-
paring start time of the prior Job (Full, Differential, or Incremental) against the time each
file was last ”modified” (st mtime) and the time its attributes were last ”changed”(st ctime).
If the file was modified or its attributes changed on or after this start time, it will then be
backed up.
Some virus scanning software may change st ctime while doing the scan. For example, if the
virus scanning program attempts to reset the access time (st atime), which Bareos does not
use, it will cause st ctime to change and hence Bareos will backup the file during an Incremen-
tal or Differential backup. In the case of Sophos virus scanning, you can prevent it from reset-
ting the access time (st atime) and hence changing st ctime by using the --no-reset-atime

option. For other software, please see their manual.
When Bareos does an Incremental backup, all modified files that are still on the system are
backed up. However, any file that has been deleted since the last Full backup remains in
the Bareos catalog, which means that if between a Full save and the time you do a restore,
some files are deleted, those deleted files will also be restored. The deleted files will no longer
appear in the catalog after doing another Full save.
In addition, if you move a directory rather than copy it, the files in it do not have their
modification time (st mtime) or their attribute change time (st ctime) changed. As a conse-
quence, those files will probably not be backed up by an Incremental or Differential backup
which depend solely on these time stamps. If you move a directory, and wish it to be properly
backed up, it is generally preferable to copy it, then delete the original.
However, to manage deleted files or directories changes in the catalog during an Incremental
backup you can use Job Resource. This is quite memory consuming process.

Differential
When the Level is set to Differential all files specified in the FileSet that have changed since

the last successful Full backup of the same Job will be backed up. If the Director cannot
find a valid previous Full backup for the same Job, FileSet, and Client, backup, then the
Differential job will be upgraded into a Full backup. When the Director looks for a valid Full
backup record in the catalog database, it looks for a previous Job with:

75

� The same Job name.

� The same Client name.

� The same FileSet (any change to the definition of the FileSet such as adding or deleting
a file in the Include or Exclude sections constitutes a different FileSet.

� The Job was a FULL backup.

� The Job terminated normally (i.e. did not fail or was not canceled).

� The Job started no longer ago than Max Full Interval.

If all the above conditions do not hold, the Director will upgrade the Differential to a Full
save. Otherwise, the Differential backup will be performed as requested.
The File daemon (Client) decides which files to backup for a differential backup by comparing
the start time of the prior Full backup Job against the time each file was last ”modified”
(st mtime) and the time its attributes were last ”changed” (st ctime). If the file was modified
or its attributes were changed on or after this start time, it will then be backed up. The start
time used is displayed after the Since on the Job report. In rare cases, using the start time
of the prior backup may cause some files to be backed up twice, but it ensures that no change
is missed.
When Bareos does a Differential backup, all modified files that are still on the system are
backed up. However, any file that has been deleted since the last Full backup remains in
the Bareos catalog, which means that if between a Full save and the time you do a restore,
some files are deleted, those deleted files will also be restored. The deleted files will no longer
appear in the catalog after doing another Full save. However, to remove deleted files from
the catalog during a Differential backup is quite a time consuming process and not currently
implemented in Bareos. It is, however, a planned future feature.
As noted above, if you move a directory rather than copy it, the files in it do not have
their modification time (st mtime) or their attribute change time (st ctime) changed. As a
consequence, those files will probably not be backed up by an Incremental or Differential
backup which depend solely on these time stamps. If you move a directory, and wish it to be
properly backed up, it is generally preferable to copy it, then delete the original. Alternatively,
you can move the directory, then use the touch program to update the timestamps.
However, to manage deleted files or directories changes in the catalog during an Differential
backup you can use accurate mode. This is quite memory consuming process. See for more
details.
Every once and a while, someone asks why we need Differential backups as long as Incremental
backups pickup all changed files. There are possibly many answers to this question, but the
one that is the most important for me is that a Differential backup effectively merges all
the Incremental and Differential backups since the last Full backup into a single Differential
backup. This has two effects: 1. It gives some redundancy since the old backups could be
used if the merged backup cannot be read. 2. More importantly, it reduces the number
of Volumes that are needed to do a restore effectively eliminating the need to read all the
volumes on which the preceding Incremental and Differential backups since the last Full are
done.

VirtualFull
When the Level is set to VirtualFull, a new Full backup is generated from the last existing
Full backup and the matching Differential- and Incremental-Backups. It matches this ac-
cording the Name Dir

Client and Name Dir
FileSet. This means, a new Full backup get created without

transfering all the data from the client to the backup server again. The new Full backup will
be stored in the pool defined in Next Pool Dir

Pool.
Please note! Opposite to the offer backup levels, VirtualFull may require read and write access
to multiple volumes. In most cases you have to make sure, that Bareos does not try to read
and write to the same Volume.

Restore
For a Restore Job, no level needs to be specified.

Verify
For a Verify Job, the Level may be one of the following:

InitCatalog
does a scan of the specified FileSet and stores the file attributes in the Catalog database.
Since no file data is saved, you might ask why you would want to do this. It turns out to be
a very simple and easy way to have a Tripwire like feature using Bareos. In other words,

76

it allows you to save the state of a set of files defined by the FileSet and later check to see if
those files have been modified or deleted and if any new files have been added. This can be
used to detect system intrusion. Typically you would specify a FileSet that contains the set
of system files that should not change (e.g. /sbin, /boot, /lib, /bin, ...). Normally, you run
the InitCatalog level verify one time when your system is first setup, and then once again
after each modification (upgrade) to your system. Thereafter, when your want to check the
state of your system files, you use a Verify level = Catalog. This compares the results of
your InitCatalog with the current state of the files.

Catalog
Compares the current state of the files against the state previously saved during an Init-
Catalog. Any discrepancies are reported. The items reported are determined by the verify
options specified on the Include directive in the specified FileSet (see the FileSet resource
below for more details). Typically this command will be run once a day (or night) to check
for any changes to your system files.
Please note! If you run two Verify Catalog jobs on the same client at the same time, the results
will certainly be incorrect. This is because Verify Catalog modifies the Catalog database while
running in order to track new files.

VolumeToCatalog
This level causes Bareos to read the file attribute data written to the Volume from the last
backup Job for the job specified on the VerifyJob directive. The file attribute data are
compared to the values saved in the Catalog database and any differences are reported. This
is similar to the DiskToCatalog level except that instead of comparing the disk file attributes
to the catalog database, the attribute data written to the Volume is read and compared to
the catalog database. Although the attribute data including the signatures (MD5 or SHA1)
are compared, the actual file data is not compared (it is not in the catalog).
VolumeToCatalog jobs need a client to extract the metadata, but this client does not have to
be the original client. We suggest to use the client on the backup server itself for maximum
performance.
Please note! If you run two Verify VolumeToCatalog jobs on the same client at the same time,
the results will certainly be incorrect. This is because the Verify VolumeToCatalog modifies
the Catalog database while running.

DiskToCatalog
This level causes Bareos to read the files as they currently are on disk, and to compare the
current file attributes with the attributes saved in the catalog from the last backup for the
job specified on the VerifyJob directive. This level differs from the VolumeToCatalog
level described above by the fact that it doesn’t compare against a previous Verify job but
against a previous backup. When you run this level, you must supply the verify options on
your Include statements. Those options determine what attribute fields are compared.
This command can be very useful if you have disk problems because it will compare the
current state of your disk against the last successful backup, which may be several jobs.
Note, the current implementation does not identify files that have been deleted.

Max Concurrent Copies = <positive-integer> (default: 100)

Max Diff Interval = <time>
The time specifies the maximum allowed age (counting from start time) of the most recent successful
Differential backup that is required in order to run Incremental backup jobs. If the most recent
Differential backup is older than this interval, Incremental backups will be upgraded to Differential
backups automatically. If this directive is not present, or specified as 0, then the age of the previous
Differential backup is not considered.

Max Full Consolidations = <positive-integer> (default: 0)
If ”AlwaysIncrementalMaxFullAge” is configured, do not run more than ”MaxFullConsolidations” con-
solidation jobs that include the Full backup.

77

Version >= 16.2.4

Max Full Interval = <time>
The time specifies the maximum allowed age (counting from start time) of the most recent successful
Full backup that is required in order to run Incremental or Differential backup jobs. If the most recent
Full backup is older than this interval, Incremental and Differential backups will be upgraded to Full
backups automatically. If this directive is not present, or specified as 0, then the age of the previous
Full backup is not considered.

Max Run Sched Time = <time>
The time specifies the maximum allowed time that a job may run, counted from when the job was
scheduled. This can be useful to prevent jobs from running during working hours. We can see it like
Max Start Delay + Max Run Time.

Max Run Time = <time>
The time specifies the maximum allowed time that a job may run, counted from when the job starts,
(not necessarily the same as when the job was scheduled).

By default, the watchdog thread will kill any Job that has run more than 6 days. The maximum
watchdog timeout is independent of Max Run Time and cannot be changed.

Max Start Delay = <time>
The time specifies the maximum delay between the scheduled time and the actual start time for the
Job. For example, a job can be scheduled to run at 1:00am, but because other jobs are running, it
may wait to run. If the delay is set to 3600 (one hour) and the job has not begun to run by 2:00am,
the job will be canceled. This can be useful, for example, to prevent jobs from running during day
time hours. The default is no limit.

Max Virtual Full Interval = <time>
The time specifies the maximum allowed age (counting from start time) of the most recent successful
Virtual Full backup that is required in order to run Incremental or Differential backup jobs. If the
most recent Virtual Full backup is older than this interval, Incremental and Differential backups will
be upgraded to Virtual Full backups automatically. If this directive is not present, or specified as 0,
then the age of the previous Virtual Full backup is not considered.
Version >= 14.4.0

Max Wait Time = <time>
The time specifies the maximum allowed time that a job may block waiting for a resource (such as
waiting for a tape to be mounted, or waiting for the storage or file daemons to perform their duties),
counted from the when the job starts, (not necessarily the same as when the job was scheduled).

Maximum Bandwidth = <speed>
The speed parameter specifies the maximum allowed bandwidth that a job may use.

Maximum Concurrent Jobs = <positive-integer> (default: 1)
Specifies the maximum number of Jobs from the current Job resource that can run concurrently. Note,
this directive limits only Jobs with the same name as the resource in which it appears. Any other
restrictions on the maximum concurrent jobs such as in the Director, Client or Storage resources will
also apply in addition to the limit specified here.

For details, see the Concurrent Jobs chapter.

Messages = <resource-name> (required)
The Messages directive defines what Messages resource should be used for this job, and thus how and
where the various messages are to be delivered. For example, you can direct some messages to a log

78

Figure 9.2: Job time control directives

file, and others can be sent by email. For additional details, see the Messages Resource Chapter of
this manual. This directive is required.

Name = <name> (required)
The name of the resource.

The Job name. This name can be specified on the Run command in the console program to start a
job. If the name contains spaces, it must be specified between quotes. It is generally a good idea to
give your job the same name as the Client that it will backup. This permits easy identification of jobs.

When the job actually runs, the unique Job Name will consist of the name you specify here followed
by the date and time the job was scheduled for execution. This directive is required.

Next Pool = <resource-name>
A Next Pool override used for Migration/Copy and Virtual Backup Jobs.

Plugin Options = <string-list>
Please note! This directive is deprecated.
This directive is an alias.

Pool = <resource-name> (required)
The Pool directive defines the pool of Volumes where your data can be backed up. Many Bareos
installations will use only the Default pool. However, if you want to specify a different set of Volumes
for different Clients or different Jobs, you will probably want to use Pools. For additional details, see
the Pool Resource of this chapter. This directive is required.

In case of a Copy or Migration job, this setting determines what Pool will be examined for finding
JobIds to migrate. The exception to this is when Selection Type Dir

Job = SQLQuery, and although a
Pool directive must still be specified, no Pool is used, unless you specifically include it in the SQL
query. Note, in any case, the Pool resource defined by the Pool directive must contain a Next Pool
Dir
Pool = ... directive to define the Pool to which the data will be migrated.

Prefer Mounted Volumes = <yes|no> (default: yes)
If the Prefer Mounted Volumes directive is set to yes, the Storage daemon is requested to select either
an Autochanger or a drive with a valid Volume already mounted in preference to a drive that is not
ready. This means that all jobs will attempt to append to the same Volume (providing the Volume

79

is appropriate – right Pool, ... for that job), unless you are using multiple pools. If no drive with a
suitable Volume is available, it will select the first available drive. Note, any Volume that has been
requested to be mounted, will be considered valid as a mounted volume by another job. This if multiple
jobs start at the same time and they all prefer mounted volumes, the first job will request the mount,
and the other jobs will use the same volume.

If the directive is set to no, the Storage daemon will prefer finding an unused drive, otherwise, each job
started will append to the same Volume (assuming the Pool is the same for all jobs). Setting Prefer
Mounted Volumes to no can be useful for those sites with multiple drive autochangers that prefer to
maximize backup throughput at the expense of using additional drives and Volumes. This means that
the job will prefer to use an unused drive rather than use a drive that is already in use.

Despite the above, we recommend against setting this directive to no since it tends to add a lot of
swapping of Volumes between the different drives and can easily lead to deadlock situations in the
Storage daemon. We will accept bug reports against it, but we cannot guarantee that we will be able
to fix the problem in a reasonable time.

A better alternative for using multiple drives is to use multiple pools so that Bareos will be forced to
mount Volumes from those Pools on different drives.

Prefix Links = <yes|no> (default: no)
If a Where path prefix is specified for a recovery job, apply it to absolute links as well. The default
is No. When set to Yes then while restoring files to an alternate directory, any absolute soft links
will also be modified to point to the new alternate directory. Normally this is what is desired – i.e.
everything is self consistent. However, if you wish to later move the files to their original locations, all
files linked with absolute names will be broken.

Priority = <positive-integer> (default: 10)
This directive permits you to control the order in which your jobs will be run by specifying a positive
non-zero number. The higher the number, the lower the job priority. Assuming you are not running
concurrent jobs, all queued jobs of priority 1 will run before queued jobs of priority 2 and so on,
regardless of the original scheduling order.

The priority only affects waiting jobs that are queued to run, not jobs that are already running. If one
or more jobs of priority 2 are already running, and a new job is scheduled with priority 1, the currently
running priority 2 jobs must complete before the priority 1 job is run, unless Allow Mixed Priority is
set.

If you want to run concurrent jobs you should keep these points in mind:

� See Concurrent Jobs on how to setup concurrent jobs.

� Bareos concurrently runs jobs of only one priority at a time. It will not simultaneously run a
priority 1 and a priority 2 job.

� If Bareos is running a priority 2 job and a new priority 1 job is scheduled, it will wait until the
running priority 2 job terminates even if the Maximum Concurrent Jobs settings would otherwise
allow two jobs to run simultaneously.

� Suppose that bareos is running a priority 2 job and a new priority 1 job is scheduled and queued
waiting for the running priority 2 job to terminate. If you then start a second priority 2 job,
the waiting priority 1 job will prevent the new priority 2 job from running concurrently with the
running priority 2 job. That is: as long as there is a higher priority job waiting to run, no new
lower priority jobs will start even if the Maximum Concurrent Jobs settings would normally allow
them to run. This ensures that higher priority jobs will be run as soon as possible.

If you have several jobs of different priority, it may not best to start them at exactly the same
time, because Bareos must examine them one at a time. If by Bareos starts a lower priority job
first, then it will run before your high priority jobs. If you experience this problem, you may
avoid it by starting any higher priority jobs a few seconds before lower priority ones. This insures
that Bareos will examine the jobs in the correct order, and that your priority scheme will be respected.

Protocol = <ProtocolType> (default: Native)
The backup protocol to use to run the Job. If not set it will default to Native currently the director
understand the following protocols:

80

1. Native - The native Bareos protocol

2. NDMP - The NDMP protocol

Prune Files = <yes|no> (default: no)
Normally, pruning of Files from the Catalog is specified on a Client by Client basis in the Client
resource with the AutoPrune directive. If this directive is specified (not normally) and the value is
yes, it will override the value specified in the Client resource.

Prune Jobs = <yes|no> (default: no)
Normally, pruning of Jobs from the Catalog is specified on a Client by Client basis in the Client
resource with the AutoPrune directive. If this directive is specified (not normally) and the value is
yes, it will override the value specified in the Client resource.

Prune Volumes = <yes|no> (default: no)
Normally, pruning of Volumes from the Catalog is specified on a Pool by Pool basis in the Pool
resource with the AutoPrune directive. Note, this is different from File and Job pruning which is
done on a Client by Client basis. If this directive is specified (not normally) and the value is yes, it
will override the value specified in the Pool resource.

Purge Migration Job = <yes|no> (default: no)
This directive may be added to the Migration Job definition in the Director configuration file to purge
the job migrated at the end of a migration.

Regex Where = <string>
This directive applies only to a Restore job and specifies a regex filename manipulation of all files being
restored. This will use File Relocation feature.

For more informations about how use this option, see RegexWhere Format.

Replace = <ReplaceOption> (default: Always)
This directive applies only to a Restore job and specifies what happens when Bareos wants to restore
a file or directory that already exists. You have the following options for replace-option:

always when the file to be restored already exists, it is deleted and then replaced by the copy that
was backed up. This is the default value.

ifnewer if the backed up file (on tape) is newer than the existing file, the existing file is deleted and
replaced by the back up.

ifolder if the backed up file (on tape) is older than the existing file, the existing file is deleted and
replaced by the back up.

never if the backed up file already exists, Bareos skips restoring this file.

Rerun Failed Levels = <yes|no> (default: no)
If this directive is set to yes (default no), and Bareos detects that a previous job at a higher level
(i.e. Full or Differential) has failed, the current job level will be upgraded to the higher level. This
is particularly useful for Laptops where they may often be unreachable, and if a prior Full save has
failed, you wish the very next backup to be a Full save rather than whatever level it is started as.

There are several points that must be taken into account when using this directive: first, a failed job
is defined as one that has not terminated normally, which includes any running job of the same name
(you need to ensure that two jobs of the same name do not run simultaneously); secondly, the Ignore
File Set Changes Dir

FileSet directive is not considered when checking for failed levels, which means that
any FileSet change will trigger a rerun.

81

Reschedule Interval = <time> (default: 1800)
If you have specified Reschedule On Error = yes and the job terminates in error, it will be
rescheduled after the interval of time specified by time-specification. See the time specification
formats in the Configure chapter for details of time specifications. If no interval is specified, the job
will not be rescheduled on error.

Reschedule On Error = <yes|no> (default: no)
If this directive is enabled, and the job terminates in error, the job will be rescheduled as determined
by the Reschedule Interval Dir

Job and Reschedule Times Dir
Job directives. If you cancel the job, it will not

be rescheduled.

This specification can be useful for portables, laptops, or other machines that are not always connected
to the network or switched on.

Reschedule Times = <positive-integer> (default: 5)
This directive specifies the maximum number of times to reschedule the job. If it is set to zero (the
default) the job will be rescheduled an indefinite number of times.

Run = <string-list>
The Run directive (not to be confused with the Run option in a Schedule) allows you to start other
jobs or to clone jobs. By using the cloning keywords (see below), you can backup the same data (or
almost the same data) to two or more drives at the same time. The job-name is normally the same
name as the current Job resource (thus creating a clone). However, it may be any Job name, so one
job may start other related jobs.

The part after the equal sign must be enclosed in double quotes, and can contain any string or set
of options (overrides) that you can specify when entering the Run command from the console. For
example storage=DDS-4 In addition, there are two special keywords that permit you to clone
the current job. They are level=%l and since=%s. The %l in the level keyword permits entering
the actual level of the current job and the %s in the since keyword permits putting the same time for
comparison as used on the current job. Note, in the case of the since keyword, the %s must be enclosed
in double quotes, and thus they must be preceded by a backslash since they are already inside quotes.
For example:

run = "Nightly-backup level=%l since=\"%s\" storage=DDS-4"

A cloned job will not start additional clones, so it is not possible to recurse.

Please note that all cloned jobs, as specified in the Run directives are submitted for running before
the original job is run (while it is being initialized). This means that any clone job will actually start
before the original job, and may even block the original job from starting until the original job finishes
unless you allow multiple simultaneous jobs. Even if you set a lower priority on the clone job, if no
other jobs are running, it will start before the original job.

If you are trying to prioritize jobs by using the clone feature (Run directive), you will find it much
easier to do using a Run Script Dir

Job resource, or a Run Before Job Dir
Job directive.

Run After Failed Job = <RunscriptShort>
This is a shortcut for the Run Script Dir

Job resource, that runs a command after a failed job.

If the exit code of the program run is non-zero, Bareos will print a warning message.

Run Script {

Command = "echo test"

Runs When = After

Runs On Failure = yes

Runs On Client = no

Runs On Success = yes # default, you can drop this line

}

82

Run After Job = <RunscriptShort>
This is a shortcut for the Run Script Dir

Job resource, that runs a command after a successful job (without
error or without being canceled).

If the exit code of the program run is non-zero, Bareos will print a warning message.

Run Before Job = <RunscriptShort>
This is a shortcut for the Run Script Dir

Job resource, that runs a command before a job.

If the exit code of the program run is non-zero, the current Bareos job will be canceled.

Run Before Job = "echo test"

is equivalent to:

Run Script {

Command = "echo test"

Runs On Client = No

Runs When = Before

}

Run Script = <Runscript>
The RunScript directive behaves like a resource in that it requires opening and closing braces around

a number of directives that make up the body of the runscript.

The specified Command (see below for details) is run as an external program prior or after the current
Job. This is optional. By default, the program is executed on the Client side like in ClientRunXXXJob.

Console options are special commands that are sent to the director instead of the OS. At this time,
console command ouputs are redirected to log with the jobid 0.

You can use following console command: delete, disable, enable, estimate, list, llist, memory,
prune, purge, reload, status, setdebug, show, time, trace, update, version, .client, .jobs,
.pool, .storage. See Bareos Console for more information. You need to specify needed information
on command line, nothing will be prompted. Example:

Console = "prune files client=\%c"

Console = "update stats age=3"

You can specify more than one Command/Console option per RunScript.

You can use following options may be specified in the body of the runscript:

Options Value Information

Runs On Success Yes | No run if JobStatus is successful
Runs On Failure Yes | No run if JobStatus isn’t successful
Runs On Client Yes | No run command on client
Runs When Never | Before |

After | Always |
AfterVSS

When to run

Fail Job On Error Yes | No Fail job if script returns something different
from 0

Command External command
Console Console command

Any output sent by the command to standard output will be included in the Bareos job report. The
command string must be a valid program name or name of a shell script.

Please note! The command string is parsed then fed to the OS, which means that the path will be
searched to execute your specified command, but there is no shell interpretation. As a consequence, if
you invoke complicated commands or want any shell features such as redirection or piping, you must
call a shell script and do it inside that script. Alternatively, it is possible to use sh -c ’.. .’ in the
command definition to force shell interpretation, see example below.

Before executing the specified command, Bareos performs character substitution of the following char-
acters:

83

%% %
%b Job Bytes
%B Job Bytes in human readable format
%c Client’s name
%d Daemon’s name (Such as host-dir or host-fd)
%D Director’s name (Also valid on file daemon)
%e Job Exit Status
%f Job FileSet (Only on director side)
%F Job Files
%h Client address
%i Job Id
%j Unique Job Id
%l Job Level
%n Job name
%p Pool name (Only on director side)
%P Daemon PID
%s Since time
%t Job type (Backup, ...)
%v Read Volume name(s) (Only on director side)
%V Write Volume name(s) (Only on director side)
%w Storage name (Only on director side)
%x Spooling enabled? (”yes” or ”no”)

Some character substitutions are not available in all situations. The Job Exit Status code %e edits the
following values:

� OK

� Error

� Fatal Error

� Canceled

� Differences

� Unknown term code

Thus if you edit it on a command line, you will need to enclose it within some sort of quotes.

You can use these following shortcuts:

Keyword RunsOnSuccess RunsOnFailure FailJobOnError Runs On Client RunsWhen

Run Before Job Dir
Job Yes No Before

Run After Job Dir
Job Yes No No After

Run After Failed Job Dir
Job No Yes No After

Client Run Before Job Dir
Job Yes Yes Before

Client Run After Job Dir
Job Yes No Yes After

Examples:

Run Script {

RunsWhen = Before

FailJobOnError = No

Command = "/etc/init.d/apache stop"

}

RunScript {

RunsWhen = After

RunsOnFailure = Yes

Command = "/etc/init.d/apache start"

}

RunScript {

RunsWhen = Before

FailJobOnError = Yes

Command = "sh -c ’top -b -n 1 > /var/backup/top.out’"

}

Special Windows Considerations

You can run scripts just after snapshots initializations with AfterVSS keyword.

84

In addition, for a Windows client, please take note that you must ensure a correct path to your script.
The script or program can be a .com, .exe or a .bat file. If you just put the program name in then
Bareos will search using the same rules that cmd.exe uses (current directory, Bareos bin directory, and
PATH). It will even try the different extensions in the same order as cmd.exe. The command can be
anything that cmd.exe or command.com will recognize as an executable file.

However, if you have slashes in the program name then Bareos figures you are fully specifying the
name, so you must also explicitly add the three character extension.

The command is run in a Win32 environment, so Unix like commands will not work unless you have
installed and properly configured Cygwin in addition to and separately from Bareos.

The System %Path% will be searched for the command. (under the environment variable dialog
you have have both System Environment and User Environment, we believe that only the System
environment will be available to bareos-fd, if it is running as a service.)

System environment variables can be referenced with %var% and used as either part of the command
name or arguments.

So if you have a script in the Bareos
bin directory then the following lines should work fine:

Client Run Before Job = "systemstate"

or

Client Run Before Job = "systemstate.bat"

or

Client Run Before Job = "\"C:/Program Files/Bareos/systemstate.bat\""

The outer set of quotes is removed when the configuration file is parsed. You need to escape the inner
quotes so that they are there when the code that parses the command line for execution runs so it can
tell what the program name is.

The special characters &<>()@^| will need to be quoted, if they are part of a filename or argument.

If someone is logged in, a blank ”command” window running the commands will be present during the
execution of the command.

Some Suggestions from Phil Stracchino for running on Win32 machines with the native Win32 File
daemon:

1. You might want the ClientRunBeforeJob directive to specify a .bat file which runs the actual
client-side commands, rather than trying to run (for example) regedit /e directly.

2. The batch file should explicitly ’exit 0’ on successful completion.

3. The path to the batch file should be specified in Unix form:

Client Run Before Job = "c:/bareos/bin/systemstate.bat"

rather than DOS/Windows form:

INCORRECT: Client Run Before Job = "c:\bareos \bin \systemstate .bat"

For Win32, please note that there are certain limitations:

Client Run Before Job = "C:/Program Files/Bareos/bin/pre-exec.bat"

Lines like the above do not work because there are limitations of cmd.exe that is used to execute the
command. Bareos prefixes the string you supply with cmd.exe /c. To test that your command works
you should type cmd /c "C:/Program Files/test.exe" at a cmd prompt and see what happens.
Once the command is correct insert a backslash (\) before each double quote (”), and then put quotes
around the whole thing when putting it in the director’s .conf file. You either need to have only one
set of quotes or else use the short name and don’t put quotes around the command path.

Below is the output from cmd’s help as it relates to the command line passed to the /c option.

If /C or /K is specified, then the remainder of the command line after the switch is processed as a
command line, where the following logic is used to process quote (”) characters:

1. If all of the following conditions are met, then quote characters on the command line are preserved:

� no /S switch.

� exactly two quote characters.

� no special characters between the two quote characters, where special is one of: &<>()@^|

85

� there are one or more whitespace characters between the the two quote characters.

� the string between the two quote characters is the name of an executable file.

2. Otherwise, old behavior is to see if the first character is a quote character and if so, strip the
leading character and remove the last quote character on the command line, preserving any text
after the last quote character.

Save File History = <yes|no> (default: yes)
Allow disabling storing the file history, as this causes problems problems with some implementations
of NDMP (out-of-order metadata).

With File History Size Dir
Job the maximum number of files and directories inside a NDMP job can be

configured.

Please note! The File History is required to do a single file restore from NDMP backups. With this
disabled, only full restores are possible.
Version >= 14.2.0

Schedule = <resource-name>
The Schedule directive defines what schedule is to be used for the Job. The schedule in turn determines
when the Job will be automatically started and what Job level (i.e. Full, Incremental, ...) is to be
run. This directive is optional, and if left out, the Job can only be started manually using the Console
program. Although you may specify only a single Schedule resource for any one job, the Schedule
resource may contain multiple Run directives, which allow you to run the Job at many different
times, and each run directive permits overriding the default Job Level Pool, Storage, and Messages
resources. This gives considerable flexibility in what can be done with a single Job. For additional
details, see Schedule Resource.

SD Plugin Options = <string-list>
These settings are plugin specific, see Storage Daemon Plugins.

Selection Pattern = <string>
Selection Patterns is only used for Copy and Migration jobs, see Migration and Copy. The interpreta-
tion of its value depends on the selected Selection Type Dir

Job.

For the OldestVolume and SmallestVolume, this Selection pattern is not used (ignored).

For the Client, Volume, and Job keywords, this pattern must be a valid regular expression that will
filter the appropriate item names found in the Pool.

For the SQLQuery keyword, this pattern must be a valid SELECT SQL statement that returns JobIds.

Selection Type = <MigrationType>
Selection Type is only used for Copy and Migration jobs, see Migration and Copy. It determines how
a migration job will go about selecting what JobIds to migrate. In most cases, it is used in conjunction
with a Selection Pattern Dir

Job to give you fine control over exactly what JobIds are selected. The possible
values are:

SmallestVolume This selection keyword selects the volume with the fewest bytes from the Pool to
be migrated. The Pool to be migrated is the Pool defined in the Migration Job resource. The
migration control job will then start and run one migration backup job for each of the Jobs found
on this Volume. The Selection Pattern, if specified, is not used.

OldestVolume This selection keyword selects the volume with the oldest last write time in the Pool
to be migrated. The Pool to be migrated is the Pool defined in the Migration Job resource. The
migration control job will then start and run one migration backup job for each of the Jobs found
on this Volume. The Selection Pattern, if specified, is not used.

Client The Client selection type, first selects all the Clients that have been backed up in the Pool
specified by the Migration Job resource, then it applies the Selection Pattern Dir

Job as a regular
expression to the list of Client names, giving a filtered Client name list. All jobs that were backed
up for those filtered (regexed) Clients will be migrated. The migration control job will then start
and run one migration backup job for each of the JobIds found for those filtered Clients.

86

Volume The Volume selection type, first selects all the Volumes that have been backed up in the
Pool specified by the Migration Job resource, then it applies the Selection Pattern Dir

Job as a regular
expression to the list of Volume names, giving a filtered Volume list. All JobIds that were backed
up for those filtered (regexed) Volumes will be migrated. The migration control job will then
start and run one migration backup job for each of the JobIds found on those filtered Volumes.

Job The Job selection type, first selects all the Jobs (as defined on the Name Dir
Job directive in a Job

resource) that have been backed up in the Pool specified by the Migration Job resource, then it
applies the Selection Pattern Dir

Job as a regular expression to the list of Job names, giving a filtered
Job name list. All JobIds that were run for those filtered (regexed) Job names will be migrated.
Note, for a given Job named, they can be many jobs (JobIds) that ran. The migration control
job will then start and run one migration backup job for each of the Jobs found.

SQLQuery The SQLQuery selection type, used the Selection Pattern Dir
Job as an SQL query to obtain

the JobIds to be migrated. The Selection Pattern must be a valid SELECT SQL statement for
your SQL engine, and it must return the JobId as the first field of the SELECT.

PoolOccupancy This selection type will cause the Migration job to compute the total size of the
specified pool for all Media Types combined. If it exceeds the Migration High Bytes Dir

Pool defined
in the Pool, the Migration job will migrate all JobIds beginning with the oldest Volume in the
pool (determined by Last Write time) until the Pool bytes drop below the Migration Low Bytes
Dir
Pool defined in the Pool. This calculation should be consider rather approximative because it is
made once by the Migration job before migration is begun, and thus does not take into account
additional data written into the Pool during the migration. In addition, the calculation of the
total Pool byte size is based on the Volume bytes saved in the Volume (Media) database entries.
The bytes calculate for Migration is based on the value stored in the Job records of the Jobs to
be migrated. These do not include the Storage daemon overhead as is in the total Pool size. As
a consequence, normally, the migration will migrate more bytes than strictly necessary.

PoolTime The PoolTime selection type will cause the Migration job to look at the time each JobId
has been in the Pool since the job ended. All Jobs in the Pool longer than the time specified on
Migration Time Dir

Pool directive in the Pool resource will be migrated.

PoolUncopiedJobs This selection which copies all jobs from a pool to an other pool which were not
copied before is available only for copy Jobs.

Spool Attributes = <yes|no> (default: no)
Is Spool Attributes is disabled, the File attributes are sent by the Storage daemon to the Director as
they are stored on tape. However, if you want to avoid the possibility that database updates will slow
down writing to the tape, you may want to set the value to yes, in which case the Storage daemon
will buffer the File attributes and Storage coordinates to a temporary file in the Working Directory,
then when writing the Job data to the tape is completed, the attributes and storage coordinates will
be sent to the Director.

NOTE: When Spool Data Dir
Job is set to yes, Spool Attributes is also automatically set to yes.

For details, see Data Spooling.

Spool Data = <yes|no> (default: no)
If this directive is set to yes, the Storage daemon will be requested to spool the data for this Job to
disk rather than write it directly to the Volume (normally a tape).

Thus the data is written in large blocks to the Volume rather than small blocks. This directive is
particularly useful when running multiple simultaneous backups to tape. Once all the data arrives or
the spool files’ maximum sizes are reached, the data will be despooled and written to tape.

Spooling data prevents interleaving data from several job and reduces or eliminates tape drive stop
and start commonly known as ”shoe-shine”.

We don’t recommend using this option if you are writing to a disk file using this option will probably
just slow down the backup jobs.

NOTE: When this directive is set to yes, Spool Attributes Dir
Job is also automatically set to yes.

For details, see Data Spooling.

87

Spool Size = <Size64>
This specifies the maximum spool size for this job. The default is taken from Maximum Spool Size
Sd
Device limit.

Storage = <ResourceList>
The Storage directive defines the name of the storage services where you want to backup the FileSet
data. For additional details, see the Storage Resource of this manual. The Storage resource may also
be specified in the Job’s Pool resource, in which case the value in the Pool resource overrides any
value in the Job. This Storage resource definition is not required by either the Job resource or in the
Pool, but it must be specified in one or the other, if not an error will result.

Strip Prefix = <string>
This directive applies only to a Restore job and specifies a prefix to remove from the directory name

of all files being restored. This will use the File Relocation feature.

Using Strip Prefix=/etc, /etc/passwd will be restored to /passwd

Under Windows, if you want to restore c:/files to d:/files, you can use:

Strip Prefix = c:

Add Prefix = d:

Type = <JobType> (required)
The Type directive specifies the Job type, which is one of the following:

Backup
Run a backup Job. Normally you will have at least one Backup job for each client you want

to save. Normally, unless you turn off cataloging, most all the important statistics and data
concerning files backed up will be placed in the catalog.

Restore
Run a restore Job. Normally, you will specify only one Restore job which acts as a sort of

prototype that you will modify using the console program in order to perform restores. Although
certain basic information from a Restore job is saved in the catalog, it is very minimal compared
to the information stored for a Backup job – for example, no File database entries are generated
since no Files are saved.

Restore jobs cannot be automatically started by the scheduler as is the case for Backup, Verify
and Admin jobs. To restore files, you must use the restore command in the console.

Verify
Run a verify Job. In general, verify jobs permit you to compare the contents of the catalog to

the file system, or to what was backed up. In addition, to verifying that a tape that was written
can be read, you can also use verify as a sort of tripwire intrusion detection.

Admin
Run an admin Job. An Admin job can be used to periodically run catalog pruning, if you do

not want to do it at the end of each Backup Job. Although an Admin job is recorded in the
catalog, very little data is saved.

Migrate defines the job that is run as being a Migration Job. A Migration Job is a sort of control
job and does not have any Files associated with it, and in that sense they are more or less like an
Admin job. Migration jobs simply check to see if there is anything to Migrate then possibly start
and control new Backup jobs to migrate the data from the specified Pool to another Pool. Note,
any original JobId that is migrated will be marked as having been migrated, and the original
JobId can nolonger be used for restores; all restores will be done from the new migrated Job.

Copy defines the job that is run as being a Copy Job. A Copy Job is a sort of control job and does
not have any Files associated with it, and in that sense they are more or less like an Admin job.
Copy jobs simply check to see if there is anything to Copy then possibly start and control new
Backup jobs to copy the data from the specified Pool to another Pool. Note that when a copy
is made, the original JobIds are left unchanged. The new copies can not be used for restoration
unless you specifically choose them by JobId. If you subsequently delete a JobId that has a copy,

88

the copy will be automatically upgraded to a Backup rather than a Copy, and it will subsequently
be used for restoration.

Consolidate is used to consolidate Always Incremental Backups jobs, see Always Incremental Backup
Scheme. It has been introduced in Bareos Version >= 16.2.4.

Within a particular Job Type, there are also Levels, see Level Dir
Job.

Verify Job = <resource-name>
This directive is an alias.

If you run a verify job without this directive, the last job run will be compared with the catalog, which
means that you must immediately follow a backup by a verify command. If you specify a Verify Job
Bareos will find the last job with that name that ran. This permits you to run all your backups, then
run Verify jobs on those that you wish to be verified (most often a VolumeToCatalog) so that the
tape just written is re-read.

Virtual Full Backup Pool = <resource-name>

Where = <path>
This directive applies only to a Restore job and specifies a prefix to the directory name of all files
being restored. This permits files to be restored in a different location from which they were saved. If
Where is not specified or is set to backslash (/), the files will be restored to their original location.
By default, we have set Where in the example configuration files to be /tmp/bareos-restores. This
is to prevent accidental overwriting of your files.

Please note! To use Where on NDMP backups, please read Restore files to different path.

Write Bootstrap = <path>
The writebootstrap directive specifies a file name where Bareos will write a bootstrap file for each
Backup job run. This directive applies only to Backup Jobs. If the Backup job is a Full save, Bareos
will erase any current contents of the specified file before writing the bootstrap records. If the Job is
an Incremental or Differential save, Bareos will append the current bootstrap record to the end of the
file.

Using this feature, permits you to constantly have a bootstrap file that can recover the current state
of your system. Normally, the file specified should be a mounted drive on another machine, so that
if your hard disk is lost, you will immediately have a bootstrap record available. Alternatively, you
should copy the bootstrap file to another machine after it is updated. Note, it is a good idea to write a
separate bootstrap file for each Job backed up including the job that backs up your catalog database.

If the bootstrap-file-specification begins with a vertical bar (|), Bareos will use the specification as
the name of a program to which it will pipe the bootstrap record. It could for example be a shell script
that emails you the bootstrap record.

Before opening the file or executing the specified command, Bareos performs character substitution
like in RunScript directive. To automatically manage your bootstrap files, you can use this in your
JobDefs resources:

Job Defs {

...

Write Bootstrap = "%c_%n.bsr"

...

}

For more details on using this file, please see chapter The Bootstrap File.

Write Part After Job = <yes|no>
Please note! This directive is deprecated.

89

Write Verify List = <path>

The following is an example of a valid Job resource definition:

Job {

Name = "Minou"

Type = Backup

Level = Incremental # default

Client = Minou

FileSet="Minou Full Set"

Storage = DLTDrive

Pool = Default

Schedule = "MinouWeeklyCycle"

Messages = Standard

}

Configuration 9.2: Job Resource Example

9.3 JobDefs Resource

The JobDefs resource permits all the same directives that can appear in a Job resource. However, a JobDefs
resource does not create a Job, rather it can be referenced within a Job to provide defaults for that Job.
This permits you to concisely define several nearly identical Jobs, each one referencing a JobDefs resource
which contains the defaults. Only the changes from the defaults need to be mentioned in each Job.

9.4 Schedule Resource

The Schedule resource provides a means of automatically scheduling a Job as well as the ability to override
the default Level, Pool, Storage and Messages resources. If a Schedule resource is not referenced in a Job,
the Job can only be run manually. In general, you specify an action to be taken and when.

configuration directive name type of data default value remark

Description = string
Enabled = yes|no yes
Name = name required
Run = job-overrides> <date-time-specification

Description = <string>

Enabled = <yes|no> (default: yes)
En- or disable this resource.

Name = <name> (required)
The name of the resource.

The name of the schedule being defined.

Run = <job-overrides> <date-time-specification>
The Run directive defines when a Job is to be run, and what overrides if any to apply. You may specify
multiple run directives within a Schedule resource. If you do, they will all be applied (i.e. multiple
schedules). If you have two Run directives that start at the same time, two Jobs will start at the same
time (well, within one second of each other).

90

The Job-overrides permit overriding the Level, the Storage, the Messages, and the Pool specifications
provided in the Job resource. In addition, the FullPool, the IncrementalPool, and the DifferentialPool
specifications permit overriding the Pool specification according to what backup Job Level is in effect.

By the use of overrides, you may customize a particular Job. For example, you may specify a Messages
override for your Incremental backups that outputs messages to a log file, but for your weekly or
monthly Full backups, you may send the output by email by using a different Messages override.

Job-overrides are specified as: keyword=value where the keyword is Level, Storage, Messages,
Pool, FullPool, DifferentialPool, or IncrementalPool, and the value is as defined on the respective
directive formats for the Job resource. You may specify multiple Job-overrides on one Run directive
by separating them with one or more spaces or by separating them with a trailing comma. For example:

Level=Full is all files in the FileSet whether or not they have changed.

Level=Incremental is all files that have changed since the last backup.

Pool=Weekly specifies to use the Pool named Weekly.

Storage=DLT Drive specifies to use DLT Drive for the storage device.

Messages=Verbose specifies to use the Verbose message resource for the Job.

FullPool=Full specifies to use the Pool named Full if the job is a full backup, or is upgraded from
another type to a full backup.

DifferentialPool=Differential specifies to use the Pool named Differential if the job is a differen-
tial backup.

IncrementalPool=Incremental specifies to use the Pool named Incremental if the job is an in-
cremental backup.

Accurate=yes|no tells Bareos to use or not the Accurate code for the specific job. It can allow you
to save memory and and CPU resources on the catalog server in some cases.

SpoolData=yes|no tells Bareos to use or not to use spooling for the specific job.

Date-time-specification determines when the Job is to be run. The specification is a repetition,
and as a default Bareos is set to run a job at the beginning of the hour of every hour of every day of
every week of every month of every year. This is not normally what you want, so you must specify or
limit when you want the job to run. Any specification given is assumed to be repetitive in nature and
will serve to override or limit the default repetition. This is done by specifying masks or times for the
hour, day of the month, day of the week, week of the month, week of the year, and month when you
want the job to run. By specifying one or more of the above, you can define a schedule to repeat at
almost any frequency you want.

Basically, you must supply a month, day, hour, and minute the Job is to be run. Of these four
items to be specified, day is special in that you may either specify a day of the month such as 1, 2, ...
31, or you may specify a day of the week such as Monday, Tuesday, ... Sunday. Finally, you may also
specify a week qualifier to restrict the schedule to the first, second, third, fourth, or fifth week of the
month.

For example, if you specify only a day of the week, such as Tuesday the Job will be run every hour
of every Tuesday of every Month. That is the month and hour remain set to the defaults of every
month and all hours.

Note, by default with no other specification, your job will run at the beginning of every hour. If
you wish your job to run more than once in any given hour, you will need to specify multiple run
specifications each with a different minute.

The date/time to run the Job can be specified in the following way in pseudo-BNF:

<week-keyword> ::= 1st | 2nd | 3rd | 4th | 5th | first | second | third | fourth
| fifth | last

<wday-keyword> ::= sun | mon | tue | wed | thu | fri | sat | sunday | monday
| tuesday | wednesday | thursday | friday | saturday

<week-of-year-keyword> ::= w00 | w01 | ... w52 | w53
<month-keyword> ::= jan | feb | mar | apr | may | jun | jul | aug | sep | oct |

nov | dec | january | february | ... | december
<digit> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0
<number> ::= <digit> | <digit><number>

91

<12hour> ::= 0 | 1 | 2 | ... 12
<hour> ::= 0 | 1 | 2 | ... 23
<minute> ::= 0 | 1 | 2 | ... 59
<day> ::= 1 | 2 | ... 31
<time> ::= <hour>:<minute> | <12hour>:<minute>am |

<12hour>:<minute>pm
<time-spec> ::= at <time> | hourly
<day-range> ::= <day>-<day>
<month-range> ::= <month-keyword>-<month-keyword>
<wday-range> ::= <wday-keyword>-<wday-keyword>
<range> ::= <day-range> | <month-range> | <wday-range>
<modulo> ::= <day>/<day> | <week-of-year-keyword>/<week-of-

year-keyword>
<date> ::= <date-keyword> | <day> | <range>
<date-spec> ::= <date> | <date-spec>
<day-spec> ::= <day> | <wday-keyword> | <day> | <wday-

range> |<week-keyword><wday-keyword> |<week-
keyword> <wday-range> | daily

<month-spec> ::= <month-keyword> | <month-range> | monthly
<date-time-spec> ::= <month-spec> <day-spec> <time-spec>

Note, the Week of Year specification wnn follows the ISO standard definition of the week of the year, where
Week 1 is the week in which the first Thursday of the year occurs, or alternatively, the week which contains
the 4th of January. Weeks are numbered w01 to w53. w00 for Bareos is the week that precedes the first ISO
week (i.e. has the first few days of the year if any occur before Thursday). w00 is not defined by the ISO
specification. A week starts with Monday and ends with Sunday.
According to the NIST (US National Institute of Standards and Technology), 12am and 12pm are ambiguous
and can be defined to anything. However, 12:01am is the same as 00:01 and 12:01pm is the same as 12:01, so
Bareos defines 12am as 00:00 (midnight) and 12pm as 12:00 (noon). You can avoid this abiguity (confusion)
by using 24 hour time specifications (i.e. no am/pm).
An example schedule resource that is named WeeklyCycle and runs a job with level full each Sunday at
2:05am and an incremental job Monday through Saturday at 2:05am is:

Schedule {

Name = "WeeklyCycle"

Run = Level=Full sun at 2:05

Run = Level=Incremental mon-sat at 2:05

}

Configuration 9.3: Schedule Example

An example of a possible monthly cycle is as follows:

Schedule {

Name = "MonthlyCycle"

Run = Level=Full Pool=Monthly 1st sun at 2:05

Run = Level=Differential 2nd-5th sun at 2:05

Run = Level=Incremental Pool=Daily mon-sat at 2:05

}

Configuration 9.4:

The first of every month:

Schedule {

Name = "First"

Run = Level=Full on 1 at 2:05

Run = Level=Incremental on 2-31 at 2:05

}

Configuration 9.5:

The last friday of the month (i.e. the last friday in the last week of the month)

92

Schedule {

Name = "Last Friday"

Run = Level=Full last fri at 21:00

}

Configuration 9.6:

Every 10 minutes:

Schedule {

Name = "TenMinutes"

Run = Level=Full hourly at 0:05

Run = Level=Full hourly at 0:15

Run = Level=Full hourly at 0:25

Run = Level=Full hourly at 0:35

Run = Level=Full hourly at 0:45

Run = Level=Full hourly at 0:55

}

Configuration 9.7:

The modulo scheduler makes it easy to specify schedules like odd or even days/weeks, or more generally
every n days or weeks. It is called modulo scheduler because it uses the modulo to determine if the schedule
must be run or not. The second variable behind the slash lets you determine in which cycle of days/weeks
a job should be run. The first part determines on which day/week the job should be run first. E.g. if you
want to run a backup in a 5-week-cycle, starting on week 3, you set it up as w03/w05.

Schedule {

Name = "Odd Days"

Run = 1/2 at 23:10

}

Schedule {

Name = "Even Days"

Run = 2/2 at 23:10

}

Schedule {

Name = "On the 3rd week in a 5-week-cycle"

Run = w03/w05 at 23:10

}

Schedule {

Name = "Odd Weeks"

Run = w01/w02 at 23:10

}

Schedule {

Name = "Even Weeks"

Run = w02/w02 at 23:10

}

Configuration 9.8: Schedule Examples: modulo

9.4.1 Technical Notes on Schedules

Internally Bareos keeps a schedule as a bit mask. There are six masks and a minute field to each schedule.
The masks are hour, day of the month (mday), month, day of the week (wday), week of the month (wom),
and week of the year (woy). The schedule is initialized to have the bits of each of these masks set, which
means that at the beginning of every hour, the job will run. When you specify a month for the first time,
the mask will be cleared and the bit corresponding to your selected month will be selected. If you specify
a second month, the bit corresponding to it will also be added to the mask. Thus when Bareos checks the
masks to see if the bits are set corresponding to the current time, your job will run only in the two months
you have set. Likewise, if you set a time (hour), the hour mask will be cleared, and the hour you specify will
be set in the bit mask and the minutes will be stored in the minute field.

For any schedule you have defined, you can see how these bits are set by doing a show schedules command
in the Console program. Please note that the bit mask is zero based, and Sunday is the first day of the week
(bit zero).

93

9.5 FileSet Resource

The FileSet resource defines what files are to be included or excluded in a backup job. A FileSet resource
is required for each backup Job. It consists of a list of files or directories to be included, a list of files or
directories to be excluded and the various backup options such as compression, encryption, and signatures
that are to be applied to each file.
Any change to the list of the included files will cause Bareos to automatically create a new FileSet (defined
by the name and an MD5 checksum of the Include/Exclude contents). Each time a new FileSet is created,
Bareos will ensure that the next backup is always a Full save.

configuration directive name type of data default value remark

Description = string
Enable VSS = yes|no yes
Exclude { IncludeExcludeItem }
Ignore File Set Changes = yes|no no
Include { IncludeExcludeItem }
Name = name required

Description = <string>
Information only.

Enable VSS = <yes|no> (default: yes)
If this directive is set to yes the File daemon will be notified that the user wants to use a Volume
Shadow Copy Service (VSS) backup for this job. This directive is effective only on the Windows File
Daemon. It permits a consistent copy of open files to be made for cooperating writer applications,
and for applications that are not VSS away, Bareos can at least copy open files. The Volume Shadow
Copy will only be done on Windows drives where the drive (e.g. C:, D:, ...) is explicitly mentioned in
a File directive. For more information, please see the Windows chapter of this manual.

Exclude = <IncludeExcludeItem>
Describe the files, that should get excluded from a backup, see section about the FileSet Exclude
Ressource.

Ignore File Set Changes = <yes|no> (default: no)
Normally, if you modify the FileSet Include or Exclude lists, the next backup will be forced to a Full
so that Bareos can guarantee that any additions or deletions are properly saved.

We strongly recommend against setting this directive to yes, since doing so may cause you to have an
incomplete set of backups.

If this directive is set to yes, any changes you make to the FileSet Include or Exclude lists, will not
force a Full during subsequent backups.

Include = <IncludeExcludeItem>
Describe the files, that should get included to a backup, see section about the FileSet Include
Ressource.

Name = <name> (required)
The name of the resource.

The name of the FileSet resource.

9.5.1 FileSet Include Ressource

The Include resource must contain a list of directories and/or files to be processed in the backup job.

94

Normally, all files found in all subdirectories of any directory in the Include File list will be backed up.
Note, see below for the definition of <file-list>. The Include resource may also contain one or more Options
resources that specify options such as compression to be applied to all or any subset of the files found when
processing the file-list for backup. Please see below for more details concerning Options resources.
There can be any number of Include resources within the FileSet, each having its own list of directories or
files to be backed up and the backup options defined by one or more Options resources.
Please take note of the following items in the FileSet syntax:

1. There is no equal sign (=) after the Include and before the opening brace ({). The same is true for
the Exclude.

2. Each directory (or filename) to be included or excluded is preceded by a File =. Previously they were
simply listed on separate lines.

3. The Exclude resource does not accept Options.

4. When using wild-cards or regular expressions, directory names are always terminated with a slash (/)
and filenames have no trailing slash.

File = < filename | dirname | |command | \<includefile-client | <includefile-server >
The file list consists of one file or directory name per line. Directory names should be specified without
a trailing slash with Unix path notation.

Windows users, please take note to specify directories (even c:/...) in Unix path notation. If you use
Windows conventions, you will most likely not be able to restore your files due to the fact that the
Windows path separator was defined as an escape character long before Windows existed, and Bareos
adheres to that convention (i.e. means the next character appears as itself).

You should always specify a full path for every directory and file that you list in the FileSet. In
addition, on Windows machines, you should always prefix the directory or filename with the drive
specification (e.g. c:/xxx) using Unix directory name separators (forward slash). The drive letter
itself can be upper or lower case (e.g. c:/xxx or C:/xxx).

Bareos’s default for processing directories is to recursively descend in the directory saving all files and
subdirectories. Bareos will not by default cross filesystems (or mount points in Unix parlance). This
means that if you specify the root partition (e.g. /), Bareos will save only the root partition and not
any of the other mounted filesystems. Similarly on Windows systems, you must explicitly specify each
of the drives you want saved (e.g. c:/ and d:/ ...). In addition, at least for Windows systems, you
will most likely want to enclose each specification within double quotes particularly if the directory (or
file) name contains spaces. The df command on Unix systems will show you which mount points you
must specify to save everything. See below for an example.

Take special care not to include a directory twice or Bareos will backup the same files two times wasting
a lot of space on your archive device. Including a directory twice is very easy to do. For example:

Include {

Options {

compression=GZIP

}

File = /

File = /usr

}

Configuration 9.9: File Set

on a Unix system where /usr is a subdirectory (rather than a mounted filesystem) will cause /usr to
be backed up twice.

<file-list> is a list of directory and/or filename names specified with a File = directive. To include
names containing spaces, enclose the name between double-quotes. Wild-cards are not interpreted in
file-lists. They can only be specified in Options resources.

There are a number of special cases when specifying directories and files in a file-list. They are:

� Any name preceded by an at-sign (@) is assumed to be the name of a file, which contains a list
of files each preceded by a ”File =”. The named file is read once when the configuration file is
parsed during the Director startup. Note, that the file is read on the Director’s machine and not
on the Client’s. In fact, the @filename can appear anywhere within the conf file where a token

95

would be read, and the contents of the named file will be logically inserted in the place of the
@filename. What must be in the file depends on the location the @filename is specified in the
conf file. For example:

Include {

Options {

compression=GZIP

}

@/home/files/my-files

}

Configuration 9.10: File Set with Include File

� Any name beginning with a vertical bar (|) is assumed to be the name of a program. This program
will be executed on the Director’s machine at the time the Job starts (not when the Director reads
the configuration file), and any output from that program will be assumed to be a list of files or
directories, one per line, to be included. Before submitting the specified command Bareos will
performe character substitution.

This allows you to have a job that, for example, includes all the local partitions even if you change
the partitioning by adding a disk. The examples below show you how to do this. However, please
note two things:
1. if you want the local filesystems, you probably should be using the fstype directive and set
onefs=no.

2. the exact syntax of the command needed in the examples below is very system dependent. For
example, on recent Linux systems, you may need to add the -P option, on FreeBSD systems, the
options will be different as well.

In general, you will need to prefix your command or commands with a sh -c so that they are
invoked by a shell. This will not be the case if you are invoking a script as in the second example
below. Also, you must take care to escape (precede with a \) wild-cards, shell character, and
to ensure that any spaces in your command are escaped as well. If you use a single quotes (’)
within a double quote (”), Bareos will treat everything between the single quotes as one field so it
will not be necessary to escape the spaces. In general, getting all the quotes and escapes correct
is a real pain as you can see by the next example. As a consequence, it is often easier to put
everything in a file and simply use the file name within Bareos. In that case the sh -c will not
be necessary providing the first line of the file is #!/bin/sh.

As an example:

Include {

Options {

signature = SHA1

}

File = "|sh -c ’df -l | grep \"^/dev/hd[ab]\" | grep -v \".*/tmp\" | awk \"{print \\$6}\"’"

}

Configuration 9.11: File Set with inline script

will produce a list of all the local partitions on a Linux system. Quoting is a real problem because
you must quote for Bareos which consists of preceding every \ and every ” with a \, and you must
also quote for the shell command. In the end, it is probably easier just to execute a script file
with:

Include {

Options {

signature=MD5

}

File = "|my_partitions"

}

Configuration 9.12: File Set with external script

where my_partitions has:

#!/bin/sh

df -l | grep "^/dev/hd[ab]" | grep -v ".*/tmp" \

| awk "{print \$6}"

96

If the vertical bar (|) in front of my_partitions is preceded by a backslash as in \|, the program
will be executed on the Client’s machine instead of on the Director’s machine. Please note that
if the filename is given within quotes, you will need to use two slashes. An example, provided by
John Donagher, that backs up all the local UFS partitions on a remote system is:

FileSet {

Name = "All local partitions"

Include {

Options {

signature=SHA1

onefs=yes

}

File = "\\|bash -c \"df -klF ufs | tail +2 | awk ’{print \$6}’\""

}

}

Configuration 9.13: File Set with inline script in quotes

The above requires two backslash characters after the double quote (one preserves the next one).
If you are a Linux user, just change the ufs to ext3 (or your preferred filesystem type), and you
will be in business.

If you know what filesystems you have mounted on your system, e.g. for Linux only using ext2,
ext3 or ext4, you can backup all local filesystems using something like:

Include {

Options {

signature = SHA1

onfs=no

fstype=ext2

}

File = /

}

Configuration 9.14: File Set to backup all extfs partions

� Any file-list item preceded by a less-than sign (<) will be taken to be a file. This file will be
read on the Director’s machine (see below for doing it on the Client machine) at the time the Job
starts, and the data will be assumed to be a list of directories or files, one per line, to be included.
The names should start in column 1 and should not be quoted even if they contain spaces. This
feature allows you to modify the external file and change what will be saved without stopping
and restarting Bareos as would be necessary if using the @ modifier noted above. For example:

Include {

Options {

signature = SHA1

}

File = "</home/files/local-filelist"

}

If you precede the less-than sign (<) with a backslash as in \<, the file-list will be read on the
Client machine instead of on the Director’s machine. Please note that if the filename is given
within quotes, you will need to use two slashes.

Include {

Options {

signature = SHA1

}

File = "\\</home/xxx/filelist-on-client"

}

� If you explicitly specify a block device such as /dev/hda1, then Bareos will assume that this is
a raw partition to be backed up. In this case, you are strongly urged to specify a sparse=yes
include option, otherwise, you will save the whole partition rather than just the actual data that
the partition contains. For example:

Include {

Options {

signature=MD5

sparse=yes

}

File = /dev/hd6

97

}

Configuration 9.15: Backup Raw Partitions

will backup the data in device /dev/hd6. Note, the bf /dev/hd6 must be the raw partition itself.
Bareos will not back it up as a raw device if you specify a symbolic link to a raw device such as
my be created by the LVM Snapshot utilities.

� A file-list may not contain wild-cards. Use directives in the Options resource if you wish to specify
wild-cards or regular expression matching.

Exclude Dir Containing = <filename>
This directive can be added to the Include section of the FileSet resource. If the specified filename

(filename-string) is found on the Client in any directory to be backed up, the whole directory will
be ignored (not backed up). We recommend to use the filename .nobackup, as it is a hidden file on
unix systems, and explains what is the purpose of the file.

For example:

List of files to be backed up

FileSet {

Name = "MyFileSet"

Include {

Options {

signature = MD5

}

File = /home

Exclude Dir Containing = .nobackup

}

}

Configuration 9.16: Exlude Directories containing the file .nobackup

But in /home, there may be hundreds of directories of users and some people want to indicate that
they don’t want to have certain directories backed up. For example, with the above FileSet, if the user
or sysadmin creates a file named .nobackup in specific directories, such as

/home/user/www/cache/.nobackup

/home/user/temp/.nobackup

then Bareos will not backup the two directories named:

/home/user/www/cache

/home/user/temp

NOTE: subdirectories will not be backed up. That is, the directive applies to the two directories in
question and any children (be they files, directories, etc).

Plugin = <plugin-name:plugin-parameter1:plugin-parameter2:. . .>
Instead of only specifying files, a file set can also use plugins. Plugins are additional libraries that

handle specific requirements. The purpose of plugins is to provide an interface to any system program
for backup and restore. That allows you, for example, to do database backups without a local dump.

The syntax and semantics of the Plugin directive require the first part of the string up to the colon to
be the name of the plugin. Everything after the first colon is ignored by the File daemon but is passed
to the plugin. Thus the plugin writer may define the meaning of the rest of the string as he wishes.

The program bpluginfo can be used, to retreive information about a specific plugin.

Examples about the bpipe- and the mssql-plugin can be found in the sections about the bpipe Plugin
and the Backup of MSSQL Databases with Bareos Plugin.

Note: It is also possible to define more than one plugin directive in a FileSet to do several database
dumps at once.

Options = <. . .>
See the FileSet Options Ressource section.

98

FileSet Options Ressource

The Options resource is optional, but when specified, it will contain a list of keyword=value options to be
applied to the file-list. See below for the definition of file-list. Multiple Options resources may be specified
one after another. As the files are found in the specified directories, the Options will applied to the filenames
to determine if and how the file should be backed up. The wildcard and regular expression pattern matching
parts of the Options resources are checked in the order they are specified in the FileSet until the first one
that matches. Once one matches, the compression and other flags within the Options specification will apply
to the pattern matched.
A key point is that in the absence of an Option or no other Option is matched, every file is accepted for
backing up. This means that if you want to exclude something, you must explicitly specify an Option with
an exclude = yes and some pattern matching.
Once Bareos determines that the Options resource matches the file under consideration, that file will be
saved without looking at any other Options resources that may be present. This means that any wild cards
must appear before an Options resource without wild cards.
If for some reason, Bareos checks all the Options resources to a file under consideration for backup, but there
are no matches (generally because of wild cards that don’t match), Bareos as a default will then backup the
file. This is quite logical if you consider the case of no Options clause is specified, where you want everything
to be backed up, and it is important to keep in mind when excluding as mentioned above.
However, one additional point is that in the case that no match was found, Bareos will use the options found
in the last Options resource. As a consequence, if you want a particular set of ”default” options, you should
put them in an Options resource after any other Options.
It is a good idea to put all your wild-card and regex expressions inside double quotes to prevent conf file
scanning problems.
This is perhaps a bit overwhelming, so there are a number of examples included below to illustrate how this
works.
You find yourself using a lot of Regex statements, which will cost quite a lot of CPU time, we recommend
you simplify them if you can, or better yet convert them to Wild statements which are much more efficient.
The directives within an Options resource may be one of the following:

AutoExclude = <yes|no> (default: yes)
Automatically exclude files not intended for backup. Currently only used for Windows, to exclude
files defined in the registry key HKEY_LOCAL_MACHINE\SYSTEM \CurrentControlSet \Control \

BackupRestore \FilesNotToBackup , see section FilesNotToBackup Registry Key.
Version >= 14.2.2

compression=<GZIP|GZIP1|...|GZIP9|LZO|LZFAST|LZ4|LZ4HC>

Configures the software compression to be used by the File Daemon. The compression is done on a file
by file basis.

Software compression gets important if you are writing to a device that does not support compression by
itself (e.g. hard disks). Otherwise, all modern tape drive do support hardware compression. Software
compression can also be helpful to reduce the required network bandwidth, as compression is done
on the File Daemon. However, using Bareos software compression and device hardware compression
together is not advised, as trying to compress precompressed data is a very CPU-intense task and
probably end up in even larger data.

You can overwrite this option per Storage resource using the Allow Compression Dir
Storage = no option.

compression=GZIP
All files saved will be software compressed using the GNU ZIP compression format.

Specifying GZIP uses the default compression level 6 (i.e. GZIP is identical to GZIP6). If
you want a different compression level (1 through 9), you can specify it by appending the level
number with no intervening spaces to GZIP. Thus compression=GZIP1 would give minimum
compression but the fastest algorithm, and compression=GZIP9 would give the highest level of
compression, but requires more computation. According to the GZIP documentation, compression
levels greater than six generally give very little extra compression and are rather CPU intensive.

compression=LZO
All files saved will be software compressed using the LZO compression format. The compression
is done on a file by file basis by the File daemon. Everything else about GZIP is true for LZO.

99

LZO provides much faster compression and decompression speed but lower compression ratio than
GZIP. If your CPU is fast enough you should be able to compress your data without making the
backup duration longer.

Note that Bareos only use one compression level LZO1X-1 specified by LZO.

compression=LZFAST
All files saved will be software compressed using the LZFAST compression format. The compres-
sion is done on a file by file basis by the File daemon. Everything else about GZIP is true for
LZFAST.

LZFAST provides much faster compression and decompression speed but lower compression ratio
than GZIP. If your CPU is fast enough you should be able to compress your data without making
the backup duration longer.

compression=LZ4
All files saved will be software compressed using the LZ4 compression format. The compression
is done on a file by file basis by the File daemon. Everything else about GZIP is true for LZ4.

LZ4 provides much faster compression and decompression speed but lower compression ratio than
GZIP. If your CPU is fast enough you should be able to compress your data without making the
backup duration longer.

Both LZ4 and LZ4HC have the same decompression speed which is about twice the speed of the
LZO compression. So for a restore both LZ4 and LZ4HC are good candidates.

Please note! As LZ4 compression is not supported by Bacula, make sure Compatible Fd
Client = no.

compression=LZ4HC
All files saved will be software compressed using the LZ4HC compression format. The compression
is done on a file by file basis by the File daemon. Everything else about GZIP is true for LZ4.

LZ4HC is the High Compression version of the LZ4 compression. It has a higher compression
ratio than LZ4 and is more comparable to GZIP-6 in both compression rate and cpu usage.

Both LZ4 and LZ4HC have the same decompression speed which is about twice the speed of the
LZO compression. So for a restore both LZ4 and LZ4HC are good candidates.

Please note! As LZ4 compression is not supported by Bacula, make sure Compatible Fd
Client = no.

signature=<SHA1|MD5>

signature=SHA1
An SHA1 signature will be computed for all The SHA1 algorithm is purported to be some what

slower than the MD5 algorithm, but at the same time is significantly better from a cryptographic
point of view (i.e. much fewer collisions, much lower probability of being hacked.) It adds four
more bytes than the MD5 signature. We strongly recommend that either this option or MD5
be specified as a default for all files. Note, only one of the two options MD5 or SHA1 can be
computed for any file.

signature=MD5
An MD5 signature will be computed for all files saved. Adding this option generates about 5%

extra overhead for each file saved. In addition to the additional CPU time, the MD5 signature
adds 16 more bytes per file to your catalog. We strongly recommend that this option or the SHA1
option be specified as a default for all files.

basejob=<options> The options letters specified are used when running a Backup Level=Full with
BaseJobs. The options letters are the same than in the verify= option below.

accurate=<options> The options letters specified are used when running a Backup
Level=Incremental/Differential in Accurate mode. The options letters are the same than
in the verify= option below.

verify=<options>
The options letters specified are used when running a Verify Level=Catalog as well as the Disk-

ToCatalog level job. The options letters may be any combination of the following:

i compare the inodes

p compare the permission bits

n compare the number of links

100

u compare the user id

g compare the group id

s compare the size

a compare the access time

m compare the modification time (st mtime)

c compare the change time (st ctime)

d report file size decreases

5 compare the MD5 signature

1 compare the SHA1 signature

A Only for Accurate option, it allows to always backup the file

A useful set of general options on the Level=Catalog or Level=DiskToCatalog verify is pins5 i.e.
compare permission bits, inodes, number of links, size, and MD5 changes.

onefs=yes|no
If set to yes (the default), Bareos will remain on a single file system. That is it will not backup file

systems that are mounted on a subdirectory. If you are using a *nix system, you may not even be
aware that there are several different filesystems as they are often automatically mounted by the OS
(e.g. /dev, /net, /sys, /proc, ...). Bareos will inform you when it decides not to traverse into another
filesystem. This can be very useful if you forgot to backup a particular partition. An example of the
informational message in the job report is:

rufus-fd: /misc is a different filesystem. Will not descend from / into /misc

rufus-fd: /net is a different filesystem. Will not descend from / into /net

rufus-fd: /var/lib/nfs/rpc_pipefs is a different filesystem. Will not descend from /var/lib/nfs into /var/lib/nfs/rpc_pipefs

rufus-fd: /selinux is a different filesystem. Will not descend from / into /selinux

rufus-fd: /sys is a different filesystem. Will not descend from / into /sys

rufus-fd: /dev is a different filesystem. Will not descend from / into /dev

rufus-fd: /home is a different filesystem. Will not descend from / into /home

If you wish to backup multiple filesystems, you can explicitly list each filesystem you want saved.
Otherwise, if you set the onefs option to no, Bareos will backup all mounted file systems (i.e. traverse
mount points) that are found within the FileSet. Thus if you have NFS or Samba file systems
mounted on a directory listed in your FileSet, they will also be backed up. Normally, it is preferable
to set onefs=yes and to explicitly name each filesystem you want backed up. Explicitly naming the
filesystems you want backed up avoids the possibility of getting into a infinite loop recursing filesystems.
Another possibility is to use onefs=no and to set fstype=ext2, See the example below for more
details.

If you think that Bareos should be backing up a particular directory and it is not, and you have
onefs=no set, before you complain, please do:

stat /

stat <filesystem>

where you replace filesystem with the one in question. If the Device: number is different for / and
for your filesystem, then they are on different filesystems. E.g.

stat /

File: ‘/’

Size: 4096 Blocks: 16 IO Block: 4096 directory

Device: 302h/770d Inode: 2 Links: 26

Access: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (0/ root)

Access: 2005-11-10 12:28:01.000000000 +0100

Modify: 2005-09-27 17:52:32.000000000 +0200

Change: 2005-09-27 17:52:32.000000000 +0200

stat /net

File: ‘/home’

Size: 4096 Blocks: 16 IO Block: 4096 directory

Device: 308h/776d Inode: 2 Links: 7

Access: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (0/ root)

Access: 2005-11-10 12:28:02.000000000 +0100

Modify: 2005-11-06 12:36:48.000000000 +0100

Change: 2005-11-06 12:36:48.000000000 +0100

101

Also be aware that even if you include /home in your list of files to backup, as you most likely should,
you will get the informational message that ”/home is a different filesystem” when Bareos is processing
the / directory. This message does not indicate an error. This message means that while examining
the File = referred to in the second part of the message, Bareos will not descend into the directory
mentioned in the first part of the message. However, it is possible that the separate filesystem will be
backed up despite the message. For example, consider the following FileSet:

File = /

File = /var

where /var is a separate filesystem. In this example, you will get a message saying that Bareos will
not decend from / into /var. But it is important to realise that Bareos will descend into /var from
the second File directive shown above. In effect, the warning is bogus, but it is supplied to alert you
to possible omissions from your FileSet. In this example, /var will be backed up. If you changed the
FileSet such that it did not specify /var, then /var will not be backed up.

honor nodump flag=<yes|no>
If your file system supports the nodump flag (e. g. most BSD-derived systems) Bareos will honor

the setting of the flag when this option is set to yes. Files having this flag set will not be included in
the backup and will not show up in the catalog. For directories with the nodump flag set recursion
is turned off and the directory will be listed in the catalog. If the honor nodump flag option is not
defined or set to no every file and directory will be eligible for backup.

portable=yes|no
If set to yes (default is no), the Bareos File daemon will backup Win32 files in a portable format,

but not all Win32 file attributes will be saved and restored. By default, this option is set to no,
which means that on Win32 systems, the data will be backed up using Windows API calls and on
WinNT/2K/XP, all the security and ownership attributes will be properly backed up (and restored).
However this format is not portable to other systems – e.g. Unix, Win95/98/Me. When backing up
Unix systems, this option is ignored, and unless you have a specific need to have portable backups, we
recommend accept the default (no) so that the maximum information concerning your files is saved.

recurse=yes|no
If set to yes (the default), Bareos will recurse (or descend) into all subdirectories found unless the

directory is explicitly excluded using an exclude definition. If you set recurse=no, Bareos will save
the subdirectory entries, but not descend into the subdirectories, and thus will not save the files or
directories contained in the subdirectories. Normally, you will want the default (yes).

sparse=yes|no
Enable special code that checks for sparse files such as created by ndbm. The default is no, so no

checks are made for sparse files. You may specify sparse=yes even on files that are not sparse file.
No harm will be done, but there will be a small additional overhead to check for buffers of all zero,
and if there is a 32K block of all zeros (see below), that block will become a hole in the file, which may
not be desirable if the original file was not a sparse file.

Restrictions: Bareos reads files in 32K buffers. If the whole buffer is zero, it will be treated as a
sparse block and not written to tape. However, if any part of the buffer is non-zero, the whole buffer
will be written to tape, possibly including some disk sectors (generally 4098 bytes) that are all zero. As
a consequence, Bareos’s detection of sparse blocks is in 32K increments rather than the system block
size. If anyone considers this to be a real problem, please send in a request for change with the reason.

If you are not familiar with sparse files, an example is say a file where you wrote 512 bytes at address
zero, then 512 bytes at address 1 million. The operating system will allocate only two blocks, and the
empty space or hole will have nothing allocated. However, when you read the sparse file and read the
addresses where nothing was written, the OS will return all zeros as if the space were allocated, and if
you backup such a file, a lot of space will be used to write zeros to the volume. Worse yet, when you
restore the file, all the previously empty space will now be allocated using much more disk space. By
turning on the sparse option, Bareos will specifically look for empty space in the file, and any empty
space will not be written to the Volume, nor will it be restored. The price to pay for this is that Bareos
must search each block it reads before writing it. On a slow system, this may be important. If you
suspect you have sparse files, you should benchmark the difference or set sparse for only those files
that are really sparse.

You probably should not use this option on files or raw disk devices that are not really sparse files (i.e.
have holes in them).

102

readfifo=yes|no
If enabled, tells the Client to read the data on a backup and write the data on a restore to any

FIFO (pipe) that is explicitly mentioned in the FileSet. In this case, you must have a program already
running that writes into the FIFO for a backup or reads from the FIFO on a restore. This can be
accomplished with the RunBeforeJob directive. If this is not the case, Bareos will hang indefinitely
on reading/writing the FIFO. When this is not enabled (default), the Client simply saves the directory
entry for the FIFO.

Normally, when Bareos runs a RunBeforeJob, it waits until that script terminates, and if the script
accesses the FIFO to write into it, the Bareos job will block and everything will stall. However, Vladimir
Stavrinov as supplied tip that allows this feature to work correctly. He simply adds the following to
the beginning of the RunBeforeJob script:

exec > /dev/null

Include {

Options {

signature=SHA1

readfifo=yes

}

File = /home/abc/fifo

}

Configuration 9.17: FileSet with Fifo

This feature can be used to do a ”hot” database backup. You can use the RunBeforeJob to create
the fifo and to start a program that dynamically reads your database and writes it to the fifo. Bareos
will then write it to the Volume.

During the restore operation, the inverse is true, after Bareos creates the fifo if there was any data
stored with it (no need to explicitly list it or add any options), that data will be written back to the
fifo. As a consequence, if any such FIFOs exist in the fileset to be restored, you must ensure that there
is a reader program or Bareos will block, and after one minute, Bareos will time out the write to the
fifo and move on to the next file.

If you are planing to use a Fifo for backup, better take a look to the bpipe Plugin section.

noatime=yes|no
If enabled, and if your Operating System supports the O NOATIME file open flag, Bareos will open

all files to be backed up with this option. It makes it possible to read a file without updating the inode
atime (and also without the inode ctime update which happens if you try to set the atime back to its
previous value). It also prevents a race condition when two programs are reading the same file, but
only one does not want to change the atime. It’s most useful for backup programs and file integrity
checkers (and Bareos can fit on both categories).

This option is particularly useful for sites where users are sensitive to their MailBox file access time.
It replaces both the keepatime option without the inconveniences of that option (see below).

If your Operating System does not support this option, it will be silently ignored by Bareos.

mtimeonly=yes|no
If enabled, tells the Client that the selection of files during Incremental and Differential backups should
based only on the st mtime value in the stat() packet. The default is no which means that the selection
of files to be backed up will be based on both the st mtime and the st ctime values. In general, it is
not recommended to use this option.

keepatime=yes|no
The default is no. When enabled, Bareos will reset the st atime (access time) field of files that it

backs up to their value prior to the backup. This option is not generally recommended as there are
very few programs that use st atime, and the backup overhead is increased because of the additional
system call necessary to reset the times. However, for some files, such as mailboxes, when Bareos backs
up the file, the user will notice that someone (Bareos) has accessed the file. In this, case keepatime
can be useful. (I’m not sure this works on Win32).

Note, if you use this feature, when Bareos resets the access time, the change time (st ctime) will
automatically be modified by the system, so on the next incremental job, the file will be backed up
even if it has not changed. As a consequence, you will probably also want to use mtimeonly = yes
as well as keepatime (thanks to Rudolf Cejka for this tip).

103

checkfilechanges=yes|no
If enabled, the Client will check size, age of each file after their backup to see if they have changed

during backup. If time or size mismatch, an error will raise.

zog-fd: Client1.2007-03-31_09.46.21 Error: /tmp/test mtime changed during backup.

In general, it is recommended to use this option.

hardlinks=yes|no
When enabled (default), this directive will cause hard links to be backed up. However, the File daemon
keeps track of hard linked files and will backup the data only once. The process of keeping track of the
hard links can be quite expensive if you have lots of them (tens of thousands or more). This doesn’t
occur on normal Unix systems, but if you use a program like BackupPC, it can create hundreds of
thousands, or even millions of hard links. Backups become very long and the File daemon will consume
a lot of CPU power checking hard links. In such a case, set hardlinks=no and hard links will not be
backed up. Note, using this option will most likely backup more data and on a restore the file system
will not be restored identically to the original.

wild=<string>
Specifies a wild-card string to be applied to the filenames and directory names. Note, if Exclude is

not enabled, the wild-card will select which files are to be included. If Exclude=yes is specified, the
wild-card will select which files are to be excluded. Multiple wild-card directives may be specified, and
they will be applied in turn until the first one that matches. Note, if you exclude a directory, no files
or directories below it will be matched.

You may want to test your expressions prior to running your backup by using the bwild program.
Please see the Utilities chapter of this manual for more. You can also test your full FileSet definition
by using the estimate command in the Console chapter of this manual. It is recommended to enclose
the string in double quotes.

wilddir=<string>
Specifies a wild-card string to be applied to directory names only. No filenames will be matched by

this directive. Note, if Exclude is not enabled, the wild-card will select directories to be included.
If Exclude=yes is specified, the wild-card will select which directories are to be excluded. Multiple
wild-card directives may be specified, and they will be applied in turn until the first one that matches.
Note, if you exclude a directory, no files or directories below it will be matched.

It is recommended to enclose the string in double quotes.

You may want to test your expressions prior to running your backup by using the bwild program.
Please see the Utilities chapter of this manual for more. You can also test your full FileSet definition
by using the estimate command in the Console chapter of this manual. An example of excluding with
the WildDir option on Win32 machines is presented below.

wildfile=<string>
Specifies a wild-card string to be applied to non-directories. That is no directory entries will be

matched by this directive. However, note that the match is done against the full path and filename, so
your wild-card string must take into account that filenames are preceded by the full path. If Exclude
is not enabled, the wild-card will select which files are to be included. If Exclude=yes is specified,
the wild-card will select which files are to be excluded. Multiple wild-card directives may be specified,
and they will be applied in turn until the first one that matches.

It is recommended to enclose the string in double quotes.

You may want to test your expressions prior to running your backup by using the bwild program.
Please see the Utilities chapter of this manual for more. You can also test your full FileSet definition
by using the estimate command in the Console chapter of this manual. An example of excluding with
the WildFile option on Win32 machines is presented below.

regex=<string>

Specifies a POSIX extended regular expression to be applied to the filenames and directory names,
which include the full path. If Exclude is not enabled, the regex will select which files are to be
included. If Exclude=yes is specified, the regex will select which files are to be excluded. Multiple

104

regex directives may be specified within an Options resource, and they will be applied in turn until the
first one that matches. Note, if you exclude a directory, no files or directories below it will be matched.

It is recommended to enclose the string in double quotes.

The regex libraries differ from one operating system to another, and in addition, regular expressions
are complicated, so you may want to test your expressions prior to running your backup by using the
bregex program. Please see the Utilities chapter of this manual for more. You can also test your full
FileSet definition by using the estimate command in the Console chapter of this manual.

You find yourself using a lot of Regex statements, which will cost quite a lot of CPU time, we recommend
you simplify them if you can, or better yet convert them to Wild statements which are much more
efficient.

regexfile=<string>
Specifies a POSIX extended regular expression to be applied to non-directories. No directories will be

matched by this directive. However, note that the match is done against the full path and filename,
so your regex string must take into account that filenames are preceded by the full path. If Exclude
is not enabled, the regex will select which files are to be included. If Exclude=yes is specified, the
regex will select which files are to be excluded. Multiple regex directives may be specified, and they
will be applied in turn until the first one that matches.

It is recommended to enclose the string in double quotes.

The regex libraries differ from one operating system to another, and in addition, regular expressions
are complicated, so you may want to test your expressions prior to running your backup by using the
bregex program. Please see the Utilities chapter of this manual for more.

regexdir=<string>
Specifies a POSIX extended regular expression to be applied to directory names only. No filenames

will be matched by this directive. Note, if Exclude is not enabled, the regex will select directories files
are to be included. If Exclude=yes is specified, the regex will select which files are to be excluded.
Multiple regex directives may be specified, and they will be applied in turn until the first one that
matches. Note, if you exclude a directory, no files or directories below it will be matched.

It is recommended to enclose the string in double quotes.

The regex libraries differ from one operating system to another, and in addition, regular expressions
are complicated, so you may want to test your expressions prior to running your backup by using the
bregex program. Please see the Utilities chapter of this manual for more.

Exclude = <yes|no> (default: no)
When enabled, any files matched within the Options will be excluded from the backup.

aclsupport=yes|no
The default is no. If this option is set to yes, and you have the POSIX libacl installed on your Linux

system, Bareos will backup the file and directory Unix Access Control Lists (ACL) as defined in IEEE
Std 1003.1e draft 17 and ”POSIX.1e” (abandoned). This feature is available on Unix systems only
and requires the Linux ACL library. Bareos is automatically compiled with ACL support if the libacl
library is installed on your Linux system (shown in config.out). While restoring the files Bareos will
try to restore the ACLs, if there is no ACL support available on the system, Bareos restores the files
and directories but not the ACL information. Please note, if you backup an EXT3 or XFS filesystem
with ACLs, then you restore them to a different filesystem (perhaps reiserfs) that does not have ACLs,
the ACLs will be ignored.

For other operating systems there is support for either POSIX ACLs or the more extensible NFSv4
ACLs.

The ACL stream format between Operation Systems is not compatible so for example an ACL saved
on Linux cannot be restored on Solaris.

The following Operating Systems are currently supported:

1. AIX (pre-5.3 (POSIX) and post 5.3 (POSIX and NFSv4) ACLs)

2. Darwin

3. FreeBSD (POSIX and NFSv4/ZFS ACLs)

4. HPUX

105

5. IRIX

6. Linux

7. Solaris (POSIX and NFSv4/ZFS ACLs)

8. Tru64

xattrsupport=yes|no
The default is no. If this option is set to yes, and your operating system support either so called

Extended Attributes or Extensible Attributes Bareos will backup the file and directory XATTR data.
This feature is available on UNIX only and depends on support of some specific library calls in libc.

The XATTR stream format between Operating Systems is not compatible so an XATTR saved on
Linux cannot for example be restored on Solaris.

On some operating systems ACLs are also stored as Extended Attributes (Linux, Darwin, FreeBSD)
Bareos checks if you have the aclsupport option enabled and if so will not save the same info when
saving extended attribute information. Thus ACLs are only saved once.

The following Operating Systems are currently supported:

1. AIX (Extended Attributes)

2. Darwin (Extended Attributes)

3. FreeBSD (Extended Attributes)

4. IRIX (Extended Attributes)

5. Linux (Extended Attributes)

6. NetBSD (Extended Attributes)

7. Solaris (Extended Attributes and Extensible Attributes)

8. Tru64 (Extended Attributes)

ignore case=yes|no
The default is no. On Windows systems, you will almost surely want to set this to yes. When this

directive is set to yes all the case of character will be ignored in wild-card and regex comparisons.
That is an uppercase A will match a lowercase a.

fstype=filesystem-type
This option allows you to select files and directories by the filesystem type. The permitted filesystem-

type names are:

ext2, jfs, ntfs, proc, reiserfs, xfs, usbdevfs, sysfs, smbfs, iso9660.

You may have multiple Fstype directives, and thus permit matching of multiple filesystem types within
a single Options resource. If the type specified on the fstype directive does not match the filesystem
for a particular directive, that directory will not be backed up. This directive can be used to prevent
backing up non-local filesystems. Normally, when you use this directive, you would also set onefs=no
so that Bareos will traverse filesystems.

This option is not implemented in Win32 systems.

DriveType=Windows-drive-type
This option is effective only on Windows machines and is somewhat similar to the Unix/Linux fstype

described above, except that it allows you to select what Windows drive types you want to allow. By
default all drive types are accepted.

The permitted drivetype names are:

removable, fixed, remote, cdrom, ramdisk

You may have multiple Driveype directives, and thus permit matching of multiple drive types within a
single Options resource. If the type specified on the drivetype directive does not match the filesystem
for a particular directive, that directory will not be backed up. This directive can be used to prevent
backing up non-local filesystems. Normally, when you use this directive, you would also set onefs=no
so that Bareos will traverse filesystems.

This option is not implemented in Unix/Linux systems.

hfsplussupport=yes|no
This option allows you to turn on support for Mac OSX HFS plus finder information.

106

strippath=<integer>
This option will cause integer paths to be stripped from the front of the full path/filename being

backed up. This can be useful if you are migrating data from another vendor or if you have taken a
snapshot into some subdirectory. This directive can cause your filenames to be overlayed with regular
backup data, so should be used only by experts and with great care.

size=sizeoption
This option will allow you to select files by their actual size. You can select either files smaller than

a certain size or bigger then a certain size, files of a size in a certain range or files of a size which is
within 1 % of its actual size.

The following settings can be used:

1. <size>-<size> - Select file in range size - size.

2. <size - Select files smaller than size.

3. >size - Select files bigger than size.

4. size - Select files which are within 1 % of size.

shadowing=none|localwarn|localremove|globalwarn|globalremove
The default is none. This option performs a check within the fileset for any file-list entries which are

shadowing each other. Lets say you specify / and /usr but /usr is not a separate filesystem. Then in
the normal situation both / and /usr would lead to data being backed up twice.

The following settings can be used:

1. none - Do NO shadowing check

2. localwarn - Do shadowing check within one include block and warn

3. localremove - Do shadowing check within one include block and remove duplicates

4. globalwarn - Do shadowing check between all include blocks and warn

5. globalremove - Do shadowing check between all include blocks and remove duplicates

The local and global part of the setting relate to the fact if the check should be performed only within
one include block (local) or between multiple include blocks of the same fileset (global). The warn and
remove part of the keyword sets the action e.g. warn the user about shadowing or remove the entry
shadowing the other.

Example for a fileset resource with fileset shadow warning enabled:

FileSet {

Name = "Test Set"

Include {

Options {

signature = MD5

shadowing = localwarn

}

File = /

File = /usr

}

}

Configuration 9.18: FileSet resource with fileset shadow warning enabled

meta=tag
This option will add a meta tag to a fileset. These meta tags are used by the Native NDMP protocol

to pass NDMP backup or restore environment variables via the Data Management Agent (DMA) in
Bareos to the remote NDMP Data Agent. You can have zero or more metatags which are all passed
to the remote NDMP Data Agent.

9.5.2 FileSet Exclude Ressource

FileSet Exclude-Ressources very similar to Include-Ressources, except that they only allow following direc-
tives:

107

File = < filename | directory | |command | \<includefile-client | <includefile-server >
Files to exclude are descripted in the same way as at the FileSet Include Ressource.

For example:

FileSet {

Name = Exclusion_example

Include {

Options {

Signature = SHA1

}

File = /

File = /boot

File = /home

File = /rescue

File = /usr

}

Exclude {

File = /proc

File = /tmp # Don’t add trailing /

File = .journal

File = .autofsck

}

}

Configuration 9.19: FileSet using Exclude

Another way to exclude files and directories is to use the Exclude option from the Include section.

9.5.3 FileSet Examples

The following is an example of a valid FileSet resource definition. Note, the first Include pulls in the contents
of the file /etc/backup.list when Bareos is started (i.e. the @), and that file must have each filename to
be backed up preceded by a File = and on a separate line.

FileSet {

Name = "Full Set"

Include {

Options {

Compression=GZIP

signature=SHA1

Sparse = yes

}

@/etc/backup.list

}

Include {

Options {

wildfile = "*.o"

wildfile = "*.exe"

Exclude = yes

}

File = /root/myfile

File = /usr/lib/another_file

}

}

Configuration 9.20: FileSet using import

In the above example, all the files contained in /etc/backup.list will be compressed with GZIP compres-
sion, an SHA1 signature will be computed on the file’s contents (its data), and sparse file handling will
apply.
The two directories /root/myfile and /usr/lib/another_file will also be saved without any options, but
all files in those directories with the extensions .o and .exe will be excluded.
Let’s say that you now want to exclude the directory /tmp. The simplest way to do so is to add an exclude
directive that lists /tmp. The example above would then become:

FileSet {

Name = "Full Set"

Include {

Options {

Compression=GZIP

signature=SHA1

108

Sparse = yes

}

@/etc/backup.list

}

Include {

Options {

wildfile = "*.o"

wildfile = "*.exe"

Exclude = yes

}

File = /root/myfile

File = /usr/lib/another_file

}

Exclude {

File = /tmp # don’t add trailing /

}

}

Configuration 9.21: extended FileSet excluding /tmp

You can add wild-cards to the File directives listed in the Exclude directory, but you need to take care
because if you exclude a directory, it and all files and directories below it will also be excluded.
Now lets take a slight variation on the above and suppose you want to save all your whole filesystem except
/tmp. The problem that comes up is that Bareos will not normally cross from one filesystem to another.
Doing a df command, you get the following output:

root@linux:~# df
Filesystem 1k-blocks Used Available Use% Mounted on

/dev/hda5 5044156 439232 4348692 10% /

/dev/hda1 62193 4935 54047 9% /boot

/dev/hda9 20161172 5524660 13612372 29% /home

/dev/hda2 62217 6843 52161 12% /rescue

/dev/hda8 5044156 42548 4745376 1% /tmp

/dev/hda6 5044156 2613132 2174792 55% /usr

none 127708 0 127708 0% /dev/shm

//minimatou/c$ 14099200 9895424 4203776 71% /mnt/mmatou

lmatou:/ 1554264 215884 1258056 15% /mnt/matou

lmatou:/home 2478140 1589952 760072 68% /mnt/matou/home

lmatou:/usr 1981000 1199960 678628 64% /mnt/matou/usr

lpmatou:/ 995116 484112 459596 52% /mnt/pmatou

lpmatou:/home 19222656 2787880 15458228 16% /mnt/pmatou/home

lpmatou:/usr 2478140 2038764 311260 87% /mnt/pmatou/usr

deuter:/ 4806936 97684 4465064 3% /mnt/deuter

deuter:/home 4806904 280100 4282620 7% /mnt/deuter/home

deuter:/files 44133352 27652876 14238608 67% /mnt/deuter/files

Commands 9.22: df

And we see that there are a number of separate filesystems (/ /boot /home /rescue /tmp and /usr not to
mention mounted systems). If you specify only / in your Include list, Bareos will only save the Filesystem
/dev/hda5. To save all filesystems except /tmp with out including any of the Samba or NFS mounted
systems, and explicitly excluding a /tmp, /proc, .journal, and .autofsck, which you will not want to be saved
and restored, you can use the following:

FileSet {

Name = Include_example

Include {

Options {

wilddir = /proc

wilddir = /tmp

wildfile = "/.journal"

wildfile = "/.autofsck"

exclude = yes

}

File = /

File = /boot

File = /home

File = /rescue

File = /usr

}

}

Configuration 9.23: FileSet mount points

109

Since /tmp is on its own filesystem and it was not explicitly named in the Include list, it is not really needed
in the exclude list. It is better to list it in the Exclude list for clarity, and in case the disks are changed so
that it is no longer in its own partition.
Now, lets assume you only want to backup .Z and .gz files and nothing else. This is a bit trickier because
Bareos by default will select everything to backup, so we must exclude everything but .Z and .gz files. If
we take the first example above and make the obvious modifications to it, we might come up with a FileSet
that looks like this:

FileSet {

Name = "Full Set"

Include { !!!!!!!!!!!!

Options { This

wildfile = "*.Z" example

wildfile = "*.gz" doesn’t

work

} !!!!!!!!!!!!

File = /myfile

}

}

Configuration 9.24: Non-working example

The *.Z and *.gz files will indeed be backed up, but all other files that are not matched by the Options
directives will automatically be backed up too (i.e. that is the default rule).
To accomplish what we want, we must explicitly exclude all other files. We do this with the following:

FileSet {

Name = "Full Set"

Include {

Options {

wildfile = "*.Z"

wildfile = "*.gz"

}

Options {

Exclude = yes

RegexFile = ".*"

}

File = /myfile

}

}

Configuration 9.25: Exclude all except specific wildcards

The ”trick” here was to add a RegexFile expression that matches all files. It does not match directory names,
so all directories in /myfile will be backed up (the directory entry) and any *.Z and *.gz files contained in
them. If you know that certain directories do not contain any *.Z or *.gz files and you do not want the
directory entries backed up, you will need to explicitly exclude those directories. Backing up a directory
entries is not very expensive.
Bareos uses the system regex library and some of them are different on different OSes. The above has
been reported not to work on FreeBSD. This can be tested by using the estimate job=job-name listing
command in the console and adapting the RegexFile expression appropriately.
Please be aware that allowing Bareos to traverse or change file systems can be very dangerous. For example,
with the following:

FileSet {

Name = "Bad example"

Include {

Options {

onefs=no

}

File = /mnt/matou

}

}

Configuration 9.26: backup all filesystem below /mnt/matou (use with care)

you will be backing up an NFS mounted partition (/mnt/matou), and since onefs is set to no, Bareos will
traverse file systems. Now if /mnt/matou has the current machine’s file systems mounted, as is often the
case, you will get yourself into a recursive loop and the backup will never end.
As a final example, let’s say that you have only one or two subdirectories of /home that you want to backup.
For example, you want to backup only subdirectories beginning with the letter a and the letter b – i.e.
/home/a* and /home/b*. Now, you might first try:

110

FileSet {

Name = "Full Set"

Include {

Options {

wilddir = "/home/a*"

wilddir = "/home/b*"

}

File = /home

}

}

Configuration 9.27: Non-working example

The problem is that the above will include everything in /home. To get things to work correctly, you need
to start with the idea of exclusion instead of inclusion. So, you could simply exclude all directories except
the two you want to use:

FileSet {

Name = "Full Set"

Include {

Options {

RegexDir = "^/home/[c-z]"

exclude = yes

}

File = /home

}

}

Configuration 9.28: Exclude by regex

And assuming that all subdirectories start with a lowercase letter, this would work.
An alternative would be to include the two subdirectories desired and exclude everything else:

FileSet {

Name = "Full Set"

Include {

Options {

wilddir = "/home/a*"

wilddir = "/home/b*"

}

Options {

RegexDir = ".*"

exclude = yes

}

File = /home

}

}

Configuration 9.29: Include and Exclude

The following example shows how to back up only the My Pictures directory inside the My Documents
directory for all users in C:/Documents and Settings, i.e. everything matching the pattern:
C:/Documents and Settings/*/My Documents/My Pictures/*

To understand how this can be achieved, there are two important points to remember:
Firstly, Bareos walks over the filesystem depth-first starting from the File = lines. It stops descending when
a directory is excluded, so you must include all ancestor directories of each directory containing files to be
included.
Secondly, each directory and file is compared to the Options clauses in the order they appear in the FileSet.
When a match is found, no further clauses are compared and the directory or file is either included or
excluded.
The FileSet resource definition below implements this by including specifc directories and files and excluding
everything else.

FileSet {

Name = "AllPictures"

Include {

File = "C:/Documents and Settings"

Options {

signature = SHA1

verify = s1

111

IgnoreCase = yes

Include all users’ directories so we reach the inner ones. Unlike a

WildDir pattern ending in *, this RegExDir only matches the top-level

directories and not any inner ones.

RegExDir = "^C:/Documents and Settings/[^/]+$"

Ditto all users’ My Documents directories.

WildDir = "C:/Documents and Settings/*/My Documents"

Ditto all users’ My Documents/My Pictures directories.

WildDir = "C:/Documents and Settings/*/My Documents/My Pictures"

Include the contents of the My Documents/My Pictures directories and

any subdirectories.

Wild = "C:/Documents and Settings/*/My Documents/My Pictures/*"

}

Options {

Exclude = yes

IgnoreCase = yes

Exclude everything else, in particular any files at the top level and

any other directories or files in the users’ directories.

Wild = "C:/Documents and Settings/*"

}

}

}

Configuration 9.30: Include/Exclude example

9.5.4 Windows FileSets

If you are entering Windows file names, the directory path may be preceded by the drive and a colon (as in
c:). However, the path separators must be specified in Unix convention (i.e. forward slash (/)). If you wish
to include a quote in a file name, precede the quote with a backslash (\). For example you might use the
following for a Windows machine to backup the ”My Documents” directory:

FileSet {

Name = "Windows Set"

Include {

Options {

WildFile = "*.obj"

WildFile = "*.exe"

exclude = yes

}

File = "c:/My Documents"

}

}

Configuration 9.31: Windows FileSet

For exclude lists to work correctly on Windows, you must observe the following rules:

� Filenames are case sensitive, so you must use the correct case.

� To exclude a directory, you must not have a trailing slash on the directory name.

� If you have spaces in your filename, you must enclose the entire name in double-quote characters (”).
Trying to use a backslash before the space will not work.

� If you are using the old Exclude syntax (noted below), you may not specify a drive letter in the exclude.
The new syntax noted above should work fine including driver letters.

Thanks to Thiago Lima for summarizing the above items for us. If you are having difficulties getting includes
or excludes to work, you might want to try using the estimate job=xxx listing command documented in
the Console chapter of this manual.
On Win32 systems, if you move a directory or file or rename a file into the set of files being backed up,
and a Full backup has already been made, Bareos will not know there are new files to be saved during an
Incremental or Differential backup (blame Microsoft, not us). To avoid this problem, please copy any new
directory or files into the backup area. If you do not have enough disk to copy the directory or files, move
them, but then initiate a Full backup.

112

Example Fileset for Windows The following example demostrates a Windows FileSet. It backups all
data from all fixed drives and only excludes some Windows temporary data.

FileSet {

Name = "Windows All Drives"

Enable VSS = yes

Include {

Options {

Signature = MD5

Drive Type = fixed

IgnoreCase = yes

WildFile = "[A-Z]:/pagefile.sys"

WildDir = "[A-Z]:/RECYCLER"

WildDir = "[A-Z]:/$RECYCLE.BIN"

WildDir = "[A-Z]:/System Volume Information"

Exclude = yes

}

File = /

}

}

Configuration 9.32: Windows All Drives FileSet

File = / includes all Windows drives. Using Drive Type = fixed excludes drives like USB-Stick or CD-
ROM Drive. Using WildDir = "[A-Z]:/RECYCLER" excludes the backup of the directory RECYCLER from all
drives.

9.5.5 Testing Your FileSet

If you wish to get an idea of what your FileSet will really backup or if your exclusion rules will work correctly,
you can test it by using the estimate command in the Console program. See the estimate in the Console
chapter of this manual.
As an example, suppose you add the following test FileSet:

FileSet {

Name = Test

Include {

File = /home/xxx/test

Options {

regex = ".*\\.c$"

}

}

}

Configuration 9.33: FileSet for all *.c files

You could then add some test files to the directory /home/xxx/test and use the following command in
the console:

estimate job=<any-job-name> listing client=<desired-client> fileset=Test

bconsole 9.34: estimate

to give you a listing of all files that match. In the above example, it should be only files with names ending
in .c.

9.6 Client Resource

The Client (or FileDaemon) resource defines the attributes of the Clients that are served by this Director;
that is the machines that are to be backed up. You will need one Client resource definition for each machine
to be backed up.

configuration directive name type of data default value remark

Address = string required
Allow Client Connect = yes|no alias, deprecated
Auth Type = None|Clear|MD5 None
Auto Prune = yes|no no
Catalog = resource-name

113

Connection From Client To Director = yes|no no
Connection From Director To Client = yes|no yes
Description = string
Enabled = yes|no yes
FD Address = string alias
FD Password = password alias
FD Port = positive-integer 9102 alias
File Retention = time 5184000
Hard Quota = Size64 0
Heartbeat Interval = time 0
Job Retention = time 15552000
Maximum Bandwidth Per Job = speed
Maximum Concurrent Jobs = positive-integer 1
Name = name required
NDMP Block Size = positive-integer 64512
NDMP Log Level = positive-integer 4
NDMP Use LMDB = yes|no yes
Passive = yes|no no
Password = password required
Port = positive-integer 9102
Protocol = AuthProtocolType Native
Quota Include Failed Jobs = yes|no yes
Soft Quota = Size64 0
Soft Quota Grace Period = time 0
Strict Quotas = yes|no no
TLS Allowed CN = string-list
TLS Authenticate = yes|no no
TLS CA Certificate Dir = path
TLS CA Certificate File = path
TLS Certificate = path
TLS Certificate Revocation List = path
TLS Cipher List = string
TLS DH File = path
TLS Enable = yes|no no
TLS Key = path
TLS Require = yes|no no
TLS Verify Peer = yes|no yes
Username = string

Address = <string> (required)
Where the address is a host name, a fully qualified domain name, or a network address in dotted quad
notation for a Bareos File server daemon. This directive is required.

Allow Client Connect = <yes|no>
Please note! This directive is deprecated.
Alias of ”Connection From Client To Director”.

Auth Type = <None|Clear|MD5> (default: None)
Specifies the authentication type that must be supplied when connecting to a backup protocol that
uses a specific authentication type.

Auto Prune = <yes|no> (default: no)
If set to yes, Bareos will automatically apply the File Retention Dir

Client period and the Job Retention
Dir
Client period for the client at the end of the job.

114

Pruning affects only information in the catalog and not data stored in the backup archives (on
Volumes), but if pruning deletes all data referring to a certain volume, the volume is regarded as
empty and will possibly be overwritten before the volume retention has expired.

Catalog = <resource-name>
This specifies the name of the catalog resource to be used for this Client. If none is specified the first
defined catalog is used.

Connection From Client To Director = <yes|no> (default: no)
The Director will accept incoming network connection from this Client.

For details, see Client Initiated Connection.
Version >= 16.2.2

Connection From Director To Client = <yes|no> (default: yes)
Let the Director initiate the network connection to the Client.

Version >= 16.2.2

Description = <string>

Enabled = <yes|no> (default: yes)
En- or disable this resource.

FD Address = <string>
Alias for Address.

FD Password = <password>
This directive is an alias.

FD Port = <positive-integer> (default: 9102)
This directive is an alias.

Where the port is a port number at which the Bareos File Daemon can be contacted. The default is
9102. For NDMP backups set this to 10000.

File Retention = <time> (default: 5184000)
The File Retention directive defines the length of time that Bareos will keep File records in the Catalog
database after the End time of the Job corresponding to the File records. When this time period expires
and Auto Prune Dir

Client = yes, Bareos will prune (remove) File records that are older than the specified
File Retention period. Note, this affects only records in the catalog database. It does not affect your
archive backups.

File records may actually be retained for a shorter period than you specify on this directive if you
specify either a shorter Job Retention Dir

Client or a shorter Volume Retention Dir
Pool period. The shortest

retention period of the three takes precedence.

The default is 60 days.

Hard Quota = <Size64> (default: 0)
The amount of data determined by the Hard Quota directive sets the hard limit of backup space that
cannot be exceeded. This is the maximum amount this client can back up before any backup job will
be aborted.

If the Hard Quota is exceeded, the running job is terminated:

115

Fatal error: append.c:218 Quota Exceeded. Job Terminated.

Heartbeat Interval = <time> (default: 0)
This directive is optional and if specified will cause the Director to set a keepalive interval (heartbeat)
in seconds on each of the sockets it opens for the Storage resource. If set, this value overrides
Heartbeat Interval Dir

Director.

Job Retention = <time> (default: 15552000)
The Job Retention directive defines the length of time that Bareos will keep Job records in the Catalog
database after the Job End time. When this time period expires and Auto Prune Dir

Client = yes Bareos
will prune (remove) Job records that are older than the specified File Retention period. As with the
other retention periods, this affects only records in the catalog and not data in your archive backup.

If a Job record is selected for pruning, all associated File and JobMedia records will also be pruned
regardless of the File Retention period set. As a consequence, you normally will set the File retention
period to be less than the Job retention period. The Job retention period can actually be less than
the value you specify here if you set the Volume Retention Dir

Pool directive to a smaller duration. This is
because the Job retention period and the Volume retention period are independently applied, so the
smaller of the two takes precedence.

The default is 180 days.

Maximum Bandwidth Per Job = <speed>
The speed parameter specifies the maximum allowed bandwidth that a job may use when started for
this Client. The speed parameter should be specified in k/s, Kb/s, m/s or Mb/s.

Maximum Concurrent Jobs = <positive-integer> (default: 1)
This directive specifies the maximum number of Jobs with the current Client that can run concurrently.
Note, this directive limits only Jobs for Clients with the same name as the resource in which it
appears. Any other restrictions on the maximum concurrent jobs such as in the Director, Job or
Storage resources will also apply in addition to any limit specified here.

Name = <name> (required)
The name of the resource.

The client name which will be used in the Job resource directive or in the console run command.

NDMP Block Size = <positive-integer> (default: 64512)
This directive sets the default NDMP blocksize for this client.

NDMP Log Level = <positive-integer> (default: 4)
This directive sets the loglevel for the NDMP protocol library.

NDMP Use LMDB = <yes|no> (default: yes)

Passive = <yes|no> (default: no)
If enabled, the Storage Daemon will initiate the network connection to the Client. If disabled, the
Client will initiate the netowrk connection to the Storage Daemon.

The normal way of initializing the data channel (the channel where the backup data itself is transported)
is done by the file daemon (client) that connects to the storage daemon.

By using the client passive mode, the initialization of the datachannel is reversed, so that the storage
daemon connects to the filedaemon.

116

See chapter Passive Client.
Version >= 13.2.0

Password = <password> (required)
This is the password to be used when establishing a connection with the File services, so the Client
configuration file on the machine to be backed up must have the same password defined for this Director.

The password is plain text.

Port = <positive-integer> (default: 9102)

Protocol = <Native|NDMP> (default: Native)
The backup protocol to use to run the Job.

Currently the director understands the following protocols:

1. Native - The native Bareos protocol

2. NDMP - The NDMP protocol

Version >= 13.2.0

Quota Include Failed Jobs = <yes|no> (default: yes)
When calculating the amount a client used take into consideration any failed Jobs.

Soft Quota = <Size64> (default: 0)
This is the amount after which there will be a warning issued that a client is over his softquota. A
client can keep doing backups until it hits the hard quota or when the Soft Quota Grace Period Dir

Client

is expired.

Soft Quota Grace Period = <time> (default: 0)
Time allowed for a client to be over its Soft Quota Dir

Client before it will be enforced.

When the amount of data backed up by the client outruns the value specified by the Soft Quota
directive, the next start of a backup job will start the soft quota grace time period. This is written to
the job log:

Error: Softquota Exceeded, Grace Period starts now.

In the Job Overview, the value of Grace Expiry Date: will then change from
Soft Quota was never exceeded to the date when the grace time expires, e.g. 11-Dec-2012 04:

09:05.

During that period, it is possible to do backups even if the total amount of stored data exceeds the
limit specified by soft quota.

If in this state, the job log will write:

Error: Softquota Exceeded, will be enforced after Grace Period expires.

After the grace time expires, in the next backup job of the client, the value for Burst Quota will be
set to the value that the client has stored at this point in time. Also, the job will be terminated. The
following information in the job log shows what happened:

Warning: Softquota Exceeded and Grace Period expired.

Setting Burst Quota to 122880000 Bytes.

Fatal error: Soft Quota Exceeded / Grace Time expired. Job terminated.

At this point, it is not possible to do any backup of the client. To be able to do more backups, the
amount of stored data for this client has to fall under the burst quota value.

117

Strict Quotas = <yes|no> (default: no)
The directive Strict Quotas determines whether, after the Grace Time Period is over, to enforce the
Burst Limit (Strict Quotas = No) or the Soft Limit (Strict Quotas = Yes).

The Job Log shows either

Softquota Exceeded, enforcing Burst Quota Limit.

or

Softquota Exceeded, enforcing Strict Quota Limit.

TLS Allowed CN = <string-list>
”Common Name”s (CNs) of the allowed peer certificates.

TLS Authenticate = <yes|no> (default: no)
Use TLS only to authenticate, not for encryption.

TLS CA Certificate Dir = <path>
Path of a TLS CA certificate directory.

TLS CA Certificate File = <path>
Path of a PEM encoded TLS CA certificate(s) file.

TLS Certificate = <path>
Path of a PEM encoded TLS certificate.

TLS Certificate Revocation List = <path>
Path of a Certificate Revocation List file.

TLS Cipher List = <string>
List of valid TLS Ciphers.

TLS DH File = <path>
Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange
will be used for the ephemeral keying, allowing for forward secrecy of communications.

TLS Enable = <yes|no> (default: no)
Enable TLS support.

Bareos can be configured to encrypt all its network traffic. See chapter TLS Configuration Directives
to see, how the Bareos Director (and the other components) must be configured to use TLS.

118

TLS Key = <path>
Path of a PEM encoded private key. It must correspond to the specified ”TLS Certificate”.

TLS Require = <yes|no> (default: no)
Without setting this to yes, Bareos can fall back to use unencryption connections. Enabling this
implicietly sets ”TLS Enable = yes”.

TLS Verify Peer = <yes|no> (default: yes)
If disabled, all certificates signed by a known CA will be accepted. If enabled, the CN of a certificate
must the Address or in the ”TLS Allowed CN” list.

Username = <string>
Specifies the username that must be supplied when authenticating. Only used for the non Native
protocols at the moment.

The following is an example of a valid Client resource definition:

Client {

Name = client1-fd

Address = client1.example.com

Password = "secret"

}

Configuration 9.35: Minimal client resource definition in bareos-dir.conf

The following is an example of a Quota Configuration in Client resource:

Client {

Name = client1-fd

Address = client1.example.com

Password = "secret"

Quota

Soft Quota = 50 mb

Soft Quota Grace Period = 2 days

Strict Quotas = Yes

Hard Quota = 150 mb

Quota Include Failed Jobs = yes

}

Configuration 9.36: Quota Configuration in Client resource

9.7 Storage Resource

The Storage resource defines which Storage daemons are available for use by the Director.

configuration directive name type of data default value remark

Address = string required
Allow Compression = yes|no yes
Auth Type = None|Clear|MD5 None
Auto Changer = yes|no no
Cache Status Interval = time 30
Changer Device = strname
Collect Statistics = yes|no no
Description = string
Device = Device required

119

Enabled = yes|no yes
Heartbeat Interval = time 0
Maximum Bandwidth Per Job = speed
Maximum Concurrent Jobs = positive-integer 1
Maximum Concurrent Read Jobs = positive-integer 0
Media Type = strname required
Name = name required
Paired Storage = resource-name
Password = password required
Port = positive-integer 9103
Protocol = AuthProtocolType Native
SD Address = string alias
SD Password = password alias
SD Port = positive-integer 9103 alias
Sdd Port = positive-integer deprecated
Tape Device = string-list
TLS Allowed CN = string-list
TLS Authenticate = yes|no no
TLS CA Certificate Dir = path
TLS CA Certificate File = path
TLS Certificate = path
TLS Certificate Revocation List = path
TLS Cipher List = string
TLS DH File = path
TLS Enable = yes|no no
TLS Key = path
TLS Require = yes|no no
TLS Verify Peer = yes|no yes
Username = string

Address = <string> (required)
Where the address is a host name, a fully qualified domain name, or an IP address. Please note
that the <address> as specified here will be transmitted to the File daemon who will then use it to
contact the Storage daemon. Hence, it is not, a good idea to use localhost as the name but rather a
fully qualified machine name or an IP address. This directive is required.

Allow Compression = <yes|no> (default: yes)
This directive is optional, and if you specify No, it will cause backups jobs running on this storage
resource to run without client File Daemon compression. This effectively overrides compression
options in FileSets used by jobs which use this storage resource.

Auth Type = <None|Clear|MD5> (default: None)
Specifies the authentication type that must be supplied when connecting to a backup protocol that
uses a specific authentication type.

Auto Changer = <yes|no> (default: no)
If you specify yes for this command, when you use the label command or the add command to
create a new Volume, Bareos will also request the Autochanger Slot number. This simplifies creating
database entries for Volumes in an autochanger. If you forget to specify the Slot, the autochanger will
not be used. However, you may modify the Slot associated with a Volume at any time by using the
update volume or update slots command in the console program. When autochanger is enabled,
the algorithm used by Bareos to search for available volumes will be modified to consider only Volumes
that are known to be in the autochanger’s magazine. If no in changer volume is found, Bareos will
attempt recycling, pruning, ..., and if still no volume is found, Bareos will search for any volume
whether or not in the magazine. By privileging in changer volumes, this procedure minimizes operator
intervention.

120

For the autochanger to be used, you must also specify Autochanger = yes in the Autochanger Sd
Device

in the Storage daemon’s configuration file as well as other important Storage daemon configuration
information. Please consult the Autochanger Support chapter for the details of using autochangers.

Cache Status Interval = <time> (default: 30)

Changer Device = <strname>

Collect Statistics = <yes|no> (default: no)
Collect statistic information. These information will be collected by the Director (see Statistics Collect
Interval Dir

Director) and stored in the Catalog.

Description = <string>
Information.

Device = <Device> (required)
This directive specifies the Storage daemon’s name of the device resource to be used for the storage.
If you are using an Autochanger, the name specified here should be the name of the Storage daemon’s
Autochanger resource rather than the name of an individual device. This name is not the physical
device name, but the logical device name as defined on the Name directive contained in the Device or
the Autochanger resource definition of the Storage daemon configuration file. You can specify any
name you would like (even the device name if you prefer) up to a maximum of 127 characters in length.
The physical device name associated with this device is specified in the Storage daemon configuration
file (as Archive Device). Please take care not to define two different Storage resource directives in the
Director that point to the same Device in the Storage daemon. Doing so may cause the Storage daemon
to block (or hang) attempting to open the same device that is already open. This directive is required.

Enabled = <yes|no> (default: yes)
En- or disable this resource.

Heartbeat Interval = <time> (default: 0)
This directive is optional and if specified will cause the Director to set a keepalive interval (heartbeat)
in seconds on each of the sockets it opens for the Storage resource. This value will override any
specified at the Director level. It is implemented only on systems (Linux, ...) that provide the
setsockopt TCP KEEPIDLE function. The default value is zero, which means no change is made to
the socket.

Maximum Bandwidth Per Job = <speed>

Maximum Concurrent Jobs = <positive-integer> (default: 1)
This directive specifies the maximum number of Jobs with the current Storage resource that can run
concurrently. Note, this directive limits only Jobs for Jobs using this Storage daemon. Any other
restrictions on the maximum concurrent jobs such as in the Director, Job or Client resources will also
apply in addition to any limit specified here.

If you set the Storage daemon’s number of concurrent jobs greater than one, we recommend that you
read Concurrent Jobs and/or turn data spooling on as documented in Data Spooling.

Maximum Concurrent Read Jobs = <positive-integer> (default: 0)
This directive specifies the maximum number of Jobs with the current Storage resource that can read

121

concurrently.

Media Type = <strname> (required)
This directive specifies the Media Type to be used to store the data. This is an arbitrary string of
characters up to 127 maximum that you define. It can be anything you want. However, it is best to
make it descriptive of the storage media (e.g. File, DAT, ”HP DLT8000”, 8mm, ...). In addition, it
is essential that you make the Media Type specification unique for each storage media type. If you
have two DDS-4 drives that have incompatible formats, or if you have a DDS-4 drive and a DDS-4
autochanger, you almost certainly should specify different Media Types. During a restore, assuming
a DDS-4 Media Type is associated with the Job, Bareos can decide to use any Storage daemon that
supports Media Type DDS-4 and on any drive that supports it.

If you are writing to disk Volumes, you must make doubly sure that each Device resource defined in
the Storage daemon (and hence in the Director’s conf file) has a unique media type. Otherwise Bareos
may assume, these Volumes can be mounted and read by any Storage daemon File device.

Currently Bareos permits only a single Media Type per Storage Device definition. Consequently, if
you have a drive that supports more than one Media Type, you can give a unique string to Volumes
with different intrinsic Media Type (Media Type = DDS-3-4 for DDS-3 and DDS-4 types), but then
those volumes will only be mounted on drives indicated with the dual type (DDS-3-4).

If you want to tie Bareos to using a single Storage daemon or drive, you must specify a unique Media
Type for that drive. This is an important point that should be carefully understood. Note, this applies
equally to Disk Volumes. If you define more than one disk Device resource in your Storage daemon’s
conf file, the Volumes on those two devices are in fact incompatible because one can not be mounted
on the other device since they are found in different directories. For this reason, you probably should
use two different Media Types for your two disk Devices (even though you might think of them as both
being File types). You can find more on this subject in the Basic Volume Management chapter of this
manual.

The MediaType specified in the Director’s Storage resource, must correspond to the Media Type
specified in the Device resource of the Storage daemon configuration file. This directive is required,
and it is used by the Director and the Storage daemon to ensure that a Volume automatically selected
from the Pool corresponds to the physical device. If a Storage daemon handles multiple devices (e.g.
will write to various file Volumes on different partitions), this directive allows you to specify exactly
which device.

As mentioned above, the value specified in the Director’s Storage resource must agree with the value
specified in the Device resource in the Storage daemon’s configuration file. It is also an additional
check so that you don’t try to write data for a DLT onto an 8mm device.

Name = <name> (required)
The name of the resource.

The name of the storage resource. This name appears on the Storage directive specified in the Job
resource and is required.

Paired Storage = <resource-name>
For NDMP backups this points to the definition of the Native Storage that is accesses via the NDMP
protocol. For now we only support NDMP backups and restores to access Native Storage Daemons
via the NDMP protocol. In the future we might allow to use Native NDMP storage which is not
bound to a Bareos Storage Daemon.

Password = <password> (required)
This is the password to be used when establishing a connection with the Storage services. This same
password also must appear in the Director resource of the Storage daemon’s configuration file. This
directive is required.

The password is plain text.

Port = <positive-integer> (default: 9103)
Where port is the port to use to contact the storage daemon for information and to start jobs. This

122

same port number must appear in the Storage resource of the Storage daemon’s configuration file.

Protocol = <AuthProtocolType> (default: Native)

SD Address = <string>
Alias for Address.

SD Password = <password>
Alias for Password.

SD Port = <positive-integer> (default: 9103)
Alias for Port.

Sdd Port = <positive-integer>
Please note! This directive is deprecated.

Tape Device = <string-list>

TLS Allowed CN = <string-list>
”Common Name”s (CNs) of the allowed peer certificates.

TLS Authenticate = <yes|no> (default: no)
Use TLS only to authenticate, not for encryption.

TLS CA Certificate Dir = <path>
Path of a TLS CA certificate directory.

TLS CA Certificate File = <path>
Path of a PEM encoded TLS CA certificate(s) file.

TLS Certificate = <path>
Path of a PEM encoded TLS certificate.

TLS Certificate Revocation List = <path>
Path of a Certificate Revocation List file.

123

TLS Cipher List = <string>
List of valid TLS Ciphers.

TLS DH File = <path>
Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange
will be used for the ephemeral keying, allowing for forward secrecy of communications.

TLS Enable = <yes|no> (default: no)
Enable TLS support.

Bareos can be configured to encrypt all its network traffic. For details, refer to chapter TLS
Configuration Directives.

TLS Key = <path>
Path of a PEM encoded private key. It must correspond to the specified ”TLS Certificate”.

TLS Require = <yes|no> (default: no)
Without setting this to yes, Bareos can fall back to use unencryption connections. Enabling this
implicietly sets ”TLS Enable = yes”.

TLS Verify Peer = <yes|no> (default: yes)
If disabled, all certificates signed by a known CA will be accepted. If enabled, the CN of a certificate
must the Address or in the ”TLS Allowed CN” list.

Username = <string>

The following is an example of a valid Storage resource definition:

Storage {

Name = DLTDrive

Address = lpmatou

Password = storage_password # password for Storage daemon

Device = "HP DLT 80" # same as Device in Storage daemon

Media Type = DLT8000 # same as MediaType in Storage daemon

}

Configuration 9.37: Storage resource (tape) example

9.8 Pool Resource

The Pool resource defines the set of storage Volumes (tapes or files) to be used by Bareos to write the data.
By configuring different Pools, you can determine which set of Volumes (media) receives the backup data.
This permits, for example, to store all full backup data on one set of Volumes and all incremental backups
on another set of Volumes. Alternatively, you could assign a different set of Volumes to each machine that
you backup. This is most easily done by defining multiple Pools.
Another important aspect of a Pool is that it contains the default attributes (Maximum Jobs, Retention
Period, Recycle flag, ...) that will be given to a Volume when it is created. This avoids the need for you
to answer a large number of questions when labeling a new Volume. Each of these attributes can later be
changed on a Volume by Volume basis using the update command in the console program. Note that you

124

must explicitly specify which Pool Bareos is to use with each Job. Bareos will not automatically search for
the correct Pool.
Most often in Bareos installations all backups for all machines (Clients) go to a single set of Volumes. In
this case, you will probably only use the Default Pool. If your backup strategy calls for you to mount a
different tape each day, you will probably want to define a separate Pool for each day. For more information
on this subject, please see the Backup Strategies chapter of this manual.
To use a Pool, there are three distinct steps. First the Pool must be defined in the Director’s configuration
file. Then the Pool must be written to the Catalog database. This is done automatically by the Director
each time that it starts, or alternatively can be done using the create command in the console program.
Finally, if you change the Pool definition in the Director’s configuration file and restart Bareos, the pool will
be updated alternatively you can use the update pool console command to refresh the database image. It is
this database image rather than the Director’s resource image that is used for the default Volume attributes.
Note, for the pool to be automatically created or updated, it must be explicitly referenced by a Job resource.
Next the physical media must be labeled. The labeling can either be done with the label command in the
console program or using the btape program. The preferred method is to use the label command in the
console program.
Finally, you must add Volume names (and their attributes) to the Pool. For Volumes to be used by Bareos
they must be of the same Media Type as the archive device specified for the job (i.e. if you are going to
back up to a DLT device, the Pool must have DLT volumes defined since 8mm volumes cannot be mounted
on a DLT drive). The Media Type has particular importance if you are backing up to files. When running
a Job, you must explicitly specify which Pool to use. Bareos will then automatically select the next Volume
to use from the Pool, but it will ensure that the Media Type of any Volume selected from the Pool is
identical to that required by the Storage resource you have specified for the Job.
If you use the label command in the console program to label the Volumes, they will automatically be added
to the Pool, so this last step is not normally required.
It is also possible to add Volumes to the database without explicitly labeling the physical volume. This is
done with the add console command.
As previously mentioned, each time Bareos starts, it scans all the Pools associated with each Catalog, and
if the database record does not already exist, it will be created from the Pool Resource definition. Bareos
probably should do an update pool if you change the Pool definition, but currently, you must do this
manually using the update pool command in the Console program.
The Pool Resource defined in the Director’s configuration file (bareos-dir.conf) may contain the following
directives:

configuration directive name type of data default value remark

Action On Purge = ActionOnPurge

Auto Prune = yes|no yes
Catalog = resource-name
Catalog Files = yes|no yes
Cleaning Prefix = strname CLN
Description = string
File Retention = time
Job Retention = time
Label Format = strname
Label Type = Label

Maximum Block Size = positive-integer
Maximum Volume Bytes = Size64

Maximum Volume Files = positive-integer
Maximum Volume Jobs = positive-integer
Maximum Volumes = positive-integer
Migration High Bytes = Size64

Migration Low Bytes = Size64

Migration Time = time
Minimum Block Size = positive-integer
Name = name required
Next Pool = resource-name
Pool Type = Pooltype Backup
Purge Oldest Volume = yes|no no
Recycle = yes|no yes

125

Recycle Current Volume = yes|no no
Recycle Oldest Volume = yes|no no
Recycle Pool = resource-name
Scratch Pool = resource-name
Storage = ResourceList

Use Catalog = yes|no yes
Use Volume Once = yes|no deprecated
Volume Retention = time 31536000
Volume Use Duration = time

Action On Purge = <ActionOnPurge>
This directive Action On Purge=Truncate instructs Bareos to truncate the volume when it is purged
with the purge volume action=truncate command. It is useful to prevent disk based volumes from
consuming too much space.

Pool {

Name = Default

Action On Purge = Truncate

...

}

You can schedule the truncate operation at the end of your BackupCatalogDir
Job job like in this example:

Job {

Name = BackupCatalog

...

RunScript {

RunsWhen=After

RunsOnClient=No

Console = "purge volume action=truncate storage=File allpools"

}

}

Auto Prune = <yes|no> (default: yes)
If Auto Prune=yes, the Volume Retention Dir

Pool period is automatically applied when a new Volume
is needed and no appendable Volumes exist in the Pool. Volume pruning causes expired Jobs (older
than the Volume Retention Dir

Pool period) to be deleted from the Catalog and permits possible recycling
of the Volume.

Catalog = <resource-name>
This specifies the name of the catalog resource to be used for this Pool. When a catalog is defined in
a Pool it will override the definition in the client (and the Catalog definition in a Job since Version
>= 13.4.0). e.g. this catalog setting takes precedence over any other definition.

Catalog Files = <yes|no> (default: yes)
This directive defines whether or not you want the names of the files that were saved to be put into
the catalog. If disabled, the Catalog database will be significantly smaller. The disadvantage is that
you will not be able to produce a Catalog listing of the files backed up for each Job (this is often
called Browsing). Also, without the File entries in the catalog, you will not be able to use the Console
restore command nor any other command that references File entries.

Cleaning Prefix = <strname> (default: CLN)
This directive defines a prefix string, which if it matches the beginning of a Volume name during
labeling of a Volume, the Volume will be defined with the VolStatus set to Cleaning and thus Bareos
will never attempt to use this tape. This is primarily for use with autochangers that accept barcodes
where the convention is that barcodes beginning with CLN are treated as cleaning tapes.

126

The default value for this directive is consequently set to CLN, so that in most cases the cleaning
tapes are automatically recognized without configuration. If you use another prefix for your cleaning
tapes, you can set this directive accordingly.

Description = <string>

File Retention = <time>
The File Retention directive defines the length of time that Bareos will keep File records in the Catalog
database after the End time of the Job corresponding to the File records.

This directive takes precedence over Client directives of the same name. For example, you can decide
to increase Retention times for Archive or OffSite Pool.

Note, this affects only records in the catalog database. It does not affect your archive backups.

For more information see Client documentation about File Retention Dir
Client

Job Retention = <time>
The Job Retention directive defines the length of time that Bareos will keep Job records in the Catalog
database after the Job End time. As with the other retention periods, this affects only records in the
catalog and not data in your archive backup.

This directive takes precedence over Client directives of the same name. For example, you can decide
to increase Retention times for Archive or OffSite Pool.

For more information see Client side documentation Job Retention Dir
Client

Label Format = <strname>
This directive specifies the format of the labels contained in this pool. The format directive is used as
a sort of template to create new Volume names during automatic Volume labeling.

The format should be specified in double quotes ("), and consists of letters, numbers and the special
characters hyphen (-), underscore (_), colon (:), and period (.), which are the legal characters for a
Volume name.

In addition, the format may contain a number of variable expansion characters which will be expanded
by a complex algorithm allowing you to create Volume names of many different formats. In all cases,
the expansion process must resolve to the set of characters noted above that are legal Volume names.
Generally, these variable expansion characters begin with a dollar sign ($) or a left bracket ([). For
more details on variable expansion, please see Variable Expansion on Volume Labels.

If no variable expansion characters are found in the string, the Volume name will be formed from the
format string appended with the a unique number that increases. If you do not remove volumes from
the pool, this number should be the number of volumes plus one, but this is not guaranteed. The unique
number will be edited as four digits with leading zeros. For example, with a Label Format = "File-",
the first volumes will be named File-0001, File-0002, ...

In almost all cases, you should enclose the format specification (part after the equal sign) in double
quotes (").

Label Type = <ANSI|IBM|Bareos>
This directive is implemented in the Director Pool resource and in the SD Device resource (Label
Type Sd

Device). If it is specified in the SD Device resource, it will take precedence over the value passed
from the Director to the SD.

Maximum Block Size = <positive-integer>
The Maximum Block Size can be defined here to define different block sizes per volume or statically
for all volumes at Maximum Block Size Sd

Device. If not defined, its default is 63 KB. Increasing this value
could improve the throughput of writing to tapes.

Please note! However make sure to read the Setting Block Sizes chapter carefully before applying any
changes.
Version >= 14.2.0

127

Maximum Volume Bytes = <Size64>
This directive specifies the maximum number of bytes that can be written to the Volume. If you
specify zero (the default), there is no limit except the physical size of the Volume. Otherwise, when
the number of bytes written to the Volume equals size the Volume will be marked Used. When the
Volume is marked Used it can no longer be used for appending Jobs, much like the Full status but it
can be recycled if recycling is enabled, and thus the Volume can be re-used after recycling. This value
is checked and the Used status set while the job is writing to the particular volume.

This directive is particularly useful for restricting the size of disk volumes, and will work correctly even
in the case of multiple simultaneous jobs writing to the volume.

The value defined by this directive in the bareos-dir.conf file is the default value used when a Volume
is created. Once the volume is created, changing the value in the bareos-dir.conf file will not change
what is stored for the Volume. To change the value for an existing Volume you must use the update
command in the Console.

Maximum Volume Files = <positive-integer>
This directive specifies the maximum number of files that can be written to the Volume. If you specify
zero (the default), there is no limit. Otherwise, when the number of files written to the Volume equals
positive-integer the Volume will be marked Used. When the Volume is marked Used it can no
longer be used for appending Jobs, much like the Full status but it can be recycled if recycling is
enabled and thus used again. This value is checked and the Used status is set only at the end of a job
that writes to the particular volume.

The value defined by this directive in the bareos-dir.conf file is the default value used when a Volume
is created. Once the volume is created, changing the value in the bareos-dir.conf file will not change
what is stored for the Volume. To change the value for an existing Volume you must use the update
command in the Console.

Maximum Volume Jobs = <positive-integer>
This directive specifies the maximum number of Jobs that can be written to the Volume. If you specify
zero (the default), there is no limit. Otherwise, when the number of Jobs backed up to the Volume
equals positive-integer the Volume will be marked Used. When the Volume is marked Used it can
no longer be used for appending Jobs, much like the Full status but it can be recycled if recycling is
enabled, and thus used again. By setting MaximumVolumeJobs to one, you get the same effect as
setting UseVolumeOnce = yes.

The value defined by this directive in the bareos-dir.conf file is the default value used when a Volume
is created. Once the volume is created, changing the value in the bareos-dir.conf file will not change
what is stored for the Volume. To change the value for an existing Volume you must use the update
command in the Console.

If you are running multiple simultaneous jobs, this directive may not work correctly because when a
drive is reserved for a job, this directive is not taken into account, so multiple jobs may try to start
writing to the Volume. At some point, when the Media record is updated, multiple simultaneous jobs
may fail since the Volume can no longer be written.

Maximum Volumes = <positive-integer>
This directive specifies the maximum number of volumes (tapes or files) contained in the pool. This
directive is optional, if omitted or set to zero, any number of volumes will be permitted. In general,
this directive is useful for Autochangers where there is a fixed number of Volumes, or for File storage
where you wish to ensure that the backups made to disk files do not become too numerous or consume
too much space.

Migration High Bytes = <Size64>
This directive specifies the number of bytes in the Pool which will trigger a migration if Selection Type
Dir
Job = PoolOccupancy has been specified. The fact that the Pool usage goes above this level does not
automatically trigger a migration job. However, if a migration job runs and has the PoolOccupancy
selection type set, the Migration High Bytes will be applied. Bareos does not currently restrict a pool
to have only a single Media Type Dir

Storage, so you must keep in mind that if you mix Media Types in a
Pool, the results may not be what you want, as the Pool count of all bytes will be for all Media Types

128

combined.

Migration Low Bytes = <Size64>
This directive specifies the number of bytes in the Pool which will stop a migration if Selection Type
Dir
Job = PoolOccupancy has been specified and triggered by more than Migration High Bytes Dir

Pool being
in the pool. In other words, once a migration job is started with PoolOccupancy migration selection
and it determines that there are more than Migration High Bytes, the migration job will continue to
run jobs until the number of bytes in the Pool drop to or below Migration Low Bytes.

Migration Time = <time>
If Selection Type Dir

Job = PoolTime, the time specified here will be used. If the previous Backup Job or
Jobs selected have been in the Pool longer than the specified time, then they will be migrated.

Minimum Block Size = <positive-integer>
The Minimum Block Size can be defined here to define different block sizes per volume or statically
for all volumes at Minimum Block Size Sd

Device. For details, see chapter Setting Block Sizes.

Name = <name> (required)
The name of the resource.

The name of the pool.

Next Pool = <resource-name>
This directive specifies the pool a Migration or Copy Job and a Virtual Backup Job will write their
data too. This directive is required to define the Pool into which the data will be migrated. Without
this directive, the migration job will terminate in error.

Pool Type = <Pooltype> (default: Backup)
This directive defines the pool type, which corresponds to the type of Job being run. It is required
and may be one of the following:

Backup

*Archive

*Cloned

*Migration

*Copy

*Save

Note, only Backup is currently implemented.

Purge Oldest Volume = <yes|no> (default: no)
This directive instructs the Director to search for the oldest used Volume in the Pool when another
Volume is requested by the Storage daemon and none are available. The catalog is then purged
irrespective of retention periods of all Files and Jobs written to this Volume. The Volume is then
recycled and will be used as the next Volume to be written. This directive overrides any Job, File, or
Volume retention periods that you may have specified.

This directive can be useful if you have a fixed number of Volumes in the Pool and you want to cycle
through them and reusing the oldest one when all Volumes are full, but you don’t want to worry about
setting proper retention periods. However, by using this option you risk losing valuable data.

In most cases, you should use Recycle Oldest Volume Dir
Pool instead.

Please note! Be aware that Purge Oldest Volume disregards all retention periods. If you have
only a single Volume defined and you turn this variable on, that Volume will always be immediately
overwritten when it fills! So at a minimum, ensure that you have a decent number of Volumes in your
Pool before running any jobs. If you want retention periods to apply do not use this directive.

129

We highly recommend against using this directive, because it is sure that some day, Bareos will purge
a Volume that contains current data.

Recycle = <yes|no> (default: yes)
This directive specifies whether or not Purged Volumes may be recycled. If it is set to yes and Bareos
needs a volume but finds none that are appendable, it will search for and recycle (reuse) Purged
Volumes (i.e. volumes with all the Jobs and Files expired and thus deleted from the Catalog). If the
Volume is recycled, all previous data written to that Volume will be overwritten. If Recycle is set
to no, the Volume will not be recycled, and hence, the data will remain valid. If you want to reuse
(re-write) the Volume, and the recycle flag is no (0 in the catalog), you may manually set the recycle
flag (update command) for a Volume to be reused.

Please note that the value defined by this directive in the configuration file is the default value used
when a Volume is created. Once the volume is created, changing the value in the configuration file will
not change what is stored for the Volume. To change the value for an existing Volume you must use
the update volume command.

When all Job and File records have been pruned or purged from the catalog for a particular Volume,
if that Volume is marked as Append, Full, Used, or Error, it will then be marked as Purged. Only
Volumes marked as Purged will be considered to be converted to the Recycled state if the Recycle

directive is set to yes.

Recycle Current Volume = <yes|no> (default: no)
If Bareos needs a new Volume, this directive instructs Bareos to Prune the volume respecting the Job
and File retention periods. If all Jobs are pruned (i.e. the volume is Purged), then the Volume is
recycled and will be used as the next Volume to be written. This directive respects any Job, File, or
Volume retention periods that you may have specified.

This directive can be useful if you have: a fixed number of Volumes in the Pool, you want to cycle
through them, and you have specified retention periods that prune Volumes before you have cycled
through the Volume in the Pool.

However, if you use this directive and have only one Volume in the Pool, you will immediately recycle
your Volume if you fill it and Bareos needs another one. Thus your backup will be totally invalid.
Please use this directive with care.

Recycle Oldest Volume = <yes|no> (default: no)
This directive instructs the Director to search for the oldest used Volume in the Pool when another
Volume is requested by the Storage daemon and none are available. The catalog is then pruned
respecting the retention periods of all Files and Jobs written to this Volume. If all Jobs are pruned
(i.e. the volume is Purged), then the Volume is recycled and will be used as the next Volume to be
written. This directive respects any Job, File, or Volume retention periods that you may have specified.

This directive can be useful if you have a fixed number of Volumes in the Pool and you want to cycle
through them and you have specified the correct retention periods.

However, if you use this directive and have only one Volume in the Pool, you will immediately recycle
your Volume if you fill it and Bareos needs another one. Thus your backup will be totally invalid.
Please use this directive with care.

Recycle Pool = <resource-name>
This directive defines to which pool the Volume will be placed (moved) when it is recycled. Without
this directive, a Volume will remain in the same pool when it is recycled. With this directive, it can
be moved automatically to any existing pool during a recycle. This directive is probably most useful
when defined in the Scratch pool, so that volumes will be recycled back into the Scratch pool. For
more on the see the Scratch Pool section of this manual.

Although this directive is called RecyclePool, the Volume in question is actually moved from its
current pool to the one you specify on this directive when Bareos prunes the Volume and discovers
that there are no records left in the catalog and hence marks it as Purged.

130

Scratch Pool = <resource-name>
This directive permits to specify a dedicate Scratch for the current pool. This pool will replace the
special pool named Scrach for volume selection. For more information about Scratch see Scratch Pool
section of this manual. This is useful when using multiple storage sharing the same mediatype or
when you want to dedicate volumes to a particular set of pool.

Storage = <ResourceList>
The Storage directive defines the name of the storage services where you want to backup the FileSet
data. For additional details, see the Storage Resource of this manual. The Storage resource may also
be specified in the Job resource, but the value, if any, in the Pool resource overrides any value in the
Job. This Storage resource definition is not required by either the Job resource or in the Pool, but it
must be specified in one or the other. If not configuration error will result. We highly recommend
that you define the Storage resource to be used in the Pool rather than elsewhere (job, schedule run,
...). Be aware that you theoretically can give a list of storages here but only the first item from the
list is actually used for backup and restore jobs.

Use Catalog = <yes|no> (default: yes)
Store information into Catalog. In all pratical use cases, leave this value to its defaults.

Use Volume Once = <yes|no>
Please note! This directive is deprecated.
Use Maximum Volume Jobs Dir

Pool = 1 instead.

Volume Retention = <time> (default: 31536000)
The Volume Retention directive defines the length of time that Bareos will keep records associated
with the Volume in the Catalog database after the End time of each Job written to the Volume. When
this time period expires, and if AutoPrune is set to yes Bareos may prune (remove) Job records that
are older than the specified Volume Retention period if it is necessary to free up a Volume. Recycling
will not occur until it is absolutely necessary to free up a volume (i.e. no other writable volume
exists). All File records associated with pruned Jobs are also pruned. The time may be specified as
seconds, minutes, hours, days, weeks, months, quarters, or years. The Volume Retention is applied
independently of the Job Retention and the File Retention periods defined in the Client resource.
This means that all the retentions periods are applied in turn and that the shorter period is the one
that effectively takes precedence. Note, that when the Volume Retention period has been reached,
and it is necessary to obtain a new volume, Bareos will prune both the Job and the File records. This
pruning could also occur during a status dir command because it uses similar algorithms for finding
the next available Volume.

It is important to know that when the Volume Retention period expires, Bareos does not automatically
recycle a Volume. It attempts to keep the Volume data intact as long as possible before over writing
the Volume.

By defining multiple Pools with different Volume Retention periods, you may effectively have a set of
tapes that is recycled weekly, another Pool of tapes that is recycled monthly and so on. However, one
must keep in mind that if your Volume Retention period is too short, it may prune the last valid
Full backup, and hence until the next Full backup is done, you will not have a complete backup of
your system, and in addition, the next Incremental or Differential backup will be promoted to a Full
backup. As a consequence, the minimum Volume Retention period should be at twice the interval
of your Full backups. This means that if you do a Full backup once a month, the minimum Volume
retention period should be two months.

The default Volume retention period is 365 days, and either the default or the value defined by this
directive in the bareos-dir.conf file is the default value used when a Volume is created. Once the
volume is created, changing the value in the bareos-dir.conf file will not change what is stored for
the Volume. To change the value for an existing Volume you must use the update command in the
Console.

131

Volume Use Duration = <time>
The Volume Use Duration directive defines the time period that the Volume can be written beginning
from the time of first data write to the Volume. If the time-period specified is zero (the default), the
Volume can be written indefinitely. Otherwise, the next time a job runs that wants to access this
Volume, and the time period from the first write to the volume (the first Job written) exceeds the
time-period-specification, the Volume will be marked Used, which means that no more Jobs can be
appended to the Volume, but it may be recycled if recycling is enabled. Once the Volume is recycled,
it will be available for use again.

You might use this directive, for example, if you have a Volume used for Incremental backups, and
Volumes used for Weekly Full backups. Once the Full backup is done, you will want to use a different
Incremental Volume. This can be accomplished by setting the Volume Use Duration for the Incremental
Volume to six days. I.e. it will be used for the 6 days following a Full save, then a different Incremental
volume will be used. Be careful about setting the duration to short periods such as 23 hours, or you
might experience problems of Bareos waiting for a tape over the weekend only to complete the backups
Monday morning when an operator mounts a new tape.

Please note that the value defined by this directive in the bareos-dir.conf file is the default value used
when a Volume is created. Once the volume is created, changing the value in the bareos-dir.conf file
will not change what is stored for the Volume. To change the value for an existing Volume you must
use the update volume command in the Console.

In order for a Pool to be used during a Backup Job, the Pool must have at least one Volume associated with
it. Volumes are created for a Pool using the label or the add commands in the Bareos Console, program.
In addition to adding Volumes to the Pool (i.e. putting the Volume names in the Catalog database), the
physical Volume must be labeled with a valid Bareos software volume label before Bareos will accept the
Volume. This will be automatically done if you use the label command. Bareos can automatically label
Volumes if instructed to do so, but this feature is not yet fully implemented.
The following is an example of a valid Pool resource definition:

Pool {

Name = Default

Pool Type = Backup

}

Configuration 9.38: Pool resource example

9.8.1 Scratch Pool

In general, you can give your Pools any name you wish, but there is one important restriction: the Pool
named Scratch, if it exists behaves like a scratch pool of Volumes in that when Bareos needs a new Volume
for writing and it cannot find one, it will look in the Scratch pool, and if it finds an available Volume, it will
move it out of the Scratch pool into the Pool currently being used by the job.

9.9 Catalog Resource

The Catalog Resource defines what catalog to use for the current job. Currently, Bareos can only handle a
single database server (SQLite, MySQL, PostgreSQL) that is defined when configuring Bareos. However,
there may be as many Catalogs (databases) defined as you wish. For example, you may want each Client to
have its own Catalog database, or you may want backup jobs to use one database and verify or restore jobs
to use another database.
Since SQLite is compiled in, it always runs on the same machine as the Director and the database must
be directly accessible (mounted) from the Director. However, since both MySQL and PostgreSQL are
networked databases, they may reside either on the same machine as the Director or on a different machine
on the network. See below for more details.

configuration directive name type of data default value remark

132

Address = string alias
DB Address = string
DB Driver = string required
DB Name = string required
DB Password = password
DB Port = positive-integer
DB Socket = string
DB User = string
Description = string
Disable Batch Insert = yes|no no
Exit On Fatal = yes|no no
Idle Timeout = positive-integer 30
Inc Connections = positive-integer 1
Max Connections = positive-integer 5
Min Connections = positive-integer 1
Multiple Connections = yes|no
Name = name required
Password = password alias
Reconnect = yes|no no
User = string alias
Validate Timeout = positive-integer 120

Address = <string>
This directive is an alias.

Alias for DB Address Dir
Catalog.

DB Address = <string>
This is the host address of the database server. Normally, you would specify this instead of DB Socket
Dir
Catalog if the database server is on another machine. In that case, you will also specify DB Port Dir

Catalog.
This directive is used only by MySQL and PostgreSQL and is ignored by SQLite if provided.

DB Driver = <postgresql | mysql | sqlite> (required)
Selects the database type to use.

DB Name = <string> (required)
This specifies the name of the database.

DB Password = <password>
This specifies the password to use when login into the database.

DB Port = <positive-integer>
This defines the port to be used in conjunction with DB Address Dir

Catalog to access the database if it is
on another machine. This directive is used only by MySQL and PostgreSQL and is ignored by SQLite
if provided.

DB Socket = <string>
This is the name of a socket to use on the local host to connect to the database. This directive is used
only by MySQL and is ignored by SQLite. Normally, if neither DB Socket Dir

Catalog or DB Address Dir
Catalog

are specified, MySQL will use the default socket. If the DB Socket is specified, the MySQL server
must reside on the same machine as the Director.

DB User = <string>
This specifies what user name to use to log into the database.

133

Description = <string>

Disable Batch Insert = <yes|no> (default: no)
This directive allows you to override at runtime if the Batch insert should be enabled or disabled.
Normally this is determined by querying the database library if it is thread-safe. If you think that
disabling Batch insert will make your backup run faster you may disable it using this option and set
it to Yes.

Exit On Fatal = <yes|no> (default: no)
Make any fatal error in the connection to the database exit the program

Version >= 15.1.0

Idle Timeout = <positive-integer> (default: 30)
This directive is used by the experimental database pooling functionality. Only use this for non
production sites. This sets the idle time after which a database pool should be shrinked.

Inc Connections = <positive-integer> (default: 1)
This directive is used by the experimental database pooling functionality. Only use this for non
production sites. This sets the number of connections to add to a database pool when not enough
connections are available on the pool anymore.

Max Connections = <positive-integer> (default: 5)
This directive is used by the experimental database pooling functionality. Only use this for non
production sites. This sets the maximum number of connections to a database to keep in this database
pool.

Min Connections = <positive-integer> (default: 1)
This directive is used by the experimental database pooling functionality. Only use this for non
production sites. This sets the minimum number of connections to a database to keep in this database
pool.

Multiple Connections = <yes|no>
Not yet implemented.

Name = <name> (required)
The name of the resource.

The name of the Catalog. No necessary relation to the database server name. This name will be
specified in the Client resource directive indicating that all catalog data for that Client is maintained
in this Catalog.

Password = <password>
This directive is an alias.

Alias for DB Password Dir
Catalog.

Reconnect = <yes|no> (default: no)
Try to reconnect a database connection when its dropped

Version >= 15.1.0

User = <string>
This directive is an alias.

Alias for DB User Dir
Catalog.

134

Validate Timeout = <positive-integer> (default: 120)
This directive is used by the experimental database pooling functionality. Only use this for non
production sites. This sets the validation timeout after which the database connection is polled to see
if its still alive.

The following is an example of a valid Catalog resource definition:

Catalog

{

Name = SQLite

DB Driver = sqlite

DB Name = bareos;

DB User = bareos;

DB Password = ""

}

Configuration 9.39: Catalog Resource for Sqlite

or for a Catalog on another machine:

Catalog

{

Name = MySQL

DB Driver = mysql

DB Name = bareos

DB User = bareos

DB Password = "secret"

DB Address = remote.example.com

DB Port = 1234

}

Configuration 9.40: Catalog Resource for remote MySQL

9.10 Messages Resource

For the details of the Messages Resource, please see the Messages Resource of this manual.

9.11 Console Resource

There are three different kinds of consoles, which the administrator or user can use to interact with the
Director. These three kinds of consoles comprise three different security levels.

Default Console the first console type is an “anonymous” or “default” console, which has full privileges.
There is no console resource necessary for this type since the password is specified in the Director’s
resource and consequently such consoles do not have a name as defined on a Name directive. Typically
you would use it only for administrators.

Named Console the second type of console, is a “named” console (also called “Restricted Console”) defined
within a Console resource in both the Director’s configuration file and in the Console’s configuration
file. Both the names and the passwords in these two entries must match much as is the case for Client
programs.

This second type of console begins with absolutely no privileges except those explicitly specified in the
Director’s Console resource. Thus you can have multiple Consoles with different names and passwords,
sort of like multiple users, each with different privileges. As a default, these consoles can do absolutely
nothing – no commands whatsoever. You give them privileges or rather access to commands and
resources by specifying access control lists in the Director’s Console resource. The ACLs are specified
by a directive followed by a list of access names. Examples of this are shown below.

� The third type of console is similar to the above mentioned one in that it requires a Console
resource definition in both the Director and the Console. In addition, if the console name, provided
on the Name Dir

Console directive, is the same as a Client name, that console is permitted to use the
SetIP command to change the Address directive in the Director’s client resource to the IP address
of the Console. This permits portables or other machines using DHCP (non-fixed IP addresses)
to ”notify” the Director of their current IP address.

135

The Console resource is optional and need not be specified. The following directives are permitted within
these resources:

configuration directive name type of data default value remark

Catalog ACL = acl
Client ACL = acl
Command ACL = acl
Description = string
File Set ACL = acl
Job ACL = acl
Name = name required
Password = password required
Plugin Options ACL = acl
Pool ACL = acl
Profile = ResourceList

Run ACL = acl
Schedule ACL = acl
Storage ACL = acl
TLS Allowed CN = string-list
TLS Authenticate = yes|no no
TLS CA Certificate Dir = path
TLS CA Certificate File = path
TLS Certificate = path
TLS Certificate Revocation List = path
TLS Cipher List = string
TLS DH File = path
TLS Enable = yes|no no
TLS Key = path
TLS Require = yes|no no
TLS Verify Peer = yes|no yes
Where ACL = acl

Catalog ACL = <acl>
This directive is used to specify a list of Catalog resource names that can be accessed by the console.

Client ACL = <acl>
This directive is used to specify a list of Client resource names that can be accessed by the console.

Command ACL = <acl>
This directive is used to specify a list of of console commands that can be executed by the console.
See examples at Data Types.

Description = <string>

File Set ACL = <acl>
This directive is used to specify a list of FileSet resource names that can be accessed by the console.

Job ACL = <acl>
This directive is used to specify a list of Job resource names that can be accessed by the console.
Without this directive, the console cannot access any of the Director’s Job resources. Multiple Job
resource names may be specified by separating them with commas, and/or by specifying multiple
Job ACL directives. For example, the directive may be specified as:

JobACL = "backup-bareos-fd", "backup-www.example.com-fd"

JobACL = "RestoreFiles"

136

With the above specification, the console can access the Director’s resources for the jobs named on
the Job ACL directives, but for no others.

Name = <name> (required)
The name of the console. This name must match the name specified at the Console client.

Password = <password> (required)
Specifies the password that must be supplied for a named Bareos Console to be authorized.

Plugin Options ACL = <acl>
Use this directive to specify the list of allowed Plugin Options.

Pool ACL = <acl>
This directive is used to specify a list of Pool resource names that can be accessed by the console.

Profile = <ResourceList>
Profiles can be assigned to a Console. ACL are checked until either a deny ACL is found or an allow
ACL. First the console ACL is checked then any profile the console is linked to.

One or more Profile names can be assigned to a Console. If an ACL is not defined in the Console, the
profiles of the Console will be checked in the order as specified here. The first found ACL will be used.
See Profile Resource.
Version >= 14.2.3

Run ACL = <acl>

Schedule ACL = <acl>
This directive is used to specify a list of Schedule resource names that can be accessed by the console.

Storage ACL = <acl>
This directive is used to specify a list of Storage resource names that can be accessed by the console.

TLS Allowed CN = <string-list>
”Common Name”s (CNs) of the allowed peer certificates.

TLS Authenticate = <yes|no> (default: no)
Use TLS only to authenticate, not for encryption.

TLS CA Certificate Dir = <path>
Path of a TLS CA certificate directory.

TLS CA Certificate File = <path>
Path of a PEM encoded TLS CA certificate(s) file.

TLS Certificate = <path>
Path of a PEM encoded TLS certificate.

137

TLS Certificate Revocation List = <path>
Path of a Certificate Revocation List file.

TLS Cipher List = <string>
List of valid TLS Ciphers.

TLS DH File = <path>
Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange
will be used for the ephemeral keying, allowing for forward secrecy of communications.

TLS Enable = <yes|no> (default: no)
Enable TLS support.

Bareos can be configured to encrypt all its network traffic. See chapter TLS Configuration Directives
to see, how the Bareos Director (and the other components) must be configured to use TLS.

TLS Key = <path>
Path of a PEM encoded private key. It must correspond to the specified ”TLS Certificate”.

TLS Require = <yes|no> (default: no)
Without setting this to yes, Bareos can fall back to use unencryption connections. Enabling this
implicietly sets ”TLS Enable = yes”.

TLS Verify Peer = <yes|no> (default: yes)
If disabled, all certificates signed by a known CA will be accepted. If enabled, the CN of a certificate
must the Address or in the ”TLS Allowed CN” list.

Where ACL = <acl>
This directive permits you to specify where a restricted console can restore files. If this directive is not
specified, only the default restore location is permitted (normally /tmp/bareos-restores. If *all* is
specified any path the user enters will be accepted. Any other value specified (there may be multiple
Where ACL directives) will restrict the user to use that path. For example, on a Unix system, if you
specify ”/”, the file will be restored to the original location.

The example at Using Named Consoles shows how to use a console resource for a connection from a client
like bconsole.

9.12 Profile Resource

The Profile Resource defines a set of ACLs. Console Resources can be tight to one or more profiles (Profile
Dir
Console), making it easier to use a common set of ACLs.

configuration directive name type of data default value remark

138

Catalog ACL = acl
Client ACL = acl
Command ACL = acl
Description = string
File Set ACL = acl
Job ACL = acl
Name = name required
Plugin Options ACL = acl
Pool ACL = acl
Schedule ACL = acl
Storage ACL = acl
Where ACL = acl

Catalog ACL = <acl>
Lists the Catalog resources, this resource has access to. The special keyword *all* allows access to all
Catalog resources.

Client ACL = <acl>
Lists the Client resources, this resource has access to. The special keyword *all* allows access to all
Client resources.

Command ACL = <acl>
Lists the commands, this resource has access to. The special keyword *all* allows using commands.

Description = <string>
Additional information about the resource. Only used for UIs.

File Set ACL = <acl>
Lists the File Set resources, this resource has access to. The special keyword *all* allows access to all
File Set resources.

Job ACL = <acl>
Lists the Job resources, this resource has access to. The special keyword *all* allows access to all Job
resources.

Name = <name> (required)
The name of the resource.

Plugin Options ACL = <acl>
Specifies the allowed plugin options. An empty strings allows all Plugin Options.

139

Pool ACL = <acl>
Lists the Pool resources, this resource has access to. The special keyword *all* allows access to all
Pool resources.

Schedule ACL = <acl>
Lists the Schedule resources, this resource has access to. The special keyword *all* allows access to all
Schedule resources.

Storage ACL = <acl>
Lists the Storage resources, this resource has access to. The special keyword *all* allows access to all
Storage resources.

Where ACL = <acl>
Specifies the base directories, where files could be restored. An empty string allows restores to all
directories.

9.13 Counter Resource

The Counter Resource defines a counter variable that can be accessed by variable expansion used for creating
Volume labels with the Label Format Dir

Pool directive.

configuration directive name type of data default value remark

Catalog = resource-name
Description = string
Maximum = positive-integer 2147483647
Minimum = Int32 0
Name = name required
Wrap Counter = resource-name

Catalog = <resource-name>
If this directive is specified, the counter and its values will be saved in the specified catalog. If this
directive is not present, the counter will be redefined each time that Bareos is started.

Description = <string>

Maximum = <positive-integer> (default: 2147483647)
This is the maximum value value that the counter can have. If not specified or set to zero, the counter
can have a maximum value of 2,147,483,648 (2 to the 31 power). When the counter is incremented
past this value, it is reset to the Minimum.

Minimum = <Int32> (default: 0)
This specifies the minimum value that the counter can have. It also becomes the default. If not
supplied, zero is assumed.

140

Name = <name> (required)
The name of the resource.

The name of the Counter. This is the name you will use in the variable expansion to reference the
counter value.

Wrap Counter = <resource-name>
If this value is specified, when the counter is incremented past the maximum and thus reset to the
minimum, the counter specified on the Wrap Counter Dir

Counter is incremented. (This is currently not
implemented).

9.14 Example Director Configuration File

See below an example of a full Director configuration file:

#

Default Bareos Director configuration file for disk-only backup

(C) 2013 Bareos GmbH & Co.KG

#

Each configuration item has a reference number that shows

where this property can be changed in the configuration file.

Search for the number to find the correct line.

#

You have to configure the following accoring to your environment:

#

(#01)Email Address for bareos disaster recovery.

Specify a mailaddress outside of your backupserver.

There will be one mail per day.

#

(#02)Email Address for bareos reports. (Mail Command)

This mail address will recieve a report about each backup job.

It will be sent after the backupjob is complete.

Has to be configured twice ("Standard" and "Daemon" Message Ressources)

#

(#03)Email Address for bareos operator. (Operator Command)

This mail address will recieve a mail immediately when the

bareos system needs an operator intervention.

May be the same address as in (#02)

#

#

This disk-only setup stores all data into @archivedir@

#

The preconfigured backup scheme is as follows:

#

Full Backups are done on first Saturday at 21:00 (#04)

Full Backups are written into the "Full" Pool (#05)

Full Backups are kept for 365 Days (#06)

#

Differential Backups are done on 2nd to 5th Saturday at 21:00 (#07)

Differential Backups are written into the "Differential" Pool (#08)

Differential Backups are kept for 90 Days (#09)

#

Incremental Backups are done monday to friday at 21:00 (#10)

Incremental Backups are written into the "Incremental" Pool (#11)

Incremental Backups are kept for 30 Days (#12)

#

What you also have to do is to change the default fileset (#13)

to either one of the demo filesets given or create our own fileset.

#

#

#

For Bareos release @VERSION@ (@DATE@) -- @DISTNAME@ @DISTVER@

#

#

Director { # define myself

Name = @basename@-dir

QueryFile = "@scriptdir@/query.sql"

Maximum Concurrent Jobs = 10

Password = "@dir_password@" # Console password

Messages = Daemon

141

remove comment in next line to load plugins from specified directory

Plugin Directory = @plugindir@

}

JobDefs {

Name = "DefaultJob"

Type = Backup

Level = Incremental

Client = @basename@-fd

FileSet = "SelfTest" # selftest fileset (#13)

Schedule = "WeeklyCycle"

Storage = File

Messages = Standard

Pool = Incremental

Priority = 10

Write Bootstrap = "@working_dir@/%c.bsr"

Full Backup Pool = Full # write Full Backups into "Full" Pool (#05)

Differential Backup Pool = Differential # write Diff Backups into "Differential" Pool (#08)

Incremental Backup Pool = Incremental # write Incr Backups into "Incremental" Pool (#11)

}

#

Define the main nightly save backup job

By default, this job will back up to disk in @archivedir@

Job {

Name = "BackupClient1"

JobDefs = "DefaultJob"

}

#

Backup the catalog database (after the nightly save)

#

Job {

Name = "BackupCatalog"

JobDefs = "DefaultJob"

Level = Full

FileSet="Catalog"

Schedule = "WeeklyCycleAfterBackup"

This creates an ASCII copy of the catalog

Arguments to make_catalog_backup.pl are:

make_catalog_backup.pl <catalog-name>

RunBeforeJob = "@scriptdir@/make_catalog_backup.pl MyCatalog"

This deletes the copy of the catalog

RunAfterJob = "@scriptdir@/delete_catalog_backup"

This sends the bootstrap via mail for disaster recovery.

Should be sent to another system, please change recipient accordingly

Write Bootstrap = "|@sbindir@/bsmtp -h @smtp_host@ -f \"\(Bareos\) \" -s \"Bootstrap for Job %j\" @job_email@" # (#01)

Priority = 11 # run after main backup

}

#

Standard Restore template, to be changed by Console program

Only one such job is needed for all Jobs/Clients/Storage ...

#

Job {

Name = "RestoreFiles"

Type = Restore

Client=@basename@-fd

FileSet = "Linux All"

Storage = File

Pool = Incremental

Messages = Standard

Where = /tmp/bareos-restores

}

FileSet {

Name = "Windows All Drives"

Enable VSS = yes

Include {

Options {

Signature = MD5

Drive Type = fixed

142

IgnoreCase = yes

WildFile = "[A-Z]:/pagefile.sys"

WildDir = "[A-Z]:/RECYCLER"

WildDir = "[A-Z]:/$RECYCLE.BIN"

WildDir = "[A-Z]:/System Volume Information"

Exclude = yes

}

File = /

}

}

FileSet {

Name = "Linux All"

Include {

Options {

Signature = MD5 # calculate md5 checksum per file

One FS = No # change into other filessytems

FS Type = ext2 # filesystems of given types will be backed up

FS Type = ext3 # others will be ignored

FS Type = ext4

FS Type = xfs

FS Type = reiserfs

FS Type = jfs

FS Type = btrfs

}

File = /

}

Things that usually have to be excluded

You have to exclude @archivedir@

on your bareos server

Exclude {

File = @working_dir@

File = @archivedir@

File = /proc

File = /tmp

File = /.journal

File = /.fsck

}

}

fileset just to backup some files for selftest

FileSet {

Name = "SelfTest"

Include {

Options {

Signature = MD5 # calculate md5 checksum per file

}

File = @sbindir@

}

}

Schedule {

Name = "WeeklyCycle"

Run = Full 1st sat at 21:00 # (#04)

Run = Differential 2nd-5th sat at 21:00 # (#07)

Run = Incremental mon-fri at 21:00 # (#10)

}

This schedule does the catalog. It starts after the WeeklyCycle

Schedule {

Name = "WeeklyCycleAfterBackup"

Run = Full mon-fri at 21:10

}

This is the backup of the catalog

FileSet {

Name = "Catalog"

Include {

Options {

signature = MD5

}

File = "@working_dir@/@db_name@.sql" # database dump

File = "@sysconfdir@" # configuration

}

143

}

Client (File Services) to backup

Client {

Name = @basename@-fd

Address = @hostname@

Password = "@fd_password@" # password for FileDaemon

File Retention = 30 days # 30 days

Job Retention = 6 months # six months

AutoPrune = no # Prune expired Jobs/Files

}

#

Definition of file storage device

#

Storage {

Name = File

Do not use "localhost" here

Address = @hostname@ # N.B. Use a fully qualified name here

Password = "@sd_password@"

Device = FileStorage

Media Type = File

}

#

Generic catalog service

#

Catalog {

Name = MyCatalog

Uncomment the following lines if you want the dbi driver

@uncomment_dbi@ dbdriver = "dbi:@DEFAULT_DB_TYPE@"; dbaddress = 127.0.0.1; dbport = @db_port@

#dbdriver = "@DEFAULT_DB_TYPE@"

dbdriver = "XXX_REPLACE_WITH_DATABASE_DRIVER_XXX"

dbname = "@db_name@"

dbuser = "@db_user@"

dbpassword = "@db_password@"

}

#

Reasonable message delivery -- send most everything to email address and to the console

#

Messages {

Name = Standard

mailcommand = "@sbindir@/bsmtp -h @smtp_host@ -f \"\(Bareos\) \<%r\>\" -s \"Bareos: %t %e of %c %l\" %r"

operatorcommand = "@sbindir@/bsmtp -h @smtp_host@ -f \"\(Bareos\) \<%r\>\" -s \"Bareos: Intervention needed for %j\" %r"

mail = @job_email@ = all, !skipped # (#02)

operator = @job_email@ = mount # (#03)

console = all, !skipped, !saved

append = "@logdir@/bareos.log" = all, !skipped

catalog = all

}

#

Message delivery for daemon messages (no job).

#

Messages {

Name = Daemon

mailcommand = "@sbindir@/bsmtp -h @smtp_host@ -f \"\(Bareos\) \<%r\>\" -s \"Bareos daemon message\" %r"

mail = @job_email@ = all, !skipped # (#02)

console = all, !skipped, !saved

append = "@logdir@/bareos.log" = all, !skipped

}

#

Full Pool definition

#

Pool {

Name = Full

Pool Type = Backup

Recycle = yes # Bareos can automatically recycle Volumes

AutoPrune = yes # Prune expired volumes

Volume Retention = 365 days # How long should the Full Backups be kept? (#06)

Maximum Volume Bytes = 50G # Limit Volume size to something reasonable

Maximum Volumes = 100 # Limit number of Volumes in Pool

Label Format = "Full-" # Volumes will be labeled "Full-<volume-id>"

144

}

#

Differential Pool definition

#

Pool {

Name = Differential

Pool Type = Backup

Recycle = yes # Bareos can automatically recycle Volumes

AutoPrune = yes # Prune expired volumes

Volume Retention = 90 days # How long should the Differential Backups be kept? (#09)

Maximum Volume Bytes = 10G # Limit Volume size to something reasonable

Maximum Volumes = 100 # Limit number of Volumes in Pool

Label Format = "Differential-" # Volumes will be labeled "Differential-<volume-id>"

}

#

Incremental Pool definition

#

Pool {

Name = Incremental

Pool Type = Backup

Recycle = yes # Bareos can automatically recycle Volumes

AutoPrune = yes # Prune expired volumes

Volume Retention = 30 days # How long should the Incremental Backups be kept? (#12)

Maximum Volume Bytes = 1G # Limit Volume size to something reasonable

Maximum Volumes = 100 # Limit number of Volumes in Pool

Label Format = "Incremental-" # Volumes will be labeled "Incremental-<volume-id>"

}

#

Scratch pool definition

#

Pool {

Name = Scratch

Pool Type = Backup

}

#

Restricted console used by tray-monitor to get the status of the director

#

Console {

Name = @basename@-mon

Password = "@mon_dir_password@"

CommandACL = status, .status

}

Chapter 10

Storage Daemon Configuration

The Bareos Storage Daemon configuration file has relatively few resource definitions. However, due to the
great variation in backup media and system capabilities, the storage daemon must be highly configurable.
As a consequence, there are quite a large number of directives in the Device Resource definition that allow
you to define all the characteristics of your Storage device (normally a tape drive). Fortunately, with modern
storage devices, the defaults are sufficient, and very few directives are actually needed.
For a general discussion of configuration file and resources including the data types recognized by Bareos,
please see the Configuration chapter of this manual. The following Storage Resource definitions must be
defined:

� Storage – to define the name of the Storage daemon.

� Director – to define the Director’s name and his access password.

� Device – to define the characteristics of your storage device (tape drive).

� Messages – to define where error and information messages are to be sent.

Following resources are optional:

� Autochanger Resource – to define Autochanger devices.

� NDMP Resource – to define the NDMP authentication context.

10.1 Storage Resource

In general, the properties specified under the Storage resource define global properties of the Storage daemon.
Each Storage daemon configuration file must have one and only one Storage resource definition.

configuration directive name type of data default value remark

Absolute Job Timeout = positive-integer
Allow Bandwidth Bursting = yes|no no
Auto XFlate On Replication = yes|no no
Backend Directory = DirectoryList /usr/lib/bareos/backends (platform specific)

Client Connect Wait = time 1800
Collect Device Statistics = yes|no no
Collect Job Statistics = yes|no no
Compatible = yes|no no
Description = string
Device Reserve By Media Type = yes|no no
FD Connect Timeout = time 1800
File Device Concurrent Read = yes|no no
Heartbeat Interval = time 0
Log Timestamp Format = string
Maximum Bandwidth Per Job = speed
Maximum Concurrent Jobs = positive-integer 20
Maximum Connections = positive-integer 42

145

146

Maximum Network Buffer Size = positive-integer
Messages = resource-name
Name = name required
NDMP Address = net-address 10000
NDMP Addresses = net-addresses 10000
NDMP Enable = yes|no no
NDMP Log Level = positive-integer 4
NDMP Port = net-port 10000
NDMP Snooping = yes|no no
Pid Directory = path /var/lib/bareos (platform specific)

Plugin Directory = path
Plugin Names = PluginNames

Scripts Directory = path
SD Address = net-address 9103
SD Addresses = net-addresses 9103
SD Connect Timeout = time 1800
SD Port = net-port 9103
SD Source Address = net-address 0
Secure Erase Command = string
Statistics Collect Interval = positive-integer 30
Sub Sys Directory = path
TLS Allowed CN = string-list
TLS Authenticate = yes|no no
TLS CA Certificate Dir = path
TLS CA Certificate File = path
TLS Certificate = path
TLS Certificate Revocation List = path
TLS Cipher List = string
TLS DH File = path
TLS Enable = yes|no no
TLS Key = path
TLS Require = yes|no no
TLS Verify Peer = yes|no yes
Ver Id = string
Working Directory = path /var/lib/bareos (platform specific)

Absolute Job Timeout = <positive-integer>

Allow Bandwidth Bursting = <yes|no> (default: no)

Auto XFlate On Replication = <yes|no> (default: no)
This directive controls the autoxflate-sd plugin plugin when replicating data inside one or between two
storage daemons (Migration/Copy Jobs). Normally the storage daemon will use the autoinflate/au-
todeflate setting of the device when reading and writing data to it which could mean that while reading
it inflates the compressed data and the while writing the other deflates it again. If you just want the
data to be exactly the same e.g. don’t perform any on the fly uncompression and compression while
doing the replication of data you can set this option to no and it will override any setting on the device
for doing auto inflation/deflation when doing data replication. This will not have any impact on any
normal backup or restore jobs.
Version >= 13.4.0

Backend Directory = <DirectoryList> (default: /usr/lib/bareos/backends (platform specific))

147

Client Connect Wait = <time> (default: 1800)
This directive defines an interval of time in seconds that the Storage daemon will wait for a Client
(the File daemon) to connect. Be aware that the longer the Storage daemon waits for a Client, the
more resources will be tied up.

Collect Device Statistics = <yes|no> (default: no)

Collect Job Statistics = <yes|no> (default: no)

Compatible = <yes|no> (default: no)
This directive enables the compatible mode of the storage daemon. In this mode the storage daemon
will try to write the storage data in a compatible way with Bacula of which Bareos is a fork. This
only works for the data streams both share and not for any new datastreams which are Bareos specific.
Which may be read when used by a Bareos storage daemon but might not be understood by any of
the Bacula components (dir/sd/fd).

The default setting of this directive was changed to no since Bareos Version >= 15.2.0.

Description = <string>

Device Reserve By Media Type = <yes|no> (default: no)

FD Connect Timeout = <time> (default: 1800)

File Device Concurrent Read = <yes|no> (default: no)

Heartbeat Interval = <time> (default: 0)
This directive defines an interval of time in seconds. When the Storage daemon is waiting for the
operator to mount a tape, each time interval, it will send a heartbeat signal to the File daemon.
The default interval is zero which disables the heartbeat. This feature is particularly useful if you
have a router that does not follow Internet standards and times out an valid connection after a
short duration despite the fact that keepalive is set. This usually results in a broken pipe error message.

Log Timestamp Format = <string>

Version >= 15.2.3

Maximum Bandwidth Per Job = <speed>

Maximum Concurrent Jobs = <positive-integer> (default: 20)
This directive specifies the maximum number of Jobs that may run concurrently. Each contact from
the Director (e.g. status request, job start request) is considered as a Job, so if you want to be able
to do a status request in the console at the same time as a Job is running, you will need to set this
value greater than 1. To run simultaneous Jobs, you will need to set a number of other directives in
the Director’s configuration file. Which ones you set depend on what you want, but you will almost
certainly need to set the Maximum Concurrent Jobs Dir

Storage. Please refer to the Concurrent Jobs
chapter.

148

Maximum Connections = <positive-integer> (default: 42)

Version >= 15.2.3

Maximum Network Buffer Size = <positive-integer>

Messages = <resource-name>

Name = <name> (required)
Specifies the Name of the Storage daemon.

NDMP Address = <net-address> (default: 10000)
This directive is optional, and if it is specified, it will cause the Storage daemon server (for NDMP
Tape Server connections) to bind to the specified IP-Address, which is either a domain name or an
IP address specified as a dotted quadruple. If this directive is not specified, the Storage daemon will
bind to any available address (the default).

NDMP Addresses = <net-addresses> (default: 10000)
Specify the ports and addresses on which the Storage daemon will listen for NDMP Tape Server
connections. Normally, the default is sufficient and you do not need to specify this directive.

NDMP Enable = <yes|no> (default: no)
This directive enables the Native NDMP Tape Agent.

NDMP Log Level = <positive-integer> (default: 4)
This directive sets the loglevel for the NDMP protocol library.

NDMP Port = <net-port> (default: 10000)
Specifies port number on which the Storage daemon listens for NDMP Tape Server connections.

NDMP Snooping = <yes|no> (default: no)
This directive enables the Snooping and pretty printing of NDMP protocol information in debugging
mode.

Pid Directory = <path> (default: /var/lib/bareos (platform specific))
This directive specifies a directory in which the Storage Daemon may put its process Id file files. The
process Id file is used to shutdown Bareos and to prevent multiple copies of Bareos from running
simultaneously. Standard shell expansion of the directory is done when the configuration file is read
so that values such as $HOME will be properly expanded.

Plugin Directory = <path>
This directive specifies a directory in which the Storage Daemon searches for plugins with the name
<pluginname>-sd.so which it will load at startup.

Plugin Names = <PluginNames>
If a Plugin Directory Sd

Storage is specified Plugin Names defines, which Storage Daemon Plugins get
loaded.

If Plugin Names is not defined, all plugins get loaded, otherwise the defined ones.

149

Scripts Directory = <path>
This directive is currently unused.

SD Address = <net-address> (default: 9103)
This directive is optional, and if it is specified, it will cause the Storage daemon server (for Director
and File daemon connections) to bind to the specified IP-Address, which is either a domain name or
an IP address specified as a dotted quadruple. If this and the SD Addresses Sd

Storage directives are not
specified, the Storage daemon will bind to any available address (the default).

SD Addresses = <net-addresses> (default: 9103)
Specify the ports and addresses on which the Storage daemon will listen for Director connections.
Using this directive, you can replace both the SD Port Sd

Storage and SD Address Sd
Storage directives.

SD Connect Timeout = <time> (default: 1800)

SD Port = <net-port> (default: 9103)
Specifies port number on which the Storage daemon listens for Director connections.

SD Source Address = <net-address> (default: 0)

Secure Erase Command = <string>
Specify command that will be called when bareos unlinks files.

When files are no longer needed, Bareos will delete (unlink) them. With this directive, it will call the
specified command to delete these files. See Secure Erase Command for details.
Version >= 15.2.1

Statistics Collect Interval = <positive-integer> (default: 30)

Sub Sys Directory = <path>

TLS Allowed CN = <string-list>
”Common Name”s (CNs) of the allowed peer certificates.

TLS Authenticate = <yes|no> (default: no)
Use TLS only to authenticate, not for encryption.

TLS CA Certificate Dir = <path>
Path of a TLS CA certificate directory.

TLS CA Certificate File = <path>
Path of a PEM encoded TLS CA certificate(s) file.

150

TLS Certificate = <path>
Path of a PEM encoded TLS certificate.

TLS Certificate Revocation List = <path>
Path of a Certificate Revocation List file.

TLS Cipher List = <string>
List of valid TLS Ciphers.

TLS DH File = <path>
Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange
will be used for the ephemeral keying, allowing for forward secrecy of communications.

TLS Enable = <yes|no> (default: no)
Enable TLS support.

Bareos can be configured to encrypt all its network traffic. Chapter TLS Configuration Directives
explains how the Bareos components must be configured to use TLS.

TLS Key = <path>
Path of a PEM encoded private key. It must correspond to the specified ”TLS Certificate”.

TLS Require = <yes|no> (default: no)
Without setting this to yes, Bareos can fall back to use unencryption connections. Enabling this
implicietly sets ”TLS Enable = yes”.

TLS Verify Peer = <yes|no> (default: yes)
If disabled, all certificates signed by a known CA will be accepted. If enabled, the CN of a certificate
must the Address or in the ”TLS Allowed CN” list.

Ver Id = <string>

Working Directory = <path> (default: /var/lib/bareos (platform specific))
This directive specifies a directory in which the Storage daemon may put its status files. This directory
should be used only by Bareos, but may be shared by other Bareos daemons provided the names
given to each daemon are unique.

The following is a typical Storage daemon storage resource definition.

#

"Global" Storage daemon configuration specifications appear

under the Storage resource.

#

Storage {

Name = "Storage daemon"

Address = localhost

151

}

Configuration 10.1: Storage daemon storage definition

10.2 Director Resource

The Director resource specifies the Name of the Director which is permitted to use the services of the
Storage daemon. There may be multiple Director resources. The Director Name and Password must match
the corresponding values in the Director’s configuration file.

configuration directive name type of data default value remark

Description = string
Key Encryption Key = password
Maximum Bandwidth Per Job = speed
Monitor = yes|no
Name = name required
Password = password required
TLS Allowed CN = string-list
TLS Authenticate = yes|no no
TLS CA Certificate Dir = path
TLS CA Certificate File = path
TLS Certificate = path
TLS Certificate Revocation List = path
TLS Cipher List = string
TLS DH File = path
TLS Enable = yes|no no
TLS Key = path
TLS Require = yes|no no
TLS Verify Peer = yes|no yes

Description = <string>

Key Encryption Key = <password>
This key is used to encrypt the Security Key that is exchanged between the Director and the Storage
Daemon for supporting Application Managed Encryption (AME). For security reasons each Director
should have a different Key Encryption Key.

Maximum Bandwidth Per Job = <speed>

Monitor = <yes|no>
If Monitor is set to no (default), this director will have full access to this Storage daemon. If Monitor
is set to yes, this director will only be able to fetch the current status of this Storage daemon.

Please note that if this director is being used by a Monitor, we highly recommend to set this directive
to yes to avoid serious security problems.

Name = <name> (required)
Specifies the Name of the Director allowed to connect to the Storage daemon. This directive is
required.

Password = <password> (required)
Specifies the password that must be supplied by the above named Director. This directive is required.

152

TLS Allowed CN = <string-list>
”Common Name”s (CNs) of the allowed peer certificates.

TLS Authenticate = <yes|no> (default: no)
Use TLS only to authenticate, not for encryption.

TLS CA Certificate Dir = <path>
Path of a TLS CA certificate directory.

TLS CA Certificate File = <path>
Path of a PEM encoded TLS CA certificate(s) file.

TLS Certificate = <path>
Path of a PEM encoded TLS certificate.

TLS Certificate Revocation List = <path>
Path of a Certificate Revocation List file.

TLS Cipher List = <string>
List of valid TLS Ciphers.

TLS DH File = <path>
Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange
will be used for the ephemeral keying, allowing for forward secrecy of communications.

TLS Enable = <yes|no> (default: no)
Enable TLS support.

Bareos can be configured to encrypt all its network traffic. Chapter TLS Configuration Directives
explains how the Bareos components must be configured to use TLS.

TLS Key = <path>
Path of a PEM encoded private key. It must correspond to the specified ”TLS Certificate”.

TLS Require = <yes|no> (default: no)
Without setting this to yes, Bareos can fall back to use unencryption connections. Enabling this
implicietly sets ”TLS Enable = yes”.

153

TLS Verify Peer = <yes|no> (default: yes)
If disabled, all certificates signed by a known CA will be accepted. If enabled, the CN of a certificate
must the Address or in the ”TLS Allowed CN” list.

The following is an example of a valid Director resource definition:

Director {

Name = MainDirector

Password = my_secret_password

}

Configuration 10.2: Storage daemon Director definition

10.3 NDMP Resource

The NDMP Resource specifies the authentication details of each NDMP client. There may be multiple NDMP
resources for a single Storage daemon. In general, the properties specified within the NDMP resource are
specific to one client.

configuration directive name type of data default value remark

Auth Type = None|Clear|MD5 None
Description = string
Log Level = positive-integer 4
Name = name required
Password = password required
Username = string required

Auth Type = <None|Clear|MD5> (default: None)
Specifies the authentication type that must be supplied by the above named NDMP Client. This
directive is required.

The following values are allowed:

1. None - Use no password

2. Clear - Use clear text password

3. MD5 - Use MD5 hashing

Description = <string>

Log Level = <positive-integer> (default: 4)
Specifies the NDMP Loglevel which overrides the global NDMP loglevel for this client.

Name = <name> (required)
Specifies the name of the NDMP Client allowed to connect to the Storage daemon. This directive is
required.

Password = <password> (required)
Specifies the password that must be supplied by the above named NDMP Client. This directive is
required.

154

Username = <string> (required)
Specifies the username that must be supplied by the above named NDMP Client. This directive is
required.

10.4 Device Resource

The Device Resource specifies the details of each device (normally a tape drive) that can be used by the
Storage daemon. There may be multiple Device resources for a single Storage daemon. In general, the
properties specified within the Device resource are specific to the Device.

configuration directive name type of data default value remark

Alert Command = strname
Always Open = yes|no yes
Archive Device = strname required
Auto Deflate = IoDirection

Auto Deflate Algorithm = CompressionAlgorithm

Auto Deflate Level = Pint16 6
Auto Inflate = IoDirection

Auto Select = yes|no yes
Autochanger = yes|no no
Automatic Mount = yes|no no
Backward Space File = yes|no yes
Backward Space Record = yes|no yes
Block Checksum = yes|no yes
Block Positioning = yes|no yes
Bsf At Eom = yes|no no
Changer Command = strname
Changer Device = strname
Check Labels = yes|no no
Close On Poll = yes|no no
Collect Statistics = yes|no yes
Description = string
Device Options = string
Device Type = DeviceType

Diagnostic Device = strname
Drive Crypto Enabled = yes|no
Drive Index = Pint16

Drive Tape Alert Enabled = yes|no
Fast Forward Space File = yes|no yes
Forward Space File = yes|no yes
Forward Space Record = yes|no yes
Free Space Command = strname deprecated
Hardware End Of File = yes|no yes
Hardware End Of Medium = yes|no yes
Label Block Size = positive-integer 64512
Label Media = yes|no no
Label Type = Label

Maximum Block Size = MaxBlocksize

Maximum Changer Wait = time 300
Maximum Concurrent Jobs = positive-integer
Maximum File Size = Size64 1000000000
Maximum Job Spool Size = Size64

Maximum Network Buffer Size = positive-integer
Maximum Open Volumes = positive-integer 1
Maximum Open Wait = time 300
Maximum Part Size = Size64 deprecated
Maximum Rewind Wait = time 300
Maximum Spool Size = Size64

155

Maximum Volume Size = Size64 deprecated
Media Type = strname required
Minimum Block Size = positive-integer
Mount Command = strname
Mount Point = strname
Name = name required
No Rewind On Close = yes|no yes
Offline On Unmount = yes|no no
Query Crypto Status = yes|no
Random Access = yes|no no
Removable Media = yes|no yes
Requires Mount = yes|no no
Spool Directory = path
Two Eof = yes|no no
Unmount Command = strname
Use Mtiocget = yes|no yes
Volume Capacity = Size64

Volume Poll Interval = time 300
Write Part Command = strname deprecated

Alert Command = <strname>
The name-string specifies an external program to be called at the completion of each Job after the
device is released. The purpose of this command is to check for Tape Alerts, which are present when
something is wrong with your tape drive (at least for most modern tape drives). The same substitution
characters that may be specified in the Changer Command may also be used in this string. For more
information, please see the Autochangers chapter of this manual.

Note, it is not necessary to have an autochanger to use this command. The example below uses the
tapeinfo program that comes with the mtx package, but it can be used on any tape drive. However,
you will need to specify a Changer Device directive in your Device resource (see above) so that the
generic SCSI device name can be edited into the command (with the %c).

An example of the use of this command to print Tape Alerts in the Job report is:

Alert Command = "sh -c ’tapeinfo -f %c | grep TapeAlert’"

and an example output when there is a problem could be:

bareos-sd Alert: TapeAlert[32]: Interface: Problem with SCSI interface

between tape drive and initiator.

Always Open = <yes|no> (default: yes)
If Yes, Bareos will always keep the device open unless specifically unmounted by the Console program.
This permits Bareos to ensure that the tape drive is always available, and properly positioned. If you
set AlwaysOpen to no Bareos will only open the drive when necessary, and at the end of the Job if
no other Jobs are using the drive, it will be freed. The next time Bareos wants to append to a tape on
a drive that was freed, Bareos will rewind the tape and position it to the end. To avoid unnecessary
tape positioning and to minimize unnecessary operator intervention, it is highly recommended that
Always Open = yes. This also ensures that the drive is available when Bareos needs it.

If you have Always Open = yes (recommended) and you want to use the drive for something else,
simply use the unmount command in the Console program to release the drive. However, don’t forget
to remount the drive with mount when the drive is available or the next Bareos job will block.

For File storage, this directive is ignored. For a FIFO storage device, you must set this to No.

Please note that if you set this directive to No Bareos will release the tape drive between each
job, and thus the next job will rewind the tape and position it to the end of the data. This
can be a very time consuming operation. In addition, with this directive set to no, certain mul-
tiple drive autochanger operations will fail. We strongly recommend to keep Always Open set to Yes

156

Archive Device = <strname> (required)
Specifies where to read and write the backup data. The type of the Archive Device can be specified
by the Device Type Sd

Device directive. If Device Type is not specified, Bareos tries to guess the Device
Type accordingly to the type of the specified Archive Device file type.

There are different types that are supported:

device Usually the device file name of a removable storage device (tape drive), for example /dev/nst0
or /dev/rmt/0mbn, preferably in the ”non-rewind” variant. In addition, on systems such as
Sun, which have multiple tape access methods, you must be sure to specify to use Berkeley I/O
conventions with the device. The b in the Solaris (Sun) archive specification /dev/rmt/0mbn is
what is needed in this case. Bareos does not support SysV tape drive behavior.

directory If a directory is specified, it is used as file storage. The directory must be existing and
be specified as absolute path. Bareos will write to file storage in the specified directory and the
filename used will be the Volume name as specified in the Catalog. If you want to write into more
than one directory (i.e. to spread the load to different disk drives), you will need to define two
Device resources, each containing an Archive Device with a different directory.

fifo A FIFO is a special kind of file that connects two programs via kernel memory. If a FIFO device
is specified for a backup operation, you must have a program that reads what Bareos writes into
the FIFO. When the Storage daemon starts the job, it will wait for Maximum Open Wait Sd

Device

seconds for the read program to start reading, and then time it out and terminate the job. As
a consequence, it is best to start the read program at the beginning of the job perhaps with the
Run Before Job Dir

Job directive. For this kind of device, you always want to specify Always Open
Sd
Device = no, because you want the Storage daemon to open it only when a job starts. Since a FIFO
is a one way device, Bareos will not attempt to read a label of a FIFO device, but will simply
write on it. To create a FIFO Volume in the catalog, use the add command rather than the label
command to avoid attempting to write a label.

Device {

Name = FifoStorage

Media Type = Fifo

Device Type = Fifo

Archive Device = /tmp/fifo

LabelMedia = yes

Random Access = no

AutomaticMount = no

RemovableMedia = no

MaximumOpenWait = 60

AlwaysOpen = no

}

During a restore operation, if the Archive Device is a FIFO, Bareos will attempt to read from
the FIFO, so you must have an external program that writes into the FIFO. Bareos will wait
Maximum Open Wait Sd

Device seconds for the program to begin writing and will then time it out
and terminate the job. As noted above, you may use the Run Before Job Dir

Job to start the writer
program at the beginning of the job.

A FIFO device can also be used to test your configuration, see the Howto section.

GlusterFS Storage don’t use this directive, but only Device Type Sd
Device and Device Options Sd

Device

(this behavior have changed with Version >= 15.2.0).

Ceph Object Store don’t use this directive, but only Device Type Sd
Device and Device Options Sd

Device.
(this behavior have changed with Version >= 15.2.0).

Auto Deflate = <IoDirection>
This is a parameter used by autoxflate-sd which allow you to transform a non compressed piece of data
into a compressed piece of data on the storage daemon. e.g. Storage Daemon compression. You can
either enable compression on the client and use the CPU cyclces there to compress your data with one
of the supported compression algorithms. The value of this parameter specifies a so called io-direction
currently you can use the following io-directions:

� in - compress data streams while reading the data from a device.

� out - compress data streams while writing the data to a device.

157

� both - compress data streams both when reading and writing to a device.

Currently only plain data streams are compressed (so things that are already compressed or encrypted
will not be considered for compression.) Also meta-data streams are not compressed. The compression
is done in a way that the stream is transformed into a native compressed data stream. So if you
enable this and send the data to a filedaemon it will know its a compressed stream and will do the
decompression itself. This also means that you can turn this option on and off at any time without
having any problems with data already written.

This option could be used if your clients doesn’t have enough power to do the compression/decompres-
sion itself and you have enough network bandwidth. Or when your filesystem doesn’t have the option
to transparently compress data you write to it but you want the data to be compressed when written.
Version >= 13.4.0

Auto Deflate Algorithm = <CompressionAlgorithm>
This option specifies the compression algorithm used for the autodeflate option which is performed by
the autoxflate-sd plugin. The algorithms supported are:

� GZIP - gzip level 1–9

� LZO

� LZFAST

� LZ4

� LZ4HC

Version >= 13.4.0

Auto Deflate Level = <Pint16> (default: 6)
This option specifies the level to be used when compressing when you select a compression algorithm
that has different levels.
Version >= 13.4.0

Auto Inflate = <IoDirection>
This is a parameter used by autoxflate-sd which allow you to transform a compressed piece of data
into a non compressed piece of data on the storage daemon. e.g. Storage Daemon decompression. You
can either enable decompression on the client and use the CPU cyclces there to decompress your data
with one of the supported compression algorithms. The value of this parameter specifies a so called
io-direction currently you can use the following io-directions:

� in - decompress data streams while reading the data from a device.

� out - decompress data streams while writing the data to a device.

� both - decompress data streams both when reading and writing to a device.

This option allows you to write uncompressed data to for instance a tape drive that has hardware com-
pression even when you compress your data on the client with for instance a low cpu load compression
method (LZ4 for instance) to transfer less data over the network. It also allows you to restore data in
a compression format that the client might not support but the storage daemon does. This only works
on normal compressed datastreams not on encrypted datastreams or meta data streams.
Version >= 13.4.0

Auto Select = <yes|no> (default: yes)
If this directive is set to yes, and the Device belongs to an autochanger, then when the Autochanger
is referenced by the Director, this device can automatically be selected. If this directive is set to
no, then the Device can only be referenced by directly using the Device name in the Director. This
is useful for reserving a drive for something special such as a high priority backup or restore operations.

Autochanger = <yes|no> (default: no)
If Yes, this device belongs to an automatic tape changer, and you must specify an Autochanger
resource that points to the Device resources. You must also specify a Changer Device Sd

Device. If the
Autochanger directive is set to No, the volume must be manually changed. You should also have an
identical directive to the Auto Changer Dir

Storage in the Director’s configuration file so that when labeling
tapes you are prompted for the slot.

158

Automatic Mount = <yes|no> (default: no)
If Yes, permits the daemon to examine the device to determine if it contains a Bareos labeled volume.
This is done initially when the daemon is started, and then at the beginning of each job. This directive
is particularly important if you have set Always Open = no because it permits Bareos to attempt
to read the device before asking the system operator to mount a tape. However, please note that the
tape must be mounted before the job begins.

Backward Space File = <yes|no> (default: yes)
If Yes, the archive device supports the MTBSF and MTBSF ioctls to backspace over an end of file
mark and to the start of a file. If No, these calls are not used and the device must be rewound and
advanced forward to the desired position.

Backward Space Record = <yes|no> (default: yes)
If Yes, the archive device supports the MTBSR ioctl to backspace records. If No, this call is not
used and the device must be rewound and advanced forward to the desired position. This function
if enabled is used at the end of a Volume after writing the end of file and any ANSI/IBM labels
to determine whether or not the last block was written correctly. If you turn this function off, the
test will not be done. This causes no harm as the re-read process is precautionary rather than required.

Block Checksum = <yes|no> (default: yes)
You may turn off the Block Checksum (CRC32) code that Bareos uses when writing blocks to a
Volume. Doing so can reduce the Storage daemon CPU usage slightly. It will also permit Bareos to
read a Volume that has corrupted data.

It is not recommend to turn this off, particularly on older tape drives or for disk Volumes where doing
so may allow corrupted data to go undetected.

Block Positioning = <yes|no> (default: yes)
This directive tells Bareos not to use block positioning when doing restores. Turning this directive off
can cause Bareos to be extremely slow when restoring files. You might use this directive if you wrote
your tapes with Bareos in variable block mode (the default), but your drive was in fixed block mode.

Bsf At Eom = <yes|no> (default: no)
If No, no special action is taken by Bareos with the End of Medium (end of tape) is reached because
the tape will be positioned after the last EOF tape mark, and Bareos can append to the tape as
desired. However, on some systems, such as FreeBSD, when Bareos reads the End of Medium (end
of tape), the tape will be positioned after the second EOF tape mark (two successive EOF marks
indicated End of Medium). If Bareos appends from that point, all the appended data will be lost.
The solution for such systems is to specify BSF at EOM which causes Bareos to backspace over the
second EOF mark. Determination of whether or not you need this directive is done using the test
command in the btape program.

Changer Command = <strname>
The name-string specifies an external program to be called that will automatically change volumes
as required by Bareos. Normally, this directive will be specified only in the AutoChanger resource,
which is then used for all devices. However, you may also specify the different Changer Command
in each Device resource. Most frequently, you will specify the Bareos supplied mtx-changer script as
follows:

Changer Command = "/usr/lib/bareos/scripts/mtx-changer %c %o %S %a %d"

and you will install the mtx on your system. An example of this command is in the default
bareos-sd.conf file. For more details on the substitution characters that may be specified to
configure your autochanger please see the Autochanger Support chapter of this manual.

Changer Device = <strname>
The specified name-string must be the generic SCSI device name of the autochanger that

159

corresponds to the normal read/write Archive Device specified in the Device resource. This generic
SCSI device name should be specified if you have an autochanger or if you have a standard tape drive
and want to use the Alert Command (see below). For example, on Linux systems, for an Archive
Device name of /dev/nst0, you would specify /dev/sg0 for the Changer Device name. Depending
on your exact configuration, and the number of autochangers or the type of autochanger, what you
specify here can vary. This directive is optional. See the Using Autochangers chapter of this manual
for more details of using this and the following autochanger directives.

Check Labels = <yes|no> (default: no)
If you intend to read ANSI or IBM labels, this must be set. Even if the volume is not ANSI labeled,
you can set this to yes, and Bareos will check the label type. Without this directive set to yes, Bareos
will assume that labels are of Bareos type and will not check for ANSI or IBM labels. In other words,
if there is a possibility of Bareos encountering an ANSI/IBM label, you must set this to yes.

Close On Poll = <yes|no> (default: no)
If Yes, Bareos close the device (equivalent to an unmount except no mount is required) and reopen
it at each poll. Normally this is not too useful unless you have the Offline on Unmount directive
set, in which case the drive will be taken offline preventing wear on the tape during any future
polling. Once the operator inserts a new tape, Bareos will recognize the drive on the next poll and
automatically continue with the backup. Please see above for more details.

Collect Statistics = <yes|no> (default: yes)

Description = <string>
The Description directive provides easier human recognition, but is not used by Bareos directly.

Device Options = <string>
Some Device Type Sd

Device require additional configuration. This can be specified in this directive, e.g.
for

GFAPI (GlusterFS) A GlusterFS Storage can be used as Storage backend of Bareos. Prerequistes
are a working GlusterFS storage system and the package bareos-storage-glusterfs. See
http://www.gluster.org/ for more information regarding GlusterFS installation and configu-
ration and specifically https://gluster.readthedocs.org/en/latest/Administrator Guide/
Bareos/ for Bareos integration. You can use following snippet to configure it as storage device:

Device {

Name = GlusterStorage

Archive Device = "Gluster Device"

Device Options = "uri=gluster://server.example.com/volumename/bareos"

Device Type = gfapi

Media Type = GlusterFile

Label Media = yes

Random Access = yes

Automatic Mount = yes

Removable Media = no

Always Open = no

}

Adapt server and volume name to your environment.

Version >= 15.2.0

Rados (Ceph Object Store) Here you configure the Ceph object store, which is accessed by the
SD using the Rados library. Prerequistes are a working Ceph object store and the package
bareos-storage-ceph. See http://ceph.com for more information regarding Ceph installation
and configuration. Assuming that you have an object store with name poolname and your Ceph
access is configured in /etc/ceph/ceph.conf, you can use following snippet to configure it as
storage device:

Device {

Name = RadosStorage

Archive Device = "Rados Device"

http://www.gluster.org/
https://gluster.readthedocs.org/en/latest/Administrator Guide/Bareos/
https://gluster.readthedocs.org/en/latest/Administrator Guide/Bareos/
http://ceph.com

160

Device Options = "conffile=/etc/ceph/ceph.conf,poolname=poolname"

Device Type = rados

Media Type = RadosFile

Label Media = yes

Random Access = yes

Automatic Mount = yes

Removable Media = no

Always Open = no

}

Version >= 15.2.0

Before the Device Options directive have been introduced, these options have to be configured in the
Archive Device Sd

Device directive. This behavior have changed with Version >= 15.2.0.
Version >= 15.2.0

Device Type = <DeviceType>
The Device Type specification allows you to explicitly define the kind of device you want to use. It
may be one of the following:

Tape is used to access tape device and thus has sequential access. Tape devices are controlled using
ioctl() calls.

File tells Bareos that the device is a file. It may either be a file defined on fixed medium or a removable
filesystem such as USB. All files must be random access devices.

Fifo is a first-in-first-out sequential access read-only or write-only device.

GFAPI (GlusterFS) is used to access a GlusterFS storage. It must be configured using Device Options
Sd
Device. Version >= 14.2.2

Rados (Ceph Object Store) is used to access a Ceph object store. It must be configured using
Device Options Sd

Device. Version >= 14.2.2

The Device Type directive is not required in all cases. If it is not specified, Bareos will attempt to
guess what kind of device has been specified using the Archive Device Sd

Device specification supplied.
There are several advantages to explicitly specifying the Device Type. First, on some systems, block
and character devices have the same type. Secondly, if you explicitly specify the Device Type, the
mount point need not be defined until the device is opened. This is the case with most removable
devices such as USB. If the Device Type is not explicitly specified, then the mount point must exist
when the Storage daemon starts.

Diagnostic Device = <strname>

Drive Crypto Enabled = <yes|no>
The default for this directive is No. If Yes the storage daemon can perform so called Application
Managed Encryption (AME) using a special Storage Daemon plugin which loads and clears the
Encryption key using the SCSI SPIN/SPOUT protocol.

Drive Index = <Pint16>
The Drive Index that you specify is passed to the mtx-changer script and is thus passed to the
mtx program. By default, the Drive Index is zero, so if you have only one drive in your autochanger,
everything will work normally. However, if you have multiple drives, you must specify multiple Bareos
Device resources (one for each drive). The first Device should have the Drive Index set to 0, and the
second Device Resource should contain a Drive Index set to 1, and so on. This will then permit you
to use two or more drives in your autochanger.

Drive Tape Alert Enabled = <yes|no>

161

Fast Forward Space File = <yes|no> (default: yes)
If No, the archive device is not required to support keeping track of the file number (MTIOCGET
ioctl) during forward space file. If Yes, the archive device must support the ioctl MTFSF call, which
virtually all drivers support, but in addition, your SCSI driver must keep track of the file number
on the tape and report it back correctly by the MTIOCGET ioctl. Note, some SCSI drivers will
correctly forward space, but they do not keep track of the file number or more seriously, they do not
report end of medium.

Forward Space File = <yes|no> (default: yes)
If Yes, the archive device must support the MTFSF ioctl to forward space by file marks. If No, data
must be read to advance the position on the device.

Forward Space Record = <yes|no> (default: yes)
If Yes, the archive device must support the MTFSR ioctl to forward space over records. If No,
data must be read in order to advance the position on the device.

Free Space Command = <strname>
Please note! This directive is deprecated.

Hardware End Of File = <yes|no> (default: yes)

Hardware End Of Medium = <yes|no> (default: yes)
All modern (after 1998) tape drives should support this feature. In doubt, use the btape program to
test your drive to see whether or not it supports this function. If the archive device does not support
the end of medium ioctl request MTEOM, set this parameter to No. The storage daemon will then use
the forward space file function to find the end of the recorded data. In addition, your SCSI driver
must keep track of the file number on the tape and report it back correctly by the MTIOCGET
ioctl. Note, some SCSI drivers will correctly forward space to the end of the recorded data, but they
do not keep track of the file number. On Linux machines, the SCSI driver has a fast-eod option,
which if set will cause the driver to lose track of the file number. You should ensure that this option
is always turned off using the mt program.

Label Block Size = <64512> (default: 64512)
The storage daemon will write the label blocks with the size configured here. Usually, you will not
need to change this directive.

For more information on this directive, please see Tapespeed and blocksizes.
Version >= 14.2.0

Label Media = <yes|no> (default: no)
If Yes, permits this device to automatically label blank media without an explicit operator command.
It does so by using an internal algorithm as defined on the Label Format Dir

Pool record in each Pool
resource. If this is No as by default, Bareos will label tapes only by specific operator command (label
in the Console) or when the tape has been recycled. The automatic labeling feature is most useful
when writing to disk rather than tape volumes.

Label Type = <Label>
Defines the label type to use, see section Tape Labels: ANSI or IBM. This directive is implemented
in the Director Pool resource (Label Type Dir

Pool) and in the SD Device resource. If it is specified in the
the SD Device resource, it will take precedence over the value passed from the Director to the SD. If
it is set to a non-default value, make sure to also enable Check Labels Sd

Device.

Maximum Block Size = <64512>
The Storage daemon will always attempt to write blocks of the specified size (in-bytes) to the archive

162

device. As a consequence, this statement specifies both the default block size and the maximum block
size. The size written never exceed the given size. If adding data to a block would cause it to exceed
the given maximum size, the block will be written to the archive device, and the new data will begin
a new block.

If no value is specified or zero is specified, the Storage daemon will use a default block size of 64,512
bytes (126 * 512).

Please note! If your are using LTO drives, changing the block size after labeling the tape will result
into unreadable tapes.

Please read chapter Tapespeed and blocksizes, to see how to tune this value in a safe manner.

Maximum Changer Wait = <time> (default: 300)
This directive specifies the maximum time in seconds for Bareos to wait for an autochanger to change
the volume. If this time is exceeded, Bareos will invalidate the Volume slot number stored in the
catalog and try again. If no additional changer volumes exist, Bareos will ask the operator to intervene.

Maximum Concurrent Jobs = <positive-integer>
This directive specifies the maximum number of Jobs that can run concurrently on a specified Device.
Using this directive, it is possible to have different Jobs using multiple drives, because when the
Maximum Concurrent Jobs limit is reached, the Storage Daemon will start new Jobs on any other
available compatible drive. This facilitates writing to multiple drives with multiple Jobs that all use
the same Pool.

Maximum File Size = <Size64> (default: 1000000000)
No more than size bytes will be written into a given logical file on the volume. Once this size is
reached, an end of file mark is written on the volume and subsequent data are written into the next
file. Breaking long sequences of data blocks with file marks permits quicker positioning to the start of
a given stream of data and can improve recovery from read errors on the volume. The default is one
Gigabyte. This directive creates EOF marks only on tape media. However, regardless of the medium
type (tape, disk, USB ...) each time a the Maximum File Size is exceeded, a record is put into the
catalog database that permits seeking to that position on the medium for restore operations. If you
set this to a small value (e.g. 1MB), you will generate lots of database records (JobMedia) and may
significantly increase CPU/disk overhead.

If you are configuring an modern drive like LTO-4 or newer, you probably will want to set the Maxi-
mum File Size to 20GB or bigger to avoid making the drive stop to write an EOF mark.

For more info regarding this parameter, read the tape speed whitepaper: Bareos Whitepaper Tape
Speed Tuning

Note, this directive does not limit the size of Volumes that Bareos will create regardless of whether
they are tape or disk volumes. It changes only the number of EOF marks on a tape and the number
of block positioning records that are generated. If you want to limit the size of all Volumes for a
particular device, use the use the Maximum Volume Bytes Dir

Pool directive.

Maximum Job Spool Size = <Size64>
where the bytes specify the maximum spool size for any one job that is running. The default is no limit.

Maximum Network Buffer Size = <positive-integer>
where bytes specifies the initial network buffer size to use with the File daemon. This size will be
adjusted down if it is too large until it is accepted by the OS. Please use care in setting this value since
if it is too large, it will be trimmed by 512 bytes until the OS is happy, which may require a large
number of system calls. The default value is 32,768 bytes.

The default size was chosen to be relatively large but not too big in the case that you are transmitting
data over Internet. It is clear that on a high speed local network, you can increase this number and
improve performance. For example, some users have found that if you use a value of 65,536 bytes they
get five to ten times the throughput. Larger values for most users don’t seem to improve performance.
If you are interested in improving your backup speeds, this is definitely a place to experiment. You

http://www.bareos.org/en/Whitepapers/articles/Speed_Tuning_of_Tape_Drives.html
http://www.bareos.org/en/Whitepapers/articles/Speed_Tuning_of_Tape_Drives.html

163

will probably also want to make the corresponding change in each of your File daemons conf files.

Maximum Open Volumes = <positive-integer> (default: 1)

Maximum Open Wait = <time> (default: 300)
This directive specifies the maximum amount of time that Bareos will wait for a device that is busy.
If the device cannot be obtained, the current Job will be terminated in error. Bareos will re-attempt
to open the drive the next time a Job starts that needs the the drive.

Maximum Part Size = <Size64>
Please note! This directive is deprecated.

Maximum Rewind Wait = <time> (default: 300)
This directive specifies the maximum time in seconds for Bareos to wait for a rewind before timing
out. If this time is exceeded, Bareos will cancel the job.

Maximum Spool Size = <Size64>
where the bytes specify the maximum spool size for all jobs that are running. The default is no limit.

Maximum Volume Size = <Size64>
Please note! This directive is deprecated.
Normally, Maximum Volume Bytes Dir

Pool should be used instead. Limit the number of bytes that will
be written onto a given volume on the archive device. This directive is used mainly in testing Bareos
to simulate a small Volume.

Media Type = <strname> (required)
The specified value names the type of media supported by this device, for example, ”DLT7000”. Media
type names are arbitrary in that you set them to anything you want, but they must be known to the
volume database to keep track of which storage daemons can read which volumes. In general, each
different storage type should have a unique Media Type associated with it. The same name-string
must appear in the appropriate Storage resource definition in the Director’s configuration file.

Even though the names you assign are arbitrary (i.e. you choose the name you want), you should take
care in specifying them because the Media Type is used to determine which storage device Bareos will
select during restore. Thus you should probably use the same Media Type specification for all drives
where the Media can be freely interchanged. This is not generally an issue if you have a single Storage
daemon, but it is with multiple Storage daemons, especially if they have incompatible media.

For example, if you specify a Media Type of ”DDS-4” then during the restore, Bareos will be able to
choose any Storage Daemon that handles ”DDS-4”. If you have an autochanger, you might want to
name the Media Type in a way that is unique to the autochanger, unless you wish to possibly use the
Volumes in other drives. You should also ensure to have unique Media Type names if the Media is not
compatible between drives. This specification is required for all devices.

In addition, if you are using disk storage, each Device resource will generally have a different mount
point or directory. In order for Bareos to select the correct Device resource, each one must have a
unique Media Type.

Minimum Block Size = <positive-integer>
This statement applies only to non-random access devices (e.g. tape drives). Blocks written by the
storage daemon to a non-random archive device will never be smaller than the given size. The Storage
daemon will attempt to efficiently fill blocks with data received from active sessions but will, if necessary,
add padding to a block to achieve the required minimum size.

164

To force the block size to be fixed, as is the case for some non-random access devices (tape drives),
set the Minimum block size and the Maximum block size to the same value. The default is that
both the minimum and maximum block size are zero and the default block size is 64,512 bytes.

For example, suppose you want a fixed block size of 100K bytes, then you would specify:

Minimum block size = 100K

Maximum block size = 100K

Please note that if you specify a fixed block size as shown above, the tape drive must either be in
variable block size mode, or if it is in fixed block size mode, the block size (generally defined by mt)
must be identical to the size specified in Bareos – otherwise when you attempt to re-read your Volumes,
you will get an error.

If you want the block size to be variable but with a 63K minimum and 200K maximum (and default
as well), you would specify:

Minimum block size = 63K

Maximum block size = 200K

Mount Command = <strname>
This directive specifies the command that must be executed to mount devices such as many USB
devices. Before the command is executed, %a is replaced with the Archive Device, and %m with the
Mount Point.

See the Edit Codes for Mount and Unmount Directives section below for more details of the editing
codes that can be used in this directive.

If you need to specify multiple commands, create a shell script.

Mount Point = <strname>
Directory where the device can be mounted. This directive is used only for devices that have Requires
Mount enabled such as USB file devices.

Name = <name> (required)
Unique identifier of the resource.

Specifies the Name that the Director will use when asking to backup or restore to or from to this
device. This is the logical Device name, and may be any string up to 127 characters in length.
It is generally a good idea to make it correspond to the English name of the backup device. The
physical name of the device is specified on the Archive Device Sd

Device directive. The name you spec-
ify here is also used in your Director’s configuration file on the Storage Resource in its Storage resource.

No Rewind On Close = <yes|no> (default: yes)
If Yes the storage daemon will not try to rewind the device on closing the device e.g. when shutting
down the Storage daemon. This allows you to do an emergency shutdown of the Daemon without
the need to wait for the device to rewind. On restarting and opening the device it will get a rewind
anyhow and this way services don’t have to wait forever for a tape to spool back.

Offline On Unmount = <yes|no> (default: no)
If Yes the archive device must support the MTOFFL ioctl to rewind and take the volume offline. In
this case, Bareos will issue the offline (eject) request before closing the device during the unmount
command. If No Bareos will not attempt to offline the device before unmounting it. After an offline is
issued, the cassette will be ejected thus requiring operator intervention to continue, and on some
systems require an explicit load command to be issued (mt -f /dev/xxx load) before the system will
recognize the tape. If you are using an autochanger, some devices require an offline to be issued prior
to changing the volume. However, most devices do not and may get very confused.

If you are using a Linux 2.6 kernel or other OSes such as FreeBSD or Solaris, the Offline On Unmount
will leave the drive with no tape, and Bareos will not be able to properly open the drive and may fail
the job.

165

Query Crypto Status = <yes|no>
The default for this directive is No. If Yes the storage daemon may query the tape device
for it security status. This only makes sense when Drive Crypto Enabled is also set to yes as the
actual query is performed by the same Storage Daemon plugin and using the same SCSI SPIN protocol.

Random Access = <yes|no> (default: no)
If Yes, the archive device is assumed to be a random access medium which supports the lseek (or
lseek64 if Largefile is enabled during configuration) facility. This should be set to Yes for all file
systems such as USB, and fixed files. It should be set to No for non-random access devices such as
tapes and named pipes.

Removable Media = <yes|no> (default: yes)
If Yes, this device supports removable media (for example tapes). If No, media cannot be removed
(for example, an intermediate backup area on a hard disk). If Removable media is enabled on a
File device (as opposed to a tape) the Storage daemon will assume that device may be something like
a USB device that can be removed or a simply a removable harddisk. When attempting to open such
a device, if the Volume is not found (for File devices, the Volume name is the same as the Filename),
then the Storage daemon will search the entire device looking for likely Volume names, and for each
one found, it will ask the Director if the Volume can be used. If so, the Storage daemon will use the
first such Volume found. Thus it acts somewhat like a tape drive – if the correct Volume is not found,
it looks at what actually is found, and if it is an appendable Volume, it will use it.

If the removable medium is not automatically mounted (e.g. udev), then you might consider using
additional Storage daemon device directives such as Requires Mount, Mount Point, Mount Com-
mand, and Unmount Command, all of which can be used in conjunction with Removable Media.

Requires Mount = <yes|no> (default: no)
When this directive is enabled, the Storage daemon will submit a Mount Command before
attempting to open the device. You must set this directive to yes for removable file systems such as
USB devices that are not automatically mounted by the operating system when plugged in or opened
by Bareos. It should be set to no for all other devices such as tapes and fixed filesystems. It should also
be set to no for any removable device that is automatically mounted by the operating system when
opened (e.g. USB devices mounted by udev or hotplug). This directive indicates if the device requires
to be mounted using the Mount Command. To be able to write devices need a mount, the follow-
ing directives must also be defined: Mount Point, Mount Command, and Unmount Command.

Spool Directory = <path>
specifies the name of the directory to be used to store the spool files for this device. This directory
is also used to store temporary part files when writing to a device that requires mount (USB). The
default is to use the working directory.

Two Eof = <yes|no> (default: no)
If Yes, Bareos will write two end of file marks when terminating a tape – i.e. after the last job or at
the end of the medium. If No, Bareos will only write one end of file to terminate the tape.

Unmount Command = <strname>
This directive specifies the command that must be executed to unmount devices such as many USB
devices. Before the command is executed, %a is replaced with the Archive Device, and %m with the
Mount Point.

Most frequently, you will define it as follows:

Unmount Command = "/bin/umount %m"

See the Edit Codes for Mount and Unmount Directives section below for more details of the editing
codes that can be used in this directive.

If you need to specify multiple commands, create a shell script.

166

Use Mtiocget = <yes|no> (default: yes)
If No, the operating system is not required to support keeping track of the file number and reporting
it in the (MTIOCGET ioctl). If you must set this to No, Bareos will do the proper file position
determination, but it is very unfortunate because it means that tape movement is very inefficient.
Fortunately, this operation system deficiency seems to be the case only on a few *BSD systems.
Operating systems known to work correctly are Solaris, Linux and FreeBSD.

Volume Capacity = <Size64>

Volume Poll Interval = <time> (default: 300)
If the time specified on this directive is non-zero, Bareos will periodically poll (or read) the drive at
the specified interval to see if a new volume has been mounted. If the time interval is zero, no polling
will occur. This directive can be useful if you want to avoid operator intervention via the console.
Instead, the operator can simply remove the old volume and insert the requested one, and Bareos on
the next poll will recognize the new tape and continue. Please be aware that if you set this interval
too small, you may excessively wear your tape drive if the old tape remains in the drive, since Bareos
will read it on each poll.

Write Part Command = <strname>
Please note! This directive is deprecated.

10.4.1 Edit Codes for Mount and Unmount Directives

Before submitting the Mount Command, or Unmount Command directives to the operating system,
Bareos performs character substitution of the following characters:

%% = %

%a = Archive device name

%e = erase (set if cannot mount and first part)

%n = part number

%m = mount point

%v = last part name (i.e. filename)

10.4.2 Devices that require a mount (USB)

Requires Mount Sd
Device You must set this directive to yes for removable devices such as USB unless they

are automounted, and to no for all other devices (tapes/files). This directive indicates if the device
requires to be mounted to be read, and if it must be written in a special way. If it set, Mount Point
Sd
Device, Mount Command Sd

Device and Unmount Command Sd
Device directives must also be defined.

Mount Point Sd
Device Directory where the device can be mounted.

Mount Command Sd
Device Command that must be executed to mount the device. Before the command is

executed, %a is replaced with the Archive Device, and %m with the Mount Point.

Most frequently, you will define it as follows:

Mount Command = "/bin/mount -t iso9660 -o ro %a %m"

Configuration 10.3:

For some media, you may need multiple commands. If so, it is recommended that you use a shell script
instead of putting them all into the Mount Command. For example, instead of this:

Mount Command = "/usr/local/bin/mymount"

Configuration 10.4:

Where that script contains:

167

#!/bin/sh

ndasadmin enable -s 1 -o w

sleep 2

mount /dev/ndas-00323794-0p1 /backup

Commands 10.5:

Similar consideration should be given to all other Command parameters.

Unmount Command Sd
Device Command that must be executed to unmount the device. Before the command

is executed, %a is replaced with the Archive Device, and %m with the Mount Point.

Most frequently, you will define it as follows:

Unmount Command = "/bin/umount %m"

Configuration 10.6:

If you need to specify multiple commands, create a shell script.

10.5 Autochanger Resource

The Autochanger resource supports single or multiple drive autochangers by grouping one or more Device
resources into one unit called an autochanger in Bareos (often referred to as a ”tape library” by autochanger
manufacturers).
If you have an Autochanger, and you want it to function correctly, you must have an Autochanger resource
in your Storage conf file, and your Director’s Storage directives that want to use an Autochanger must refer
to the Autochanger resource name.

configuration directive name type of data default value remark

Changer Command = strname required
Changer Device = strname required
Description = string
Device = ResourceList required
Name = name required

Changer Command = <strname> (required)
This command specifies an external program to be called that will automatically change volumes
as required by Bareos. Most frequently, you will specify the Bareos supplied mtx-changer script as
follows. If it is specified here, it needs not to be specified in the Device resource. If it is also spec-
ified in the Device resource, it will take precedence over the one specified in the Autochanger resource.

Changer Device = <strname> (required)
The specified name-string gives the system file name of the autochanger device name. If specified
in this resource, the Changer Device name is not needed in the Device resource. If it is specified in
the Device resource (see above), it will take precedence over one specified in the Autochanger resource.

Description = <string>

Device = <ResourceList> (required)
Specifies the names of the Device resource or resources that correspond to the autochanger drive. If
you have a multiple drive autochanger, you must specify multiple Device names, each one referring
to a separate Device resource that contains a Drive Index specification that corresponds to the drive
number base zero. You may specify multiple device names on a single line separated by commas,
and/or you may specify multiple Device directives.

168

Name = <name> (required)
Specifies the Name of the Autochanger. This name is used in the Director’s Storage definition to refer
to the autochanger.

The following is an example of a valid Autochanger resource definition:

Autochanger {

Name = "DDS-4-changer"

Device = DDS-4-1, DDS-4-2, DDS-4-3

Changer Device = /dev/sg0

Changer Command = "/usr/lib/bareos/scripts/mtx-changer %c %o %S %a %d"

}

Device {

Name = "DDS-4-1"

Drive Index = 0

Autochanger = yes

...

}

Device {

Name = "DDS-4-2"

Drive Index = 1

Autochanger = yes

...

Device {

Name = "DDS-4-3"

Drive Index = 2

Autochanger = yes

Autoselect = no

...

}

Configuration 10.7: Autochanger Configuration Example

Please note that it is important to include the Autochanger = yes directive in each Device definition that
belongs to an Autochanger. A device definition should not belong to more than one Autochanger resource.
Also, your Device directive in the Storage resource of the Director’s conf file should have the Autochanger’s
resource name rather than a name of one of the Devices.
If you have a drive that physically belongs to an Autochanger but you don’t want to have it automatically
used when Bareos references the Autochanger for backups, for example, you want to reserve it for restores,
you can add the directive:

Autoselect = no

to the Device resource for that drive. In that case, Bareos will not automatically select that drive when
accessing the Autochanger. You can still use the drive by referencing it by the Device name directly rather
than the Autochanger name. An example of such a definition is shown above for the Device DDS-4-3, which
will not be selected when the name DDS-4-changer is used in a Storage definition, but will be used if DDS-4-3
is used.

10.6 Messages Resource

For a description of the Messages Resource, please see the Messages Resource chapter of this manual.

10.7 Example Storage Daemon Configuration File

A example Storage Daemon configuration file might be the following:

#

Default Bareos Storage Daemon Configuration file

#

For Bareos release 12.4.4 (12 June 2013) -- suse SUSE Linux Enterprise Server 11 (x86_64)

#

You may need to change the name of your tape drive

on the "Archive Device" directive in the Device

resource. If you change the Name and/or the

"Media Type" in the Device resource, please ensure

that dird.conf has corresponding changes.

#

169

Storage { # definition of myself

Name = bareos-storage-sd

Maximum Concurrent Jobs = 20

remove comment in next line to load plugins from specified directory

Plugin Directory = /usr/lib64/bareos/plugins

}

#

List Directors who are permitted to contact Storage daemon

#

Director {

Name = bareos-dir

Password = "XXX_REPLACE_WITH_STORAGE_PASSWORD_XXX"

}

#

Restricted Director, used by tray-monitor to get the

status of the storage daemon

#

Director {

Name = bareos-storage-mon

Password = "XXX_REPLACE_WITH_STORAGE_MONITOR_PASSWORD_XXX"

Monitor = yes

}

#

Note, for a list of additional Device templates please

see the directory <bareos-source>/examples/devices

Or follow the following link:

http://bareos.svn.sourceforge.net/viewvc/bareos/trunk/bareos/examples/devices/

#

#

Devices supported by this Storage daemon

To connect, the Director’s bareos-dir.conf must have the

same Name and MediaType.

#

Device {

Name = FileStorage

Media Type = File

Archive Device = /var/lib/bareos/storage

LabelMedia = yes; # lets Bareos label unlabeled media

Random Access = Yes;

AutomaticMount = yes; # when device opened, read it

RemovableMedia = no;

AlwaysOpen = no;

}

#

An autochanger device with two drives

#

#Autochanger {

Name = Autochanger

Device = Drive-1

Device = Drive-2

Changer Command = "/usr/lib/bareos/scripts/mtx-changer %c %o %S %a %d"

Changer Device = /dev/sg0

#}

#Device {

Name = Drive-1

Drive Index = 0

Media Type = DLT-8000

Archive Device = /dev/nst0

AutomaticMount = yes; # when device opened, read it

AlwaysOpen = yes;

RemovableMedia = yes;

RandomAccess = no;

AutoChanger = yes

#

Enable the Alert command only if you have the mtx package loaded

Note, apparently on some systems, tapeinfo resets the SCSI controller

thus if you turn this on, make sure it does not reset your SCSI

170

controller. I have never had any problems, and smartctl does

not seem to cause such problems.

#

Alert Command = "sh -c ’tapeinfo -f %c |grep TapeAlert|cat’"

If you have smartctl, enable this, it has more info than tapeinfo

Alert Command = "sh -c ’smartctl -H -l error %c’"

#}

#Device {

Name = Drive-2

Drive Index = 1

Media Type = DLT-8000

Archive Device = /dev/nst1

AutomaticMount = yes; # when device opened, read it

AlwaysOpen = yes;

RemovableMedia = yes;

RandomAccess = no;

AutoChanger = yes

Enable the Alert command only if you have the mtx package loaded

Alert Command = "sh -c ’tapeinfo -f %c |grep TapeAlert|cat’"

If you have smartctl, enable this, it has more info than tapeinfo

Alert Command = "sh -c ’smartctl -H -l error %c’"

#}

#

A Linux or Solaris LTO-2 tape drive

#

#Device {

Name = LTO-2

Media Type = LTO-2

Archive Device = /dev/nst0

AutomaticMount = yes; # when device opened, read it

AlwaysOpen = yes;

RemovableMedia = yes;

RandomAccess = no;

Maximum File Size = 3GB

Changer Command = "/usr/lib/bareos/scripts/mtx-changer %c %o %S %a %d"

Changer Device = /dev/sg0

AutoChanger = yes

Enable the Alert command only if you have the mtx package loaded

Alert Command = "sh -c ’tapeinfo -f %c |grep TapeAlert|cat’"

If you have smartctl, enable this, it has more info than tapeinfo

Alert Command = "sh -c ’smartctl -H -l error %c’"

#}

#

A Linux or Solaris LTO-3 tape drive

#

#Device {

Name = LTO-3

Media Type = LTO-3

Archive Device = /dev/nst0

AutomaticMount = yes; # when device opened, read it

AlwaysOpen = yes;

RemovableMedia = yes;

RandomAccess = no;

Maximum File Size = 4GB

Changer Command = "/usr/lib/bareos/scripts/mtx-changer %c %o %S %a %d"

Changer Device = /dev/sg0

AutoChanger = yes

Enable the Alert command only if you have the mtx package loaded

Alert Command = "sh -c ’tapeinfo -f %c |grep TapeAlert|cat’"

If you have smartctl, enable this, it has more info than tapeinfo

Alert Command = "sh -c ’smartctl -H -l error %c’"

#}

#

A Linux or Solaris LTO-4 tape drive

#

#Device {

Name = LTO-4

Media Type = LTO-4

Archive Device = /dev/nst0

AutomaticMount = yes; # when device opened, read it

AlwaysOpen = yes;

RemovableMedia = yes;

171

RandomAccess = no;

Maximum File Size = 5GB

Changer Command = "/usr/lib/bareos/scripts/mtx-changer %c %o %S %a %d"

Changer Device = /dev/sg0

AutoChanger = yes

Enable the Alert command only if you have the mtx package loaded

Alert Command = "sh -c ’tapeinfo -f %c |grep TapeAlert|cat’"

If you have smartctl, enable this, it has more info than tapeinfo

Alert Command = "sh -c ’smartctl -H -l error %c’"

#}

#

A FreeBSD tape drive

#

#Device {

Name = DDS-4

Description = "DDS-4 for FreeBSD"

Media Type = DDS-4

Archive Device = /dev/nsa1

AutomaticMount = yes; # when device opened, read it

AlwaysOpen = yes

Offline On Unmount = no

Hardware End of Medium = no

BSF at EOM = yes

Backward Space Record = no

Fast Forward Space File = no

TWO EOF = yes

If you have smartctl, enable this, it has more info than tapeinfo

Alert Command = "sh -c ’smartctl -H -l error %c’"

#}

#

Send all messages to the Director,

mount messages also are sent to the email address

#

Messages {

Name = Standard

director = bareos-dir = all

}

172

Chapter 11

Client/File Daemon Configuration

The Client (or File Daemon) Configuration is one of the simpler ones to specify. Generally, other than
changing the Client name so that error messages are easily identified, you will not need to modify the default
Client configuration file.
For a general discussion of configuration file and resources including the data types recognized by Bareos,
please see the Configuration chapter of this manual. The following Client Resource definitions must be
defined:

� Client – to define what Clients are to be backed up.

� Director – to define the Director’s name and its access password.

� Messages – to define where error and information messages are to be sent.

11.1 Client Resource

The Client Resource (or FileDaemon) resource defines the name of the Client (as used by the Director) as
well as the port on which the Client listens for Director connections.
Start of the Client records. There must be one and only one Client resource in the configuration file, since
it defines the properties of the current client program.

configuration directive name type of data default value remark

Absolute Job Timeout = positive-integer
Allow Bandwidth Bursting = yes|no no
Allowed Job Command = string-list
Allowed Script Dir = DirectoryList

Always Use LMDB = yes|no no
Compatible = yes|no no
Description = string
FD Address = net-address 9102
FD Addresses = net-addresses 9102
FD Port = net-port 9102
FD Source Address = net-address 0
Heartbeat Interval = time 0
LMDB Threshold = positive-integer
Log Timestamp Format = string
Maximum Bandwidth Per Job = speed
Maximum Concurrent Jobs = positive-integer 20
Maximum Connections = positive-integer 42
Maximum Network Buffer Size = positive-integer
Messages = resource-name
Name = name required
Pid Directory = path /var/lib/bareos (platform specific)

Pki Cipher = EncryptionCipher aes128
Pki Encryption = yes|no no
Pki Key Pair = path

173

174

Pki Master Key = DirectoryList

Pki Signatures = yes|no no
Pki Signer = DirectoryList

Plugin Directory = path
Plugin Names = PluginNames

Scripts Directory = path
SD Connect Timeout = time 1800
Secure Erase Command = string
Sub Sys Directory = path deprecated
TLS Allowed CN = string-list
TLS Authenticate = yes|no no
TLS CA Certificate Dir = path
TLS CA Certificate File = path
TLS Certificate = path
TLS Certificate Revocation List = path
TLS Cipher List = string
TLS DH File = path
TLS Enable = yes|no no
TLS Key = path
TLS Require = yes|no no
TLS Verify Peer = yes|no yes
Ver Id = string
Working Directory = path /var/lib/bareos (platform specific)

Absolute Job Timeout = <positive-integer>

Allow Bandwidth Bursting = <yes|no> (default: no)
This option sets if there is Bandwidth Limiting in effect if the limiting code can use bursting e.g. when
from a certain timeslice not all bandwidth is used this bandwidth can be used in a next timeslice.
Which mean you will get a smoother limiting which will be much closer to the actual limit set but it
also means that sometimes the bandwidth will be above the setting here.

Allowed Job Command = <string-list>
This directive filters what type of jobs the filedaemon should allow. Until now we had the -b (backup
only) and -r (restore only) flags which could be specified at the startup of the filedaemon.

Allowed Job Command can be defined globally for all directors by adding it to the global filedaemon
resource or for a specific director when added to the director resource.

You specify all commands you want to be executed by the filedaemon. When you don’t specify the
option it will be empty which means all commands are allowed.

The following example shows how to use this functionality:

Director {

Name = <name>

Password = <password>

Allowed Job Command = "backup"

Allowed Job Command = "runscript"

}

All commands that are allowed are specified each on a new line with the Allowed Job Command
keyword.

The following job commands are recognized:

backup allow backups to be made

restore allow restores to be done

verify allow verify jobs to be done

estimate allow estimate cmds to be executed

175

runscript allow runscripts to run

Only the important commands the filedaemon can perform are filtered, as some commands are part of
the above protocols and by disallowing the action the other commands are not invoked at all.

If runscripts are not needed it would be recommended as a security measure to disable running those
or only allow the commands that you really want to be used.

Runscripts are particularly a problem as they allow the Bareos File Daemon to run arbitrary
commands. You may also look into the Allowed Script Dir Fd

Client keyword to limit the impact of the
runscript command.

Allowed Script Dir = <DirectoryList>
This directive limits the impact of the runscript command of the filedaemon.

It can be specified either for all directors by adding it to the global filedaemon resource or for a specific
director when added to the director resource.

All directories in which the scripts or commands are located that you allow to be run by the runscript
command of the filedaemon. Any program not in one of these paths (or subpaths) cannot be used.
The implementation checks if the full path of the script starts with one of the specified paths.

The following example shows how to use this functionality:

bareos-fd.conf

Director {

Name = <name>

Password = <password>

Allowed Script Dir = "/etc/bareos"

Allowed Script Dir = "/path/that/is/also/allowed"

}

bareos-dir.conf

Job {

Name = "<name>"

JobDefs = "DefaultJob"

Client Run Before Job = "/etc/bareos/runbeforejob.sh" # this will run

Client Run Before Job = "/tmp/runbeforejob.sh" # this will be blocked

}

Always Use LMDB = <yes|no> (default: no)

Compatible = <yes|no> (default: no)
This directive enables the compatible mode of the file daemon. In this mode the file daemon will try to
be as compatible to a native Bacula file daemon as possible. Enabling this option means that certain
new options available in Bareos cannot be used as they would lead to data not being able to be restored
by a Native Bareos file daemon.

The default value for this directive was changed from yes to no since Bareos Version >= 15.2.0.

When you want to use bareos-only features, the value of compatible must be no.

Description = <string>

FD Address = <net-address> (default: 9102)
This record is optional, and if it is specified, it will cause the File daemon server (for Director
connections) to bind to the specified IP-Address, which is either a domain name or an IP address
specified as a dotted quadruple.

176

FD Addresses = <net-addresses> (default: 9102)
Specify the ports and addresses on which the File daemon listens for Director connections. Probably
the simplest way to explain is to show an example:

FDAddresses = {

ip = { addr = 1.2.3.4; port = 1205; }

ipv4 = {

addr = 1.2.3.4; port = http; }

ipv6 = {

addr = 1.2.3.4;

port = 1205;

}

ip = {

addr = 1.2.3.4

port = 1205

}

ip = { addr = 1.2.3.4 }

ip = {

addr = 201:220:222::2

}

ip = {

addr = bluedot.thun.net

}

}

where ip, ip4, ip6, addr, and port are all keywords. Note, that the address can be specified as either a
dotted quadruple, or IPv6 colon notation, or as a symbolic name (only in the ip specification). Also,
the port can be specified as a number or as the mnemonic value from the /etc/services file. If a port
is not specified, the default will be used. If an ip section is specified, the resolution can be made either
by IPv4 or IPv6. If ip4 is specified, then only IPv4 resolutions will be permitted, and likewise with ip6.

FD Port = <net-port> (default: 9102)
This specifies the port number on which the Client listens for Director connections. It must agree
with the FDPort specified in the Client resource of the Director’s configuration file.

FD Source Address = <net-address> (default: 0)
If specified, the Bareos File Daemon will bind to the specified address when creating outbound
connections. If this record is not specified, the kernel will choose the best address according to the
routing table (the default).

Heartbeat Interval = <time> (default: 0)
This record defines an interval of time in seconds. For each heartbeat that the File daemon receives
from the Storage daemon, it will forward it to the Director. In addition, if no heartbeat has been
received from the Storage daemon and thus forwarded the File daemon will send a heartbeat signal
to the Director and to the Storage daemon to keep the channels active. Setting the interval to 0
(zero) disables the heartbeat. This feature is particularly useful if you have a router that does not
follow Internet standards and times out a valid connection after a short duration despite the fact that
keepalive is set. This usually results in a broken pipe error message.

LMDB Threshold = <positive-integer>

Log Timestamp Format = <string>

Version >= 15.2.3

Maximum Bandwidth Per Job = <speed>
The speed parameter specifies the maximum allowed bandwidth that a job may use.

Maximum Concurrent Jobs = <positive-integer> (default: 20)
This directive specifies the maximum number of Jobs that should run concurrently. Each contact from

177

the Director (e.g. status request, job start request) is considered as a Job, so if you want to be able
to do a status request in the console at the same time as a Job is running, you will need to set this
value greater than 1.

Maximum Connections = <positive-integer> (default: 42)

Version >= 15.2.3

Maximum Network Buffer Size = <positive-integer>
This directive specifies the initial network buffer size to use. This size will be adjusted down if it is
too large until it is accepted by the OS. Please use care in setting this value since if it is too large, it
will be trimmed by 512 bytes until the OS is happy, which may require a large number of system calls.
The default value is 65,536 bytes.

Note, on certain Windows machines, there are reports that the transfer rates are very slow and this
seems to be related to the default 65,536 size. On systems where the transfer rates seem abnormally
slow compared to other systems, you might try setting the Maximum Network Buffer Size to 32,768
in both the File daemon and in the Storage daemon.

Messages = <resource-name>

Name = <name> (required)
The name of this resource. It is used to reference to it.

The client name that must be used by the Director when connecting. Generally, it is a good idea to
use a name related to the machine so that error messages can be easily identified if you have multiple
Clients. This directive is required.

Pid Directory = <path> (default: /var/lib/bareos (platform specific))
This directive specifies a directory in which the File Daemon may put its process Id file files. The
process Id file is used to shutdown Bareos and to prevent multiple copies of Bareos from running
simultaneously.

The Bareos file daemon uses a platform specific default value, that is defined at compile time.
Typically on Linux systems, it is set to /var/lib/bareos/ or /var/run/.

Pki Cipher = <EncryptionCipher> (default: aes128)
See the Data Encryption chapter of this manual.

Depending on the openssl library version different ciphers are available. To choose the desired ci-
pher, you can use the PKI Cipher option in the filedaemon configuration. Note that you have to set
Compatible Fd

Client = no:

FileDaemon {

Name = client1-fd

encryption configuration

PKI Signatures = Yes # Enable Data Signing

PKI Encryption = Yes # Enable Data Encryption

PKI Keypair = "/etc/bareos/client1-fd.pem" # Public and Private Keys

PKI Master Key = "/etc/bareos/master.cert" # ONLY the Public Key

PKI Cipher = aes128 # specify desired PKI Cipher here

}

The available options (and ciphers) are:

� aes128

� aes192

� aes256

� camellia128

� camellia192

178

� camellia256

� aes128hmacsha1

� aes256hmacsha1

� blowfish

They depend on the version of the openssl library installed.

For decryption of encrypted data, the right decompression algorithm should be automatically chosen.

Pki Encryption = <yes|no> (default: no)
See Data Encryption.

Pki Key Pair = <path>
See Data Encryption.

Pki Master Key = <DirectoryList>
See Data Encryption.

Pki Signatures = <yes|no> (default: no)
See Data Encryption.

Pki Signer = <DirectoryList>
See Data Encryption.

Plugin Directory = <path>
This directive specifies a directory in which the File Daemon searches for plugins with the name
<pluginname>-fd.so which it will load at startup. Typically on Linux systems, plugins are installed
to /usr/lib/bareos/plugins/ or /usr/lib64/bareos/plugins/.

Plugin Names = <PluginNames>
If a Plugin Directory Fd

Client is specified Plugin Names defines, which File Daemon Plugins get loaded.

If Plugin Names is not defined, all plugins get loaded, otherwise the defined ones.

Scripts Directory = <path>

SD Connect Timeout = <time> (default: 1800)
This record defines an interval of time that the File daemon will try to connect to the Storage daemon.
If no connection is made in the specified time interval, the File daemon cancels the Job.

Secure Erase Command = <string>
Specify command that will be called when bareos unlinks files.

When files are no longer needed, Bareos will delete (unlink) them. With this directive, it will call the
specified command to delete these files. See Secure Erase Command for details.
Version >= 15.2.1

Sub Sys Directory = <path>
Please note! This directive is deprecated.

179

TLS Allowed CN = <string-list>
”Common Name”s (CNs) of the allowed peer certificates.

TLS Authenticate = <yes|no> (default: no)
Use TLS only to authenticate, not for encryption.

TLS CA Certificate Dir = <path>
Path of a TLS CA certificate directory.

TLS CA Certificate File = <path>
Path of a PEM encoded TLS CA certificate(s) file.

TLS Certificate = <path>
Path of a PEM encoded TLS certificate.

TLS Certificate Revocation List = <path>
Path of a Certificate Revocation List file.

TLS Cipher List = <string>
List of valid TLS Ciphers.

TLS DH File = <path>
Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange
will be used for the ephemeral keying, allowing for forward secrecy of communications.

TLS Enable = <yes|no> (default: no)
Enable TLS support.

Bareos can be configured to encrypt all its network traffic. See chapter TLS Configuration Directives
to see how the Bareos Director (and the other components) have to be configured to use TLS.

TLS Key = <path>
Path of a PEM encoded private key. It must correspond to the specified ”TLS Certificate”.

TLS Require = <yes|no> (default: no)
Without setting this to yes, Bareos can fall back to use unencryption connections. Enabling this
implicietly sets ”TLS Enable = yes”.

180

TLS Verify Peer = <yes|no> (default: yes)
If disabled, all certificates signed by a known CA will be accepted. If enabled, the CN of a certificate
must the Address or in the ”TLS Allowed CN” list.

Ver Id = <string>

Working Directory = <path> (default: /var/lib/bareos (platform specific))
This directive is optional and specifies a directory in which the File daemon may put its status files.

On Win32 systems, in some circumstances you may need to specify a drive letter in the specified
working directory path. Also, please be sure that this directory is writable by the SYSTEM user
otherwise restores may fail (the bootstrap file that is transferred to the File daemon from the Director
is temporarily put in this directory before being passed to the Storage daemon).

The following is an example of a valid Client resource definition:

Client { # this is me

Name = rufus-fd

}

11.2 Director Resource

The Director resource defines the name and password of the Directors that are permitted to contact this
Client.

configuration directive name type of data default value remark

Address = string
Allowed Job Command = string-list
Allowed Script Dir = DirectoryList

Connection From Client To Director = yes|no no
Connection From Director To Client = yes|no yes
Description = string
Maximum Bandwidth Per Job = speed
Monitor = yes|no no
Name = name required
Password = Md5password required
Port = positive-integer 9101
TLS Allowed CN = string-list
TLS Authenticate = yes|no no
TLS CA Certificate Dir = path
TLS CA Certificate File = path
TLS Certificate = path
TLS Certificate Revocation List = path
TLS Cipher List = string
TLS DH File = path
TLS Enable = yes|no no
TLS Key = path
TLS Require = yes|no no
TLS Verify Peer = yes|no yes

Address = <string>
Director Network Address. Only required if ”Connection From Client To Director” is enabled.

181

Allowed Job Command = <string-list>
see Allowed Job Command Fd

Client

Allowed Script Dir = <DirectoryList>
see Allowed Script Dir Fd

Client

Connection From Client To Director = <yes|no> (default: no)
Let the Filedaemon initiate network connections to the Director.

For details, see Client Initiated Connection.
Version >= 16.2.2

Connection From Director To Client = <yes|no> (default: yes)
This Client will accept incoming network connection from this Director.

Version >= 16.2.2

Description = <string>

Maximum Bandwidth Per Job = <speed>
The speed parameter specifies the maximum allowed bandwidth that a job may use when started from
this Director. The speed parameter should be specified in k/s, Kb/s, m/s or Mb/s.

Monitor = <yes|no> (default: no)
If Monitor is set to no, this director will have full access to this Client. If Monitor is set to yes, this
director will only be able to fetch the current status of this Client.

Please note that if this director is being used by a Monitor, we highly recommend to set this directive
to yes to avoid serious security problems.

Name = <name> (required)
The name of the Director that may contact this Client. This name must be the same as the name
specified on the Director resource in the Director’s configuration file. Note, the case (upper/lower) of
the characters in the name are significant (i.e. S is not the same as s). This directive is required.

Password = <Md5password> (required)
Specifies the password that must be supplied for a Director to be authorized. This password must be
the same as the password specified in the Client resource in the Director’s configuration file. This
directive is required.

Port = <positive-integer> (default: 9101)
Director Network Port. Only used if ”Connection From Client To Director” is enabled.

Version >= 16.2.2

TLS Allowed CN = <string-list>
”Common Name”s (CNs) of the allowed peer certificates.

TLS Authenticate = <yes|no> (default: no)
Use TLS only to authenticate, not for encryption.

182

TLS CA Certificate Dir = <path>
Path of a TLS CA certificate directory.

TLS CA Certificate File = <path>
Path of a PEM encoded TLS CA certificate(s) file.

TLS Certificate = <path>
Path of a PEM encoded TLS certificate.

TLS Certificate Revocation List = <path>
Path of a Certificate Revocation List file.

TLS Cipher List = <string>
List of valid TLS Ciphers.

TLS DH File = <path>
Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange
will be used for the ephemeral keying, allowing for forward secrecy of communications.

TLS Enable = <yes|no> (default: no)
Enable TLS support.

Bareos can be configured to encrypt all its network traffic. See chapter TLS Configuration Directives
to see how the Bareos Director (and the other components) have to be configured to use TLS.

TLS Key = <path>
Path of a PEM encoded private key. It must correspond to the specified ”TLS Certificate”.

TLS Require = <yes|no> (default: no)
Without setting this to yes, Bareos can fall back to use unencryption connections. Enabling this
implicietly sets ”TLS Enable = yes”.

TLS Verify Peer = <yes|no> (default: yes)
If disabled, all certificates signed by a known CA will be accepted. If enabled, the CN of a certificate
must the Address or in the ”TLS Allowed CN” list.

Thus multiple Directors may be authorized to use this Client’s services. Each Director will have a different
name, and normally a different password as well.

The following is an example of a valid Director resource definition:

183

#

List Directors who are permitted to contact the File daemon

#

Director {

Name = HeadMan

Password = very_good # password HeadMan must supply

}

Director {

Name = Worker

Password = not_as_good

Monitor = Yes

}

11.3 Messages Resource

Please see the Messages Resource Chapter of this manual for the details of the Messages Resource.
There must be at least one Message resource in the Client configuration file.

11.4 Example Client Configuration File

An example File Daemon configuration file might be the following:

#

Default Bareos File Daemon Configuration file

#

For Bareos release 12.4.4 (12 June 2013)

#

There is not much to change here except perhaps the

File daemon Name to

#

#

List Directors who are permitted to contact this File daemon

#

Director {

Name = bareos-dir

Password = "aEODFz89JgUbWpuG6hP4OTuAoMvfM1PaJwO+ShXGqXsP"

}

#

Restricted Director, used by tray-monitor to get the

status of the file daemon

#

Director {

Name = client1-mon

Password = "8BoVwTju2TQlafdHFExRIJmUcHUMoIyIqPJjbvcSO61P"

Monitor = yes

}

#

"Global" File daemon configuration specifications

#

FileDaemon { # this is me

Name = client1-fd

Maximum Concurrent Jobs = 20

remove comment in next line to load plugins from specified directory

Plugin Directory = /usr/lib64/bareos/plugins

}

Send all messages except skipped files back to Director

Messages {

Name = Standard

director = client1-dir = all, !skipped, !restored

}

184

Chapter 12

Messages Resource

The Messages resource defines how messages are to be handled and destinations to which they should be
sent.
Even though each daemon has a full message handler, within the File daemon and the Storage daemon,
you will normally choose to send all the appropriate messages back to the Director. This permits all the
messages associated with a single Job to be combined in the Director and sent as a single email message to
the user, or logged together in a single file.
Each message that Bareos generates (i.e. that each daemon generates) has an associated type such as INFO,
WARNING, ERROR, FATAL, etc. Using the message resource, you can specify which message types you
wish to see and where they should be sent. In addition, a message may be sent to multiple destinations.
For example, you may want all error messages both logged as well as sent to you in an email. By defining
multiple messages resources, you can have different message handling for each type of Job (e.g. Full backups
versus Incremental backups).
In general, messages are attached to a Job and are included in the Job report. There are some rare cases,
where this is not possible, e.g. when no job is running, or if a communications error occurs between a daemon
and the director. In those cases, the message may remain in the system, and should be flushed at the end of
the next Job. However, since such messages are not attached to a Job, any that are mailed will be sent to
/usr/lib/sendmail. On some systems, such as FreeBSD, if your sendmail is in a different place, you may
want to link it to the the above location.
The records contained in a Messages resource consist of a destination specification followed by a list of
message-types in the format:

destination = message-type1, message-type2, message-type3, ...

or for those destinations that need and address specification (e.g. email):

destination = address = message-type1, message-type2, message-type3, ...

where

destination is one of a predefined set of keywords that define where the message is to be sent (Append
Dir
Messages, Console Dir

Messages, File Dir
Messages, Mail Dir

Messages, ...),

address varies according to the destination keyword, but is typically an email address or a filename,

message-type is one of a predefined set of keywords that define the type of message generated by
Bareos: ERROR, WARNING, FATAL, ...

configuration directive name type of data default value remark

Append = [address =] message-type [, message-type]*
Catalog = [address =] message-type [, message-type]*
Console = [address =] message-type [, message-type]*
Description = string
Director = [address =] message-type [, message-type]*
File = [address =] message-type [, message-type]*
Mail = [address =] message-type [, message-type]*
Mail Command = string

185

186

Mail On Error = [address =] message-type [, message-type]*
Mail On Success = [address =] message-type [, message-type]*
Name = name
Operator = [address =] message-type [, message-type]*
Operator Command = string
Stderr = [address =] message-type [, message-type]*
Stdout = [address =] message-type [, message-type]*
Syslog = [address =] message-type [, message-type]*
Timestamp Format = string

Append = <[address =] message-type [, message-type]* >
Append the message to the filename given in the address field. If the file already exists, it will be
appended to. If the file does not exist, it will be created.

Catalog = <[address =] message-type [, message-type]* >
Send the message to the Catalog database. The message will be written to the table named Log and
a timestamp field will also be added. This permits Job Reports and other messages to be recorded in
the Catalog so that they can be accessed by reporting software. Bareos will prune the Log records
associated with a Job when the Job records are pruned. Otherwise, Bareos never uses these records
internally, so this destination is only used for special purpose programs (e.g. frontend programs).

Console = <[address =] message-type [, message-type]* >
Send the message to the Bareos console. These messages are held until the console program connects
to the Director.

Description = <string>

Director = <[address =] message-type [, message-type]* >
Send the message to the Director whose name is given in the address field. Note, in the current imple-
mentation, the Director Name is ignored, and the message is sent to the Director that started the Job.

File = <[address =] message-type [, message-type]* >
Send the message to the filename given in the address field. If the file already exists, it will be
overwritten.

Mail = <[address =] message-type [, message-type]* >
Send the message to the email addresses that are given as a comma separated list in the address
field. Mail messages are grouped together during a job and then sent as a single email message when
the job terminates. The advantage of this destination is that you are notified about every Job that
runs. However, if you backup mutliple machines every night, the number of email messages can be
annoying. Some users use filter programs such as procmail to automatically file this email based on
the Job termination code (see Mail Command Dir

Messages).

Mail Command = <string>
In the absence of this resource, Bareos will send all mail using the following command:

mail -s ”Bareos Message” <recipients>

In many cases, depending on your machine, this command may not work. However, by using the
Mail Command, you can specify exactly how to send the mail. During the processing of the command
part, normally specified as a quoted string, the following substitutions will be used:

� %% = %

� %c = Client’s name

187

� %d = Director’s name

� %e = Job Exit code (OK, Error, ...)

� %h = Client address

� %i = Job Id

� %j = Unique Job name

� %l = Job level

� %n = Job name

� %r = Recipients

� %s = Since time

� %t = Job type (e.g. Backup, ...)

� %v = Read Volume name (Only on director side)

� %V = Write Volume name (Only on director side)

Please note: any Mail Command directive must be specified in the Messages resource before the
desired Mail Dir

Messages, Mail On Success Dir
Messages or Mail On Error Dir

Messages directive. In fact, each of those
directives may be preceded by a different Mail Command.

A default installation will use the program bsmtp as Mail Command. The program bsmtp is provided
by Bareos and unifies the usage of a mail client to a certain degree:

Mail Command = "/usr/sbin/bsmtp -h mail.example.com -f \"\(Bareos\) \%r\" -s \"Bareos: \%t \%e of \%c \%l\" \%r"

The bsmtp program is provided as part of Bareos. For additional details, please see the bsmtp
section. Please test any Mail Command that you use to ensure that your smtp gateway accepts the
addressing form that you use. Certain programs such as Exim can be very selective as to what forms
are permitted particularly in the from part.

Mail On Error = <[address =] message-type [, message-type]* >
Send the message to the email addresses that are given as a comma separated list in the address field
if the Job terminates with an error condition. Mail On Error messages are grouped together during
a job and then sent as a single email message when the job terminates. This destination differs from
the mail destination in that if the Job terminates normally, the message is totally discarded (for this
destination). If the Job terminates in error, it is emailed. By using other destinations such as append
you can ensure that even if the Job terminates normally, the output information is saved.

Mail On Success = <[address =] message-type [, message-type]* >
Send the message to the email addresses that are given as a comma separated list in the address field
if the Job terminates normally (no error condition). Mail On Success messages are grouped together
during a job and then sent as a single email message when the job terminates. This destination differs
from the mail destination in that if the Job terminates abnormally, the message is totally discarded
(for this destination). If the Job terminates normally, it is emailed.

Name = <name>
The name of the Messages resource. The name you specify here will be used to tie this Messages
resource to a Job and/or to the daemon.

Operator = <[address =] message-type [, message-type]* >
Send the message to the email addresses that are specified as a comma separated list in the address
field. This is similar to mail above, except that each message is sent as received. Thus there is one
email per message. This is most useful for mount messages (see below).

Operator Command = <string>
This resource specification is similar to the Mail Command Dir

Messages except that it is used for Operator
messages. The substitutions performed for the Mail Command Dir

Messages are also done for this command.
Normally, you will set this command to the same value as specified for the Mail Command Dir

Messages.

188

The Operator Command directive must appear in the Messages resource before the Operator Dir
Messages

directive.

Stderr = <[address =] message-type [, message-type]* >
Send the message to the standard error output (normally not used).

Stdout = <[address =] message-type [, message-type]* >
Send the message to the standard output (normally not used).

Syslog = <[address =] message-type [, message-type]* >
Send the message to the system log (syslog).

Since Version >= 14.4.0 the facility can be specified in the address field and the loglevel correspond
to the Bareos Message Types. The defaults are DAEMON and LOG_ERR.

Although the syslog destination is not used in the default Bareos config files, in certain cases where
Bareos encounters errors in trying to deliver a message, as a last resort, it will send it to the system
syslog to prevent loss of the message, so you might occassionally check the syslog for Bareos output.

Timestamp Format = <string>

12.1 Message Types

For any destination, the message-type field is a comma separated list of the following types or classes of
messages:

info
General information messages.

warning
Warning messages. Generally this is some unusual condition but not expected to be serious.

error
Non-fatal error messages. The job continues running. Any error message should be investigated as it

means that something went wrong.

fatal
Fatal error messages. Fatal errors cause the job to terminate.

terminate
Message generated when the daemon shuts down.

notsaved
Files not saved because of some error. Usually because the file cannot be accessed (i.e. it does not

exist or is not mounted).

skipped
Files that were skipped because of a user supplied option such as an incremental backup or a file that

matches an exclusion pattern. This is not considered an error condition such as the files listed for the
notsaved type because the configuration file explicitly requests these types of files to be skipped. For
example, any unchanged file during an incremental backup, or any subdirectory if the no recursion
option is specified.

mount
Volume mount or intervention requests from the Storage daemon. These requests require a specific

operator intervention for the job to continue.

restored
The ls style listing generated for each file restored is sent to this message class.

189

all
All message types.

security
Security info/warning messages principally from unauthorized connection attempts.

alert
Alert messages. These are messages generated by tape alerts.

volmgmt
Volume management messages. Currently there are no volume mangement messages generated.

audit
Audit messages. Interacting with the Bareos Director will be audited. Can be configured with in

resource Auditing Dir
Director.

The following is an example of a valid Messages resource definition, where all messages except files explicitly
skipped or daemon termination messages are sent by email to backupoperator@example.com. In addition
all mount messages are sent to the operator (i.e. emailed to backupoperator@example.com). Finally all
messages other than explicitly skipped files and files saved are sent to the console:

Messages {

Name = Standard

Mail = backupoperator@example.com = all, !skipped, !terminate

Operator = backupoperator@example.com = mount

Console = all, !skipped, !saved

}

Configuration 12.1: Message resource

With the exception of the email address, an example Director’s Messages resource is as follows:

Messages {

Name = Standard

Mail Command = "/usr/sbin/bsmtp -h mail.example.com -f \"\(Bareos\) %r\" -s \"Bareos: %t %e of %c %l\" % ↙
↪→ r"

Operator Command = "/usr/sbin/bsmtp -h mail.example.com -f \"\(Bareos\) %r\" -s \"Bareos: Intervention ↙
↪→ needed for %j\" %r"

Mail On Error = backupoperator@example.com = all, !skipped, !terminate

Append = "/var/log/bareos/bareos.log" = all, !skipped, !terminate

Operator = backupoperator@example.com = mount

Console = all, !skipped, !saved

}

Configuration 12.2: Message resource

190

Chapter 13

Console Configuration

The Console configuration file is the simplest of all the configuration files, and in general, you should not need
to change it except for the password. It simply contains the information necessary to contact the Director
or Directors.
For a general discussion of the syntax of configuration files and their resources including the data types
recognized by Bareos, please see the Configuration chapter of this manual.
The following Console Resource definition must be defined:

13.1 Director Resource

The Director resource defines the attributes of the Director running on the network. You may have multiple
Director resource specifications in a single Console configuration file. If you have more than one, you will be
prompted to choose one when you start the Console program.

configuration directive name type of data default value remark

Address = string
Description = string
Dir Port = positive-integer 9101
Heartbeat Interval = time 0
Name = name required
Password = Md5password required
TLS Allowed CN = string-list
TLS Authenticate = yes|no no
TLS CA Certificate Dir = path
TLS CA Certificate File = path
TLS Certificate = path
TLS Certificate Revocation List = path
TLS Cipher List = string
TLS DH File = path
TLS Enable = yes|no no
TLS Key = path
TLS Require = yes|no no
TLS Verify Peer = yes|no yes

Address = <string>
Where the address is a host name, a fully qualified domain name, or a network address used to connect
to the Director.

Description = <string>

Dir Port = <positive-integer> (default: 9101)

191

192

This port must be identical to the Dir Port Dir
Director specified in the Director Configuration file.

Heartbeat Interval = <time> (default: 0)

Name = <name> (required)
The director name used to select among different Directors, otherwise, this name is not used.

Password = <Md5password> (required)
This password is used to authenticate when connecting to the Bareos Director as default console. It
must correspond to Password Dir

Director.

TLS Allowed CN = <string-list>
”Common Name”s (CNs) of the allowed peer certificates.

TLS Authenticate = <yes|no> (default: no)
Use TLS only to authenticate, not for encryption.

TLS CA Certificate Dir = <path>
Path of a TLS CA certificate directory.

TLS CA Certificate File = <path>
Path of a PEM encoded TLS CA certificate(s) file.

TLS Certificate = <path>
Path of a PEM encoded TLS certificate.

TLS Certificate Revocation List = <path>
Path of a Certificate Revocation List file.

TLS Cipher List = <string>
List of valid TLS Ciphers.

TLS DH File = <path>
Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange
will be used for the ephemeral keying, allowing for forward secrecy of communications.

TLS Enable = <yes|no> (default: no)
Enable TLS support.

Bareos can be configured to encrypt all its network traffic. See chapter TLS Configuration Directives
to see how the Bareos Director (and the other components) have to be configured to use TLS.

193

TLS Key = <path>
Path of a PEM encoded private key. It must correspond to the specified ”TLS Certificate”.

TLS Require = <yes|no> (default: no)
Without setting this to yes, Bareos can fall back to use unencryption connections. Enabling this
implicietly sets ”TLS Enable = yes”.

TLS Verify Peer = <yes|no> (default: yes)
If disabled, all certificates signed by a known CA will be accepted. If enabled, the CN of a certificate
must the Address or in the ”TLS Allowed CN” list.

An actual example might be:

Director {

Name = HeadMan

address = rufus.cats.com

password = xyz1erploit

}

13.2 Console Resource

There are three different kinds of consoles, which the administrator or user can use to interact with the
Director. These three kinds of consoles comprise three different security levels.

� The first console type is an admin or anonymous or default console, which has full privileges. There
is no console resource necessary for this type since the password is specified in the Director resource.
Typically you would use this console only for administrators.

� The second type of console is a ”named” or ”restricted” console defined within a Console resource in
both the Director’s configuration file and in the Console’s configuration file. Both the names and the
passwords in these two entries must match much as is the case for Client programs.

This second type of console begins with absolutely no privileges except those explicitly specified in the
Director’s Console resource. Note, the definition of what these restricted consoles can do is determined
by the Director’s conf file.

Thus you may define within the Director’s conf file multiple Consoles with different names and pass-
words, sort of like multiple users, each with different privileges. As a default, these consoles can do
absolutely nothing – no commands what so ever. You give them privileges or rather access to com-
mands and resources by specifying access control lists in the Director’s Console resource. This gives
the administrator fine grained control over what particular consoles (or users) can do.

� The third type of console is similar to the above mentioned restricted console in that it requires a
Console resource definition in both the Director and the Console. In addition, if the console name,
provided on the Name = directive, is the same as a Client name, the user of that console is permitted
to use the SetIP command to change the Address directive in the Director’s client resource to the IP
address of the Console. This permits portables or other machines using DHCP (non-fixed IP addresses)
to ”notify” the Director of their current IP address.

The Console resource is optional and need not be specified. However, if it is specified, you can use ACLs
(Access Control Lists) in the Director’s configuration file to restrict the particular console (or user) to see
only information pertaining to his jobs or client machine.
You may specify as many Console resources in the console’s conf file. If you do so, generally the first Console
resource will be used. However, if you have multiple Director resources (i.e. you want to connect to different
directors), you can bind one of your Console resources to a particular Director resource, and thus when you
choose a particular Director, the appropriate Console configuration resource will be used. See the ”Director”
directive in the Console resource described below for more information.
Note, the Console resource is optional, but can be useful for restricted consoles as noted above.

194

configuration directive name type of data default value remark

Description = string
Director = string
Heartbeat Interval = time 0
History File = path
History Length = positive-integer 100
Name = name required
Password = Md5password required
Rc File = path
TLS Allowed CN = string-list
TLS Authenticate = yes|no no
TLS CA Certificate Dir = path
TLS CA Certificate File = path
TLS Certificate = path
TLS Certificate Revocation List = path
TLS Cipher List = string
TLS DH File = path
TLS Enable = yes|no no
TLS Key = path
TLS Require = yes|no no
TLS Verify Peer = yes|no yes

Description = <string>

Director = <string>
If this directive is specified, this Console resource will be used by bconsole when that particular
director is selected when first starting bconsole. I.e. it binds a particular console resource with its
name and password to a particular director.

Heartbeat Interval = <time> (default: 0)
This directive is optional and if specified will cause the Console to set a keepalive interval (heartbeat)
in seconds on each of the sockets to communicate with the Director. It is implemented only on systems
(Linux, ...) that provide the setsockopt TCP KEEPIDLE function. If the value is set to 0 (zero), no
change is made to the socket.

History File = <path>
If this directive is specified and the console is compiled with readline support, it will use the given
filename as history file. If not specified, the history file will be named ~/.bconsole_history

History Length = <positive-integer> (default: 100)
If this directive is specified the history file will be truncated after HistoryLength entries.

Name = <name> (required)
The name of this resource.

The Console name used to allow a restricted console to change its IP address using the SetIP
command. The SetIP command must also be defined in the Director’s conf CommandACL list.

Password = <Md5password> (required)
If this password is supplied, then the password specified in the Director resource of you Console conf
will be ignored. See below for more details.

195

Rc File = <path>

TLS Allowed CN = <string-list>
”Common Name”s (CNs) of the allowed peer certificates.

TLS Authenticate = <yes|no> (default: no)
Use TLS only to authenticate, not for encryption.

TLS CA Certificate Dir = <path>
Path of a TLS CA certificate directory.

TLS CA Certificate File = <path>
Path of a PEM encoded TLS CA certificate(s) file.

TLS Certificate = <path>
Path of a PEM encoded TLS certificate.

TLS Certificate Revocation List = <path>
Path of a Certificate Revocation List file.

TLS Cipher List = <string>
List of valid TLS Ciphers.

TLS DH File = <path>
Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange
will be used for the ephemeral keying, allowing for forward secrecy of communications.

TLS Enable = <yes|no> (default: no)
Enable TLS support.

Bareos can be configured to encrypt all its network traffic. See chapter TLS Configuration Directives
to see how the Bareos Director (and the other components) have to be configured to use TLS.

TLS Key = <path>
Path of a PEM encoded private key. It must correspond to the specified ”TLS Certificate”.

TLS Require = <yes|no> (default: no)
Without setting this to yes, Bareos can fall back to use unencryption connections. Enabling this
implicietly sets ”TLS Enable = yes”.

196

TLS Verify Peer = <yes|no> (default: yes)
If disabled, all certificates signed by a known CA will be accepted. If enabled, the CN of a certificate
must the Address or in the ”TLS Allowed CN” list.

13.3 Example Console Configuration File

A Console configuration file might look like this:

Director {

Name = "bareos.example.com-dir"

address = "bareos.example.com"

Password = "PASSWORD"

}

Configuration 13.1: bconsole configuration

With this configuration, the console program (e.g. bconsole) will try to connect to a Bareos Director
named bareos.example.com-dir at the network address bareos.example.com and authenticate to the
admin console using the password PASSWORD.

13.3.1 Using Named Consoles

The following configuration files were supplied by Phil Stracchino.
To use named consoles from bconsole, use a bconsole.conf configuration file like this:

Director {

Name = bareos-dir

Address = myserver

Password = "XXXXXXXXXXX"

}

Console {

Name = restricted-user

Password = "RUPASSWORD"

}

Configuration 13.2: bconsole: restricted-user

Where the Password in the Director section is deliberately incorrect and the Console resource is given a
name, in this case restricted-user. Then in the Director configuration (not directly accessible by the user),
we define:

Console {

Name = restricted-user

Password = "RUPASSWORD"

JobACL = "Restricted Client Save"

ClientACL = restricted-client

StorageACL = main-storage

ScheduleACL = *all*

PoolACL = *all*

FileSetACL = "Restricted Client’s FileSet"

CatalogACL = MyCatalog

CommandACL = run

}

Resource 13.3: bareos-dir.d/console/restricted-user.conf

The user login into the Director from his Console will get logged in as restricted-userDir
Console and

he will only be able to see or access a Job with the name Restricted Client Save, a Client with
the name restricted-client, a storage device main-storage, any Schedule or Pool, a FileSet named
Restricted Client’s FileSet, a Catalog named MyCatalog and the only command he can use in the
Console is the run command. In other words, this user is rather limited in what he can see and do with
Bareos. For details how to configure ACLs, see the acl data type description.

The following is an example of a bconsole.conf file that can access several Directors and has different
Consoles depending on the Director:

197

Director {

Name = bareos-dir

Address = myserver

Password = "XXXXXXXXXXX" # no, really. this is not obfuscation.

}

Director {

Name = SecondDirector

Address = secondserver

Password = "XXXXXXXXXXX" # no, really. this is not obfuscation.

}

Console {

Name = restricted-user

Password = "RUPASSWORD"

Director = MyDirector

}

Console {

Name = restricted-user2

Password = "OTHERPASSWORD"

Director = SecondDirector

}

Configuration 13.4: bconsole: multiple consoles

The second Director referenced at secondserverDir
Director might look like the following:

Console {

Name = restricted-user2

Password = "OTHERPASSWORD"

JobACL = "Restricted Client Save"

ClientACL = restricted-client

StorageACL = second-storage

ScheduleACL = *all*

PoolACL = *all*

FileSetACL = "Restricted Client’s FileSet"

CatalogACL = RestrictedCatalog

CommandACL = run, restore

WhereACL = "/"

}

Resource 13.5: bareos-dir.d/console/restricted-user2.conf

198

Chapter 14

Monitor Configuration

The Monitor configuration file is a stripped down version of the Director configuration file, mixed with a
Console configuration file. It simply contains the information necessary to contact Directors, Clients, and
Storage daemons you want to monitor.
For a general discussion of configuration file and resources including the data types recognized by Bareos,
please see the Configuration chapter of this manual.
The following Monitor Resource definition must be defined:

� Monitor – to define the Monitor’s name used to connect to all the daemons and the password used to
connect to the Directors. Note, you must not define more than one Monitor resource in the Monitor
configuration file.

� At least one Client, Storage or Director resource, to define the daemons to monitor.

14.1 Monitor Resource

The Monitor resource defines the attributes of the Monitor running on the network. The parameters you
define here must be configured as a Director resource in Clients and Storages configuration files, and as a
Console resource in Directors configuration files.

configuration directive name type of data default value remark

Description = string
Dir Connect Timeout = time 10
FD Connect Timeout = time 10
Name = name required
Password = Md5password required
Refresh Interval = time 60
Require SSL = yes|no no
SD Connect Timeout = time 10

Description = <string>

Dir Connect Timeout = <time> (default: 10)

FD Connect Timeout = <time> (default: 10)

Name = <name> (required)
Specifies the Director name used to connect to Client and Storage, and the Console name used to

199

200

connect to Director. This record is required.

Password = <Md5password> (required)
Where the password is needed for Directors to accept the Console connection. This password must be
identical to the Password specified in the Console resource of the Director’s configuration file. This
record is required if you wish to monitor Directors.

Refresh Interval = <time> (default: 60)
Specifies the time to wait between status requests to each daemon. It can’t be set to less than 1
second or more than 10 minutes.

Require SSL = <yes|no> (default: no)

SD Connect Timeout = <time> (default: 10)

14.2 Director Resource

The Director resource defines the attributes of the Directors that are monitored by this Monitor.
As you are not permitted to define a Password in this resource, to avoid obtaining full Director privileges,
you must create a Console resource in the Director’s configuration file, using the Console Name and Password
defined in the Monitor resource. To avoid security problems, you should configure this Console resource to
allow access to no other daemons, and permit the use of only two commands: status and .status (see below
for an example).
You may have multiple Director resource specifications in a single Monitor configuration file.

configuration directive name type of data default value remark

Address = string required
Description = string
Dir Port = positive-integer 9101
Enable SSL = yes|no no
Name = name required

Address = <string> (required)
Where the address is a host name, a fully qualified domain name, or a network address used to connect
to the Director. This record is required.

Description = <string>

Dir Port = <positive-integer> (default: 9101)
Specifies the port to use to connect to the Director. This port must be identical to the DIRport
specified in the Director resource of the Director Configuration file.

Enable SSL = <yes|no> (default: no)

Name = <name> (required)
The Director name used to identify the Director in the list of monitored daemons. It is not required

201

to be the same as the one defined in the Director’s configuration file. This record is required.

14.3 Client Resource

The Client resource defines the attributes of the Clients that are monitored by this Monitor.
You must create a Director resource in the Client’s configuration file, using the Director Name defined in the
Monitor resource. To avoid security problems, you should set the Monitor directive to Yes in this Director
resource.
You may have multiple Director resource specifications in a single Monitor configuration file.

configuration directive name type of data default value remark

Address = string required
Description = string
Enable SSL = yes|no no
FD Port = positive-integer 9102
Name = name required
Password = Md5password required

Address = <string> (required)
Where the address is a host name, a fully qualified domain name, or a network address in dotted quad
notation for a Bareos File daemon. This record is required.

Description = <string>

Enable SSL = <yes|no> (default: no)

FD Port = <positive-integer> (default: 9102)
Where the port is a port number at which the Bareos File daemon can be contacted.

Name = <name> (required)
The Client name used to identify the Director in the list of monitored daemons. It is not required to
be the same as the one defined in the Client’s configuration file. This record is required.

Password = <Md5password> (required)
This is the password to be used when establishing a connection with the File services, so the Client
configuration file on the machine to be backed up must have the same password defined for this
Director. This record is required.

14.4 Storage Resource

The Storage resource defines the attributes of the Storages that are monitored by this Monitor.
You must create a Director resource in the Storage’s configuration file, using the Director Name defined in
the Monitor resource. To avoid security problems, you should set the Monitor directive to Yes in this
Director resource.
You may have multiple Director resource specifications in a single Monitor configuration file.

configuration directive name type of data default value remark

202

Address = string required
Description = string
Enable SSL = yes|no no
Name = name required
Password = Md5password required
SD Address = string
SD Password = Md5password

SD Port = positive-integer 9103

Address = <string> (required)
Where the address is a host name, a fully qualified domain name, or a network address in dotted quad
notation for a Bareos Storage daemon. This record is required.

Description = <string>

Enable SSL = <yes|no> (default: no)

Name = <name> (required)
The Storage name used to identify the Director in the list of monitored daemons. It is not required to
be the same as the one defined in the Storage’s configuration file. This record is required.

Password = <Md5password> (required)
This is the password to be used when establishing a connection with the Storage services. This same
password also must appear in the Director resource of the Storage daemon’s configuration file. This
record is required.

SD Address = <string>

SD Password = <Md5password>

SD Port = <positive-integer> (default: 9103)
Where port is the port to use to contact the storage daemon for information and to start jobs. This
same port number must appear in the Storage resource of the Storage daemon’s configuration file.

14.5 Tray Monitor

Tray Monitor Security

There is no security problem in relaxing the permissions on tray-monitor.conf as long as FD, SD and DIR
are configured properly, so the passwords contained in this file only gives access to the status of the daemons.
It could be a security problem if you consider the status information as potentially dangerous (most people
consider this as not being dangerous).
Concerning Director’s configuration:
In tray-monitor.conf, the password in the Monitor resource must point to a restricted console in bareos-
dir.conf (see the documentation). So, if you use this password with bconsole, you’ll only have access to the
status of the director (commands status and .status). It could be a security problem if there is a bug in the
ACL code of the director.

203

Concerning File and Storage Daemons’ configuration:
In tray-monitor.conf, the Name in the Monitor resource must point to a Director resource in bareos-
fd/sd.conf, with the Monitor directive set to Yes (see the documentation). It could be a security problem if
there is a bug in the code which check if a command is valid for a Monitor (this is very unlikely as the code
is pretty simple).

Example Tray Monitor configuration

An example Tray Monitor configuration file might be the following:

#

Bareos Tray Monitor Configuration File

#

Monitor {

Name = rufus-mon # password for Directors

Password = "GN0uRo7PTUmlMbqrJ2Gr1p0fk0HQJTxwnFyE4WSST3MWZseR"

RefreshInterval = 10 seconds

}

Client {

Name = rufus-fd

Address = rufus

FDPort = 9102 # password for FileDaemon

Password = "FYpq4yyI1y562EMS35bA0J0QC0M2L3t5cZObxT3XQxgxppTn"

}

Storage {

Name = rufus-sd

Address = rufus

SDPort = 9103 # password for StorageDaemon

Password = "9usxgc307dMbe7jbD16v0PXlhD64UVasIDD0DH2WAujcDsc6"

}

Director {

Name = rufus-dir

DIRport = 9101

address = rufus

}

Configuration 14.1: Example tray-monitor.conf

Example File daemon’s Director record

#

Restricted Director, used by tray-monitor to get the

status of the file daemon

#

Director {

Name = rufus-mon

Password = "FYpq4yyI1y562EMS35bA0J0QC0M2L3t5cZObxT3XQxgxppTn"

Monitor = yes

}

Configuration 14.2: Example Monitor resource

A full example can be found at Example Client Configuration File.

Example Storage daemon’s Director record

#

Restricted Director, used by tray-monitor to get the

status of the storage daemon

#

Director {

Name = rufus-mon

Password = "9usxgc307dMbe7jbD16v0PXlhD64UVasIDD0DH2WAujcDsc6"

Monitor = yes

}

Configuration 14.3: Example Monitor resource

A full example can be found at Example Storage Daemon Configuration File.

204

Example Director’s Console record

#

Restricted console used by tray-monitor to get the status of the director

#

Console {

Name = Monitor

Password = "GN0uRo7PTUmlMbqrJ2Gr1p0fk0HQJTxwnFyE4WSST3MWZseR"

CommandACL = status, .status

}

Configuration 14.4: Example Monitor resource

A full example can be found at Example Director Configuration File.

Part III

Tasks and Concepts

205

Chapter 15

Bareos Console

The Bareos Console (bconsole) is a program that allows the user or the System Administrator, to interact
with the Bareos Director daemon while the daemon is running.
The current Bareos Console comes as a shell interface (TTY style). It permit the administrator or authorized
users to interact with Bareos. You can determine the status of a particular job, examine the contents of the
Catalog as well as perform certain tape manipulations with the Console program.
Since the Console program interacts with the Director through the network, your Console and Director
programs do not necessarily need to run on the same machine.
In fact, a certain minimal knowledge of the Console program is needed in order for Bareos to be able to write
on more than one tape, because when Bareos requests a new tape, it waits until the user, via the Console
program, indicates that the new tape is mounted.

15.1 Console Configuration

When the Console starts, it reads a standard Bareos configuration file named bconsole.conf unless you
specify the -c command line option (see below). This file allows default configuration of the Console, and
at the current time, the only Resource Record defined is the Director resource, which gives the Console the
name and address of the Director. For more information on configuration of the Console program, please
see the Console Configuration chapter of this document.

15.2 Running the Console Program

The console program can be run with the following options:

root@linux:~# bconsole -?

Usage: bconsole [-s] [-c config_file] [-d debug_level]

-D <dir> select a Director

-l list Directors defined

-c <file> set configuration file to file

-d <nn> set debug level to <nn>

-dt print timestamp in debug output

-n no conio

-s no signals

-u <nn> set command execution timeout to <nn> seconds

-t test - read configuration and exit

-? print this message.

Command 1: bconsole command line options
After launching the Console program (bconsole), it will prompt you for the next command with an asterisk
(*). Generally, for all commands, you can simply enter the command name and the Console program will
prompt you for the necessary arguments. Alternatively, in most cases, you may enter the command followed
by arguments. The general format is:

<command> <keyword1>[=<argument1>] <keyword2>[=<argument2>] ...

where command is one of the commands listed below; keyword is one of the keywords listed below (usually
followed by an argument); and argument is the value. The command may be abbreviated to the shortest
unique form. If two commands have the same starting letters, the one that will be selected is the one that

207

208

appears first in the help listing. If you want the second command, simply spell out the full command. None
of the keywords following the command may be abbreviated.
For example:

list files jobid=23

will list all files saved for JobId 23. Or:

show pools

will display all the Pool resource records.
The maximum command line length is limited to 511 characters, so if you are scripting the console, you may
need to take some care to limit the line length.

15.2.1 Exit the Console Program

Normally, you simply enter quit or exit and the Console program will terminate. However, it waits until the
Director acknowledges the command. If the Director is already doing a lengthy command (e.g. prune), it
may take some time. If you want to immediately terminate the Console program, enter the .quit command.
There is currently no way to interrupt a Console command once issued (i.e. Ctrl-C does not work). However,
if you are at a prompt that is asking you to select one of several possibilities and you would like to abort the
command, you can enter a period (.), and in most cases, you will either be returned to the main command
prompt or if appropriate the previous prompt (in the case of nested prompts). In a few places such as where
it is asking for a Volume name, the period will be taken to be the Volume name. In that case, you will most
likely be able to cancel at the next prompt.

15.2.2 Running the Console from a Shell Script

You can automate many Console tasks by running the console program from a shell script. For example, if
you have created a file containing the following commands:

bconsole -c ./bconsole.conf <<END_OF_DATA

unmount storage=DDS-4

quit

END_OF_DATA

when that file is executed, it will unmount the current DDS-4 storage device. You might want to run this
command during a Job by using the RunBeforeJob or RunAfterJob records.
It is also possible to run the Console program from file input where the file contains the commands as follows:

bconsole -c ./bconsole.conf <filename

where the file named filename contains any set of console commands.
As a real example, the following script is part of the Bareos regression tests. It labels a volume (a disk
volume), runs a backup, then does a restore of the files saved.

bconsole <<END_OF_DATA

@output /dev/null

messages

@output /tmp/log1.out

label volume=TestVolume001

run job=Client1 yes

wait

messages

@#

@# now do a restore

@#

@output /tmp/log2.out

restore current all

yes

wait

messages

@output

quit

END_OF_DATA

The output from the backup is directed to /tmp/log1.out and the output from the restore is directed to
/tmp/log2.out. To ensure that the backup and restore ran correctly, the output files are checked with:

grep "^ *Termination: *Backup OK" /tmp/log1.out

backupstat=$?

grep "^ *Termination: *Restore OK" /tmp/log2.out

restorestat=$?

209

15.3 Console Keywords

Unless otherwise specified, each of the following keywords takes an argument, which is specified after the
keyword following an equal sign. For example:

jobid=536

all Permitted on the status and show commands to specify all components or resources respectively.

allfrompool Permitted on the update command to specify that all Volumes in the pool (specified on the
command line) should be updated.

allfrompools Permitted on the update command to specify that all Volumes in all pools should be updated.

before Used in the restore command.

bootstrap Used in the restore command.

catalog Allowed in the use command to specify the catalog name to be used.

catalogs Used in the show command. Takes no arguments.

client | fd

clients Used in the show, list, and llist commands. Takes no arguments.

counters Used in the show command. Takes no arguments.

current Used in the restore command. Takes no argument.

days Used to define the number of days the list nextvol command should consider when looking for jobs
to be run. The days keyword can also be used on the status dir command so that it will display jobs
scheduled for the number of days you want. It can also be used on the rerun command, where it will
automatically select all failed jobids in the last number of days for rerunning.

devices Used in the show command. Takes no arguments.

director | dir

directors Used in the show command. Takes no arguments.

directory Used in the restore command. Its argument specifies the directory to be restored.

enabled This keyword can appear on the update volume as well as the update slots commands, and can
allows one of the following arguments: yes, true, no, false, archived, 0, 1, 2. Where 0 corresponds to
no or false, 1 corresponds to yes or true, and 2 corresponds to archived. Archived volumes will not be
used, nor will the Media record in the catalog be pruned. Volumes that are not enabled, will not be
used for backup or restore.

done Used in the restore command. Takes no argument.

file Used in the restore command.

files Used in the list and llist commands. Takes no arguments.

fileset

filesets Used in the show command. Takes no arguments.

help Used in the show command. Takes no arguments.

hours Used on the rerun command to select all failed jobids in the last number of hours for rerunning.

jobs Used in the show, list and llist commands. Takes no arguments.

jobmedia Used in the list and llist commands. Takes no arguments.

jobtotals Used in the list and llist commands. Takes no arguments.

210

jobid The JobId is the numeric jobid that is printed in the Job Report output. It is the index of the
database record for the given job. While it is unique for all the existing Job records in the catalog
database, the same JobId can be reused once a Job is removed from the catalog. Probably you will
refer specific Jobs that ran using their numeric JobId.

JobId can be used on the rerun command to select all jobs failed after and including the given jobid
for rerunning.

job | jobname The Job or Jobname keyword refers to the name you specified in the Job resource, and
hence it refers to any number of Jobs that ran. It is typically useful if you want to list all jobs of a
particular name.

level

listing Permitted on the estimate command. Takes no argument.

limit

messages Used in the show command. Takes no arguments.

media Used in the list and llist commands. Takes no arguments.

nextvolume | nextvol Used in the list and llist commands. Takes no arguments.

on Takes no keyword.

off Takes no keyword.

pool

pools Used in the show, list, and llist commands. Takes no arguments.

select Used in the restore command. Takes no argument.

limit Used in the setbandwidth command. Takes integer in KB/s unit.

schedules Used in the show command. Takes no arguments.

storage | store | sd

storages Used in the show command. Takes no arguments.

ujobid The ujobid is a unique job identification that is printed in the Job Report output. At the current
time, it consists of the Job name (from the Name directive for the job) appended with the date and
time the job was run. This keyword is useful if you want to completely identify the Job instance run.

volume

volumes Used in the list and llist commands. Takes no arguments.

where Used in the restore command.

yes Used in the restore command. Takes no argument.

15.4 Console Commands

The following commands are currently implemented:

add This command is used to add Volumes to an existing Pool. That is, it creates the Volume name in the
catalog and inserts into the Pool in the catalog, but does not attempt to access the physical Volume.
Once added, Bareos expects that Volume to exist and to be labeled. This command is not normally
used since Bareos will automatically do the equivalent when Volumes are labeled. However, there may
be times when you have removed a Volume from the catalog and want to later add it back.

The full form of this command is:

add [pool=<pool-name>] [storage=<storage>] [jobid=<JobId>]

bconsole 15.1: add

211

Normally, the label command is used rather than this command because the label command labels
the physical media (tape, disk,, ...) and does the equivalent of the add command. The add command
affects only the Catalog and not the physical media (data on Volumes). The physical media must exist
and be labeled before use (usually with the label command). This command can, however, be useful
if you wish to add a number of Volumes to the Pool that will be physically labeled at a later time. It
can also be useful if you are importing a tape from another site. Please see the label command for
the list of legal characters in a Volume name.

autodisplay This command accepts on or off as an argument, and turns auto-display of messages on or off
respectively. The default for the console program is off, which means that you will be notified when
there are console messages pending, but they will not automatically be displayed.

When autodisplay is turned off, you must explicitly retrieve the messages with the messages command.
When autodisplay is turned on, the messages will be displayed on the console as they are received.

automount This command accepts on or off as the argument, and turns auto-mounting of the Volume
after a label command on or off respectively. The default is on. If automount is turned off, you
must explicitly mount tape Volumes after a label command to use it.

cancel This command is used to cancel a job and accepts jobid=nnn or job=xxx as an argument where
nnn is replaced by the JobId and xxx is replaced by the job name. If you do not specify a keyword,
the Console program will prompt you with the names of all the active jobs allowing you to choose one.

The full form of this command is:

cancel [jobid=<number> job=<job-name> ujobid=<unique-jobid>]

bconsole 15.2: cancel

Once a Job is marked to be cancelled, it may take a bit of time (generally within a minute but up
to two hours) before the Job actually terminates, depending on what operations it is doing. Don’t be
surprised that you receive a Job not found message. That just means that one of the three daemons
had already canceled the job. Messages numbered in the 1000’s are from the Director, 2000’s are from
the File daemon and 3000’s from the Storage daemon.

It is possible to cancel multiple jobs at once. Therefore, the following extra options are available for
the job-selection:

� all jobs

� all jobs with a created state

� all jobs with a blocked state

� all jobs with a waiting state

� all jobs with a running state

Usage:

cancel all

cancel all state=<created|blocked|waiting|running>

bconsole 15.3: cancel all

Sometimes the Director already removed the job from its running queue, but the storage daemon still
thinks it is doing a backup (or another job) - so you cannot cancel the job from within a console
anymore. Therefore it is possible to cancel a job by JobId on the storage daemon. It might be helpful
to execute a status storage on the Storage Daemon to make sure what job you want to cancel.

Usage:

cancel storage=<Storage Daemon> Jobid=<JobId>

bconsole 15.4: cancel on Storage Daemon

This way you can also remove a job that blocks any other jobs from running without the need to restart
the whole storage daemon.

212

create This command is not normally used as the Pool records are automatically created by the Director
when it starts based on what it finds in the configuration. If needed, this command can be used, to
create a Pool record in the database using the Pool resource record defined in the Director’s config-
uration file. So in a sense, this command simply transfers the information from the Pool resource in
the configuration file into the Catalog. Normally this command is done automatically for you when
the Director starts providing the Pool is referenced within a Job resource. If you use this command on
an existing Pool, it will automatically update the Catalog to have the same information as the Pool
resource. After creating a Pool, you will most likely use the label command to label one or more
volumes and add their names to the Media database.

The full form of this command is:

create [pool=<pool-name>]

bconsole 15.5: create

When starting a Job, if Bareos determines that there is no Pool record in the database, but there is a
Pool resource of the appropriate name, it will create it for you. If you want the Pool record to appear
in the database immediately, simply use this command to force it to be created.

configure Configures director resources during runtime. The first configure subcommands are configure

add and configure export. Other subcommands may follow in later releases.

configure add This command allows to add resources during runtime. Usage:

configure add <resourcetype> name=<resourcename> <directive1>=<value1> ↙
↪→ <directive2>=<value2> ...

bconsole 15.6:

The command generates and loads a new, valid resource. As the new resource is also stored at

<CONFIGDIR>/bareos-dir.d/<resourcetype>/<resourcename>.conf

(see Resource file conventions) it is persistent upon reload and restart.

This feature requires Subdirectory Configuration Scheme.

All kinds of resources can be added. When adding a client resource, the Director Resource for
the Bareos File Daemon is also created and stored at:

<CONFIGDIR>/bareos-dir-export/client/<clientname>/bareos-fd.d/director/

<clientname>.conf

*configure add client name=client2-fd address=192.168.0.2 password=secret
Created resource config file "/etc/bareos/bareos-dir.d/client/client2-fd.conf":

Client {

Name = client2-fd

Address = 192.168.0.2

Password = secret

}

*configure add job name=client2-job client=client2-fd jobdefs=DefaultJob
Created resource config file "/etc/bareos/bareos-dir.d/job/client2-job.conf":

Job {

Name = client2-job

Client = client2-fd

JobDefs = DefaultJob

}

bconsole 15.7: Example: adding a client and a job resource during runtime

These two commands create three resource configuration files:

� /etc/bareos/bareos-dir.d/client/client2-fd.conf

� /etc/bareos/bareos-dir-export/client/client2-fd/bareos-fd.d/director/

bareos-dir.conf (assuming your director resource is named bareos-dir)

� /etc/bareos/bareos-dir.d/job/client2-job.conf

The files in bareos-dir-export/client/ directory are not used by the Bareos Director. However,
they can be copied to new clients to configure these clients for the Bareos Director.

213

Please note! Don’t be confused by the extensive output of help configure . As configure add

allows configuring arbitrary resources, the output of help configure lists all the resources, each
with all valid directives. The same data is also used for bconsole command line completion.

Available since Bareos Version >= 16.2.4.

configure export This command allows to export the DirectorFd resource for clients already con-
figured in the Bareos Director.

Usage:

configure export client=bareos-fd

Exported resource file ↙
↪→ "/etc/bareos/bareos-dir-export/client/bareos-fd/bareos-fd.d/director/bareos-dir.conf":

Director {

Name = bareos-dir

Password = "[md5]932d1d3ef3c298047809119510f4bee6"

}

bconsole 15.8: Export the bareos-fd Director resource for the client bareos-fd

To use it, copy the DirectorFd resource file to the client machine (on Linux: to /etc/bareos/

bareos-fd.d/director/) and restart the Bareos File Daemon.

Available since Bareos Version >= 16.2.4.

delete The delete command is used to delete a Volume, Pool or Job record from the Catalog as well as
all associated catalog Volume records that were created. This command operates only on the Catalog
database and has no effect on the actual data written to a Volume. This command can be dangerous
and we strongly recommend that you do not use it unless you know what you are doing.

If the keyword Volume appears on the command line, the named Volume will be deleted from the
catalog, if the keyword Pool appears on the command line, a Pool will be deleted, and if the keyword
Job appears on the command line, a Job and all its associated records (File and JobMedia) will be
deleted from the catalog.

The full form of this command is:

delete pool=<pool-name>

delete volume=<volume-name> pool=<pool-name>

delete JobId=<job-id> JobId=<job-id2> ...

delete Job JobId=n,m,o-r,t ...

bconsole 15.9: delete

The first form deletes a Pool record from the catalog database. The second form deletes a Volume
record from the specified pool in the catalog database. The third form deletes the specified Job record
from the catalog database. The last form deletes JobId records for JobIds n, m, o, p, q, r, and t.
Where each one of the n,m,... is, of course, a number. That is a ”delete jobid” accepts lists and ranges
of jobids.

disable This command permits you to disable a Job for automatic scheduling. The job may have been
previously enabled with the Job resource Enabled directive or using the console enable command.
The next time the Director is reloaded or restarted, the Enable/Disable state will be set to the value
in the Job resource (default enabled) as defined in the Bareos Director configuration.

The full form of this command is:

disable job=<job-name>

bconsole 15.10: disable

enable This command permits you to enable a Job for automatic scheduling. The job may have been
previously disabled with the Job resource Enabled directive or using the console disable command.
The next time the Director is reloaded or restarted, the Enable/Disable state will be set to the value
in the Job resource (default enabled) as defined in the Bareos Director configuration.

The full form of this command is:

enable job=<job-name>

bconsole 15.11: enable

214

estimate Using this command, you can get an idea how many files will be backed up, or if you are unsure
about your Include statements in your FileSet, you can test them without doing an actual backup. The
default is to assume a Full backup. However, you can override this by specifying a level=Incremental
or level=Differential on the command line. A Job name must be specified or you will be prompted
for one, and optionally a Client and FileSet may be specified on the command line. It then contacts
the client which computes the number of files and bytes that would be backed up. Please note that
this is an estimate calculated from the number of blocks in the file rather than by reading the actual
bytes. As such, the estimated backup size will generally be larger than an actual backup.

The estimate command can use the accurate code to detect changes and give a better estimation.
You can set the accurate behavior on command line using accurate=yes/no or use the Job setting as
default value.

Optionally you may specify the keyword listing in which case, all the files to be backed up will be
listed. Note, it could take quite some time to display them if the backup is large. The full form is:

The full form of this command is:

estimate job=<job-name> listing client=<client-name> accurate=<yes|no> ↙
↪→ fileset=<fileset-name> level=<level-name>

bconsole 15.12: estimate

Specification of the job is sufficient, but you can also override the client, fileset, accurate and/or level
by specifying them on the estimate command line.

As an example, you might do:

@output /tmp/listing

estimate job=NightlySave listing level=Incremental

@output

bconsole 15.13: estimate: redirected output

which will do a full listing of all files to be backed up for the Job NightlySave during an Incremental
save and put it in the file /tmp/listing. Note, the byte estimate provided by this command is based
on the file size contained in the directory item. This can give wildly incorrect estimates of the actual
storage used if there are sparse files on your systems. Sparse files are often found on 64 bit systems for
certain system files. The size that is returned is the size Bareos will backup if the sparse option is not
specified in the FileSet. There is currently no way to get an estimate of the real file size that would be
found should the sparse option be enabled.

exit This command terminates the console program.

export The export command is used to export tapes from an autochanger. Most Automatic Tapechangers
offer special slots for importing new tape cartridges or exporting written tape cartridges. This can
happen without having to set the device offline.

The full form of this command is:

export storage=<storage-name> srcslots=<slot-selection> [dstslots=<slot-selection> ↙
↪→ volume=<volume-name> scan]

bconsole 15.14: export

The export command does exactly the opposite of the import command. You can specify which slots
should be transferred to import/export slots. The most useful application of the export command is
the possibility to automatically transfer the volumes of a certain backup into the import/export slots
for external storage.

To be able to to this, the export command also accepts a list of volume names to be exported.

Example:

export volume=A00020L4|A00007L4|A00005L4

bconsole 15.15: export volume

215

Instead of exporting volumes by names you can also select a number of slots via the srcslots keyword
and export those to the slots you specify in dstslots. The export command will check if the slots have
content (e.g. otherwise there is not much to export) and if there are enough export slots and if those
are really import/export slots.

Example:

export srcslots=1-2 dstslots=37-38

bconsole 15.16: export slots

To automatically export the Volumes used by a certain backup job, you can use the following RunScript
in that job:

RunScript {

Console = "export storage=TandbergT40 volume=%V"

RunsWhen = After

RunsOnClient = no

}

bconsole 15.17: automatic export

To send an e-mail notification via the Messages resource regarding export tapes you can use the Variable
%V substitution in the Messages resource, which is implemented in Bareos 13.2. However, it does also
work in earlier releases inside the job resources. So in versions prior to Bareos 13.2 the following
workaround can be used:

RunAfterJob = "/bin/bash -c \"/bin/echo Remove Tape %V | \

/usr/sbin/bsmtp -h localhost -f root@localhost -s ’Remove Tape %V’ root@localhost \""

bconsole 15.18: e-mail notification via messages resource regarding export tapes

gui Invoke the non-interactive gui mode. This command is only used when bconsole is commanded by an
external program.

help This command displays the list of commands available.

import The import command is used to import tapes into an autochanger. Most Automatic Tapechangers
offer special slots for importing new tape cartridges or exporting written tape cartridges. This can
happen without having to set the device offline.

The full form of this command is:

import storage=<storage-name> [srcslots=<slot-selection> dstslots=<slot-selection> ↙
↪→ volume=<volume-name> scan]

bconsole 15.19: import

To import new tapes into the autochanger, you only have to load the new tapes into the import/export
slots and call import from the cmdline.

The import command will automatically transfer the new tapes into free slots of the autochanger. The
slots are filled in order of the slot numbers. To import all tapes, there have to be enough free slots to
load all tapes.

Example with a Library with 36 Slots and 3 Import/Export Slots:

*import storage=TandbergT40

Connecting to Storage daemon TandbergT40 at bareos:9103 ...

3306 Issuing autochanger "slots" command.

Device "Drive-1" has 39 slots.

Connecting to Storage daemon TandbergT40 at bareos:9103 ...

3306 Issuing autochanger "listall" command.

Connecting to Storage daemon TandbergT40 at bareos:9103 ...

3306 Issuing autochanger transfer command.

3308 Successfully transfered volume from slot 37 to 20.

Connecting to Storage daemon TandbergT40 at bareos:9103 ...

3306 Issuing autochanger transfer command.

3308 Successfully transfered volume from slot 38 to 21.

216

Connecting to Storage daemon TandbergT40 at bareos:9103 ...

3306 Issuing autochanger transfer command.

3308 Successfully transfered volume from slot 39 to 25.

bconsole 15.20: import example

You can also import certain slots when you don’t have enough free slots in your autochanger to put
all the import/export slots in.

Example with a Library with 36 Slots and 3 Import/Export Slots importing one slot:

*import storage=TandbergT40 srcslots=37 dstslots=20

Connecting to Storage daemon TandbergT40 at bareos:9103 ...

3306 Issuing autochanger "slots" command.

Device "Drive-1" has 39 slots.

Connecting to Storage daemon TandbergT40 at bareos:9103 ...

3306 Issuing autochanger "listall" command.

Connecting to Storage daemon TandbergT40 at bareos:9103 ...

3306 Issuing autochanger transfer command.

3308 Successfully transfered volume from slot 37 to 20.

bconsole 15.21: import example

label This command is used to label physical volumes. The full form of this command is:

label storage=<storage-name> volume=<volume-name> slot=<slot>

bconsole 15.22: label

If you leave out any part, you will be prompted for it. The media type is automatically taken from the
Storage resource definition that you supply. Once the necessary information is obtained, the Console
program contacts the specified Storage daemon and requests that the Volume be labeled. If the Volume
labeling is successful, the Console program will create a Volume record in the appropriate Pool.

The Volume name is restricted to letters, numbers, and the special characters hyphen (-), underscore
(), colon (:), and period (.). All other characters including a space are invalid. This restriction is to
ensure good readability of Volume names to reduce operator errors.

Please note, when labeling a blank tape, Bareos will get read I/O error when it attempts to ensure
that the tape is not already labeled. If you wish to avoid getting these messages, please write an EOF
mark on your tape before attempting to label it:

mt rewind

mt weof

The label command can fail for a number of reasons:

1. The Volume name you specify is already in the Volume database.

2. The Storage daemon has a tape or other Volume already mounted on the device, in which case
you must unmount the device, insert a blank tape, then do the label command.

3. The Volume in the device is already a Bareos labeled Volume. (Bareos will never relabel a Bareos
labeled Volume unless it is recycled and you use the relabel command).

4. There is no Volume in the drive.

There are two ways to relabel a volume that already has a Bareos label. The brute force method is to
write an end of file mark on the tape using the system mt program, something like the following:

mt -f /dev/st0 rewind

mt -f /dev/st0 weof

For a disk volume, you would manually delete the Volume.

Then you use the label command to add a new label. However, this could leave traces of the old
volume in the catalog.

The preferable method to relabel a Volume is to first purge the volume, either automatically, or
explicitly with the purge command, then use the relabel command described below.

217

If your autochanger has barcode labels, you can label all the Volumes in your autochanger one after
another by using the label barcodes command. For each tape in the changer containing a barcode,
Bareos will mount the tape and then label it with the same name as the barcode. An appropriate
Media record will also be created in the catalog. Any barcode that begins with the same characters
as specified on the ”CleaningPrefix=xxx” (default is ”CLN”) directive in the Director’s Pool resource,
will be treated as a cleaning tape, and will not be labeled. However, an entry for the cleaning tape
will be created in the catalog. For example with:

Pool {

Name ...

Cleaning Prefix = "CLN"

}

Configuration 15.23: Cleaning Tape

Any slot containing a barcode of CLNxxxx will be treated as a cleaning tape and will not be mounted.
Note, the full form of the command is:

label storage=xxx pool=yyy slots=1-5,10 barcodes

bconsole 15.24: label

list The list command lists the requested contents of the Catalog. The various fields of each record are
listed on a single line. The various forms of the list command are:

list jobs

list jobid=<id> (list jobid id)

list ujobid=<unique job name> (list job with unique name)

list job=<job-name> (list all jobs with "job-name")

list jobname=<job-name> (same as above)

In the above, you can add "limit=nn" to limit the output to nn jobs.

list joblog jobid=<id> (list job output if recorded in the catalog)

list jobmedia

list jobmedia jobid=<id>

list jobmedia job=<job-name>

list files jobid=<id>

list files job=<job-name>

list pools

list clients

list jobtotals

list volumes

list volumes jobid=<id>

list volumes pool=<pool-name>

list volumes job=<job-name>

list volume=<volume-name>

list nextvolume job=<job-name>

list nextvol job=<job-name>

list nextvol job=<job-name> days=nnn

bconsole 15.25: list

What most of the above commands do should be more or less obvious. In general if you do not specify
all the command line arguments, the command will prompt you for what is needed.

The list nextvol command will print the Volume name to be used by the specified job. You should
be aware that exactly what Volume will be used depends on a lot of factors including the time and what
a prior job will do. It may fill a tape that is not full when you issue this command. As a consequence,
this command will give you a good estimate of what Volume will be used but not a definitive answer.
In addition, this command may have certain side effect because it runs through the same algorithm
as a job, which means it may automatically purge or recycle a Volume. By default, the job specified
must run within the next two days or no volume will be found. You can, however, use the days=nnn
specification to specify up to 50 days. For example, if on Friday, you want to see what Volume will be
needed on Monday, for job MyJob, you would use list nextvol job=MyJob days=3.

If you wish to add specialized commands that list the contents of the catalog, you can do so by adding
them to the query.sql file. However, this takes some knowledge of programming SQL. Please see the

218

query command below for additional information. See below for listing the full contents of a catalog
record with the llist command.

As an example, the command list pools might produce the following output:

*list pools
+------+---------+---------+---------+----------+-------------+

| PoId | Name | NumVols | MaxVols | PoolType | LabelFormat |

+------+---------+---------+---------+----------+-------------+

| 1 | Default | 0 | 0 | Backup | * |

| 2 | Recycle | 0 | 8 | Backup | File |

+------+---------+---------+---------+----------+-------------+

bconsole 15.26: list pools

As mentioned above, the list command lists what is in the database. Some things are put into the
database immediately when Bareos starts up, but in general, most things are put in only when they
are first used, which is the case for a Client as with Job records, etc.

Bareos should create a client record in the database the first time you run a job for that client. Doing
a status will not cause a database record to be created. The client database record will be created
whether or not the job fails, but it must at least start. When the Client is actually contacted, additional
info from the client will be added to the client record (a ”uname -a” output).

If you want to see what Client resources you have available in your conf file, you use the Console
command show clients.

llist The llist or ”long list” command takes all the same arguments that the list command described above
does. The difference is that the llist command list the full contents of each database record selected.
It does so by listing the various fields of the record vertically, with one field per line. It is possible to
produce a very large number of output lines with this command.

If instead of the list pools as in the example above, you enter llist pools you might get the following
output:

*llist pools
PoolId: 1

Name: Default

NumVols: 0

MaxVols: 0

UseOnce: 0

UseCatalog: 1

AcceptAnyVolume: 1

VolRetention: 1,296,000

VolUseDuration: 86,400

MaxVolJobs: 0

MaxVolBytes: 0

AutoPrune: 0

Recycle: 1

PoolType: Backup

LabelFormat: *

PoolId: 2

Name: Recycle

NumVols: 0

MaxVols: 8

UseOnce: 0

UseCatalog: 1

AcceptAnyVolume: 1

VolRetention: 3,600

VolUseDuration: 3,600

MaxVolJobs: 1

MaxVolBytes: 0

AutoPrune: 0

Recycle: 1

PoolType: Backup

LabelFormat: File

bconsole 15.27: llist pools

219

messages This command causes any pending console messages to be immediately displayed.

memory Print current memory usage.

mount The mount command is used to get Bareos to read a volume on a physical device. It is a way to
tell Bareos that you have mounted a tape and that Bareos should examine the tape. This command
is normally used only after there was no Volume in a drive and Bareos requests you to mount a new
Volume or when you have specifically unmounted a Volume with the unmount console command,
which causes Bareos to close the drive. If you have an autoloader, the mount command will not cause
Bareos to operate the autoloader unless you specify a slot and possibly a drive. The various forms of
the mount command are:

mount storage=<storage-name> [slot=<num>] [

drive=<num>]

mount [jobid=<id> | job=<job-name>]

bconsole 15.28: mount

If you have specified Automatic Mount = yes in the Storage daemon’s Device resource, under most
circumstances, Bareos will automatically access the Volume unless you have explicitly unmount ed it
in the Console program.

move The move command allows to move volumes between slots in an autochanger without having to leave
the bconsole.

To move a volume from slot 32 to slots 33, use:

*move storage=TandbergT40 srcslots=32 dstslots=33
Connecting to Storage daemon TandbergT40 at bareos:9103 ...

3306 Issuing autochanger "slots" command.

Device "Drive-1" has 39 slots.

Connecting to Storage daemon TandbergT40 at bareos:9103 ...

3306 Issuing autochanger "listall" command.

Connecting to Storage daemon TandbergT40 at bareos:9103 ...

3306 Issuing autochanger transfer command.

3308 Successfully transfered volume from slot 32 to 33.

bconsole 15.29: move

prune The Prune command allows you to safely remove expired database records from Jobs, Volumes and
Statistics. This command works only on the Catalog database and does not affect data written to
Volumes. In all cases, the Prune command applies a retention period to the specified records. You can
Prune expired File entries from Job records; you can Prune expired Job records from the database,
and you can Prune both expired Job and File records from specified Volumes.

prune files|jobs|volume|stats client=<client-name> volume=<volume-name>

bconsole 15.30: prune

For a Volume to be pruned, the VolStatus must be Full, Used, or Append, otherwise the pruning will
not take place.

purge The Purge command will delete associated Catalog database records from Jobs and Volumes without
considering the retention period. Purge works only on the Catalog database and does not affect data
written to Volumes. This command can be dangerous because you can delete catalog records associated
with current backups of files, and we recommend that you do not use it unless you know what you are
doing. The permitted forms of purge are:

purge files jobid=<jobid>|job=<job-name> | client=<client-name>

purge jobs client=<client-name> (of all jobs)

purge volume|volume=<vol-name> (of all jobs)

bconsole 15.31: purge

For the purge command to work on Volume Catalog database records the VolStatus must be Append,
Full, Used, or Error.

220

The actual data written to the Volume will be unaffected by this command unless you are using the
ActionOnPurge=Truncate option on those Media.

To ask Bareos to truncate your Purged volumes, you need to use the following command in interactive
mode or in a RunScript:

*purge volume action=truncate storage=File allpools
or by default, action=all

*purge volume action storage=File pool=Default

bconsole 15.32: purge example

It is possible to specify the volume name, the media type, the pool, the storage, etc. . . (see help purge).
Be sure that your storage device is idle when you decide to run this command.

resolve In the configuration files, Addresses can (and normally should) be specified as DNS names. As
the different components of Bareos will establish network connections to other Bareos components, it
is important that DNS name resolution works on involved components and delivers the same results.
The resolve command can be used to test DNS resolution of a given hostname on director, storage
daemonm or client.

*resolve www.bareos.com
bareos-dir resolves www.bareos.com to host[ipv4:84.44.166.242]

*resolve client=client1-fd www.bareos.com
client1-fd resolves www.bareos.com to host[ipv4:84.44.166.242]

*resolve storage=File www.bareos.com
bareos-sd resolves www.bareos.com to host[ipv4:84.44.166.242]

bconsole 15.33: resolve example

query This command reads a predefined SQL query from the query file (the name and location of the
query file is defined with the QueryFile resource record in the Director’s configuration file). You are
prompted to select a query from the file, and possibly enter one or more parameters, then the command
is submitted to the Catalog database SQL engine.

quit This command terminates the console program. The console program sends the quit request to the
Director and waits for acknowledgment. If the Director is busy doing a previous command for you that
has not terminated, it may take some time. You may quit immediately by issuing the .quit command
(i.e. quit preceded by a period).

relabel This command is used to label physical volumes.

The full form of this command is:

relabel storage=<storage-name> oldvolume=<old-volume-name> volume=<newvolume-name>}

bconsole 15.34: relabel

If you leave out any part, you will be prompted for it. In order for the Volume (old-volume-name) to
be relabeled, it must be in the catalog, and the volume status must be marked Purged or Recycle.
This happens automatically as a result of applying retention periods, or you may explicitly purge the
volume using the purge command.

Once the volume is physically relabeled, the old data previously written on the Volume is lost and
cannot be recovered.

release This command is used to cause the Storage daemon to release (and rewind) the current tape in the
drive, and to re-read the Volume label the next time the tape is used.

release storage=<storage-name>

bconsole 15.35: release

221

After a release command, the device is still kept open by Bareos (unless Always Open Sd
Device=No) so

it cannot be used by another program. However, with some tape drives, the operator can remove the
current tape and to insert a different one, and when the next Job starts, Bareos will know to re-read
the tape label to find out what tape is mounted. If you want to be able to use the drive with another
program (e.g. mt), you must use the unmount command to cause Bareos to completely release (close)
the device.

reload The reload command causes the Director to re-read its configuration file and apply the new values.
The new values will take effect immediately for all new jobs. However, if you change schedules, be
aware that the scheduler pre-schedules jobs up to two hours in advance, so any changes that are to
take place during the next two hours may be delayed. Jobs that have already been scheduled to run
(i.e. surpassed their requested start time) will continue with the old values. New jobs will use the
new values. Each time you issue a reload command while jobs are running, the prior config values
will queued until all jobs that were running before issuing the reload terminate, at which time the
old config values will be released from memory. The Directory permits keeping up to ten prior set of
configurations before it will refuse a reload command. Once at least one old set of config values has
been released it will again accept new reload commands.

While it is possible to reload the Director’s configuration on the fly, even while jobs are executing, this
is a complex operation and not without side effects. Accordingly, if you have to reload the Director’s
configuration while Bareos is running, it is advisable to restart the Director at the next convenient
opportunity.

rerun The rerun command allows you to re-run a Job with exactly the same setting as the original Job. In
Bareos, the job configuration is often altered by job overrides. These overrides alter the configuration
of the job just for one job run. If because of any reason, a job with overrides fails, it is not easy to
restart a new job that is exactly configured as the job that failed. The whole job configuration is
automatically set to the defaults and it is hard to configure everything like it was.

By using the rerun command, it is much easier to rerun a job exactly as it was configured. You only
have to specify the JobId of the failed job.

rerun jobid=<jobid> since_jobid=<jobid> days=<nr_days> hours=<nr_hours> yes

bconsole 15.36: rerun

You can select the jobid(s) to rerun by using one of the selection criteria. Using jobid= will automati-
cally select all jobs failed after and including the given jobid for rerunning. By using days= or hours=,
you can select all failed jobids in the last number of days or number of hours respectively for rerunning.

restore The restore command allows you to select one or more Jobs (JobIds) to be restored using various
methods. Once the JobIds are selected, the File records for those Jobs are placed in an internal Bareos
directory tree, and the restore enters a file selection mode that allows you to interactively walk up
and down the file tree selecting individual files to be restored. This mode is somewhat similar to the
standard Unix restore program’s interactive file selection mode.

restore storage=<storage-name> client=<backup-client-name>

where=<path> pool=<pool-name> fileset=<fileset-name>

restoreclient=<restore-client-name>

restorejob=<job-name>

select current all done

bconsole 15.37: restore

Where current, if specified, tells the restore command to automatically select a restore to the most
current backup. If not specified, you will be prompted. The all specification tells the restore command
to restore all files. If it is not specified, you will be prompted for the files to restore. For details of the
restore command, please see the Restore Chapter of this manual.

The client keyword initially specifies the client from which the backup was made and the client to
which the restore will be make. However, if the restoreclient keyword is specified, then the restore is
written to that client.

The restore job rarely needs to be specified, as bareos installations commonly only have a single restore
job configured. However, for certain cases, such as a varying list of RunScript specifications, multiple
restore jobs may be configured. The restorejob argument allows the selection of one of these jobs.

For more details, see the Restore chapter.

222

run This command allows you to schedule jobs to be run immediately.

The full form of the command is:

run job=<job-name> client=<client-name>

fileset=<FileSet-name> level=<level-keyword>

storage=<storage-name> where=<directory-prefix>

when=<universal-time-specification> spooldata=yes|no yes

bconsole 15.38: run

Any information that is needed but not specified will be listed for selection, and before starting the
job, you will be prompted to accept, reject, or modify the parameters of the job to be run, unless you
have specified yes, in which case the job will be immediately sent to the scheduler.

If you wish to start a job at a later time, you can do so by setting the When time. Use the mod option
and select When (no. 6). Then enter the desired start time in YYYY-MM-DD HH:MM:SS format.

The spooldata argument of the run command cannot be modified through the menu and is only
accessible by setting its value on the intial command line. If no spooldata flag is set, the job, storage
or schedule flag is used.

setbandwidth This command (Version >= 12.4.1) is used to limit the bandwidth of a running job or a
client.

setbandwidth limit=<nb> [jobid=<id> | client=<cli>]

bconsole 15.39: setbandwidth

setdebug This command is used to set the debug level in each daemon. The form of this command is:

setdebug level=nnn [trace=0/1 client=<client-name> | dir | director | ↙
↪→ storage=<storage-name> | all]

bconsole 15.40: setdebug

Each of the daemons normally has debug compiled into the program, but disabled. There are two ways
to enable the debug output.

One is to add the -d nnn option on the command line when starting the daemon. The nnn is the
debug level, and generally anything between 50 and 200 is reasonable. The higher the number, the
more output is produced. The output is written to standard output.

The second way of getting debug output is to dynamically turn it on using the Console using the
setdebug level=nnn command. If none of the options are given, the command will prompt you. You
can selectively turn on/off debugging in any or all the daemons (i.e. it is not necessary to specify all
the components of the above command).

If trace=1 is set, then tracing will be enabled, and the daemon will be placed in trace mode, which
means that all debug output as set by the debug level will be directed to his trace file in the current
directory of the daemon. When tracing, each debug output message is appended to the trace file. You
must explicitly delete the file when you are done.

*setdebug level=100 trace=1 dir
level=100 trace=1 hangup=0 timestamp=0 ↙

↪→ tracefilename=/var/lib/bareos/bareos-dir.example.com.trace

bconsole 15.41: set Director debug level to 100 and get messages written to his trace file

setip Sets new client address – if authorized.

A console is authorized to use the SetIP command only if it has a Console resource definition in both
the Director and the Console. In addition, if the console name, provided on the Name = directive,
must be the same as a Client name, the user of that console is permitted to use the SetIP command
to change the Address directive in the Director’s client resource to the IP address of the Console. This
permits portables or other machines using DHCP (non-fixed IP addresses) to ”notify” the Director of
their current IP address.

223

show The show command will list the Director’s resource records as defined in the Director’s configura-
tion. This command is used mainly for debugging purposes by developers. The following keywords
are accepted on the show command line: catalogs, clients, counters, devices, directors, filesets, jobs,
messages, pools, schedules, storages, all, help. Please don’t confuse this command with the list, which
displays the contents of the catalog.

sqlquery The sqlquery command puts the Console program into SQL query mode where each line you
enter is concatenated to the previous line until a semicolon (;) is seen. The semicolon terminates the
command, which is then passed directly to the SQL database engine. When the output from the SQL
engine is displayed, the formation of a new SQL command begins. To terminate SQL query mode and
return to the Console command prompt, you enter a period (.) in column 1.

Using this command, you can query the SQL catalog database directly. Note you should really know
what you are doing otherwise you could damage the catalog database. See the query command below
for simpler and safer way of entering SQL queries.

Depending on what database engine you are using (MySQL, PostgreSQL or SQLite), you will have
somewhat different SQL commands available. For more detailed information, please refer to the
MySQL, PostgreSQL or SQLite documentation.

status This command will display the status of all components. For the director, it will display the next
jobs that are scheduled during the next 24 hours as well as the status of currently running jobs. For
the Storage Daemon, you will have drive status or autochanger content. The File Daemon will give you
information about current jobs like average speed or file accounting. The full form of this command is:

status [all | dir=<dir-name> | director | scheduler | schedule=<schedule-name> |

client=<client-name> | storage=<storage-name> slots | subscriptions]

bconsole 15.42: status

If you do a status dir, the console will list any currently running jobs, a summary of all jobs scheduled
to be run in the next 24 hours, and a listing of the last ten terminated jobs with their statuses. The
scheduled jobs summary will include the Volume name to be used. You should be aware of two things:
1. to obtain the volume name, the code goes through the same code that will be used when the job
runs, but it does not do pruning nor recycling of Volumes; 2. The Volume listed is at best a guess.
The Volume actually used may be different because of the time difference (more durations may expire
when the job runs) and another job could completely fill the Volume requiring a new one.

In the Running Jobs listing, you may find the following types of information:

2507 Catalog MatouVerify.2004-03-13_05.05.02 is waiting execution

5349 Full CatalogBackup.2004-03-13_01.10.00 is waiting for higher

priority jobs to finish

5348 Differe Minou.2004-03-13_01.05.09 is waiting on max Storage jobs

5343 Full Rufus.2004-03-13_01.05.04 is running

bconsole 15.43:

Looking at the above listing from bottom to top, obviously JobId 5343 (Rufus) is running. JobId 5348
(Minou) is waiting for JobId 5343 to finish because it is using the Storage resource, hence the ”waiting
on max Storage jobs”. JobId 5349 has a lower priority than all the other jobs so it is waiting for higher
priority jobs to finish, and finally, JobId 2507 (MatouVerify) is waiting because only one job can run
at a time, hence it is simply ”waiting execution”

If you do a status dir, it will by default list the first occurrence of all jobs that are scheduled today
and tomorrow. If you wish to see the jobs that are scheduled in the next three days (e.g. on Friday
you want to see the first occurrence of what tapes are scheduled to be used on Friday, the weekend,
and Monday), you can add the days=3 option. Note, a days=0 shows the first occurrence of jobs
scheduled today only. If you have multiple run statements, the first occurrence of each run statement
for the job will be displayed for the period specified.

If your job seems to be blocked, you can get a general idea of the problem by doing a status dir, but you
can most often get a much more specific indication of the problem by doing a status storage=xxx.
For example, on an idle test system, when I do status storage=File, I get:

*status storage=File
Connecting to Storage daemon File at 192.168.68.112:8103

224

rufus-sd Version: 1.39.6 (24 March 2006) i686-pc-linux-gnu redhat (Stentz)

Daemon started 26-Mar-06 11:06, 0 Jobs run since started.

Running Jobs:

No Jobs running.

====

Jobs waiting to reserve a drive:

====

Terminated Jobs:

JobId Level Files Bytes Status Finished Name

==

59 Full 234 4,417,599 OK 15-Jan-06 11:54 usersave

====

Device status:

Autochanger "DDS-4-changer" with devices:

"DDS-4" (/dev/nst0)

Device "DDS-4" (/dev/nst0) is mounted with Volume="TestVolume002"

Pool="*unknown*"

Slot 2 is loaded in drive 0.

Total Bytes Read=0 Blocks Read=0 Bytes/block=0

Positioned at File=0 Block=0

Device "File" (/tmp) is not open.

====

In Use Volume status:

====

bconsole 15.44: status storage

Now, what this tells me is that no jobs are running and that none of the devices are in use. Now, if
I unmount the autochanger, which will not be used in this example, and then start a Job that uses
the File device, the job will block. When I re-issue the status storage command, I get for the Device
status:

*status storage=File
...

Device status:

Autochanger "DDS-4-changer" with devices:

"DDS-4" (/dev/nst0)

Device "DDS-4" (/dev/nst0) is not open.

Device is BLOCKED. User unmounted.

Drive 0 is not loaded.

Device "File" (/tmp) is not open.

Device is BLOCKED waiting for media.

====

...

bconsole 15.45: status storage

Now, here it should be clear that if a job were running that wanted to use the Autochanger (with two
devices), it would block because the user unmounted the device. The real problem for the Job I started
using the ”File” device is that the device is blocked waiting for media – that is Bareos needs you to
label a Volume.

The command status scheduler (Version >= 12.4.4) can be used to check when a certain schedule
will trigger. This gives more information than status director .

Called without parameters, status scheduler shows a preview for all schedules for the next 14 days.
It first shows a list of the known schedules and the jobs that will be triggered by these jobs, and next,
a table with date (including weekday), schedule name and applied overrides is displayed:

225

*status scheduler
Scheduler Jobs:

Schedule Jobs Triggered

===

WeeklyCycle

BackupClient1

WeeklyCycleAfterBackup

BackupCatalog

====

Scheduler Preview for 14 days:

Date Schedule Overrides

==

Di 04-Jun-2013 21:00 WeeklyCycle Level=Incremental

Di 04-Jun-2013 21:10 WeeklyCycleAfterBackup Level=Full

Mi 05-Jun-2013 21:00 WeeklyCycle Level=Incremental

Mi 05-Jun-2013 21:10 WeeklyCycleAfterBackup Level=Full

Do 06-Jun-2013 21:00 WeeklyCycle Level=Incremental

Do 06-Jun-2013 21:10 WeeklyCycleAfterBackup Level=Full

Fr 07-Jun-2013 21:00 WeeklyCycle Level=Incremental

Fr 07-Jun-2013 21:10 WeeklyCycleAfterBackup Level=Full

Sa 08-Jun-2013 21:00 WeeklyCycle Level=Differential

Mo 10-Jun-2013 21:00 WeeklyCycle Level=Incremental

Mo 10-Jun-2013 21:10 WeeklyCycleAfterBackup Level=Full

Di 11-Jun-2013 21:00 WeeklyCycle Level=Incremental

Di 11-Jun-2013 21:10 WeeklyCycleAfterBackup Level=Full

Mi 12-Jun-2013 21:00 WeeklyCycle Level=Incremental

Mi 12-Jun-2013 21:10 WeeklyCycleAfterBackup Level=Full

Do 13-Jun-2013 21:00 WeeklyCycle Level=Incremental

Do 13-Jun-2013 21:10 WeeklyCycleAfterBackup Level=Full

Fr 14-Jun-2013 21:00 WeeklyCycle Level=Incremental

Fr 14-Jun-2013 21:10 WeeklyCycleAfterBackup Level=Full

Sa 15-Jun-2013 21:00 WeeklyCycle Level=Differential

Mo 17-Jun-2013 21:00 WeeklyCycle Level=Incremental

Mo 17-Jun-2013 21:10 WeeklyCycleAfterBackup Level=Full

====

bconsole 15.46: status scheduler

status scheduler accepts the following parameters:

client=clientname shows only the schedules that affect the given client.

job=jobname shows only the schedules that affect the given job.

schedule=schedulename shows only the given schedule.

days=number of days shows only the number of days in the scheduler preview. Positive numbers
show the future, negative numbers show the past. days can be combined with the other selection
criteria. days= can be combined with the other selection criteria.

In case you are running a maintained version of Bareos, the command status subscriptions (Version
>= 12.4.4) can help you to keep the overview over the subscriptions that are used.

To enable this functionality, just add the configuration directive subscriptions to the director configu-
ration in the director resource:

The number of subscribed clients can be set in the director resource, for example:

Director {

...

Subscriptions = 50

}

Configuration 15.47: enable subscription check

226

Using the console command status subscriptions , the status of the subscriptions can be checked
any time interactively:

*status subscriptions
Ok: available subscriptions: 8 (42/50) (used/total)

bconsole 15.48: status subscriptions

Also, the number of subscriptions is checked after every job. If the number of clients is bigger than the
configured limit, a Job warning is created a message like this:

JobId 7: Warning: Subscriptions exceeded: (used/total) (51/50)

bconsole 15.49: subscriptions warning

Please note: Nothing else than the warning is issued, no enforcement on backup, restore or any other
operation will happen.

Setting the value for Subscriptions to 0 disables this functionality:

Director {

...

Subscriptions = 0

}

Configuration 15.50: disable subscription check

Not configuring the directive at all also disables it, as the default value for the Subscriptions directive
is zero.

time The time command shows the current date, time and weekday.

trace Turn on/off trace to file.

umount Alias for unmount .

unmount This command causes the indicated Bareos Storage daemon to unmount the specified device.
The forms of the command are the same as the mount command:

unmount storage=<storage-name> [drive=<num>]

unmount [jobid=<id> | job=<job-name>]

bconsole 15.51: unmount

Once you unmount a storage device, Bareos will no longer be able to use it until you issue a mount
command for that device. If Bareos needs to access that device, it will block and issue mount requests
periodically to the operator.

If the device you are unmounting is an autochanger, it will unload the drive you have specified on the
command line. If no drive is specified, it will assume drive 1.

In most cases, it is preferable to use the release instead.

update This command will update the catalog for either a specific Pool record, a Volume record, or the Slots
in an autochanger with barcode capability. In the case of updating a Pool record, the new information
will be automatically taken from the corresponding Director’s configuration resource record. It can be
used to increase the maximum number of volumes permitted or to set a maximum number of volumes.
The following main keywords may be specified:

media, volume, pool, slots, stats

In the case of updating a Volume, you will be prompted for which value you wish to change. The
following Volume parameters may be changed:

Volume Status

Volume Retention Period

Volume Use Duration

Maximum Volume Jobs

Maximum Volume Files

Maximum Volume Bytes

227

Recycle Flag

Recycle Pool

Slot

InChanger Flag

Pool

Volume Files

Volume from Pool

All Volumes from Pool

All Volumes from all Pools

For slots update slots, Bareos will obtain a list of slots and their barcodes from the Storage daemon,
and for each barcode found, it will automatically update the slot in the catalog Media record to
correspond to the new value. This is very useful if you have moved cassettes in the magazine, or if
you have removed the magazine and inserted a different one. As the slot of each Volume is updated,
the InChanger flag for that Volume will also be set, and any other Volumes in the Pool that were last
mounted on the same Storage device will have their InChanger flag turned off. This permits Bareos to
know what magazine (tape holder) is currently in the autochanger.

If you do not have barcodes, you can accomplish the same thing by using the update slots scan
command. The scan keyword tells Bareos to physically mount each tape and to read its VolumeName.

For Pool update pool, Bareos will move the Volume record from its existing pool to the pool specified.

For Volume from Pool, All Volumes from Pool and All Volumes from all Pools, the follow-
ing values are updated from the Pool record: Recycle, RecyclePool, VolRetention, VolUseDuration,
MaxVolJobs, MaxVolFiles, and MaxVolBytes.

The full form of the update command with all command line arguments is:

update volume=<volume-name> pool=<poolname>

slots volstatus=<volume-status> VolRetention=<volume-retention>

VolUse=<volume-use-period> MaxVolJobs=nnn MaxVolBytes=nnn Recycle=yes|no

slot=nnn enabled=n recyclepool=<pool-name>

bconsole 15.52: update

use This command allows you to specify which Catalog database to use. Normally, you will be using only
one database so this will be done automatically. In the case that you are using more than one database,
you can use this command to switch from one to another.

use [catalog=<catalog>]

bconsole 15.53: use

var This command takes a string or quoted string and does variable expansion on it mostly the same way
variable expansion is done on the Label Format Dir

Pool string. The difference between the var command
and the actual Label Format Dir

Pool process is that during the var command, no job is running so dummy
values are used in place of Job specific variables.

version The command prints the Director’s version.

wait The wait command causes the Director to pause until there are no jobs running. This command is
useful in a batch situation such as regression testing where you wish to start a job and wait until that
job completes before continuing. This command now has the following options:

wait [jobid=<jobid>] [jobuid=<unique id>] [job=<job name>]

bconsole 15.54: wait

If specified with a specific JobId, ... the wait command will wait for that particular job to terminate
before continuing.

15.4.1 Special dot (.) Commands

There is a list of commands that are prefixed with a period (.). These commands are intended to be used
either by batch programs or graphical user interface front-ends. They are not normally used by interactive
users. For details, see Bareos Developer Guide (dot-commands) .

http://doc.bareos.org/master/html/bareos-developer-guide.html#dot-commands

228

15.4.2 Special At (@) Commands

Normally, all commands entered to the Console program are immediately forwarded to the Director, which
may be on another machine, to be executed. However, there is a small list of at commands, all beginning with
an at character (@), that will not be sent to the Director, but rather interpreted by the Console program
directly. Note, these commands are implemented only in the TTY console program and not in the Bat
Console. These commands are:

@input <filename> Read and execute the commands contained in the file specified.

@output <filename> <w|a> Send all following output to the filename specified either overwriting the
file (w) or appending to the file (a). To redirect the output to the terminal, simply enter @output
without a filename specification. WARNING: be careful not to overwrite a valid file. A typical example
during a regression test might be:

@output /dev/null

commands ...

@output

@tee <filename> <w|a> Send all subsequent output to both the specified file and the terminal. It is
turned off by specifying @tee or @output without a filename.

@sleep <seconds> Sleep the specified number of seconds.

@time Print the current time and date.

@version Print the console’s version.

@quit quit

@exit quit

@# anything Comment

@help Get the list of every special @ commands.

@separator <char> When using bconsole with readline, you can set the command separator to one
of those characters to write commands who require multiple input on one line, or to put multiple
commands on a single line.

!$%&’()*+,-/:;<>?[]^‘{|}~

Note, if you use a semicolon (;) as a separator character, which is common, you will not be able to use
the sql command, which requires each command to be terminated by a semicolon.

15.5 Adding Volumes to a Pool

TODO: move to another chapter
If you have used the label command to label a Volume, it will be automatically added to the Pool, and you
will not need to add any media to the pool.
Alternatively, you may choose to add a number of Volumes to the pool without labeling them. At a later
time when the Volume is requested by Bareos you will need to label it.
Before adding a volume, you must know the following information:

1. The name of the Pool (normally ”Default”)

2. The Media Type as specified in the Storage Resource in the Director’s configuration file (e.g.
”DLT8000”)

3. The number and names of the Volumes you wish to create.

For example, to add media to a Pool, you would issue the following commands to the console program:

229

*add

Enter name of Pool to add Volumes to: Default

Enter the Media Type: DLT8000

Enter number of Media volumes to create. Max=1000: 10

Enter base volume name: Save

Enter the starting number: 1

10 Volumes created in pool Default

*

To see what you have added, enter:

*list media pool=Default

+-------+----------+---------+---------+-------+------------------+

| MedId | VolumeNa | MediaTyp| VolStat | Bytes | LastWritten |

+-------+----------+---------+---------+-------+------------------+

| 11 | Save0001 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 12 | Save0002 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 13 | Save0003 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 14 | Save0004 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 15 | Save0005 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 16 | Save0006 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 17 | Save0007 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 18 | Save0008 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 19 | Save0009 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 20 | Save0010 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

+-------+----------+---------+---------+-------+------------------+

*

Notice that the console program automatically appended a number to the base Volume name that you specify
(Save in this case). If you don’t want it to append a number, you can simply answer 0 (zero) to the question
”Enter number of Media volumes to create. Max=1000:”, and in this case, it will create a single Volume
with the exact name you specify.

230

Chapter 16

The Restore Command

16.1 General

Below, we will discuss restoring files with the Console restore command, which is the recommended way of
doing restoring files. It is not possible to restore files by automatically starting a job as you do with Backup,
Verify, ... jobs. However, in addition to the console restore command, there is a standalone program named
bextract, which also permits restoring files. For more information on this program, please see the Bareos
Utility Programs chapter of this manual. We don’t particularly recommend the bextract program because
it lacks many of the features of the normal Bareos restore, such as the ability to restore Win32 files to Unix
systems, and the ability to restore access control lists (ACL). As a consequence, we recommend, wherever
possible to use Bareos itself for restores as described below.
You may also want to look at the bls program in the same chapter, which allows you to list the contents
of your Volumes. Finally, if you have an old Volume that is no longer in the catalog, you can restore the
catalog entries using the program named bscan, documented in the same Bareos Utility Programs chapter.
In general, to restore a file or a set of files, you must run a restore job. That is a job with Type =
Restore. As a consequence, you will need a predefined restore job in your bareos-dir.conf (Director’s
config) file. The exact parameters (Client, FileSet, ...) that you define are not important as you can either
modify them manually before running the job or if you use the restore command, explained below, Bareos
will automatically set them for you. In fact, you can no longer simply run a restore job. You must use the
restore command.
Since Bareos is a network backup program, you must be aware that when you restore files, it is up to you to
ensure that you or Bareos have selected the correct Client and the correct hard disk location for restoring
those files. Bareos will quite willingly backup client A, and restore it by sending the files to a different
directory on client B. Normally, you will want to avoid this, but assuming the operating systems are not too
different in their file structures, this should work perfectly well, if so desired. By default, Bareos will restore
data to the same Client that was backed up, and those data will be restored not to the original places but
to /tmp/bareos-restores. This is configured in the default restore command resource in bareos-dir.conf.
You may modify any of these defaults when the restore command prompts you to run the job by selecting
the mod option.

16.2 The Restore Command

Since Bareos maintains a catalog of your files and on which Volumes (disk or tape), they are stored, it can
do most of the bookkeeping work, allowing you simply to specify what kind of restore you want (current,
before a particular date), and what files to restore. Bareos will then do the rest.
This is accomplished using the restore command in the Console. First you select the kind of restore you
want, then the JobIds are selected, the File records for those Jobs are placed in an internal Bareos directory
tree, and the restore enters a file selection mode that allows you to interactively walk up and down the file
tree selecting individual files to be restored. This mode is somewhat similar to the standard Unix restore
program’s interactive file selection mode.
If a Job’s file records have been pruned from the catalog, the restore command will be unable to find any
files to restore. Bareos will ask if you want to restore all of them or if you want to use a regular expression
to restore only a selection while reading media. See FileRegex option and below for more details on this.
Within the Console program, after entering the restore command, you are presented with the following
selection prompt:

231

232

* restore
First you select one or more JobIds that contain files

to be restored. You will be presented several methods

of specifying the JobIds. Then you will be allowed to

select which files from those JobIds are to be restored.

To select the JobIds, you have the following choices:

1: List last 20 Jobs run

2: List Jobs where a given File is saved

3: Enter list of comma separated JobIds to select

4: Enter SQL list command

5: Select the most recent backup for a client

6: Select backup for a client before a specified time

7: Enter a list of files to restore

8: Enter a list of files to restore before a specified time

9: Find the JobIds of the most recent backup for a client

10: Find the JobIds for a backup for a client before a specified time

11: Enter a list of directories to restore for found JobIds

12: Select full restore to a specified Job date

13: Cancel

Select item: (1-13):

bconsole 16.1: restore

There are a lot of options, and as a point of reference, most people will want to select item 5 (the most
recent backup for a client). The details of the above options are:

� Item 1 will list the last 20 jobs run. If you find the Job you want, you can then select item 3 and enter
its JobId(s).

� Item 2 will list all the Jobs where a specified file is saved. If you find the Job you want, you can then
select item 3 and enter the JobId.

� Item 3 allows you the enter a list of comma separated JobIds whose files will be put into the directory
tree. You may then select which files from those JobIds to restore. Normally, you would use this option
if you have a particular version of a file that you want to restore and you know its JobId. The most
common options (5 and 6) will not select a job that did not terminate normally, so if you know a file
is backed up by a Job that failed (possibly because of a system crash), you can access it through this
option by specifying the JobId.

� Item 4 allows you to enter any arbitrary SQL command. This is probably the most primitive way of
finding the desired JobIds, but at the same time, the most flexible. Once you have found the JobId(s),
you can select item 3 and enter them.

� Item 5 will automatically select the most recent Full backup and all subsequent incremental and
differential backups for a specified Client. These are the Jobs and Files which, if reloaded, will restore
your system to the most current saved state. It automatically enters the JobIds found into the directory
tree in an optimal way such that only the most recent copy of any particular file found in the set of
Jobs will be restored. This is probably the most convenient of all the above options to use if you wish
to restore a selected Client to its most recent state.

There are two important things to note. First, this automatic selection will never select a job that
failed (terminated with an error status). If you have such a job and want to recover one or more files
from it, you will need to explicitly enter the JobId in item 3, then choose the files to restore.

If some of the Jobs that are needed to do the restore have had their File records pruned, the restore
will be incomplete. Bareos currently does not correctly detect this condition. You can however, check
for this by looking carefully at the list of Jobs that Bareos selects and prints. If you find Jobs with the
JobFiles column set to zero, when files should have been backed up, then you should expect problems.

If all the File records have been pruned, Bareos will realize that there are no file records in any of the
JobIds chosen and will inform you. It will then propose doing a full restore (non-selective) of those
JobIds. This is possible because Bareos still knows where the beginning of the Job data is on the
Volumes, even if it does not know where particular files are located or what their names are.

233

� Item 6 allows you to specify a date and time, after which Bareos will automatically select the most
recent Full backup and all subsequent incremental and differential backups that started before the
specified date and time.

� Item 7 allows you to specify one or more filenames (complete path required) to be restored. Each
filename is entered one at a time or if you prefix a filename with the less-than symbol (<) Bareos will
read that file and assume it is a list of filenames to be restored. If you prefix the filename with a
question mark (?), then the filename will be interpreted as an SQL table name, and Bareos will include
the rows of that table in the list to be restored. The table must contain the JobId in the first column
and the FileIndex in the second column. This table feature is intended for external programs that
want to build their own list of files to be restored. The filename entry mode is terminated by entering
a blank line.

� Item 8 allows you to specify a date and time before entering the filenames. See Item 7 above for more
details.

� Item 9 allows you find the JobIds of the most recent backup for a client. This is much like option 5
(it uses the same code), but those JobIds are retained internally as if you had entered them manually.
You may then select item 11 (see below) to restore one or more directories.

� Item 10 is the same as item 9, except that it allows you to enter a before date (as with item 6). These
JobIds will then be retained internally.

� Item 11 allows you to enter a list of JobIds from which you can select directories to be restored. The
list of JobIds can have been previously created by using either item 9 or 10 on the menu. You may
then enter a full path to a directory name or a filename preceded by a less than sign (<). The filename
should contain a list of directories to be restored. All files in those directories will be restored, but if
the directory contains subdirectories, nothing will be restored in the subdirectory unless you explicitly
enter its name.

� Item 12 is a full restore to a specified job date.

� Item 13 allows you to cancel the restore command.

As an example, suppose that we select item 5 (restore to most recent state). If you have not specified a
client=xxx on the command line, it it will then ask for the desired Client, which on my system, will print
all the Clients found in the database as follows:

Select item: (1-13): 5
Defined clients:

1: Rufus

2: Matou

3: Polymatou

4: Minimatou

5: Minou

6: MatouVerify

7: PmatouVerify

8: RufusVerify

9: Watchdog

Select Client (File daemon) resource (1-9): 1

bconsole 16.2: restore: select client

The listed clients are only examples, yours will look differently. If you have only one Client, it will be
automatically selected. In this example, I enter 1 for Rufus to select the Client. Then Bareos needs to know
what FileSet is to be restored, so it prompts with:

The defined FileSet resources are:

1: Full Set

2: Other Files

Select FileSet resource (1-2):

If you have only one FileSet defined for the Client, it will be selected automatically. I choose item 1, which is
my full backup. Normally, you will only have a single FileSet for each Job, and if your machines are similar
(all Linux) you may only have one FileSet for all your Clients.
At this point, Bareos has all the information it needs to find the most recent set of backups. It will then
query the database, which may take a bit of time, and it will come up with something like the following.
Note, some of the columns are truncated here for presentation:

234

+-------+------+----------+-------------+-------------+------+-------+------------+

| JobId | Levl | JobFiles | StartTime | VolumeName | File | SesId |VolSesTime |

+-------+------+----------+-------------+-------------+------+-------+------------+

| 1,792 | F | 128,374 | 08-03 01:58 | DLT-19Jul02 | 67 | 18 | 1028042998 |

| 1,792 | F | 128,374 | 08-03 01:58 | DLT-04Aug02 | 0 | 18 | 1028042998 |

| 1,797 | I | 254 | 08-04 13:53 | DLT-04Aug02 | 5 | 23 | 1028042998 |

| 1,798 | I | 15 | 08-05 01:05 | DLT-04Aug02 | 6 | 24 | 1028042998 |

+-------+------+----------+-------------+-------------+------+-------+------------+

You have selected the following JobId: 1792,1792,1797

Building directory tree for JobId 1792 ...

Building directory tree for JobId 1797 ...

Building directory tree for JobId 1798 ...

cwd is: /

$

Depending on the number of JobFiles for each JobId, the “Building directory tree ...” can take a bit
of time. If you notice ath all the JobFiles are zero, your Files have probably been pruned and you will not
be able to select any individual files – it will be restore everything or nothing.
In our example, Bareos found four Jobs that comprise the most recent backup of the specified Client and
FileSet. Two of the Jobs have the same JobId because that Job wrote on two different Volumes. The third
Job was an incremental backup to the previous Full backup, and it only saved 254 Files compared to 128,374
for the Full backup. The fourth Job was also an incremental backup that saved 15 files.
Next Bareos entered those Jobs into the directory tree, with no files marked to be restored as a default, tells
you how many files are in the tree, and tells you that the current working directory (cwd) is /. Finally,
Bareos prompts with the dollar sign ($) to indicate that you may enter commands to move around the
directory tree and to select files.
If you want all the files to automatically be marked when the directory tree is built, you could have entered
the command restore all, or at the $ prompt, you can simply enter mark *.
Instead of choosing item 5 on the first menu (Select the most recent backup for a client), if we had chosen
item 3 (Enter list of JobIds to select) and we had entered the JobIds 1792,1797,1798 we would have arrived
at the same point.
One point to note, if you are manually entering JobIds, is that you must enter them in the order they were
run (generally in increasing JobId order). If you enter them out of order and the same file was saved in two
or more of the Jobs, you may end up with an old version of that file (i.e. not the most recent).
Directly entering the JobIds can also permit you to recover data from a Job that wrote files to tape but that
terminated with an error status.
While in file selection mode, you can enter help or a question mark (?) to produce a summary of the
available commands:

Command Description

======= ===========

cd change current directory

count count marked files in and below the cd

dir long list current directory, wildcards allowed

done leave file selection mode

estimate estimate restore size

exit same as done command

find find files, wildcards allowed

help print help

ls list current directory, wildcards allowed

lsmark list the marked files in and below the cd

mark mark dir/file to be restored recursively in dirs

markdir mark directory name to be restored (no files)

pwd print current working directory

unmark unmark dir/file to be restored recursively in dir

unmarkdir unmark directory name only no recursion

quit quit and do not do restore

? print help

As a default no files have been selected for restore (unless you added all to the command line. If you want
to restore everything, at this point, you should enter mark *, and then done and Bareos will write the
bootstrap records to a file and request your approval to start a restore job.
If you do not enter the above mentioned mark * command, you will start with an empty state. Now you
can simply start looking at the tree and mark particular files or directories you want restored. It is easy to
make a mistake in specifying a file to mark or unmark, and Bareos’s error handling is not perfect, so please
check your work by using the ls or dir commands to see what files are actually selected. Any selected file
has its name preceded by an asterisk.
To check what is marked or not marked, enter the count command, which displays:

235

128401 total files. 128401 marked to be restored.

Each of the above commands will be described in more detail in the next section. We continue with the
above example, having accepted to restore all files as Bareos set by default. On entering the done command,
Bareos prints:

Run Restore job

JobName: RestoreFiles

Bootstrap: /var/lib/bareos/client1.restore.3.bsr

Where: /tmp/bareos-restores

Replace: Always

FileSet: Full Set

Backup Client: client1

Restore Client: client1

Format: Native

Storage: File

When: 2013-06-28 13:30:08

Catalog: MyCatalog

Priority: 10

Plugin Options: *None*

OK to run? (yes/mod/no):

Please examine each of the items very carefully to make sure that they are correct. In particular, look at
Where, which tells you where in the directory structure the files will be restored, and Client, which tells
you which client will receive the files. Note that by default the Client which will receive the files is the Client
that was backed up. These items will not always be completed with the correct values depending on which
of the restore options you chose. You can change any of these default items by entering mod and responding
to the prompts.
The above assumes that you have defined a Restore Job resource in your Director’s configuration file.
Normally, you will only need one Restore Job resource definition because by its nature, restoring is a manual
operation, and using the Console interface, you will be able to modify the Restore Job to do what you want.
An example Restore Job resource definition is given below.
Returning to the above example, you should verify that the Client name is correct before running the Job.
However, you may want to modify some of the parameters of the restore job. For example, in addition to
checking the Client it is wise to check that the Storage device chosen by Bareos is indeed correct. Although
the FileSet is shown, it will be ignored in restore. The restore will choose the files to be restored either by
reading the Bootstrap file, or if not specified, it will restore all files associated with the specified backup
JobId (i.e. the JobId of the Job that originally backed up the files).
Finally before running the job, please note that the default location for restoring files is not their original
locations, but rather the directory /tmp/bareos-restores. You can change this default by modifying your
bareos-dir.conf file, or you can modify it using the mod option. If you want to restore the files to their
original location, you must have Where set to nothing or to the root, i.e. /.
If you now enter yes, Bareos will run the restore Job.

16.3 Selecting Files by Filename

If you have a small number of files to restore, and you know the filenames, you can either put the list of
filenames in a file to be read by Bareos, or you can enter the names one at a time. The filenames must
include the full path and filename. No wild cards are used.
To enter the files, after the restore, you select item number 7 from the prompt list:

* restore
First you select one or more JobIds that contain files

to be restored. You will be presented several methods

of specifying the JobIds. Then you will be allowed to

select which files from those JobIds are to be restored.

To select the JobIds, you have the following choices:

1: List last 20 Jobs run

2: List Jobs where a given File is saved

3: Enter list of comma separated JobIds to select

4: Enter SQL list command

5: Select the most recent backup for a client

6: Select backup for a client before a specified time

236

7: Enter a list of files to restore

8: Enter a list of files to restore before a specified time

9: Find the JobIds of the most recent backup for a client

10: Find the JobIds for a backup for a client before a specified time

11: Enter a list of directories to restore for found JobIds

12: Select full restore to a specified Job date

13: Cancel

Select item: (1-13): 7

bconsole 16.3: restore list of files

which then prompts you for the client name:

Defined Clients:

1: client1

2: Tibs

3: Rufus

Select the Client (1-3): 3

Of course, your client list will be different, and if you have only one client, it will be automatically selected.
And finally, Bareos requests you to enter a filename:

Enter filename:

At this point, you can enter the full path and filename

Enter filename: /etc/resolv.conf

Enter filename:

as you can see, it took the filename. If Bareos cannot find a copy of the file, it prints the following:

Enter filename: junk filename

No database record found for: junk filename

Enter filename:

If you want Bareos to read the filenames from a file, you simply precede the filename with a less-than symbol
(<).
It is possible to automate the selection by file by putting your list of files in say /tmp/file-list, then using
the following command:

restore client=client1 file=</tmp/file-list

If in modifying the parameters for the Run Restore job, you find that Bareos asks you to enter a Job number,
this is because you have not yet specified either a Job number or a Bootstrap file. Simply entering zero will
allow you to continue and to select another option to be modified.

16.4 Replace Options

When restoring, you have the option to specify a Replace option. This directive determines the action to be
taken when restoring a file or directory that already exists. This directive can be set by selecting the mod
option. You will be given a list of parameters to choose from. Full details on this option can be found in the
Job Resource section of the Director documentation.

16.5 Command Line Arguments

If all the above sounds complicated, you will probably agree that it really isn’t after trying it a few times.
It is possible to do everything that was shown above, with the exception of selecting the FileSet, by using
command line arguments with a single command by entering:

restore client=Rufus select current all done yes

The client=Rufus specification will automatically select Rufus as the client, the current tells Bareos
that you want to restore the system to the most current state possible, and the yes suppresses the final
yes/mod/no prompt and simply runs the restore.
The full list of possible command line arguments are:

237

� all – select all Files to be restored.

� select – use the tree selection method.

� done – do not prompt the user in tree mode.

� copies – instead of using the actual backup jobs for restoring use the copies which were made of these
backup Jobs. This could mean that on restore the client will contact a remote storage daemon if the
data is copied to a remote storage daemon as part of your copy Job scheme.

� current – automatically select the most current set of backups for the specified client.

� client=xxxx – initially specifies the client from which the backup was made and the client to which
the restore will be make. See also ”restoreclient” keyword.

� restoreclient=xxxx – if the keyword is specified, then the restore is written to that client.

� jobid=nnn – specify a JobId or comma separated list of JobIds to be restored.

� before=YYYY-MM-DD HH:MM:SS – specify a date and time to which the system should be
restored. Only Jobs started before the specified date/time will be selected, and as is the case for cur-
rent Bareos will automatically find the most recent prior Full save and all Differential and Incremental
saves run before the date you specify. Note, this command is not too user friendly in that you must
specify the date/time exactly as shown.

� file=filename – specify a filename to be restored. You must specify the full path and filename.
Prefixing the entry with a less-than sign (<) will cause Bareos to assume that the filename is on your
system and contains a list of files to be restored. Bareos will thus read the list from that file. Multiple
file=xxx specifications may be specified on the command line.

� jobid=nnn – specify a JobId to be restored.

� pool=pool-name – specify a Pool name to be used for selection of Volumes when specifying options
5 and 6 (restore current system, and restore current system before given date). This permits you to
have several Pools, possibly one offsite, and to select the Pool to be used for restoring.

� where=/tmp/bareos-restore – restore files in where directory.

� yes – automatically run the restore without prompting for modifications (most useful in batch scripts).

� strip prefix=/prod – remove a part of the filename when restoring.

� add prefix=/test – add a prefix to all files when restoring (like where) (can’t be used with where=).

� add suffix=.old – add a suffix to all your files.

� regexwhere=!a.pdf!a.bkp.pdf! – do complex filename manipulation like with sed unix command.
Will overwrite other filename manipulation. For details, see the regexwhere section.

� restorejob=jobname – Pre-chooses a restore job. Bareos can be configured with multiple restore jobs
(”Type = Restore” in the job definition). This allows the specification of different restore properties,
including a set of RunScripts. When more than one job of this type is configured, during restore,
Bareos will ask for a user selection interactively, or use the given restorejob.

16.6 Using File Relocation

Introduction

The where= option is simple, but not very powerful. With file relocation, Bareos can restore a file to the
same directory, but with a different name, or in an other directory without recreating the full path.
You can also do filename and path manipulations, such as adding a suffix to all your files, renaming files or
directories, etc. Theses options will overwrite where= option.
For example, many users use OS snapshot features so that file /home/eric/mbox will be backed up from the
directory /.snap/home/eric/mbox, which can complicate restores. If you use where=/tmp, the file will
be restored to /tmp/.snap/home/eric/mbox and you will have to move the file to /home/eric/mbox.bkp

by hand.

238

However, case, you could use the strip prefix=/.snap and add suffix=.bkp options and Bareos will
restore the file to its original location – that is /home/eric/mbox.
To use this feature, there are command line options as described in the restore section of this manual; you
can modify your restore job before running it; or you can add options to your restore job in as described in
Strip Prefix Dir

Job and Add Prefix Dir
Job.

Parameters to modify:

1: Level

2: Storage

...

10: File Relocation

...

Select parameter to modify (1-12):

This will replace your current Where value

1: Strip prefix

2: Add prefix

3: Add file suffix

4: Enter a regexp

5: Test filename manipulation

6: Use this ?

Select parameter to modify (1-6):

RegexWhere Format

The format is very close to that used by sed or Perl (s/replace this/by that/) operator. A valid
regexwhere expression has three fields :

� a search expression (with optional submatch)

� a replacement expression (with optionnal back references $1 to $9)

� a set of search options (only case-insensitive “i” at this time)

Each field is delimited by a separator specified by the user as the first character of the expression. The
separator can be one of the following:

<separator-keyword> = / ! ; % : , ~ # = &

You can use several expressions separated by a commas.

Examples

Orignal filename New filename RegexWhere Comments

c:/system.ini c:/system.old.ini /.ini$/.old.ini/ $ matches end of name
/prod/u01/pdata/ /rect/u01/rdata /prod/rect/,/pdata/rdata/ uses two regexp
/prod/u01/pdata/ /rect/u01/rdata !/prod/!/rect/!,/pdata/rdata/ use ! as separator

C:/WINNT d:/WINNT /c:/d:/i case insensitive pattern match

16.7 Restoring Directory Attributes

Depending how you do the restore, you may or may not get the directory entries back to their original state.
Here are a few of the problems you can encounter, and for same machine restores, how to avoid them.

� You backed up on one machine and are restoring to another that is either a different OS or doesn’t
have the same users/groups defined. Bareos does the best it can in these situations. Note, Bareos has
saved the user/groups in numeric form, which means on a different machine, they may map to different
user/group names.

� You are restoring into a directory that is already created and has file creation restrictions. Bareos tries
to reset everything but without walking up the full chain of directories and modifying them all during
the restore, which Bareos does and will not do, getting permissions back correctly in this situation
depends to a large extent on your OS.

239

� You are doing a recursive restore of a directory tree. In this case Bareos will restore a file before
restoring the file’s parent directory entry. In the process of restoring the file Bareos will create the
parent directory with open permissions and ownership of the file being restored. Then when Bareos tries
to restore the parent directory Bareos sees that it already exists (Similar to the previous situation). If
you had set the Restore job’s ”Replace” property to ”never” then Bareos will not change the directory’s
permissions and ownerships to match what it backed up, you should also notice that the actual number
of files restored is less then the expected number. If you had set the Restore job’s ”Replace” property to
”always” then Bareos will change the Directory’s ownership and permissions to match what it backed
up, also the actual number of files restored should be equal to the expected number.

� You selected one or more files in a directory, but did not select the directory entry to be restored.
In that case, if the directory is not on disk Bareos simply creates the directory with some default
attributes which may not be the same as the original. If you do not select a directory and all its
contents to be restored, you can still select items within the directory to be restored by individually
marking those files, but in that case, you should individually use the ”markdir” command to select all
higher level directory entries (one at a time) to be restored if you want the directory entries properly
restored.

16.8 Restoring on Windows

If you are restoring on Windows systems, Bareos will restore the files with the original ownerships and
permissions as would be expected. This is also true if you are restoring those files to an alternate directory
(using the Where option in restore). However, if the alternate directory does not already exist, the Bareos
File daemon (Client) will try to create it. In some cases, it may not create the directories, and if it does since
the File daemon runs under the SYSTEM account, the directory will be created with SYSTEM ownership
and permissions. In this case, you may have problems accessing the newly restored files.
To avoid this problem, you should create any alternate directory before doing the restore. Bareos will not
change the ownership and permissions of the directory if it is already created as long as it is not one of the
directories being restored (i.e. written to tape).
The default restore location is /tmp/bareos-restores/ and if you are restoring from drive E:, the default
will be /tmp/bareos-restores/e/, so you should ensure that this directory exists before doing the restore,
or use the mod option to select a different where directory that does exist.
Some users have experienced problems restoring files that participate in the Active Directory. They also
report that changing the userid under which Bareos (bareos-fd.exe) runs, from SYSTEM to a Domain Admin
userid, resolves the problem.

16.9 Restore Errors

There are a number of reasons why there may be restore errors or warning messages. Some of the more
common ones are:

file count mismatch This can occur for the following reasons:

� You requested Bareos not to overwrite existing or newer files.

� A Bareos miscount of files/directories. This is an on-going problem due to the complications of
directories, soft/hard link, and such. Simply check that all the files you wanted were actually
restored.

file size error When Bareos restores files, it checks that the size of the restored file is the same as the file
status data it saved when starting the backup of the file. If the sizes do not agree, Bareos will print
an error message. This size mismatch most often occurs because the file was being written as Bareos
backed up the file. In this case, the size that Bareos restored will be greater than the status size. This
often happens with log files.

If the restored size is smaller, then you should be concerned about a possible tape error and check the
Bareos output as well as your system logs.

16.10 Example Restore Job Resource

Job {

240

Name = "RestoreFiles"

Type = Restore

Client = Any-client

FileSet = "Any-FileSet"

Storage = Any-storage

Where = /tmp/bareos-restores

Messages = Standard

Pool = Default

}

If Where is not specified, the default location for restoring files will be their original locations.

16.11 File Selection Commands

After you have selected the Jobs to be restored and Bareos has created the in-memory directory tree, you
will enter file selection mode as indicated by the dollar sign ($) prompt. While in this mode, you may use
the commands listed above. The basic idea is to move up and down the in memory directory structure with
the cd command much as you normally do on the system. Once you are in a directory, you may select the
files that you want restored. As a default no files are marked to be restored. If you wish to start with all
files, simply enter: cd / and mark *. Otherwise proceed to select the files you wish to restore by marking
them with the mark command. The available commands are:

cd The cd command changes the current directory to the argument specified. It operates much like the
Unix cd command. Wildcard specifications are not permitted.

Note, on Windows systems, the various drives (c:, d:, ...) are treated like a directory within the file
tree while in the file selection mode. As a consequence, you must do a cd c: or possibly in some cases
a cd C: (note upper case) to get down to the first directory.

dir The dir command is similar to the ls command, except that it prints it in long format (all details).
This command can be a bit slower than the ls command because it must access the catalog database
for the detailed information for each file.

estimate The estimate command prints a summary of the total files in the tree, how many are marked to
be restored, and an estimate of the number of bytes to be restored. This can be useful if you are short
on disk space on the machine where the files will be restored.

find The find command accepts one or more arguments and displays all files in the tree that match that
argument. The argument may have wildcards. It is somewhat similar to the Unix command find /
-name arg.

ls The ls command produces a listing of all the files contained in the current directory much like the Unix
ls command. You may specify an argument containing wildcards, in which case only those files will be
listed.

Any file that is marked to be restored will have its name preceded by an asterisk (*). Directory names
will be terminated with a forward slash (/) to distinguish them from filenames.

lsmark The lsmark command is the same as the ls except that it will print only those files marked for
extraction. The other distinction is that it will recursively descend into any directory selected.

mark The mark command allows you to mark files to be restored. It takes a single argument which is the
filename or directory name in the current directory to be marked for extraction. The argument may
be a wildcard specification, in which case all files that match in the current directory are marked to
be restored. If the argument matches a directory rather than a file, then the directory and all the files
contained in that directory (recursively) are marked to be restored. Any marked file will have its name
preceded with an asterisk (*) in the output produced by the ls or dir commands. Note, supplying a
full path on the mark command does not work as expected to select a file or directory in the current
directory. Also, the mark command works on the current and lower directories but does not touch
higher level directories.

After executing the mark command, it will print a brief summary:

No files marked.

241

If no files were marked, or:

nn files marked.

if some files are marked.

unmark The unmark is identical to the mark command, except that it unmarks the specified file or files
so that they will not be restored. Note: the unmark command works from the current directory, so
it does not unmark any files at a higher level. First do a cd / before the unmark * command if you
want to unmark everything.

pwd The pwd command prints the current working directory. It accepts no arguments.

count The count command prints the total files in the directory tree and the number of files marked to be
restored.

done This command terminates file selection mode.

exit This command terminates file selection mode (the same as done).

quit This command terminates the file selection and does not run the restore job.

help This command prints a summary of the commands available.

? This command is the same as the help command.

If your filename contains some weird caracters, you can use ?, * or \\. For example, if your filename contains
a \, you can use \\\\.

* mark weird_file\\\\with-backslash

242

Chapter 17

Volume Management

This chapter presents most all the features needed to do Volume management. Most of the concepts apply
equally well to both tape and disk Volumes. However, the chapter was originally written to explain backing
up to disk, so you will see it is slanted in that direction, but all the directives presented here apply equally
well whether your volume is disk or tape.
If you have a lot of hard disk storage or you absolutely must have your backups run within a small time
window, you may want to direct Bareos to backup to disk Volumes rather than tape Volumes. This chapter
is intended to give you some of the options that are available to you so that you can manage either disk or
tape volumes.

17.1 Key Concepts and Resource Records

Getting Bareos to write to disk rather than tape in the simplest case is rather easy. In the Storage daemon’s
configuration file, you simply define an Archive Device Sd

Device to be a directory. The default directory to store
backups on disk is /var/lib/bareos/storage:

Device {

Name = FileBackup

Media Type = File

Archive Device = /var/lib/bareos/storage

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

}

Assuming you have the appropriate Storage resource in your Director’s configuration file that references the
above Device resource,

Storage {

Name = FileStorage

Address = ...

Password = ...

Device = FileBackup

Media Type = File

}

Bareos will then write the archive to the file /var/lib/bareos/storage/<volume-name> where <volume-
name> is the volume name of a Volume defined in the Pool. For example, if you have labeled a Volume
named Vol001, Bareos will write to the file /var/lib/bareos/storage/Vol001. Although you can later
move the archive file to another directory, you should not rename it or it will become unreadable by Bareos.
This is because each archive has the filename as part of the internal label, and the internal label must agree
with the system filename before Bareos will use it.
Although this is quite simple, there are a number of problems. The first is that unless you specify otherwise,
Bareos will always write to the same volume until you run out of disk space. This problem is addressed
below.
In addition, if you want to use concurrent jobs that write to several different volumes at the same time, you
will need to understand a number of other details. An example of such a configuration is given at the end
of this chapter under Concurrent Disk Jobs.

243

244

17.1.1 Pool Options to Limit the Volume Usage

Some of the options you have, all of which are specified in the Pool record, are:

� Maximum Volume Jobs Dir
Pool: write only the specified number of jobs on each Volume.

� Maximum Volume Bytes Dir
Pool: limit the maximum size of each Volume.

Note, if you use disk volumes you should probably limit the Volume size to some reasonable value. If
you ever have a partial hard disk failure, you are more likely to be able to recover more data if they
are in smaller Volumes.

� Volume Use Duration Dir
Pool: restrict the time between first and last data written to Volume.

Note that although you probably would not want to limit the number of bytes on a tape as you would on a
disk Volume, the other options can be very useful in limiting the time Bareos will use a particular Volume
(be it tape or disk). For example, the above directives can allow you to ensure that you rotate through a set
of daily Volumes if you wish.

As mentioned above, each of those directives is specified in the Pool or Pools that you use for your Volumes.
In the case of Maximum Volume Jobs Dir

Pool, Maximum Volume Bytes Dir
Pool and Volume Use Duration Dir

Pool, you
can actually specify the desired value on a Volume by Volume basis. The value specified in the Pool record
becomes the default when labeling new Volumes. Once a Volume has been created, it gets its own copy
of the Pool defaults, and subsequently changing the Pool will have no effect on existing Volumes. You can
either manually change the Volume values, or refresh them from the Pool defaults using the update volume

command in the Console. As an example of the use of one of the above, suppose your Pool resource contains:

Pool {

Name = File

Pool Type = Backup

Volume Use Duration = 23h

}

Configuration 17.1: Volume Use Duration

then if you run a backup once a day (every 24 hours), Bareos will use a new Volume for each backup, because
each Volume it writes can only be used for 23 hours after the first write. Note, setting the use duration to
23 hours is not a very good solution for tapes unless you have someone on-site during the weekends, because
Bareos will want a new Volume and no one will be present to mount it, so no weekend backups will be done
until Monday morning.

17.1.2 Automatic Volume Labeling

Use of the above records brings up another problem – that of labeling your Volumes. For automated disk
backup, you can either manually label each of your Volumes, or you can have Bareos automatically label
new Volumes when they are needed.

Please note that automatic Volume labeling can also be used with tapes, but it is not nearly so practical since
the tapes must be pre-mounted. This requires some user interaction. Automatic labeling from templates
does NOT work with autochangers since Bareos will not access unknown slots. There are several methods of
labeling all volumes in an autochanger magazine. For more information on this, please see the Autochanger
Support chapter.

Automatic Volume labeling is enabled by making a change to both the PoolDir resource and to the DeviceSd

resource shown above. In the case of the Pool resource, you must provide Bareos with a label format that it
will use to create new names. In the simplest form, the label format is simply the Volume name, to which
Bareos will append a four digit number. This number starts at 0001 and is incremented for each Volume the
catalog contains. Thus if you modify your Pool resource to be:

Pool {

Name = File

Pool Type = Backup

Volume Use Duration = 23h

Label Format = "Vol"

}

Configuration 17.2: Label Format

245

Bareos will create Volume names Vol0001, Vol0002, and so on when new Volumes are needed. Much more
complex and elaborate labels can be created using variable expansion defined in the Variable Expansion
chapter of this manual.
The second change that is necessary to make automatic labeling work is to give the Storage daemon permis-
sion to automatically label Volumes. Do so by adding Label Media Sd

Device = yes to the Device resource as
follows:

Device {

Name = File

Media Type = File

Archive Device = /var/lib/bareos/storage/

Random Access = yes

Automatic Mount = yes

Removable Media = no

Always Open = no

Label Media = yes

}

Configuration 17.3: Label Media = yes

See Label Format Dir
Pool for details about the labeling format.

17.1.3 Restricting the Number of Volumes and Recycling

Automatic labeling discussed above brings up the problem of Volume management. With the above scheme,
a new Volume will be created every day. If you have not specified Retention periods, your Catalog will
continue to fill keeping track of all the files Bareos has backed up, and this procedure will create one new
archive file (Volume) every day.
The tools Bareos gives you to help automatically manage these problems are the following:

� File Retention Dir
Client: catalog file record retention period.

� Job Retention Dir
Client: catalog job record retention period.

� Auto Prune Dir
Client = yes: permit the application of the above two retention periods.

� Volume Retention Dir
Pool

� Auto Prune Dir
Pool = yes: permit the application of the Volume Retention Dir

Pool period.

� Recycle Dir
Pool = yes: permit automatic recycling of Volumes whose Volume retention period has expired.

� Recycle Oldest Volume Dir
Pool = yes: prune the oldest volume in the Pool, and if all files were pruned,

recycle this volume and use it.

� Recycle Current Volume Dir
Pool = yes: prune the currently mounted volume in the Pool, and if all files

were pruned, recycle this volume and use it.

� Purge Oldest Volume Dir
Pool = yes: permits a forced recycling of the oldest Volume when a new one is

needed.
Please note! This record ignores retention periods! We highly recommend not to use this record, but
instead use Recycle Oldest Volume Dir

Pool.

� Maximum Volumes Dir
Pool: limitthe number of Volumes that can be created.

The first three records (File Retention Dir
Client, Job Retention Dir

Client and Auto Prune Dir
Client) determine the amount

of time that Job and File records will remain in your Catalog and they are discussed in detail in the Automatic
Volume Recycling chapter.
Volume Retention Dir

Pool, Auto Prune Dir
Pool and Recycle Dir

Pool determine how long Bareos will keep your Volumes
before reusing them and they are also discussed in detail in the Automatic Volume Recycling chapter.
The Maximum Volumes Dir

Pool record can also be used in conjunction with the Volume Retention Dir
Pool period

to limit the total number of archive Volumes that Bareos will create. By setting an appropriate Volume
Retention Dir

Pool period, a Volume will be purged just before it is needed and thus Bareos can cycle through
a fixed set of Volumes. Cycling through a fixed set of Volumes can also be done by setting Purge Oldest
Volume Dir

Pool = yes or Recycle Current Volume Dir
Pool = yes. In this case, when Bareos needs a new Volume, it

will prune the specified volume.

246

17.2 Concurrent Disk Jobs

Above, we discussed how you could have a single device named FileBackupSd
Device that writes to volumes in

/var/lib/bareos/storage/. You can, in fact, run multiple concurrent jobs using the Storage definition
given with this example, and all the jobs will simultaneously write into the Volume that is being written.
Now suppose you want to use multiple Pools, which means multiple Volumes, or suppose you want each
client to have its own Volume and perhaps its own directory such as /home/bareos/client1 and /home-
/bareos/client2 With the single Storage and Device definition above, neither of these two is possible.
Why? Because Bareos disk storage follows the same rules as tape devices. Only one Volume can be mounted
on any Device at any time. If you want to simultaneously write multiple Volumes, you will need multiple
Device resources in your Bareos Storage Daemon configuration and thus multiple Storage resources in your
Bareos Director configuration.
Okay, so now you should understand that you need multiple Device definitions in the case of different
directories or different Pools, but you also need to know that the catalog data that Bareos keeps contains
only the Media Type and not the specific storage device. This permits a tape for example to be re-read on any
compatible tape drive. The compatibility being determined by the Media Type (Media Type Dir

Storage and Media
Type Sd

Device). The same applies to disk storage. Since a volume that is written by a Device in say directory
/home/bareos/backups cannot be read by a Device with an Archive Device Sd

Device = /home/bareos/client1,
you will not be able to restore all your files if you give both those devices Media Type Sd

Device = File. During
the restore, Bareos will simply choose the first available device, which may not be the correct one. If this is
confusing, just remember that the Directory has only the Media Type and the Volume name. It does not
know the Archive Device Sd

Device (or the full path) that is specified in the Bareos Storage Daemon. Thus you
must explicitly tie your Volumes to the correct Device by using the Media Type.

17.2.1 Example for two clients, separate devices and recycling

The following example is not very practical, but can be used to demonstrate the proof of concept in a
relatively short period of time.
The example consists of a two clients that are backed up to a set of 12 Volumes for each client into different
directories on the Storage machine. Each Volume is used (written) only once, and there are four Full saves
done every hour (so the whole thing cycles around after three hours).
What is key here is that each physical device on the Bareos Storage Daemon has a different Media Type.
This allows the Director to choose the correct device for restores.
The Bareos Director configuration is as follows:

Director {

Name = bareos-dir

QueryFile = "/usr/lib/bareos/scripts/query.sql"

Password = "<secret>"

}

Schedule {

Name = "FourPerHour"

Run = Level=Full hourly at 0:05

Run = Level=Full hourly at 0:20

Run = Level=Full hourly at 0:35

Run = Level=Full hourly at 0:50

}

FileSet {

Name = "Example FileSet"

Include {

Options {

compression=GZIP

signature=SHA1

}

File = /etc

}

}

Job {

Name = "RecycleExample"

Type = Backup

Level = Full

Client = client1-fd

FileSet= "Example FileSet"

Messages = Standard

Storage = FileStorage

247

Pool = Recycle

Schedule = FourPerHour

}

Job {

Name = "RecycleExample2"

Type = Backup

Level = Full

Client = client2-fd

FileSet= "Example FileSet"

Messages = Standard

Storage = FileStorage2

Pool = Recycle2

Schedule = FourPerHour

}

Client {

Name = client1-fd

Address = client1.example.com

Password = client1_password

}

Client {

Name = client2-fd

Address = client2.example.com

Password = client2_password

}

Storage {

Name = FileStorage

Address = bareos-sd.example.com

Password = local_storage_password

Device = RecycleDir

Media Type = File

}

Storage {

Name = FileStorage2

Address = bareos-sd.example.com

Password = local_storage_password

Device = RecycleDir2

Media Type = File1

}

Catalog {

Name = MyCatalog

...

}

Messages {

Name = Standard

...

}

Pool {

Name = Recycle

Pool Type = Backup

Label Format = "Recycle-"

Auto Prune = yes

Use Volume Once = yes

Volume Retention = 2h

Maximum Volumes = 12

Recycle = yes

}

Pool {

Name = Recycle2

Pool Type = Backup

Label Format = "Recycle2-"

Auto Prune = yes

Use Volume Once = yes

Volume Retention = 2h

Maximum Volumes = 12

Recycle = yes

}

248

Configuration 17.4:

and the Bareos Storage Daemon configuration is:

Storage {

Name = bareos-sd

Maximum Concurrent Jobs = 10

}

Director {

Name = bareos-dir

Password = local_storage_password

}

Device {

Name = RecycleDir

Media Type = File

Archive Device = /home/bareos/backups

LabelMedia = yes;

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

}

Device {

Name = RecycleDir2

Media Type = File2

Archive Device = /home/bareos/backups2

LabelMedia = yes;

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

}

Messages {

Name = Standard

director = bareos-dir = all

}

Configuration 17.5:

With a little bit of work, you can change the above example into a weekly or monthly cycle (take care about
the amount of archive disk space used).

17.2.2 Using Multiple Storage Devices

Bareos treats disk volumes similar to tape volumes as much as it can. This means that you can only have a
single Volume mounted at one time on a disk as defined in your DeviceSd resource.
If you use Bareos without Data Spooling, multiple concurrent backup jobs can be written to a Volume using
interleaving. However, interleaving has disadvantages, see Concurrent Jobs.
Also the DeviceSd will be in use. If there are other jobs, requesting other Volumes, these jobs have to wait.
On a tape (or autochanger), this is a physical limitation of the hardware. However, when using disk storage,
this is only a limitation of the software.
To enable Bareos to run concurrent jobs (on disk storage), define as many DeviceSd as concurrent jobs should
run. All these DeviceSds can use the same Archive Device Sd

Device directory. Set Maximum Concurrent Jobs
Sd
Device = 1 for all these devices.

Example: use four storage devices pointing to the same directory

Director {

Name = bareos-dir.example.com

QueryFile = "/usr/lib/bareos/scripts/query.sql"

Maximum Concurrent Jobs = 10

Password = "<secret>"

}

Storage {

Name = File

249

Address = bareos-sd.bareos.com

Password = "<sd-secret>"

Device = FileStorage1

Device = FileStorage2

Device = FileStorage3

Device = FileStorage4

number of devices = Maximum Concurrent Jobs

Maximum Concurrent Jobs = 4

Media Type = File

}

[...]

Configuration 17.6: Bareos Director configuration: using 4 storage devices

Storage {

Name = bareos-sd.example.com

any number >= 4

Maximum Concurrent Jobs = 20

}

Director {

Name = bareos-dir.example.com

Password = "<sd-secret>"

}

Device {

Name = FileStorage1

Media Type = File

Archive Device = /var/lib/bareos/storage

LabelMedia = yes

Random Access = yes

AutomaticMount = yes

RemovableMedia = no

AlwaysOpen = no

Maximum Concurrent Jobs = 1

}

Device {

Name = FileStorage2

Media Type = File

Archive Device = /var/lib/bareos/storage

LabelMedia = yes

Random Access = yes

AutomaticMount = yes

RemovableMedia = no

AlwaysOpen = no

Maximum Concurrent Jobs = 1

}

Device {

Name = FileStorage3

Media Type = File

Archive Device = /var/lib/bareos/storage

LabelMedia = yes

Random Access = yes

AutomaticMount = yes

RemovableMedia = no

AlwaysOpen = no

Maximum Concurrent Jobs = 1

}

Device {

Name = FileStorage4

Media Type = File

Archive Device = /var/lib/bareos/storage

LabelMedia = yes

Random Access = yes

AutomaticMount = yes

RemovableMedia = no

AlwaysOpen = no

Maximum Concurrent Jobs = 1

}

Configuration 17.7: Bareos Storage Daemon configuraton: using 4 storage devices

250

17.3 Automatic Volume Recycling

By default, once Bareos starts writing a Volume, it can append to the volume, but it will not overwrite the
existing data thus destroying it. However when Bareos recycles a Volume, the Volume becomes available for
being reused and Bareos can at some later time overwrite the previous contents of that Volume. Thus all
previous data will be lost. If the Volume is a tape, the tape will be rewritten from the beginning. If the
Volume is a disk file, the file will be truncated before being rewritten.

You may not want Bareos to automatically recycle (reuse) tapes. This would require a large number of tapes
though, and in such a case, it is possible to manually recycle tapes. For more on manual recycling, see the
Manually Recycling Volumes chapter.

Most people prefer to have a Pool of tapes that are used for daily backups and recycled once a week, another
Pool of tapes that are used for Full backups once a week and recycled monthly, and finally a Pool of tapes
that are used once a month and recycled after a year or two. With a scheme like this, the number of tapes
in your pool or pools remains constant.

By properly defining your Volume Pools with appropriate Retention periods, Bareos can manage the recycling
(such as defined above) automatically.

Automatic recycling of Volumes is controlled by four records in the PoolDir resource definition. These four
records are:

� Auto Prune Dir
Pool = yes

� Volume Retention Dir
Pool

� Recycle Dir
Pool = yes

� Recycle Pool Dir
Pool

The above three directives are all you need assuming that you fill each of your Volumes then wait the Volume
Retention period before reusing them. If you want Bareos to stop using a Volume and recycle it before it is
full, you can use one or more additional directives such as:

� Volume Use Duration Dir
Pool

� Maximum Volume Jobs Dir
Pool

� Maximum Volume Bytes Dir
Pool

Please see below and the Basic Volume Management chapter of this manual for complete examples.

Automatic recycling of Volumes is performed by Bareos only when it wants a new Volume and no appendable
Volumes are available in the Pool. It will then search the Pool for any Volumes with the Recycle flag set
and the Volume Status is Purged. At that point, it will choose the oldest purged volume and recycle it.

If there are no volumes with status Purged, then the recycling occurs in two steps:

1. The Catalog for a Volume must be pruned of all Jobs (i.e. Purged).

2. The actual recycling of the Volume.

Only Volumes marked Full or Used will be considerd for pruning. The Volume will be purged if the
Volume Retention period has expired. When a Volume is marked as Purged, it means that no Catalog
records reference that Volume and the Volume can be recycled.

Until recycling actually occurs, the Volume data remains intact. If no Volumes can be found for recycling
for any of the reasons stated above, Bareos will request operator intervention (i.e. it will ask you to label a
new volume).

A key point mentioned above, that can be a source of frustration, is that Bareos will only recycle purged
Volumes if there is no other appendable Volume available. Otherwise, it will always write to an appendable
Volume before recycling even if there are Volume marked as Purged. This preserves your data as long
as possible. So, if you wish to “force” Bareos to use a purged Volume, you must first ensure that no
other Volume in the Pool is marked Append. If necessary, you can manually set a volume to Full. The
reason for this is that Bareos wants to preserve the data on your old tapes (even though purged from the
catalog) as long as absolutely possible before overwriting it. There are also a number of directives such as
Volume Use Duration that will automatically mark a volume as Used and thus no longer appendable.

251

17.3.1 Automatic Pruning

As Bareos writes files to tape, it keeps a list of files, jobs, and volumes in a database called the catalog. Among
other things, the database helps Bareos to decide which files to back up in an incremental or differential
backup, and helps you locate files on past backups when you want to restore something. However, the catalog
will grow larger and larger as time goes on, and eventually it can become unacceptably large.
Bareos’s process for removing entries from the catalog is called Pruning. The default is Automatic Pruning,
which means that once an entry reaches a certain age (e.g. 30 days old) it is removed from the catalog.
Note that Job records that are required for current restore and File records are needed for VirtualFull and
Accurate backups won’t be removed automatically.
Once a job has been pruned, you can still restore it from the backup tape, but one additional step is required:
scanning the volume with bscan.
The alternative to Automatic Pruning is Manual Pruning, in which you explicitly tell Bareos to erase the
catalog entries for a volume. You’d usually do this when you want to reuse a Bareos volume, because there’s
no point in keeping a list of files that USED TO BE on a tape. Or, if the catalog is starting to get too
big, you could prune the oldest jobs to save space. Manual pruning is done with the prune command in the
console.

17.3.2 Pruning Directives

There are three pruning durations. All apply to catalog database records and not to the actual data in a
Volume. The pruning (or retention) durations are for: Volumes (Media records), Jobs (Job records), and
Files (File records). The durations inter-depend because if Bareos prunes a Volume, it automatically removes
all the Job records, and all the File records. Also when a Job record is pruned, all the File records for that
Job are also pruned (deleted) from the catalog.
Having the File records in the database means that you can examine all the files backed up for a particular
Job. They take the most space in the catalog (probably 90-95% of the total). When the File records are
pruned, the Job records can remain, and you can still examine what Jobs ran, but not the details of the Files
backed up. In addition, without the File records, you cannot use the Console restore command to restore
the files.
When a Job record is pruned, the Volume (Media record) for that Job can still remain in the database, and
if you do a list volumes, you will see the volume information, but the Job records (and its File records)
will no longer be available.
In each case, pruning removes information about where older files are, but it also prevents the catalog from
growing to be too large. You choose the retention periods in function of how many files you are backing up
and the time periods you want to keep those records online, and the size of the database. It is possible to
re-insert the records (with 98% of the original data) by using bscan to scan in a whole Volume or any part
of the volume that you want.
By setting Auto Prune Dir

Pool = yes you will permit the Bareos Director to automatically prune all Volumes in
the Pool when a Job needs another Volume. Volume pruning means removing records from the catalog. It
does not shrink the size of the Volume or affect the Volume data until the Volume gets overwritten. When
a Job requests another volume and there are no Volumes with Volume status Append available, Bareos will
begin volume pruning. This means that all Jobs that are older than the Volume Retention period will be
pruned from every Volume that has Volume status Full or Used and has Recycle = yes. Pruning consists
of deleting the corresponding Job, File, and JobMedia records from the catalog database. No change to the
physical data on the Volume occurs during the pruning process. When all files are pruned from a Volume
(i.e. no records in the catalog), the Volume will be marked as Purged implying that no Jobs remain on the
volume. The Pool records that control the pruning are described below.

Auto Prune Dir
Pool = yes: when running a Job and it needs a new Volume but no appendable volumes are

available, apply the Volume retention period. At that point, Bareos will prune all Volumes that can
be pruned in an attempt to find a usable volume. If during the autoprune, all files are pruned from
the Volume, it will be marked with Volume status Purged.

Note, that although the File and Job records may be pruned from the catalog, a Volume will only be
marked Purged (and hence ready for recycling) if the Volume status is Append, Full, Used, or Error.
If the Volume has another status, such as Archive, Read-Only, Disabled, Busy or Cleaning, the
Volume status will not be changed to Purged.

Volume Retention Dir
Pool defines the length of time that Bareos will guarantee that the Volume is not reused

counting from the time the last job stored on the Volume terminated. A key point is that this time
period is not even considered as long at the Volume remains appendable. The Volume Retention period

252

count down begins only when the Append status has been changed to some other status (Full, Used,
Purged, ...).

When this time period expires and if Auto Prune Dir
Pool = yes and a new Volume is needed, but no

appendable Volume is available, Bareos will prune (remove) Job records that are older than the specified
Volume Retention period.

The Volume Retention period takes precedence over any Job Retention Dir
Client period you have specified

in the Client resource. It should also be noted, that the Volume Retention period is obtained by
reading the Catalog Database Media record rather than the Pool resource record. This means that if you
change the Volume Retention Dir

Pool in the Pool resource record, you must ensure that the corresponding
change is made in the catalog by using the update pool command. Doing so will insure that any new
Volumes will be created with the changed Volume Retention period. Any existing Volumes will have
their own copy of the Volume Retention period that can only be changed on a Volume by Volume
basis using the update volume command.

When all file catalog entries are removed from the volume, its Volume status is set to Purged. The
files remain physically on the Volume until the volume is overwritten.

Recycle Dir
Pool defines whether or not the particular Volume can be recycled (i.e. rewritten). If Recycle is

set to no, then even if Bareos prunes all the Jobs on the volume and it is marked Purged, it will not
consider the tape for recycling. If Recycle is set to yes and all Jobs have been pruned, the volume
status will be set to Purged and the volume may then be reused when another volume is needed. If the
volume is reused, it is relabeled with the same Volume Name, however all previous data will be lost.

17.3.3 Recycling Algorithm

After all Volumes of a Pool have been pruned (as mentioned above, this happens when a Job needs a new
Volume and no appendable Volumes are available), Bareos will look for the oldest Volume that is Purged

(all Jobs and Files expired), and if the Recycle = yes for that Volume, Bareos will relabel it and write new
data on it.
As mentioned above, there are two key points for getting a Volume to be recycled. First, the Volume must no
longer be marked Append (there are a number of directives to automatically make this change), and second
since the last write on the Volume, one or more of the Retention periods must have expired so that there are
no more catalog backup job records that reference that Volume. Once both those conditions are satisfied,
the volume can be marked Purged and hence recycled.
The full algorithm that Bareos uses when it needs a new Volume is:
The algorithm described below assumes that Auto Prune is enabled, that Recycling is turned on, and that
you have defined appropriate Retention periods or used the defaults for all these items.

1. If the request is for an Autochanger device, look only for Volumes in the Autochanger (i.e. with
InChanger set and that have the correct Storage device).

2. Search the Pool for a Volume with Volume status=Append (if there is more than one, the Volume with
the oldest date last written is chosen. If two have the same date then the one with the lowest MediaId
is chosen).

3. Search the Pool for a Volume with Volume status=Recycle and the InChanger flag is set true (if there
is more than one, the Volume with the oldest date last written is chosen. If two have the same date
then the one with the lowest MediaId is chosen).

4. Try recycling any purged Volumes.

5. Prune volumes applying Volume retention period (Volumes with VolStatus Full, Used, or Append are
pruned). Note, even if all the File and Job records are pruned from a Volume, the Volume will not be
marked Purged until the Volume retention period expires.

6. Search the Pool for a Volume with VolStatus=Purged

7. If a Pool named ScratchDir
Pool exists, search for a Volume and if found move it to the current Pool for

the Job and use it. Note, when the Scratch Volume is moved into the current Pool, the basic Pool
defaults are applied as if it is a newly labeled Volume (equivalent to an update volume from pool

command).

8. If we were looking for Volumes in the Autochanger, go back to step 2 above, but this time, look for
any Volume whether or not it is in the Autochanger.

253

9. Attempt to create a new Volume if automatic labeling enabled. If the maximum number of Volumes
specified for the pool is reached, no new Volume will be created.

10. Prune the oldest Volume if Recycle Oldest Volume Dir
Pool=yes (the Volume with the oldest LastWritten

date and VolStatus equal to Full, Recycle, Purged, Used, or Append is chosen). This record ensures
that all retention periods are properly respected.

11. Purge the oldest Volume if Purge Oldest Volume Dir
Pool=yes (the Volume with the oldest LastWritten

date and VolStatus equal to Full, Recycle, Purged, Used, or Append is chosen). Please note! We
strongly recommend against the use of Purge Oldest Volume as it can quite easily lead to loss of
current backup data.

12. Give up and ask operator.

The above occurs when Bareos has finished writing a Volume or when no Volume is present in the drive.
On the other hand, if you have inserted a different Volume after the last job, and Bareos recognizes the
Volume as valid, it will request authorization from the Director to use this Volume. In this case, if you have
set Recycle Current Volume Dir

Pool = yes and the Volume is marked as Used or Full, Bareos will prune the
volume and if all jobs were removed during the pruning (respecting the retention periods), the Volume will
be recycled and used.
The recycling algorithm in this case is:

� If the Volume status is Append or Recycle, the volume will be used.

� If Recycle Current Volume Dir
Pool = yes and the volume is marked Full or Used, Bareos will prune the

volume (applying the retention period). If all Jobs are pruned from the volume, it will be recycled.

This permits users to manually change the Volume every day and load tapes in an order different from what
is in the catalog, and if the volume does not contain a current copy of your backup data, it will be used.
A few points from Alan Brown to keep in mind:

� If Maximum Volumes Dir
Pool is not set, Bareos will prefer to demand new volumes over forcibly purging

older volumes.

� If volumes become free through pruning and the Volume retention period has expired, then they get
marked as Purged and are immediately available for recycling - these will be used in preference to
creating new volumes.

17.3.4 Recycle Status

Each Volume inherits the Recycle status (yes or no) from the Pool resource record when the Media record
is created (normally when the Volume is labeled). This Recycle status is stored in the Media record of the
Catalog. Using the Console program, you may subsequently change the Recycle status for each Volume. For
example in the following output from list volumes:

+----------+-------+--------+---------+------------+--------+-----+

| VolumeNa | Media | VolSta | VolByte | LastWritte | VolRet | Rec |

+----------+-------+--------+---------+------------+--------+-----+

| File0001 | File | Full | 4190055 | 2002-05-25 | 14400 | 1 |

| File0002 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0003 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0004 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0005 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0006 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0007 | File | Purged | 1896466 | 2002-05-26 | 14400 | 1 |

+----------+-------+--------+---------+------------+--------+-----+

all the volumes are marked as recyclable, and the last Volume, File0007 has been purged, so it may be
immediately recycled. The other volumes are all marked recyclable and when their Volume Retention period
(14400 seconds or four hours) expires, they will be eligible for pruning, and possibly recycling. Even though
Volume File0007 has been purged, all the data on the Volume is still recoverable. A purged Volume simply
means that there are no entries in the Catalog. Even if the Volume Status is changed to Recycle, the data
on the Volume will be recoverable. The data is lost only when the Volume is re-labeled and re-written.
To modify Volume File0001 so that it cannot be recycled, you use the update volume pool=File com-
mand in the console program, or simply update and Bareos will prompt you for the information.

254

+----------+------+-------+---------+-------------+-------+-----+

| VolumeNa | Media| VolSta| VolByte | LastWritten | VolRet| Rec |

+----------+------+-------+---------+-------------+-------+-----+

| File0001 | File | Full | 4190055 | 2002-05-25 | 14400 | 0 |

| File0002 | File | Full | 1897236 | 2002-05-26 | 14400 | 1 |

| File0003 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0004 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0005 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0006 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0007 | File | Purged| 1896466 | 2002-05-26 | 14400 | 1 |

+----------+------+-------+---------+-------------+-------+-----+

In this case, File0001 will never be automatically recycled. The same effect can be achieved by setting the
Volume Status to Read-Only.
As you have noted, the Volume Status (VolStatus) column in the catalog database contains the current
status of the Volume, which is normally maintained automatically by Bareos. To give you an idea of some
of the values it can take during the life cycle of a Volume, here is a picture created by Arno Lehmann:

A typical volume life cycle is like this:

because job count or size limit exceeded

Append --------------------------------------> Used/Full

^ |

| First Job writes to Retention time passed |

| the volume and recycling takes |

| place |

| v

Recycled <-------------------------------------- Purged

Volume is selected for reuse

17.3.5 Daily, Weekly, Monthly Tape Usage Example

This example is meant to show you how one could define a fixed set of volumes that Bareos will rotate
through on a regular schedule. There are an infinite number of such schemes, all of which have various
advantages and disadvantages.
We start with the following assumptions:

� A single tape has more than enough capacity to do a full save.

� There are ten tapes that are used on a daily basis for incremental backups. They are prelabeled Daily1
... Daily10.

� There are four tapes that are used on a weekly basis for full backups. They are labeled Week1 ...
Week4.

� There are 12 tapes that are used on a monthly basis for full backups. They are numbered Month1 ...
Month12

� A full backup is done every Saturday evening (tape inserted Friday evening before leaving work).

� No backups are done over the weekend (this is easy to change).

� The first Friday of each month, a Monthly tape is used for the Full backup.

� Incremental backups are done Monday - Friday (actually Tue-Fri mornings).

We start the system by doing a Full save to one of the weekly volumes or one of the monthly volumes. The
next morning, we remove the tape and insert a Daily tape. Friday evening, we remove the Daily tape and
insert the next tape in the Weekly series. Monday, we remove the Weekly tape and re-insert the Daily tape.
On the first Friday of the next month, we insert the next Monthly tape in the series rather than a Weekly
tape, then continue. When a Daily tape finally fills up, Bareos will request the next one in the series, and
the next day when you notice the email message, you will mount it and Bareos will finish the unfinished
incremental backup.
What does this give? Well, at any point, you will have the last complete Full save plus several Incremental
saves. For any given file you want to recover (or your whole system), you will have a copy of that file every
day for at least the last 14 days. For older versions, you will have at least three and probably four Friday

255

full saves of that file, and going back further, you will have a copy of that file made on the beginning of the
month for at least a year.
So you have copies of any file (or your whole system) for at least a year, but as you go back in time, the
time between copies increases from daily to weekly to monthly.
What would the Bareos configuration look like to implement such a scheme?

Schedule {

Name = "NightlySave"

Run = Level=Full Pool=Monthly 1st sat at 03:05

Run = Level=Full Pool=Weekly 2nd-5th sat at 03:05

Run = Level=Incremental Pool=Daily tue-fri at 03:05

}

Job {

Name = "NightlySave"

Type = Backup

Level = Full

Client = LocalMachine

FileSet = "File Set"

Messages = Standard

Storage = DDS-4

Pool = Daily

Schedule = "NightlySave"

}

Definition of file storage device

Storage {

Name = DDS-4

Address = localhost

SDPort = 9103

Password = XXXXXXXXXXXXX

Device = FileStorage

Media Type = 8mm

}

FileSet {

Name = "File Set"

Include {

Options {

signature=MD5

}

File = fffffffffffffffff

}

Exclude { File=*.o }

}

Pool {

Name = Daily

Pool Type = Backup

AutoPrune = yes

VolumeRetention = 10d # recycle in 10 days

Maximum Volumes = 10

Recycle = yes

}

Pool {

Name = Weekly

Use Volume Once = yes

Pool Type = Backup

AutoPrune = yes

VolumeRetention = 30d # recycle in 30 days (default)

Recycle = yes

}

Pool {

Name = Monthly

Use Volume Once = yes

Pool Type = Backup

AutoPrune = yes

VolumeRetention = 365d # recycle in 1 year

Recycle = yes

}

17.3.6 Automatic Pruning and Recycling Example

Perhaps the best way to understand the various resource records that come into play during automatic
pruning and recycling is to run a Job that goes through the whole cycle. If you add the following resources
to your Director’s configuration file:

Schedule {

256

Name = "30 minute cycle"

Run = Level=Full Pool=File Messages=Standard Storage=File

hourly at 0:05

Run = Level=Full Pool=File Messages=Standard Storage=File

hourly at 0:35

}

Job {

Name = "Filetest"

Type = Backup

Level = Full

Client=XXXXXXXXXX

FileSet="Test Files"

Messages = Standard

Storage = File

Pool = File

Schedule = "30 minute cycle"

}

Definition of file storage device

Storage {

Name = File

Address = XXXXXXXXXXX

SDPort = 9103

Password = XXXXXXXXXXXXX

Device = FileStorage

Media Type = File

}

FileSet {

Name = "File Set"

Include {

Options {

signature=MD5

}

File = fffffffffffffffff

}

Exclude { File=*.o }

}

Pool {

Name = File

Use Volume Once = yes

Pool Type = Backup

LabelFormat = "File"

AutoPrune = yes

VolumeRetention = 4h

Maximum Volumes = 12

Recycle = yes

}

Where you will need to replace the ffffffffff’s by the appropriate files to be saved for your configuration. For
the FileSet Include, choose a directory that has one or two megabytes maximum since there will probably
be approximately eight copies of the directory that Bareos will cycle through.

In addition, you will need to add the following to your Storage daemon’s configuration file:

Device {

Name = FileStorage

Media Type = File

Archive Device = /tmp

LabelMedia = yes;

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

}

With the above resources, Bareos will start a Job every half hour that saves a copy of the directory you
chose to /tmp/File0001 ... /tmp/File0012. After 4 hours, Bareos will start recycling the backup Volumes
(/tmp/File0001 ...). You should see this happening in the output produced. Bareos will automatically create
the Volumes (Files) the first time it uses them.

To turn it off, either delete all the resources you’ve added, or simply comment out the Schedule record in
the Job resource.

257

17.3.7 Manually Recycling Volumes

Although automatic recycling of Volumes is implemented (see the Automatic Volume Recycling chapter of
this manual), you may want to manually force reuse (recycling) of a Volume.
Assuming that you want to keep the Volume name, but you simply want to write new data on the tape, the
steps to take are:

� Use the update volume command in the Console to ensure that Recycle = yes.

� Use the purge jobs volume command in the Console to mark the Volume as Purged. Check by using
list volumes.

Once the Volume is marked Purged, it will be recycled the next time a Volume is needed.
If you wish to reuse the tape by giving it a new name, use the relabel instead of the purge command.
Please note! The delete command can be dangerous. Once it is done, to recover the File records, you must
either restore your database as it was before the delete command or use the bscan utility program to scan
the tape and recreate the database entries.

258

Chapter 18

Automated Disk Backup

If you manage five or ten machines and have a nice tape backup, you don’t need Pools, and you may wonder
what they are good for. In this chapter, you will see that Pools can help you optimize disk storage space.
The same techniques can be applied to a shop that has multiple tape drives, or that wants to mount various
different Volumes to meet their needs.

The rest of this chapter will give an example involving backup to disk Volumes, but most of the information
applies equally well to tape Volumes.

Given is a scenario, where the size of a full backup is about 15GB.

It is required, that backup data is available for six months. Old files should be available on a daily basis
for a week, a weekly basis for a month, then monthly for six months. In addition, offsite capability is not
needed. The daily changes amount to about 300MB on the average, or about 2GB per week.

As a consequence, the total volume of data they need to keep to meet their needs is about 100GB (15GB x
6 + 2GB x 5 + 0.3 x 7) = 102.1GB.

The chosen solution was to use a 120GB hard disk – far less than 1/10th the price of a tape drive and the
cassettes to handle the same amount of data, and to have the backup software write to disk files.

The rest of this chapter will explain how to setup Bareos so that it would automatically manage a set of
disk files with the minimum sysadmin intervention.

18.1 Overall Design

Getting Bareos to write to disk rather than tape in the simplest case is rather easy.

One needs to consider about what happens if we have only a single large Bareos Volume defined on our
hard disk. Everything works fine until the Volume fills, then Bareos will ask you to mount a new Volume.
This same problem applies to the use of tape Volumes if your tape fills. Being a hard disk and the only one
you have, this will be a bit of a problem. It should be obvious that it is better to use a number of smaller
Volumes and arrange for Bareos to automatically recycle them so that the disk storage space can be reused.

As mentioned, the solution is to have multiple Volumes, or files on the disk. To do so, we need to limit the
use and thus the size of a single Volume, by time, by number of jobs, or by size. Any of these would work,
but we chose to limit the use of a single Volume by putting a single job in each Volume with the exception
of Volumes containing Incremental backup where there will be 6 jobs (a week’s worth of data) per volume.
The details of this will be discussed shortly. This is a single client backup, so if you have multiple clients
you will need to multiply those numbers by the number of clients, or use a different system for switching
volumes, such as limiting the volume size.

TODO: This chapter will get rewritten. Instead of limiting a Volume to one job, we will utilize
Max Use Duration = 24 hours . This prevents problems when adding more clients, because otherwise
each job has to run seperat.

The next problem to resolve is recycling of Volumes. As you noted from above, the requirements are to be
able to restore monthly for 6 months, weekly for a month, and daily for a week. So to simplify things, why
not do a Full save once a month, a Differential save once a week, and Incremental saves daily. Now since
each of these different kinds of saves needs to remain valid for differing periods, the simplest way to do this
(and possibly the only) is to have a separate Pool for each backup type.

The decision was to use three Pools: one for Full saves, one for Differential saves, and one for Incremental
saves, and each would have a different number of volumes and a different Retention period to accomplish
the requirements.

259

260

18.1.1 Full Pool

Putting a single Full backup on each Volume, will require six Full save Volumes, and a retention period of
six months. The Pool needed to do that is:

Pool {

Name = Full-Pool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 6 months

Maximum Volume Jobs = 1

Label Format = Full-

Maximum Volumes = 9

}

Configuration 18.1: Full-Pool

Since these are disk Volumes, no space is lost by having separate Volumes for each backup (done once a
month in this case). The items to note are the retention period of six months (i.e. they are recycled after
six months), that there is one job per volume (Maximum Volume Jobs = 1), the volumes will be labeled
Full-0001, ... Full-0006 automatically. One could have labeled these manually from the start, but why not
use the features of Bareos.
Six months after the first volume is used, it will be subject to pruning and thus recycling, so with a maximum
of 9 volumes, there should always be 3 volumes available (note, they may all be marked used, but they will
be marked purged and recycled as needed).
If you have two clients, you would want to set Maximum Volume Jobs to 2 instead of one, or set a limit
on the size of the Volumes, and possibly increase the maximum number of Volumes.

18.1.2 Differential Pool

For the Differential backup Pool, we choose a retention period of a bit longer than a month and ensure that
there is at least one Volume for each of the maximum of five weeks in a month. So the following works:

Pool {

Name = Diff-Pool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 40 days

Maximum Volume Jobs = 1

Label Format = Diff-

Maximum Volumes = 10

}

Configuration 18.2: Differential Pool

As you can see, the Differential Pool can grow to a maximum of 9 volumes, and the Volumes are retained
40 days and thereafter they can be recycled. Finally there is one job per volume. This, of course, could be
tightened up a lot, but the expense here is a few GB which is not too serious.
If a new volume is used every week, after 40 days, one will have used 7 volumes, and there should then
always be 3 volumes that can be purged and recycled.
See the discussion above concering the Full pool for how to handle multiple clients.

18.1.3 Incremental Pool

Finally, here is the resource for the Incremental Pool:

Pool {

Name = Inc-Pool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 20 days

Maximum Volume Jobs = 6

Label Format = Inc-

Maximum Volumes = 7

}

Configuration 18.3: Incremental Pool

261

We keep the data for 20 days rather than just a week as the needs require. To reduce the proliferation of
volume names, we keep a week’s worth of data (6 incremental backups) in each Volume. In practice, the
retention period should be set to just a bit more than a week and keep only two or three volumes instead of
five. Again, the lost is very little and as the system reaches the full steady state, we can adjust these values
so that the total disk usage doesn’t exceed the disk capacity.
If you have two clients, the simplest thing to do is to increase the maximum volume jobs from 6 to 12. As
mentioned above, it is also possible limit the size of the volumes. However, in that case, you will need to
have a better idea of the volume or add sufficient volumes to the pool so that you will be assured that in
the next cycle (after 20 days) there is at least one volume that is pruned and can be recycled.

18.2 Configuration Files

The following example shows you the actual files used, with only a few minor modifications to simplify
things.
The Director’s configuration file is as follows:

Director { # define myself

Name = bareos-dir

QueryFile = "/usr/lib/bareos/scripts/query.sql"

Maximum Concurrent Jobs = 1

Password = "*** CHANGE ME ***"

Messages = Standard

}

JobDefs {

Name = "DefaultJob"

Type = Backup

Level = Incremental

Client = bareos-fd

FileSet = "Full Set"

Schedule = "WeeklyCycle"

Storage = File

Messages = Standard

Pool = Inc-Pool

Full Backup Pool = Full-Pool

Incremental Backup Pool = Inc-Pool

Differential Backup Pool = Diff-Pool

Priority = 10

Write Bootstrap = "/var/lib/bareos/%c.bsr"

}

Job {

Name = client

Client = client-fd

JobDefs = "DefaultJob"

FileSet = "Full Set"

}

Backup the catalog database (after the nightly save)

Job {

Name = "BackupCatalog"

Client = client-fd

JobDefs = "DefaultJob"

Level = Full

FileSet="Catalog"

Schedule = "WeeklyCycleAfterBackup"

This creates an ASCII copy of the catalog

Arguments to make_catalog_backup.pl are:

make_catalog_backup.pl <catalog-name>

RunBeforeJob = "/usr/lib/bareos/scripts/make_catalog_backup.pl MyCatalog"

This deletes the copy of the catalog

RunAfterJob = "/usr/lib/bareos/scripts/delete_catalog_backup"

This sends the bootstrap via mail for disaster recovery.

Should be sent to another system, please change recipient accordingly

Write Bootstrap = "|/usr/sbin/bsmtp -h localhost -f \"\(Bareos\) \" -s \"Bootstrap for Job %j\" ↙
↪→ root@localhost"

Priority = 11 # run after main backup

}

Standard Restore template, to be changed by Console program

Job {

Name = "RestoreFiles"

262

Type = Restore

Client = client-fd

FileSet="Full Set"

Storage = File

Messages = Standard

Pool = Default

Where = /tmp/bareos-restores

}

List of files to be backed up

FileSet {

Name = "Full Set"

Include = {

Options {

signature=SHA1;

compression=GZIP9

}

File = /

File = /usr

File = /home

File = /boot

File = /var

File = /opt

}

Exclude = {

File = /proc

File = /tmp

File = /.journal

File = /.fsck

...

}

}

Schedule {

Name = "WeeklyCycle"

Run = Level=Full 1st sun at 2:05

Run = Level=Differential 2nd-5th sun at 2:05

Run = Level=Incremental mon-sat at 2:05

}

This schedule does the catalog. It starts after the WeeklyCycle

Schedule {

Name = "WeeklyCycleAfterBackup"

Run = Level=Full sun-sat at 2:10

}

This is the backup of the catalog

FileSet {

Name = "Catalog"

Include {

Options {

signature = MD5

}

File = "/var/lib/bareos/bareos.sql" # database dump

File = "/etc/bareos" # configuration

}

}

Client {

Name = client-fd

Address = client

FDPort = 9102

Password = " *** CHANGE ME ***"

AutoPrune = yes # Prune expired Jobs/Files

Job Retention = 6 months

File Retention = 60 days

}

Storage {

Name = File

Address = localhost

Password = " *** CHANGE ME ***"

Device = FileStorage

Media Type = File

}

263

Catalog {

Name = MyCatalog

dbname = bareos; user = bareos; password = ""

}

Pool {

Name = Full-Pool

Pool Type = Backup

Recycle = yes # automatically recycle Volumes

AutoPrune = yes # Prune expired volumes

Volume Retention = 6 months

Maximum Volume Jobs = 1

Label Format = Full-

Maximum Volumes = 9

}

Pool {

Name = Inc-Pool

Pool Type = Backup

Recycle = yes # automatically recycle Volumes

AutoPrune = yes # Prune expired volumes

Volume Retention = 20 days

Maximum Volume Jobs = 6

Label Format = Inc-

Maximum Volumes = 7

}

Pool {

Name = Diff-Pool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 40 days

Maximum Volume Jobs = 1

Label Format = Diff-

Maximum Volumes = 10

}

Messages {

Name = Standard

mailcommand = "bsmtp -h mail.domain.com -f \"\(Bareos\) %r\"

-s \"Bareos: %t %e of %c %l\" %r"

operatorcommand = "bsmtp -h mail.domain.com -f \"\(Bareos\) %r\"

-s \"Bareos: Intervention needed for %j\" %r"

mail = root@domain.com = all, !skipped

operator = root@domain.com = mount

console = all, !skipped, !saved

append = "/home/bareos/bin/log" = all, !skipped

}

Configuration 18.4: bareos-dir.conf

and the Storage daemon’s configuration file is:

Storage { # definition of myself

Name = bareos-sd

}

Director {

Name = bareos-dir

Password = " *** CHANGE ME ***"

}

Device {

Name = FileStorage

Media Type = File

Archive Device = /var/lib/bareos/storage

LabelMedia = yes; # lets Bareos label unlabeled media

Random Access = yes;

AutomaticMount = yes; # when device opened, read it

RemovableMedia = no;

AlwaysOpen = no;

}

Messages {

Name = Standard

264

director = bareos-dir = all

}

Configuration 18.5: bareos-sd.conf

Chapter 19

Autochanger Support

Bareos provides autochanger support for reading and writing tapes. In order to work with an autochanger,
Bareos requires a number of things, each of which is explained in more detail after this list:

� The package bareos-storage-tape must be installed.

� A script that actually controls the autochanger according to commands sent by Bareos. Bareos contains
the script mtx-changer, that utilize the command mtx. It’s config file is normally located at /etc/

bareos/mtx-changer.conf

� That each Volume (tape) to be used must be defined in the Catalog and have a Slot number assigned
to it so that Bareos knows where the Volume is in the autochanger. This is generally done with the
label command, but can also done after the tape is labeled using the update slots command. See
below for more details. You must pre-label the tapes manually before using them.

� Modifications to your Storage daemon’s Device configuration resource to identify that the device is a
changer, as well as a few other parameters.

� You should also modify your Storage resource definition in the Director’s configuration file so that you
are automatically prompted for the Slot when labeling a Volume.

� You need to ensure that your Storage daemon has access permissions to both the tape drive and the
control device. On Linux, the system user bareos is added to the groups disk and tape, so that it
should have the permission to access the library.

� You need to have Autochanger = yes in your Storage resource in your bareos-dir.conf file so that
you will be prompted for the slot number when you label Volumes.

Bareos uses its own mtx-changer script to interface with a program that actually does the tape changing.
Thus in principle, mtx-changer can be adapted to function with any autochanger program, or you can call
any other script or program. The current version of mtx-changer works with the mtx program. FreeBSD
users might need to adapt this script to use chio. For more details, refer to the Testing Autochanger chapter.
Bareos also supports autochangers with barcode readers. This support includes two Console commands:
label barcodes and update slots. For more details on these commands, see the chapter about Barcode
Support.
Current Bareos autochanger support does not include cleaning, stackers, or silos. Stackers and silos are not
supported because Bareos expects to be able to access the Slots randomly. However, if you are very careful
to setup Bareos to access the Volumes in the autochanger sequentially, you may be able to make Bareos
work with stackers (gravity feed and such).
In principle, if mtx will operate your changer correctly, then it is just a question of adapting the mtx-
changer script (or selecting one already adapted) for proper interfacing.
If you are having troubles, please use the auto command in the btape program to test the functioning of
your autochanger with Bareos. Please remember, that on most distributions, the Storage daemon runs as
user bareos and not as root. You will need to ensure that the Storage daemon has sufficient permissions
to access the autochanger.
Some users have reported that the the Storage daemon blocks under certain circumstances in trying to mount
a volume on a drive that has a different volume loaded. As best we can determine, this is simply a matter
of waiting a bit. The drive was previously in use writing a Volume, and sometimes the drive will remain
BLOCKED for a good deal of time (up to 7 minutes on a slow drive) waiting for the cassette to rewind and
to unload before the drive can be used with a different Volume.

265

266

19.1 Knowing What SCSI Devices You Have

19.1.1 Linux

Under Linux, you can

cat /proc/scsi/scsi

to see what SCSI devices you have available. You can also:

cat /proc/scsi/sg/device_hdr /proc/scsi/sg/devices

to find out how to specify their control address (/dev/sg0 for the first, /dev/sg1 for the second, ...) on
the Changer Device = Bareos directive.
You can also use the excellent lsscsi tool.

$ lsscsi -g

[1:0:2:0] tape SEAGATE ULTRIUM06242-XXX 1619 /dev/st0 /dev/sg9

[1:0:14:0] mediumx STK L180 0315 /dev/sch0 /dev/sg10

[2:0:3:0] tape HP Ultrium 3-SCSI G24S /dev/st1 /dev/sg11

[3:0:0:0] enclosu HP A6255A HP04 - /dev/sg3

[3:0:1:0] disk HP 36.4G ST336753FC HP00 /dev/sdd /dev/sg4

19.1.2 FreeBSD

Under FreeBSD, use the following command to list the SCSI devices as well as the /dev/passn that you
will use on the Bareos Changer Device = directive:

camcontrol devlist

Please check that your Storage daemon has permission to access this device.
The following tip for FreeBSD users comes from Danny Butroyd: on reboot Bareos will NOT have permission
to control the device /dev/pass0 (assuming this is your changer device). To get around this just edit the
/etc/devfs.conf file and add the following to the bottom:

own pass0 root:bareos

perm pass0 0666

own nsa0.0 root:bareos

perm nsa0.0 0666

This gives the bareos group permission to write to the nsa0.0 device too just to be on the safe side. To bring
these changes into effect just run:-
/etc/rc.d/devfs restart
Basically this will stop you having to manually change permissions on these devices to make Bareos work
when operating the AutoChanger after a reboot.

19.2 Slots

To properly address autochangers, Bareos must know which Volume is in each slot of the autochanger. Slots
are where the changer cartridges reside when not loaded into the drive. Bareos numbers these slots from one
to the number of cartridges contained in the autochanger.
Bareos will not automatically use a Volume in your autochanger unless it is labeled and the slot number is
stored in the catalog and the Volume is marked as InChanger. This is because it must know where each
volume is to be able to load the volume. For each Volume in your changer, you will, using the Console
program, assign a slot. This information is kept in Bareos’s catalog database along with the other data for
the volume. If no slot is given, or the slot is set to zero, Bareos will not attempt to use the autochanger even
if all the necessary configuration records are present. When doing a mount command on an autochanger,
you must specify which slot you want mounted. If the drive is loaded with a tape from another slot, it will
unload it and load the correct tape, but normally, no tape will be loaded because an unmount command
causes Bareos to unload the tape in the drive.
You can check if the Slot number and InChanger flag are set by doing a:

list Volumes

in the Console program.

267

19.3 Multiple Devices

Some autochangers have more than one read/write device (drive). The Autochanger resource permits you to
group Device resources, where each device represents a drive. The Director may still reference the Devices
(drives) directly, but doing so, bypasses the proper functioning of the drives together. Instead, the Director
(in the Storage resource) should reference the Autochanger resource name. Doing so permits the Storage
daemon to ensure that only one drive uses the mtx-changer script at a time, and also that two drives don’t
reference the same Volume.
Multi-drive requires the use of the Drive Index directive in the Device resource of the Storage daemon’s
configuration file. Drive numbers or the Device Index are numbered beginning at zero, which is the default.
To use the second Drive in an autochanger, you need to define a second Device resource and set the Drive
Index to 1 for that device. In general, the second device will have the same Changer Device (control
channel) as the first drive, but a different Archive Device.
As a default, Bareos jobs will prefer to write to a Volume that is already mounted. If you have a multiple
drive autochanger and you want Bareos to write to more than one Volume in the same Pool at the same
time, you will need to set Prefer Mounted Volumes Dir

Job in the Directors Job resource to no. This will cause
the Storage daemon to maximize the use of drives.

19.4 Device Configuration Records

Configuration of autochangers within Bareos is done in the Device resource of the Storage daemon. Four
records: Autochanger, Changer Device, Changer Command, and Maximum Changer Wait control
how Bareos uses the autochanger.
These four records, permitted in Device resources, are described in detail below. Note, however, that the
Changer Device and the Changer Command directives are not needed in the Device resource if they
are present in the Autochanger resource.

Autochanger = <yes | no> (default: no)
The Autochanger record specifies if the current device belongs to an autochanger resource.

Changer Device = <device-name> In addition to the Archive Device name, you must specify a
Changer Device name. This is because most autochangers are controlled through a different de-
vice than is used for reading and writing the cartridges. For example, on Linux, one normally uses
the generic SCSI interface for controlling the autochanger, but the standard SCSI interface for read-
ing and writing the tapes. On Linux, for the Archive Device = /dev/nst0, you would typically
have Changer Device = /dev/sg0. Note, some of the more advanced autochangers will locate the
changer device on /dev/sg1. Such devices typically have several drives and a large number of tapes.

On FreeBSD systems, the changer device will typically be on /dev/pass0 through /dev/passN.

On Solaris, the changer device will typically be some file under /dev/rdsk.

Please ensure that your Storage daemon has permission to access this device.

Changer Command = <command> This record is used to specify the external program to call and
what arguments to pass to it. The command is assumed to be a standard program or shell script that
can be executed by the operating system. This command is invoked each time that Bareos wishes to
manipulate the autochanger. The following substitutions are made in the command before it is sent
to the operating system for execution:

%% = %

%a = archive device name

%c = changer device name

%d = changer drive index base 0

%f = Client’s name

%j = Job name

%o = command (loaded, load, or unload)

%s = Slot base 0

%S = Slot base 1

%v = Volume name

An actual example for using mtx with the mtx-changer script (part of the Bareos distribution) is:

Changer Command = "/usr/lib/bareos/scripts/mtx-changer %c %o %S %a %d"

268

Details of the three commands currently used by Bareos (loaded, load, unload) as well as the output
expected by Bareos are given in the Bareos Autochanger Interface section.

Maximum Changer Wait = <time> This record is used to define the maximum amount of time that
Bareos will wait for an autoloader to respond to a command (e.g. load). The default is set to 120
seconds. If you have a slow autoloader you may want to set it longer.

If the autoloader program fails to respond in this time, it will be killed and Bareos will request operator
intervention.

Drive Index = <number> This record allows you to tell Bareos to use the second or subsequent drive
in an autochanger with multiple drives. Since the drives are numbered from zero, the second drive is
defined by

Device Index = 1

To use the second drive, you need a second Device resource definition in the Bareos configuration file.
See the Multiple Drive section above in this chapter for more information.

In addition, for proper functioning of the Autochanger, you must define an Autochanger resource.

19.5 An Example Configuration File

The following two resources implement an autochanger:

Autochanger {

Name = Autochanger

Device = DDS-4

Changer Command = "/usr/lib/bareos/scripts/mtx-changer %c %o %S %a %d"

Changer Device = /dev/sg0

}

Device {

Name = DDS-4

Media Type = DDS-4

Archive Device = /dev/nst0 # Normal archive device

Autochanger = yes

LabelMedia = no;

AutomaticMount = yes;

AlwaysOpen = yes;

}

where you will adapt the Archive Device, the Changer Device, and the path to the Changer Command
to correspond to the values used on your system.

19.6 A Multi-drive Example Configuration File

The following resources implement a multi-drive autochanger:

Autochanger {

Name = Autochanger

Device = Drive-0

Device = Drive-1

Changer Command = "/usr/lib/bareos/scripts/mtx-changer %c %o %S %a %d"

Changer Device = /dev/sg0

}

Device {

Name = Drive-0

Drive Index = 0

Media Type = DDS-4

Archive Device = /dev/nst0 # Normal archive device

Autochanger = yes

LabelMedia = no;

AutomaticMount = yes;

AlwaysOpen = yes;

}

269

Device {

Name = Drive-1

Drive Index = 1

Media Type = DDS-4

Archive Device = /dev/nst1 # Normal archive device

Autochanger = yes

LabelMedia = no;

AutomaticMount = yes;

AlwaysOpen = yes;

}

where you will adapt the Archive Device and the Changer Device to correspond to the values used on
your system.

19.7 Specifying Slots When Labeling

If you add an Autochanger = yes record to the Storage resource in your Director’s configuration file, the
Bareos Console will automatically prompt you for the slot number when the Volume is in the changer when
you add or label tapes for that Storage device. If your mtx-changer script is properly installed, Bareos
will automatically load the correct tape during the label command.

You must also set Autochanger = yes in the Storage daemon’s Device resource as we have described above
in order for the autochanger to be used. Please see the Auto Changer Dir

Storage in the Director’s chapter and
the Autochanger Sd

Device in the Storage daemon chapter for more details on these records.

Thus all stages of dealing with tapes can be totally automated. It is also possible to set or change the Slot
using the update command in the Console and selecting Volume Parameters to update.

Even though all the above configuration statements are specified and correct, Bareos will attempt to access
the autochanger only if a slot is non-zero in the catalog Volume record (with the Volume name).
If your autochanger has barcode labels, you can label all the Volumes in your autochanger one after another
by using the label barcodes command. For each tape in the changer containing a barcode, Bareos will
mount the tape and then label it with the same name as the barcode. An appropriate Media record will
also be created in the catalog. Any barcode that begins with the same characters as specified on the
”CleaningPrefix=xxx” command, will be treated as a cleaning tape, and will not be labeled. For example
with:

Pool {

Name ...

Cleaning Prefix = "CLN"

}

Any slot containing a barcode of CLNxxxx will be treated as a cleaning tape and will not be mounted.

19.8 Changing Cartridges

If you wish to insert or remove cartridges in your autochanger or you manually run the mtx program, you
must first tell Bareos to release the autochanger by doing:

unmount

(change cartridges and/or run mtx)

mount

If you do not do the unmount before making such a change, Bareos will become completely confused about
what is in the autochanger and may stop function because it expects to have exclusive use of the autochanger
while it has the drive mounted.

19.9 Dealing with Multiple Magazines

If you have several magazines or if you insert or remove cartridges from a magazine, you should notify Bareos
of this. By doing so, Bareos will as a preference, use Volumes that it knows to be in the autochanger before
accessing Volumes that are not in the autochanger. This prevents unneeded operator intervention.

If your autochanger has barcodes (machine readable tape labels), the task of informing Bareos is simple.
Every time, you change a magazine, or add or remove a cartridge from the magazine, simply use following
commands in the Console program:

270

unmount

(remove magazine)

(insert new magazine)

update slots

mount

This will cause Bareos to request the autochanger to return the current Volume names in the magazine. This
will be done without actually accessing or reading the Volumes because the barcode reader does this during
inventory when the autochanger is first turned on. Bareos will ensure that any Volumes that are currently
marked as being in the magazine are marked as no longer in the magazine, and the new list of Volumes
will be marked as being in the magazine. In addition, the Slot numbers of the Volumes will be corrected in
Bareos’s catalog if they are incorrect (added or moved).
If you do not have a barcode reader on your autochanger, you have several alternatives.

1. You can manually set the Slot and InChanger flag using the update volume command in the Console
(quite painful).

2. You can issue a

update slots scan

command that will cause Bareos to read the label on each of the cartridges in the magazine in turn
and update the information (Slot, InChanger flag) in the catalog. This is quite effective but does take
time to load each cartridge into the drive in turn and read the Volume label.

19.10 Update Slots Command

If you change only one cartridge in the magazine, you may not want to scan all Volumes, so the update
slots command (as well as the update slots scan command) has the additional form:

update slots=n1,n2,n3-n4, ...

where the keyword scan can be appended or not. The n1,n2, ... represent Slot numbers to be updated and
the form n3-n4 represents a range of Slot numbers to be updated (e.g. 4-7 will update Slots 4,5,6, and 7).
This form is particularly useful if you want to do a scan (time expensive) and restrict the update to one or
two slots.
For example, the command:

update slots=1,6 scan

will cause Bareos to load the Volume in Slot 1, read its Volume label and update the Catalog. It will do the
same for the Volume in Slot 6. The command:

update slots=1-3,6

will read the barcoded Volume names for slots 1,2,3 and 6 and make the appropriate updates in the Catalog.
If you don’t have a barcode reader the above command will not find any Volume names so will do nothing.

19.11 Using the Autochanger

Let’s assume that you have properly defined the necessary Storage daemon Device records, and you have
added the Autochanger = yes record to the Storage resource in your Director’s configuration file.
Now you fill your autochanger with say six blank tapes.
What do you do to make Bareos access those tapes?
One strategy is to prelabel each of the tapes. Do so by starting Bareos, then with the Console program,
enter the label command:

./bconsole

Connecting to Director rufus:8101

1000 OK: rufus-dir Version: 1.26 (4 October 2002)

*label

it will then print something like:

271

Using default Catalog name=BackupDB DB=bareos

The defined Storage resources are:

1: Autochanger

2: File

Select Storage resource (1-2): 1

I select the autochanger (1), and it prints:

Enter new Volume name: TestVolume1

Enter slot (0 for none): 1

where I entered TestVolume1 for the tape name, and slot 1 for the slot. It then asks:

Defined Pools:

1: Default

2: File

Select the Pool (1-2): 1

I select the Default pool. This will be automatically done if you only have a single pool, then Bareos will
proceed to unload any loaded volume, load the volume in slot 1 and label it. In this example, nothing was
in the drive, so it printed:

Connecting to Storage daemon Autochanger at localhost:9103 ...

Sending label command ...

3903 Issuing autochanger "load slot 1" command.

3000 OK label. Volume=TestVolume1 Device=/dev/nst0

Media record for Volume=TestVolume1 successfully created.

Requesting mount Autochanger ...

3001 Device /dev/nst0 is mounted with Volume TestVolume1

You have messages.

*

You may then proceed to label the other volumes. The messages will change slightly because Bareos will
unload the volume (just labeled TestVolume1) before loading the next volume to be labeled.
Once all your Volumes are labeled, Bareos will automatically load them as they are needed.
To ”see” how you have labeled your Volumes, simply enter the list volumes command from the Console
program, which should print something like the following:

*{\bf list volumes}

Using default Catalog name=BackupDB DB=bareos

Defined Pools:

1: Default

2: File

Select the Pool (1-2): 1

+-------+----------+--------+---------+-------+--------+----------+-------+------+

| MedId | VolName | MedTyp | VolStat | Bites | LstWrt | VolReten | Recyc | Slot |

+-------+----------+--------+---------+-------+--------+----------+-------+------+

| 1 | TestVol1 | DDS-4 | Append | 0 | 0 | 30672000 | 0 | 1 |

| 2 | TestVol2 | DDS-4 | Append | 0 | 0 | 30672000 | 0 | 2 |

| 3 | TestVol3 | DDS-4 | Append | 0 | 0 | 30672000 | 0 | 3 |

| ... |

+-------+----------+--------+---------+-------+--------+----------+-------+------+

19.12 Barcode Support

Bareos provides barcode support with two Console commands, label barcodes and update slots.
The label barcodes will cause Bareos to read the barcodes of all the cassettes that are currently installed
in the magazine (cassette holder) using the mtx-changer list command. Each cassette is mounted in turn
and labeled with the same Volume name as the barcode.
The update slots command will first obtain the list of cassettes and their barcodes from mtx-changer.
Then it will find each volume in turn in the catalog database corresponding to the barcodes and set its Slot
to correspond to the value just read. If the Volume is not in the catalog, then nothing will be done. This
command is useful for synchronizing Bareos with the current magazine in case you have changed magazines
or in case you have moved cassettes from one slot to another. If the autochanger is empty, nothing will be
done.
The Cleaning Prefix statement can be used in the Pool resource to define a Volume name prefix, which if
it matches that of the Volume (barcode) will cause that Volume to be marked with a VolStatus of Cleaning.
This will prevent Bareos from attempting to write on the Volume.

272

19.13 Use bconsole to display Autochanger content

The status slots storage=xxx command displays autochanger content.

Slot | Volume Name | Status | Type | Pool | Loaded |

------+-----------------+----------+-------------------+----------------+---------|

1 | 00001 | Append | DiskChangerMedia | Default | 0 |

2 | 00002 | Append | DiskChangerMedia | Default | 0 |

3*| 00003 | Append | DiskChangerMedia | Scratch | 0 |

4 | | | | | 0 |

If you see a * near the slot number, you have to run update slots command to synchronize autochanger
content with your catalog.

19.14 Bareos Autochanger Interface

Bareos calls the autochanger script that you specify on the Changer Command statement. Normally
this script will be the mtx-changer script that we provide, but it can in fact be any program. The only
requirement for the script is that it must understand the commands that Bareos uses, which are loaded,
load, unload, list, and slots. In addition, each of those commands must return the information in the
precise format as specified below:

- Currently the changer commands used are:

loaded -- returns number of the slot that is loaded, base 1,

in the drive or 0 if the drive is empty.

load -- loads a specified slot (note, some autochangers

require a 30 second pause after this command) into

the drive.

unload -- unloads the device (returns cassette to its slot).

list -- returns one line for each cassette in the autochanger

in the format <slot>:<barcode>. Where

the {\bf slot} is the non-zero integer representing

the slot number, and {\bf barcode} is the barcode

associated with the cassette if it exists and if you

autoloader supports barcodes. Otherwise the barcode

field is blank.

slots -- returns total number of slots in the autochanger.

Bareos checks the exit status of the program called, and if it is zero, the data is accepted. If the exit status
is non-zero, Bareos will print an error message and request the tape be manually mounted on the drive.

19.15 Tapespeed and blocksizes

The Bareos Whitepaper Tape Speed Tuning shows that the two parameters Maximum File Size and
Maximum Block Size of the device have significant influence on the tape speed.
While it is no problem to change the Maximum File Size Sd

Device parameter, unfortunately it is not possible
to change the Maximum Block Size Sd

Device parameter, because the previously written tapes would become
unreadable in the new setup. It would require that the Maximum Block Size Sd

Device parameter is switched
back to the old value to be able to read the old volumes, but of course then the new volumes would be
unreadable.
Why is that the case?
The problem is that Bareos writes the label block (header) in the same block size that is configured in the
Maximum Block Size Sd

Device parameter in the device. Per default, this value is 63k, so usually a tape written
by Bareos looks like this:

|-------------------

|label block (63k)|

|-------------------

|data block 1(63k)|

|data block 2(63k)|

|... |

|data block n(63k)|

Setting the maximum block size to e.g. 512k, would lead to the following:

http://www.bareos.org/en/Whitepapers/articles/Speed_Tuning_of_Tape_Drives.html

273

|-------------------

|label block (512k)|

|-------------------

|data block 1(512k)|

|data block 2(512k)|

|... |

|data block n(512k)|

As you can see, every block is written with the maximum block size, also the label block.
The problem that arises here is that reading a block header with a wrong block size causes a read error
which is interpreted as an non-existent label by Bareos.
This is a potential source of data loss, because in normal operation, Bareos refuses to relabel an already
labeled volume to be sure to not overwrite data that is still needed. If Bareos cannot read the volume label,
this security mechanism does not work and you might label tapes already labeled accidentally.
To solve this problem, the block size handling was changed in Bareos Version >= 14.2.0 in the following
way:

� The tape label block is always written in the standard 63k (64512) block size.

� The following blocks are then written in the block size configured in the Maximum Block Size directive.

� To be able to change the block size in an existing environment, it is now possible to set the Maximum
Block Size Dir

Pool and Minimum Block Size Dir
Pool in the pool resource. This setting is automatically promoted

to each medium in that pool as usual (i.e. when a medium is labeled for that pool or if a volume is
transferred to that pool from the scratch pool). When a volume is mounted, the volume’s block size is
used to write and read the data blocks that follow the header block.

The following picture shows the result:

|--------------------------------|

|label block (label block size) |

|--------------------------------|

|data block 1(maximum block size)|

|data block 2(maximum block size)|

|... |

|data block n(maximum block size)|

---------------------------------|

We have a label block with a certain size (63k per default to be compatible to old installations), and the
following data blocks are written with another blocksize.
This approach has the following advantages:

� If nothing is configured, existing installations keep on working without problems.

� If you want to switch an existing installation that uses the default block size and move to a new (usually
bigger) block size, you can do that easily by creating a new pool, where Maximum Block Size Dir

Pool is
set to the new value that you wish to use in the future:

Pool {

Name = LTO-4-1M

Pool Type = Backup

Recycle = yes # Bareos can automatically recycle Volumes

AutoPrune = yes # Prune expired volumes

Volume Retention = 1 Month # How long should the Full Backups be kept? (#06)

Maximum Block Size = 1048576

Recycle Pool = Scratch

}

Configuration 19.1: Pool Ressource: setting Maximum Block Size

Now configure your backups that they will write into the newly defined pool in the future, and your backups
will be written with the new block size.
Your existing tapes can be automatically transferred to the new pool when they expire via the Scratch Pool
mechanism. When a tape in your old pool expires, it is transferred to the scratch pool if you set Recycle
Pool = Scratch. When your new pool needs a new volume, it will get it from the scratch pool and apply

274

the new pool’s properties to that tape which also include Maximum Block Size Dir
Pool and Minimum Block Size

Dir
Pool.
This way you can smoothly switch your tapes to a new block size while you can still restore the data on
your old tapes at any time.

Possible Problems

There is only one case where the new block handling will cause problems, and this is if you have used bigger
block sizes already in your setup. As we now defined the label block to always be 63k, all labels will not be
readable.
To also solve this problem, the directive Label Block Size Sd

Device can be used to define a different label block
size. That way, everything should work smoothly as all label blocks will be readable again.

How can I find out which block size was used when the tape was written?

At least on Linux, you can see if Bareos tries to read the blocks with the wrong block size. In that case, you
get a kernel message like the following in your system’s messages:

[542132.410170] st1: Failed to read 1048576 byte block with 64512 byte transfer.

Here, the block was written with 1M block size but we only read 64k.

Direct access to Volumes with with non-default block sizes

bls and bextract can directly access Bareos volumes without catalog database. This means that these
programs don’t have information about the used block size.
To be able to read a volume written with an arbitrary block size, you need to set the Label Block Size Sd

Device

(to be able to to read the label block) and the Maximum Block Size Sd
Device (to be able to read the data blocks)

setting in the device definition used by those tools to be able to open the medium.
Example using bls with a tape that was written with another blocksize than the DEFAULT_BLOCK_SIZE
(63k), but with the default label block size of 63k:

root@linux:~# bls FC-Drive-1 -V A00007L4
bls: butil.c:289-0 Using device: "FC-Drive-1" for reading.

25-Feb 12:47 bls JobId 0: No slot defined in catalog (slot=0) for Volume "A00007L4" on "FC-Drive-1" ↙
↪→ (/dev/tape/by-id/scsi-350011d00018a5f03-nst).

25-Feb 12:47 bls JobId 0: Cartridge change or "update slots" may be required.

25-Feb 12:47 bls JobId 0: Ready to read from volume "A00007L4" on device "FC-Drive-1" ↙
↪→ (/dev/tape/by-id/scsi-350011d00018a5f03-nst).

25-Feb 12:47 bls JobId 0: Error: block.c:1004 Read error on fd=3 at file:blk 0:1 on device "FC-Drive-1" ↙
↪→ (/dev/tape/by-id/scsi-350011d00018a5f03-nst). ERR=Cannot allocate memory.

Bareos status: file=0 block=1

Device status: ONLINE IM_REP_EN file=0 block=2

0 files found.

Commands 19.2: bls with non-default block size

As can be seen, bls manages to read the label block as it knows what volume is mounted (Ready to read
from volume A00007L4), but fails to read the data blocks.

root@linux:~# dmesg
[...]

st2: Failed to read 131072 byte block with 64512 byte transfer.

[...]

Commands 19.3: dmesg

This shows that the block size for the data blocks that we need is 131072.
Now we have to set this block size in the bareos-sd.conf, device resource as Maximum Block Size Sd

Device:

Device {

Name = FC-Drive-1

Drive Index = 0

Media Type = LTO-4

Archive Device = /dev/tape/by-id/scsi-350011d00018a5f03-nst

AutomaticMount = yes

AlwaysOpen = yes

RemovableMedia = yes

RandomAccess = no

AutoChanger = yes

275

Maximum Block Size = 131072

}

Configuration 19.4: Storage Device Resource: setting Maximum Block Size

Now we can call bls again, and everything works as expected:

root@linux:~# bls FC-Drive-1 -V A00007L4
bls: butil.c:289-0 Using device: "FC-Drive-1" for reading.

25-Feb 12:49 bls JobId 0: No slot defined in catalog (slot=0) for Volume "A00007L4" on "FC-Drive-1" ↙
↪→ (/dev/tape/by-id/scsi-350011d00018a5f03-nst).

25-Feb 12:49 bls JobId 0: Cartridge change or "update slots" may be required.

25-Feb 12:49 bls JobId 0: Ready to read from volume "A00007L4" on device "FC-Drive-1" ↙
↪→ (/dev/tape/by-id/scsi-350011d00018a5f03-nst).

bls JobId 203: [...]

Commands 19.5: bls with non-default block size

How to configure the block sizes in your environment

The following chart shows how to set the directives for maximum block size and label block size
depending on how your current setup is:

276

Chapter 20

Using Tape Drives without
Autochanger

Although Recycling and Backing Up to Disk Volume have been discussed in previous chapters, this chapter
is meant to give you an overall view of possible backup strategies and to explain their advantages and
disadvantages.

20.1 Simple One Tape Backup

Probably the simplest strategy is to back everything up to a single tape and insert a new (or recycled) tape
when it fills and Bareos requests a new one.

20.1.1 Advantages

� The operator intervenes only when a tape change is needed (e.g. once a month).

� There is little chance of operator error because the tape is not changed daily.

� A minimum number of tapes will be needed for a full restore. Typically the best case will be one tape
and worst two.

� You can easily arrange for the Full backup to occur a different night of the month for each system,
thus load balancing and shortening the backup time.

20.1.2 Disadvantages

� If your site burns down, you will lose your current backups

� After a tape fills and you have put in a blank tape, the backup will continue, and this will generally
happen during working hours.

20.1.3 Practical Details

This system is very simple. When the tape fills and Bareos requests a new tape, you unmount the tape from
the Console program, insert a new tape and label it. In most cases after the label, Bareos will automatically
mount the tape and resume the backup. Otherwise, you simply mount the tape.
Using this strategy, one typically does a Full backup once a week followed by daily Incremental backups.
To minimize the amount of data written to the tape, one can do a Full backup once a month on the first
Sunday of the month, a Differential backup on the 2nd-5th Sunday of the month, and incremental backups
the rest of the week.

20.2 Manually Changing Tapes

If you use the strategy presented above, Bareos will ask you to change the tape, and you will unmount it
and then remount it when you have inserted the new tape.
If you do not wish to interact with Bareos to change each tape, there are several ways to get Bareos to
release the tape:

277

278

� In your Storage daemon’s Device resource, set AlwaysOpen = no. In this case, Bareos will release the
tape after every job. If you run several jobs, the tape will be rewound and repositioned to the end at
the beginning of every job. This is not very efficient, but does let you change the tape whenever you
want.

� Use a RunAfterJob statement to run a script after your last job. This could also be an Admin job
that runs after all your backup jobs. The script could be something like:

#!/bin/sh

bconsole <<END_OF_DATA

release storage=your-storage-name

END_OF_DATA

In this example, you would have AlwaysOpen=yes, but the release command would tell Bareos to
rewind the tape and on the next job assume the tape has changed. This strategy may not work on
some systems, or on autochangers because Bareos will still keep the drive open.

� The final strategy is similar to the previous case except that you would use the unmount command to
force Bareos to release the drive. Then you would eject the tape, and remount it as follows:

#!/bin/sh

bconsole <<END_OF_DATA

unmount storage=your-storage-name

END_OF_DATA

the following is a shell command

mt eject

bconsole <<END_OF_DATA

mount storage=your-storage-name

END_OF_DATA

20.3 Daily Tape Rotation

This scheme is quite different from the one mentioned above in that a Full backup is done to a different
tape every day of the week. Generally, the backup will cycle continuously through five or six tapes each
week. Variations are to use a different tape each Friday, and possibly at the beginning of the month. Thus
if backups are done Monday through Friday only, you need only five tapes, and by having two Friday tapes,
you need a total of six tapes. Many sites run this way, or using modifications of it based on two week cycles
or longer.

20.3.1 Advantages

� All the data is stored on a single tape, so recoveries are simple and faster.

� Assuming the previous day’s tape is taken offsite each day, a maximum of one days data will be lost if
the site burns down.

20.3.2 Disadvantages

� The tape must be changed every day requiring a lot of operator intervention.

� More errors will occur because of human mistakes.

� If the wrong tape is inadvertently mounted, the Backup for that day will not occur exposing the system
to data loss.

� There is much more movement of the tape each day (rewinds) leading to shorter tape drive life time.

� Initial setup of Bareos to run in this mode is more complicated than the Single tape system described
above.

� Depending on the number of systems you have and their data capacity, it may not be possible to do a
Full backup every night for time reasons or reasons of tape capacity.

279

20.3.3 Practical Details

The simplest way to ”force” Bareos to use a different tape each day is to define a different Pool for each day
of the the week a backup is done. In addition, you will need to specify appropriate Job and File retention
periods so that Bareos will relabel and overwrite the tape each week rather than appending to it. Nic
Bellamy has supplied an actual working model of this which we include here.

What is important is to create a different Pool for each day of the week, and on the run statement in the
Schedule, to specify which Pool is to be used. He has one Schedule that accomplishes this, and a second
Schedule that does the same thing for the Catalog backup run each day after the main backup (Priorities
were not available when this script was written). In addition, he uses a Max Start Delay of 22 hours so
that if the wrong tape is premounted by the operator, the job will be automatically canceled, and the backup
cycle will re-synchronize the next day. He has named his Friday Pool WeeklyPool because in that Pool, he
wishes to have several tapes to be able to restore to a time older than one week.

And finally, in his Storage daemon’s Device resource, he has Automatic Mount = yes and Always Open
= No. This is necessary for the tape ejection to work in his end of backup.sh script below.

For example, his bareos-dir.conf file looks like the following:

/etc/bareos/bareos-dir.conf

#

Bareos Director Configuration file

#

Director {

Name = ServerName

DIRport = 9101

QueryFile = "/etc/bareos/query.sql"

Maximum Concurrent Jobs = 1

Password = "console-pass"

Messages = Standard

}

#

Define the main nightly save backup job

#

Job {

Name = "NightlySave"

Type = Backup

Client = ServerName

FileSet = "Full Set"

Schedule = "WeeklyCycle"

Storage = Tape

Messages = Standard

Pool = Default

Write Bootstrap = "/var/lib/bareos/NightlySave.bsr"

Max Start Delay = 22h

}

Backup the catalog database (after the nightly save)

Job {

Name = "BackupCatalog"

Type = Backup

Client = ServerName

FileSet = "Catalog"

Schedule = "WeeklyCycleAfterBackup"

Storage = Tape

Messages = Standard

Pool = Default

This creates an ASCII copy of the catalog

WARNING!!! Passing the password via the command line is insecure.

see comments in make_catalog_backup for details.

RunBeforeJob = "/usr/lib/bareos/make_catalog_backup -u bareos"

This deletes the copy of the catalog, and ejects the tape

RunAfterJob = "/etc/bareos/end_of_backup.sh"

Write Bootstrap = "/var/lib/bareos/BackupCatalog.bsr"

Max Start Delay = 22h

}

Standard Restore template, changed by Console program

Job {

Name = "RestoreFiles"

Type = Restore

Client = ServerName

FileSet = "Full Set"

Storage = Tape

Messages = Standard

280

Pool = Default

Where = /tmp/bareos-restores

}

List of files to be backed up

FileSet {

Name = "Full Set"

Include = signature=MD5 {

/

/data

}

Exclude = { /proc /tmp /.journal }

}

#

When to do the backups

#

Schedule {

Name = "WeeklyCycle"

Run = Level=Full Pool=MondayPool Monday at 8:00pm

Run = Level=Full Pool=TuesdayPool Tuesday at 8:00pm

Run = Level=Full Pool=WednesdayPool Wednesday at 8:00pm

Run = Level=Full Pool=ThursdayPool Thursday at 8:00pm

Run = Level=Full Pool=WeeklyPool Friday at 8:00pm

}

This does the catalog. It starts after the WeeklyCycle

Schedule {

Name = "WeeklyCycleAfterBackup"

Run = Level=Full Pool=MondayPool Monday at 8:15pm

Run = Level=Full Pool=TuesdayPool Tuesday at 8:15pm

Run = Level=Full Pool=WednesdayPool Wednesday at 8:15pm

Run = Level=Full Pool=ThursdayPool Thursday at 8:15pm

Run = Level=Full Pool=WeeklyPool Friday at 8:15pm

}

This is the backup of the catalog

FileSet {

Name = "Catalog"

Include = signature=MD5 {

/var/lib/bareos/bareos.sql

}

}

Client (File Services) to backup

Client {

Name = ServerName

Address = dionysus

FDPort = 9102

Password = "client-pass"

File Retention = 30d

Job Retention = 30d

AutoPrune = yes

}

Definition of file storage device

Storage {

Name = Tape

Address = dionysus

SDPort = 9103

Password = "storage-pass"

Device = Tandberg

Media Type = MLR1

}

Generic catalog service

Catalog {

Name = MyCatalog

dbname = bareos; user = bareos; password = ""

}

Reasonable message delivery -- send almost all to email address

and to the console

Messages {

Name = Standard

mailcommand = "/usr/sbin/bsmtp -h localhost -f \"\(Bareos\) %r\" -s \"Bareos: %t %e of %c %l\" %r"

operatorcommand = "/usr/sbin/bsmtp -h localhost -f \"\(Bareos\) %r\" -s \"Bareos: Intervention needed for %j\" %r"

mail = root@localhost = all, !skipped

operator = root@localhost = mount

console = all, !skipped, !saved

append = "/var/lib/bareos/log" = all, !skipped

}

Pool definitions

281

#

Default Pool for jobs, but will hold no actual volumes

Pool {

Name = Default

Pool Type = Backup

}

Pool {

Name = MondayPool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 6d

Maximum Volume Jobs = 2

}

Pool {

Name = TuesdayPool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 6d

Maximum Volume Jobs = 2

}

Pool {

Name = WednesdayPool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 6d

Maximum Volume Jobs = 2

}

Pool {

Name = ThursdayPool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 6d

Maximum Volume Jobs = 2

}

Pool {

Name = WeeklyPool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 12d

Maximum Volume Jobs = 2

}

EOF

In order to get Bareos to release the tape after the nightly backup, this setup uses a RunAfterJob
script that deletes the database dump and then rewinds and ejects the tape. The following is a copy of
end of backup.sh

#! /bin/sh

/usr/lib/bareos/delete_catalog_backup

mt rewind

mt eject

exit 0

Finally, if you list his Volumes, you get something like the following:

*list media

Using default Catalog name=MyCatalog DB=bareos

Pool: WeeklyPool

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| 5 | Friday_1 | MLR1 | Used | 2157171998| 2003-07-11 20:20| 103680| 1 |

| 6 | Friday_2 | MLR1 | Append | 0 | 0 | 103680| 1 |

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

Pool: MondayPool

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| 2 | Monday | MLR1 | Used | 2260942092| 2003-07-14 20:20| 518400| 1 |

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

282

Pool: TuesdayPool

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| 3 | Tuesday | MLR1 | Used | 2268180300| 2003-07-15 20:20| 518400| 1 |

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

Pool: WednesdayPool

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| 4 | Wednesday | MLR1 | Used | 2138871127| 2003-07-09 20:2 | 518400| 1 |

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

Pool: ThursdayPool

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| 1 | Thursday | MLR1 | Used | 2146276461| 2003-07-10 20:50| 518400| 1 |

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

Pool: Default

No results to list.

Chapter 21

Data Spooling

Bareos allows you to specify that you want the Storage daemon to initially write your data to disk and then
subsequently to tape. This serves several important purposes.

� It takes a long time for data to come in from the File daemon during an Incremental backup. If it is
directly written to tape, the tape will start and stop or shoe-shine as it is often called causing tape
wear. By first writing the data to disk, then writing it to tape, the tape can be kept in continual
motion.

� While the spooled data is being written to the tape, the despooling process has exclusive use of
the tape. This means that you can spool multiple simultaneous jobs to disk, then have them very
efficiently despooled one at a time without having the data blocks from several jobs intermingled, thus
substantially improving the time needed to restore files. While despooling, all jobs spooling continue
running.

� Writing to a tape can be slow. By first spooling your data to disk, you can often reduce the time
the File daemon is running on a system, thus reducing downtime, and/or interference with users. Of
course, if your spool device is not large enough to hold all the data from your File daemon, you may
actually slow down the overall backup.

Data spooling is exactly that ”spooling”. It is not a way to first write a ”backup” to a disk file and then to
a tape. When the backup has only been spooled to disk, it is not complete yet and cannot be restored until
it is written to tape.
Bareos also supports writing a backup to disk then later migrating or moving it to a tape (or any other
medium). For details on this, please see the Migration and Copy chapter of this manual for more details.
The remainder of this chapter explains the various directives that you can use in the spooling process.

21.1 Data Spooling Directives

The following directives can be used to control data spooling.

� Turn data spooling on/off at the Job level: Spool Data Dir
Job = yes|no

� This setting can be overwritten in a Schedule Run Dir
Schedule directive: SpoolData=yes|no

� To override the Job specification in a bconsole session using the run command: SpoolData=yes|no

Please note that this does not refer to a configuration statement, but to an argument for the run
command.

� To limit the the maximum spool file size for a particular job: Spool Size Dir
Job

� To limit the maximum total size of the spooled data for a particular device: Maximum Spool Size Sd
Device

� To limit the maximum total size of the spooled data for a particular device for a single job: Maximum
Job Spool Size Sd

Device

� To specify the spool directory for a particular device: Spool Directory Sd
Device

283

284

21.1.1 Additional Notes

� Please note! Exclude your the spool directory from any backup, otherwise, your job will write enormous
amounts of data to the Volume, and most probably terminate in error. This is because in attempting
to backup the spool file, the backup data will be written a second time to the spool file, and so on ad
infinitum.

� Another advice is to always specify the Maximum Spool Size Sd
Device so that your disk doesn’t completely

fill up. In principle, data spooling will properly detect a full disk, and despool data allowing the job
to continue. However, attribute spooling is not so kind to the user. If the disk on which attributes
are being spooled fills, the job will be canceled. In addition, if your working directory is on the same
partition as the spool directory, then Bareos jobs will fail possibly in bizarre ways when the spool fills.

� When data spooling is enabled, Bareos automatically turns on attribute spooling. In other words, it
also spools the catalog entries to disk. This is done so that in case the job fails, there will be no catalog
entries pointing to non-existent tape backups.

� Attribute despooling occurs near the end of a job. The Storage daemon accumulates file attributes
during the backup and sends them to the Director at the end of the job. The Director then inserts the
file attributes into the catalog. During this insertion, the tape drive may be inactive. When the file
attribute insertion is completed, the job terminates.

� Attribute spool files are always placed in the working directory of the Storage daemon.

� When Bareos begins despooling data spooled to disk, it takes exclusive use of the tape. This has the
major advantage that in running multiple simultaneous jobs at the same time, the blocks of several
jobs will not be intermingled.

� It is probably best to provide as large a spool file as possible to avoid repeatedly spooling/despooling.
Also, while a job is despooling to tape, the File daemon must wait (i.e. spooling stops for the job while
it is despooling).

� If you are running multiple simultaneous jobs, Bareos will continue spooling other jobs while one is
despooling to tape, provided there is sufficient spool file space.

Chapter 22

Migration and Copy

The term Migration, as used in the context of Bareos, means moving data from one Volume to another. In
particular it refers to a Job (similar to a backup job) that reads data that was previously backed up to a
Volume and writes it to another Volume. As part of this process, the File catalog records associated with the
first backup job are purged. In other words, Migration moves Bareos Job data from one Volume to another
by reading the Job data from the Volume it is stored on, writing it to a different Volume in a different Pool,
and then purging the database records for the first Job.
The Copy process is essentially identical to the Migration feature with the exception that the Job that is
copied is left unchanged. This essentially creates two identical copies of the same backup. However, the copy
is treated as a copy rather than a backup job, and hence is not directly available for restore. If Bareos finds
a copy when a job record is purged (deleted) from the catalog, it will promote the copy as real backup and
will make it available for automatic restore.
Copy and Migration jobs do not involve the File daemon.
Jobs can be selected for migration based on a number of criteria such as:

� a single previous Job

� a Volume

� a Client

� a regular expression matching a Job, Volume, or Client name

� the time a Job has been on a Volume

� high and low water marks (usage or occupation) of a Pool

� Volume size

The details of these selection criteria will be defined below.
To run a Migration job, you must first define a Job resource very similar to a Backup Job but with Type
Dir
Job = Migrate instead of Type Dir

Job = Backup. One of the key points to remember is that the Pool that is
specified for the migration job is the only pool from which jobs will be migrated, with one exception noted
below. In addition, the Pool to which the selected Job or Jobs will be migrated is defined by the Next Pool
Dir
Pool = ... in the Pool resource specified for the Migration Job.
Bareos permits Pools to contain Volumes of different Media Types. However, when doing migration, this is
a very undesirable condition. For migration to work properly, you should use Pools containing only Volumes
of the same Media Type for all migration jobs.
A migration job can be started manually or from a Schedule, like a backup job. It searches for existing
backup Jobs that match the parameters specified in the migration Job resource, primarily a Selection Type
Dir
Job. If no match was found, the Migration job terminates without further action. Otherwise, for each Job
found this way, the Migration Job will run a new Job which copies the Job data to a new Volume in the
Migration Pool.
Normally three jobs are involved during a migration:

� The Migration control Job which starts the migration child Jobs.

� The previous Backup Job (already run). The File records of this Job are purged when the Migration
job terminates successfully. The data remain on the Volume until it is recycled.

285

286

� A new Migration Backup Job that moves the data from the previous Backup job to the new Volume.
If you subsequently do a restore, the data will be read from this Job.

If the Migration control Job finds more than one existing Job to migrate, it creates one migration job for
each of them. This may result in a large number of Jobs. Please note that Migration doesn’t scale too well
if you migrate data off of a large Volume because each job must read the same Volume, hence the jobs will
have to run consecutively rather than simultaneously.

22.1 Important Migration Considerations

� Each Pool into which you migrate Jobs or Volumes must contain Volumes of only one Media Type
Dir
Storage.

� Migration takes place on a JobId by JobId basis. That is each JobId is migrated in its entirety and
independently of other JobIds. Once the Job is migrated, it will be on the new medium in the new Pool,
but for the most part, aside from having a new JobId, it will appear with all the same characteristics of
the original job (start, end time, ...). The column RealEndTime in the catalog Job table will contain
the time and date that the Migration terminated, and by comparing it with the EndTime column you
can tell whether or not the job was migrated. Also, the Job table contains a PriorJobId column which
is set to the original JobId for migration jobs. For non-migration jobs this column is zero.

� After a Job has been migrated, the File records are purged from the original Job. Moreover, the Type
of the original Job is changed from ”B” (backup) to ”M” (migrated), and another Type ”B” job record
is added which refers to the new location of the data. Since the original Job record stays in the bareos
catalog, it is still possible to restore from the old media by specifying the original JobId for the restore.
However, no file selection is possible in this case, so one can only restore all files this way.

� A Job will be migrated only if all Volumes on which the job is stored are marked Full, Used, or Error. In
particular, Volumes marked Append will not be considered for migration which rules out the possibility
that new files are appended to a migrated Volume. This policy also prevents deadlock situations, like
attempting to read and write the same Volume from two jobs at the same time.

� Migration works only if the Job resource of the original Job is still defined in the current director
configuration. Otherwise you’ll get a fatal error.

� Setting the Migration High Bytes watermark is not sufficient for migration to take place. In addition,
you must define and schedule a migration job which looks for jobs that can be migrated.

� To figure out which jobs are going to be migrated by a given configuration, choose a debug level of 100
or more. This activates information about the migration selection process.

� Bareos currently does only minimal Storage conflict resolution, so you must take care to ensure that
you don’t try to read and write to the same device or Bareos may block waiting to reserve a drive that
it will never find. In general, ensure that all your migration pools contain only one Media Type Dir

Storage,
and that you always migrate to pools with different Media Types.

� The Next Pool Dir
Pool = ... directive must be defined in the Pool referenced in the Migration Job to define

the Pool into which the data will be migrated.

� Migration has only be tested carefully for the ”Job” and ”Volume” selection types. All other selection
types (time, occupancy, smallest, oldest, ...) are experimental features.

22.2 Configure Copy or Migration Jobs

The following directives can be used to define a Copy or Migration job:

Job Resource

� Type Dir
Job = Migrate|Copy

� Selection Type Dir
Job

� Selection Pattern Dir
Job

287

� Pool Dir
Job

For Selection Type Dir
Job other than SQLQuery, this defines what Pool will be examined for finding JobIds

to migrate

� Purge Migration Job Dir
Job

Pool Resource

� Next Pool Dir
Pool

to what pool Jobs will be migrated

� Migration Time Dir
Pool

if Selection Type Dir
Job = PoolTime

� Migration High Bytes Dir
Pool

if Selection Type Dir
Job = PoolOccupancy

� Migration Low Bytes Dir
Pool

optional if Selection Type Dir
Job = PoolOccupancy is used

� Storage Dir
Pool

if Copy/Migration involves multiple Storage Daemon, see Multiple Storage Daemons

22.2.1 Example Migration Jobs

Assume a simple configuration with a single backup job as described below.

Define the backup Job

Job {

Name = "NightlySave"

Type = Backup

Level = Incremental # default

Client=rufus-fd

FileSet="Full Set"

Schedule = "WeeklyCycle"

Messages = Standard

Pool = Default

}

Default pool definition

Pool {

Name = Default

Pool Type = Backup

AutoPrune = yes

Recycle = yes

Next Pool = Tape

Storage = File

LabelFormat = "File"

}

Tape pool definition

Pool {

Name = Tape

Pool Type = Backup

AutoPrune = yes

Recycle = yes

Storage = DLTDrive

}

Definition of File storage device

Storage {

Name = File

Address = rufus

Password = "secret"

Device = "File" # same as Device in Storage daemon

Media Type = File # same as MediaType in Storage daemon

}

Definition of DLT tape storage device

Storage {

Name = DLTDrive

Address = rufus

288

Password = "secret"

Device = "HP DLT 80" # same as Device in Storage daemon

Media Type = DLT8000 # same as MediaType in Storage daemon

}

Configuration 22.1: Backup Job

Note that the backup job writes to the DefaultDir
Pool pool, which corresponds to FileDir

Storage storage. There
is no Storage Dir

Pool directive in the Job resource while the two PoolDir resources contain different Storage Dir
Pool

directives. Moreover, the DefaultDir
Pool pool contains a Next Pool Dir

Pool directive that refers to the TapeDir
Pool pool.

In order to migrate jobs from the DefaultDir
Pool pool to the TapeDir

Pool pool we add the following Job resource:

Job {

Name = "migrate-volume"

Type = Migrate

Messages = Standard

Pool = Default

Selection Type = Volume

Selection Pattern = "."

}

Configuration 22.2: migrate all volumes of a pool

The Selection Type Dir
Job and Selection Pattern Dir

Job directives instruct Bareos to select all volumes of the given
pool (DefaultDir

Pool) whose volume names match the given regular expression (”.”), i.e., all volumes. Hence
those jobs which were backed up to any volume in the DefaultDir

Pool pool will be migrated. Because of the
Next Pool Dir

Pool directive of the DefaultDir
Pool pool resource, the jobs will be migrated to tape storage.

Another way to accomplish the same is the following Job resource:

Job {

Name = "migrate"

Type = Migrate

Messages = Standard

Pool = Default

Selection Type = Job

Selection Pattern = ".*Save"

}

Configuration 22.3: migrate all jobs named *Save

This migrates all jobs ending with Save from the DefaultDir
Pool pool to the TapeDir

Pool pool, i.e., from File storage
to Tape storage.

Multiple Storage Daemons

Beginning from Bareos Version >= 13.2.0, Migration and Copy jobs are also possible from one Storage
daemon to another Storage Daemon.
Please note:

� the director must have two different storage resources configured (e.g. storage1 and storage2)

� each storage needs an own device and an individual pool (e.g. pool1, pool2)

� each pool is linked to its own storage via the storage directive in the pool resource

� to configure the migration from pool1 to pool2, the Next Pool Dir
Pool directive of pool1 has to point to

pool2

� the copy job itself has to be of type copy/migrate (exactly as already known in copy- and migration
jobs)

Example:

#bareos-dir.conf

Fake fileset for copy jobs

Fileset {

Name = None

Include {

Options {

signature = MD5

}

289

}

}

Fake client for copy jobs

Client {

Name = None

Address = localhost

Password = "NoNe"

Catalog = MyCatalog

}

Source storage for migration

Storage {

Name = storage1

Address = sd1.example.com

Password = "secret1"

Device = File1

Media Type = File

}

Target storage for migration

Storage {

Name = storage2

Address = sd2.example.com

Password = "secret2"

Device = File2

Media Type = File2 # Has to be different than in storage1

}

Pool {

Name = pool1

Storage = storage1

Next Pool = pool2 # This points to the target storage

}

Pool {

Name = pool2

Storage = storage2

}

Job {

Name = CopyToRemote

Type = Copy

Messages = Standard

Selection Type = PoolUncopiedJobs

Spool Data = Yes

Pool = pool1

}

Configuration 22.4: bareos-dir.conf: Copy Job between different Storage Daemons

290

Chapter 23

Always Incremental Backup Scheme

Always Incremental Backups are available since Bareos Version >= 16.2.4.

23.1 Conventional Backup Scheme Drawbacks

To better understand the advantages of the Always Incremental Backup scheme, we first analyze the way
that the conventional Incremental - Differential - Full Backup Scheme works.

The following figure shows the jobs available for restore over time. Red are full backups, green are differential
backups and blue are incremental Backups. When you look for a data at the horizontal axis, you see what
backup jobs are available for a restore at this given time.

The next figure shows the amount of data being backed up over the network from that client over time:

291

292

Depending on the retention periods, old jobs are removed to save space for newer backups:

The problem with this way of removing jobs is the fact that jobs are removed from the system which existing
jobs depend on.

23.2 Always Incremental Concept

The Always Incremental Backup Scheme does only incremental backups of clients, which reduces the amount
of data transferred over the network to a minimum.

293

Only suitable for file based backups. Always Incremental backups are only suitable for file based
backups. Other data can not be combined server side (e.g. vmware plugings, NDMP, ...
The Always Incremental Backup Scheme works as follows:
Client Backups are always run as incremental backups. This would usually lead to an unlimited chain of
incremental backups that are depend on each other.
To avoid this problem, existing incremental backups older than a configurable age are consolidated into a
new backup.
These two steps are then executed every day:

� Incremental Backup from Client

� Consolidation of the jobs older than maximum configure age

Deleted files will be in the backup forever, if they are not detected as deleted using Accurate Dir
Job backup.

The Always Incremental Backup Scheme does not provide the option to have other longer retention periods
for the backups.
For Longterm Storage of data longer than the Always Incremental Job Retention, there are two options:

� A copy job can be configured that copies existing full backups into a longterm pool.

� A virtual Full Job can be configured that creates a virtual full backup into a longterm pool consolidating
all existing backups into a new one.

The implementation with copy jobs is easy to implement and automatically copies all jobs that need to be
copied in a single configured resource. The disadvantage of the copy job approach is the fact that at a certain
point in time, the data that is copied for long term archive is already ”always incremental job retention”
old, so that the data in the longterm storage is not the current data that is available from the client.
The solution using virtual full jobs to create longterm storage has the disadvantage, that for every backup
job the a new longterm job needs to be created.
The big advantage is that the current data will be transferred into the longterm storage.
The way that bareos determines on what base the next incremental job will be done, would choose the
longterm storage job to be taken as basis for the next incremental backup which is not what is intended.
Therefore, the jobtype of the longterm job is updated to ”archive”, so that it is not taken as base for then
next incrementals and the always incremental job will stand alone.

23.3 How to configure in Bareos

23.3.1 Always Incremental Backup Job

To configure a job to use Always Incremental Backup Scheme, following configuration is required:

Job {

...

Accurate = yes

Always Incremental = yes

Always Incremental Job Retention = <timespec>

Always Incremental Keep Number = <number>

...

}

Resource 23.1: bareos-dir.d/job/example.conf

Accurate Dir
Job = yes is required to detect deleted files and prevent that they are kept in the consolidated

backup jobs.

Always Incremental Dir
Job = yes enables the Always Incremental feature.

Always Incremental Job Retention Dir
Job set the age where incrementals of this job will be kept, older

jobs will be consolidated.

Always Incremental Keep Number Dir
Job sets the number of incrementals that will be kept without re-

garding the age. This should make sure that a certain history of a job will be kept even if the job is
not executed for some time.

Always Incremental Max Full Age Dir
Job is described later, see Always Incremental Max Full Age.

294

23.3.2 Consolidate Job

Job {

Name = "Consolidate"

Type = "Consolidate"

Accurate = "yes"

JobDefs = "DefaultJob"

}

Resource 23.2: bareos-dir.d/job/Consolidate.conf

Type Dir
Job = Consolidate configures a job to be a consolidate job. This type have been introduced with

the Always Incremental feature. When used, it automatically trigger the consolidation of incremental
jobs that need to be consolidated.

Accurate Dir
Job = yes let the generated virtual backup job keep the accurate information.

Max Full Consolidations Dir
Job is described later, see Max Full Consolidations.

The ConsolidateDir
Job job evaluates all jobs configured with Always Incremental Dir

Job = yes. When a job is
selected for consolidation, all job runs are taken into account, independent of the pool and storage where
they are located.
The always incremental jobs need to be executed during the backup window (usually at night), while the
consolidation jobs should be scheduled during the daytime when no backups are executed.

23.3.3 Storages and Pools

For the Always Incremental Backup Scheme at least two storages are needed.

Pool {

Name = AI-Incremental

Pool Type = Backup

Recycle = yes # Bareos can automatically recycle Volumes

Auto Prune = no # Don’t prune jobs from the volume. Let this be done by Consolidate.

Maximum Volume Bytes = 50G # Limit Volume size to something reasonable

Label Format = "AI-Incremental-"

Volume Use Duration = 23h

Storage = File1

Next Pool = AI-Consolidated # consolidated jobs go to this pool

}

Resource 23.3: bareos-dir.d/pool/AI-Incremental.conf

Pool {

Name = AI-Consolidated

Pool Type = Backup

Recycle = yes # Bareos can automatically recycle Volumes

Auto Prune = no # Don’t prune jobs from the volume. Let this be done by Consolidate.

Maximum Volume Bytes = 50G # Limit Volume size to something reasonable

Label Format = "AI-Consolidated-"

Volume Use Duration = 23h

Storage = File2

Next Pool = AI-Longterm # copy jobs write to this pool

}

Resource 23.4: bareos-dir.d/pool/AI-Consolidated.conf

Pool {

Name = AI-Longterm

Pool Type = Backup

Recycle = yes # Bareos can automatically recycle Volumes

Auto Prune = yes # Prune expired volumes

Volume Retention = 10 years # How long should jobs be kept?

Maximum Volume Bytes = 50G # Limit Volume size to something reasonable

Label Format = "AI-Longterm-"

Volume Use Duration = 23h

Storage = File1

}

Resource 23.5: bareos-dir.d/pool/AI-Longterm.conf

AI-LongtermDir
Pool is optional and will be explained in Long Term Storage of Always Incremental Jobs.

295

23.4 How it works

The following configuration extract shows how a client backup is configured for always incremental Backup.
The Backup itself is scheduled every night to run as incremental backup, while the consolidation is scheduled
to run every day.

Job {

Name = "BackupClient1"

JobDefs = "DefaultJob"

Always incremental settings

AlwaysIncremental = yes

AlwaysIncrementalJobRetention = 7 days

Accurate = yes

Pool = AI-Incremental

Full Backup Pool = AI-Consolidated

}

Resource 23.6: bareos-dir.d/job/BackupClient1.conf

Job {

Name = "Consolidate"

Type = "Consolidate"

Accurate = "yes"

JobDefs = "DefaultJob"

}

Resource 23.7: bareos-dir.d/job/Consolidate.conf

The following image shows the available backups for each day:

� The backup cycle starts with a full backup of the client.

� Every day a incremental backup is done and is additionally available.

� When the age of the oldest incremental reaches Always Incremental Job Retention Dir
Job, the consolidation

job consolidates the oldest incremental with the full backup before to a new full backup.

This can go on more or less forever and there will be always an incremental history of Always Incremental
Job Retention Dir

Job.
The following plot shows what happens if a job is not run for a certain amount of time.

296

As can be seen, the nightly consolidation jobs still go on consolidating until the last incremental is too old
and then only one full backup is left. This is usually not what is intended.

For this reason, the directive Always Incremental Keep Number Dir
Job is available which sets the minimum

number of incrementals that should be kept even if they are older than Always Incremental Job Retention
Dir
Job.

Setting Always Incremental Keep Number Dir
Job to 7 in our case leads to the following result:

Always Incremental Keep Number Dir
Job incrementals are always kept, and when the backup starts again the

consolidation of old incrementals starts again.

297

23.5 Enhancements for the Always Incremental Backup Scheme

Besides the available backups at each point in time which we have considered until now, the amount of data
being moved during the backups is another very important aspect.
We will have a look at this aspect in the following pictures:

23.5.1 The basic always incremental scheme

The basic always incremental scheme does an incremental backup from the client daily which is relatively
small and as such is very good.
During the consolidation, each day the full backup is consolidated with the oldest incremental backup,
which means that more or less the full amount of data being stored on the client is moved. Although
this consolidation only is performed locally on the storage daemon without client interaction, it is still an
enormous amount of data being touched and can take an considerable amount of time.
If all clients use the ”always incremental” backup scheme, this means that the complete data being stored
in the backup system needs to be moved every day!
This is usually only feasible in relatively small environments.
The following figure shows the Data Volume being moved during the normal always incremental scheme.

� The red bar shows the amount of the first full backup being copied from the client.

� The blue bars show the amount of the daily incremental backups. They are so little that the can be
barely seen.

� The green bars show the amount of data being moved every day during the consolidation jobs.

23.5.2 Always Incremental Max Full Age

To be able to cope with this problem, the directive Always Incremental Max Full Age Dir
Job was added. When

Always Incremental Max Full Age Dir
Job is configured, in daily operation the Full Backup is left untouched

while the incrementals are consolidated as usual. Only if the Full Backup is older than Always Incremental
Max Full Age Dir

Job, the full backup will also be part of the consolidation.
Depending on the setting of the Always Incremental Max Full Age Dir

Job, the amount of daily data being moved
can be reduced without losing the advantages of the always incremental Backup Scheme.
Always Incremental Max Full Age Dir

Job should never be less or equal of Always Incremental Job Retention Dir
Job.

The resulting interval between full consolidations when running daily backups and daily consolidations is
Always Incremental Max Full Age Dir

Job - Always Incremental Job Retention Dir
Job.

298

Figure 23.1: Data Volume being moved with ”Always Incremental Max Full Age”

Figure 23.2: Jobs Available with ”Always Incremental Max Full Age”

299

23.5.3 Max Full Consolidations

When the Always Incremental Max Full Age Dir
Job of many clients is set to the same value, it is probable

that all full backups will reach the Always Incremental Max Full Age Dir
Job at once and so consolidation jobs

including the full backup will be started for all clients at once. This would again mean that the whole data
being stored from all clients will be moved in one day.
The following figure shows the amount of data being copied by the virtual jobs that do the consolidation
when having 3 identically configured backup jobs:

As can be seen, virtual jobs including the full are triggered for all three clients at the same time.
This is of course not desirable so the directive Max Full Consolidations Dir

Job was introduced.
Max Full Consolidations Dir

Job needs to be configured in the Type Dir
Job = Consolidate job:

Job {

Name = "Consolidate"

Type = "Consolidate"

Accurate = "yes"

JobDefs = "DefaultJob"

Max Full Consolidations = 1

}

Resource 23.8: bareos-dir.d/job/Consolidate.conf

If Max Full Consolidations Dir
Job is configured, the consolidation job will not start more than the specified

Consolidations that include the Full Backup.
This leads to a better load balancing of full backup consolidations over different days. The value should
configured so that the consolidation jobs are completed before the next normal backup run starts.
The number of always incremental jobs, the interval that the jobs are triggered and the setting of Always
Incremental Max Full Age Dir

Job influence the value that makes sense for Max Full Consolidations Dir
Job.

23.6 Long Term Storage of Always Incremental Jobs

What is missing in the always incremental backup scheme in comparison to the traditional ”Incremental
Differential Full” scheme is the option to store a certain job for a longer time.
When using always incremental, the usual maximum age of data stored during the backup cycle is Always
Incremental Job Retention Dir

Job.
Usually, it is desired to be able to store a certain backup for a longer time, e.g. monthly a backup should be
kept for half a year.
There are two options to achieve this goal.

300

Figure 23.3: Data Volume being moved with Max Full Consolidations = 1

Figure 23.4: Jobs Available with Max Full Consolidations = 1

301

23.6.1 Copy Jobs

The configuration of archiving via copy job is simple, just configure a copy job that copies over the latest
full backup at that point in time.
As all full backups go into the AI-ConsolidatedDir

Pool, we just copy all uncopied backups in the
AI-ConsolidatedDir

Pool to a longterm pool:

Job {

Name = "CopyLongtermFull"

Schedule = LongtermFull

Type = Copy

Level = Full

Pool = AI-Consolidated

Selection Type = PoolUncopiedJobs

Messages = Standard

}

Resource 23.9: bareos-dir.d/job/CopyLongtermFull.conf

As can be seen in the plot, the copy job creates a copy of the current full backup that is available and is
already 7 days old.

The other disadvantage is, that it copies all jobs, not only the virtual full jobs. It also includes the virtual
incremental jobs from this pool.

23.6.2 Virtual Full Jobs

The alternative to Copy Jobs is creating a virtual Full Backup Job when the data should be stored in a
long-term pool.

Job {

Name = "VirtualLongtermFull"

Client = bareos-fd

FileSet = SelfTest

Schedule = LongtermFull

Type = Backup

Level = VirtualFull

Pool = AI-Consolidated

Messages = Standard

Priority = 13 # run after Consolidate

Run Script {

console = "update jobid=%i jobtype=A"

302

Runs When = After

Runs On Client = No

Runs On Failure = No

}

}

Resource 23.10: bareos-dir.d/job/VirtualLongtermFull.conf

To make sure the longterm Level Dir
Job = VirtualFull is not taken as base for the next incrementals, the job

type of the copied job is set to Type Dir
Job = Archive with the Run Script Dir

Job.
As can be seen on the plot, the Level Dir

Job = VirtualFull archives the current data, i.e. it consolidates the
full and all incrementals that are currently available.

Chapter 24

How to manually transfer
data/volumes

The always incremental backup scheme minimizes the amount of data that needs to be transferred over the
wire.

This makes it possible to backup big filesystems over small bandwidths.

The only challenge is to do the first full backup.

The easiest way to transfer the data is to copy it to a portable data medium (or even directly store it on
there) and import the data into the local bareos catalog as if it was backed up from the original client.

This can be done in two ways

1. Install a storage daemon in the remote location that needs to be backed up and connect it to the
main director. This makes it easy to make a local backup in the remote location and then transfer the
volumes to the local storage. For this option the communication between the local director and the
remote storage daemon needs to be possible.

2. Install a director and a storage daemon in the remote location. This option means that the backup
is done completely independent from the local director and only the volume is then transferred and
needs to be imported afterwards.

303

304

24.1 Import Data from a Remote Storage Daemon

First setup client, fileset, job and schedule as needed for a always incremental backup of the remote client.
Run the first backup but make sure that you choose the remote storage to be used.

*run job=BackupClient-remote level=Full storage=File-remote

bconsole 24.1: run

Transport the volumes that were used for that backup over to the local storage daemon and make them
available to the local storage daemon. This can be either by putting the tapes into the local changer or by
storing the file volumes into the local file volume directory.
If copying a volume to the local storage directory make sure that the file rights are correct.
Now tell the director that the volume now belongs to the local storage daemon.
List volumes shows that the volumes used still belong to the remote storage:

*list volumes
.....

Pool: Full

+---------+------------+-----------+---------+----------+----------+--------------+---------+------+-----------+-----------+---------------------+-------------+

| MediaId | VolumeName | VolStatus | Enabled | VolBytes | VolFiles | VolRetention | Recycle | ↙
↪→ Slot | InChanger | MediaType | LastWritten | Storage |

+---------+------------+-----------+---------+----------+----------+--------------+---------+------+-----------+-----------+---------------------+-------------+

| 1 | Full-0001 | Append | 1 | 38600329 | 0 | 31536000 | 1 | 0 ↙
↪→ | 0 | File | 2016-07-28 14:00:47 | File-remote |

+---------+------------+-----------+---------+----------+----------+--------------+---------+------+-----------+-----------+---------------------+-------------+

bconsole 24.2: list volumes

Use update volume to set the right storage and check with list volumes that it worked:

*update volume=Full-0001 storage=File
*list volumes
...

Pool: Full

+---------+------------+-----------+---------+----------+----------+--------------+---------+------+-----------+-----------+---------------------+---------+

| MediaId | VolumeName | VolStatus | Enabled | VolBytes | VolFiles | VolRetention | Recycle | ↙
↪→ Slot | InChanger | MediaType | LastWritten | Storage |

+---------+------------+-----------+---------+----------+----------+--------------+---------+------+-----------+-----------+---------------------+---------+

| 1 | Full-0001 | Append | 1 | 38600329 | 0 | 31536000 | 1 | 0 ↙
↪→ | 0 | File | 2016-07-28 14:00:47 | File |

+---------+------------+-----------+---------+----------+----------+--------------+---------+------+-----------+-----------+---------------------+---------+

bconsole 24.3: update volume

Now the remote storage daemon can be disabled as it is not needed anymore.
The next incremental run will take the previously taken full backup as reference.

305

24.2 Import Data from a Independent Remote Full Bareos Instal-
lation

If a network connection between the local director and the remote storage daemon is not possible, it is also
an option to setup a fully functional Bareos installation remotely and then to import the created volumes.
Of course the network connection between the Bareos Director and the Bareos File Daemon is needed in any
case to make the incremental backups possible.

� Configure the connection from local Bareos Director to remote Bareos File Daemon, give the remote
client the same name as it was when the data was backed up.

� Add the Fileset created on remote machine to local machine.

� Configure the Job that should backup the remote client with the fileset.

� Run estimate listing on the remote backup job.

� Run list filesets to make sure the fileset was added to the catalog.

Then we need to create a backup on the remote machine onto a portable disk which we can then import
into our local installation.
On remote machine:

� Install full Bareos server on remote server (sd, fd, dir). Using the Sqlite backend is sufficient.

� Add the client to the remote backup server.

� Add fileset which the client will be backed up.

� Add Pool with name transferDir
Pool where the data will be written to.

� create job that will backup the remote client with the remote fileset into the new pool

� Do the local backup using the just created Pool and Filesets.

Transport the newly created volume over to the director machine (e.g. via external harddrive) and store the
file where the device stores its files (e.g. /var/lib/bareos/storage)
Shutdown Director on local director machine.
Import data form volume via bscan, you need to set which database backend is used:
bscan -B sqlite3 FileStorage -V Transfer-0001 -s -S

If the import was successfully completed, test if an incremental job really only backs up the minimum amount
of data.

306

Chapter 25

File Deduplication using Base Jobs

A base job is sort of like a Full save except that you will want the FileSet to contain only files that are
unlikely to change in the future (i.e. a snapshot of most of your system after installing it). After the base
job has been run, when you are doing a Full save, you specify one or more Base jobs to be used. All files that
have been backed up in the Base job/jobs but not modified will then be excluded from the backup. During
a restore, the Base jobs will be automatically pulled in where necessary.
Imagine having 100 nearly identical Windows or Linux machine containing the OS and user files. Now for
the OS part, a Base job will be backed up once, and rather than making 100 copies of the OS, there will
be only one. If one or more of the systems have some files updated, no problem, they will be automatically
backuped.
A new Job directive Base=JobX,JobY,... permits to specify the list of files that will be used during Full
backup as base.

Job {

Name = BackupLinux

Level= Base

...

}

Job {

Name = BackupZog4

Base = BackupZog4, BackupLinux

Accurate = yes

...

}

In this example, the job BackupZog4 will use the most recent version of all files contained in BackupZog4

and BackupLinux jobs. Base jobs should have run with Level=Base to be used.
By default, Bareos will compare permissions bits, user and group fields, modification time, size and the
checksum of the file to choose between the current backup and the BaseJob file list. You can change this
behavior with the BaseJob FileSet option. This option works like the Verify, that is described in the FileSet
chapter.

FileSet {

Name = Full

Include = {

Options {

BaseJob = pmugcs5

Accurate = mcs

Verify = pin5

}

File = /

}

}

Please note! The current implementation doesn’t permit to scan volume with bscan . The result wouldn’t
permit to restore files easily.

307

308

Chapter 26

Plugins

The functionality of Bareos can be extended by plugins. They do exists plugins for the different daemons
(Director, Storage- and File-Daemon).
To use plugins, they must be enabled in the configuration (Plugin Directory and optionally Plugin Names).
If a Plugin Directory is specified Plugin Names defines, which plugins get loaded.
If Plugin Names is not defined.

26.1 File Daemon Plugins

File Daemon plugins are configured by the Plugin directive of a File Set.
Please note! Currently the plugin command is being stored as part of the backup. The restore command in
your directive should be flexible enough if things might change in future, otherwise you could run into trouble.

26.1.1 bpipe Plugin

The bpipe plugin is a generic pipe program, that simply transmits the data from a specified program to
Bareos for backup, and from Bareos to a specified program for restore. The purpose of the plugin is to
provide an interface to any system program for backup and restore. That allows you, for example, to do
database backups without a local dump. By using different command lines to bpipe, you can backup any
kind of data (ASCII or binary) depending on the program called.
On Linux, the Bareos bpipe plugin is part of the bareos-filedaemon package and is therefore installed on
any system running the filedaemon.
The bpipe plugin is so simple and flexible, you may call it the ”Swiss Army Knife” of the current existing
plugins for Bareos.
The bpipe plugin is specified in the Include section of your Job’s FileSet resource in your bareos-dir.conf.

FileSet {

Name = "MyFileSet"

Include {

Options {

signature = MD5

compression = gzip

}

Plugin = "bpipe:file=<filepath>:reader=<readprogram>:writer=<writeprogram>

}

}

Configuration 26.1: bpipe fileset

The syntax and semantics of the Plugin directive require the first part of the string up to the colon to be
the name of the plugin. Everything after the first colon is ignored by the File daemon but is passed to the
plugin. Thus the plugin writer may define the meaning of the rest of the string as he wishes. The full syntax
of the plugin directive as interpreted by the bpipe plugin is:

Plugin = "<plugin>:file=<filepath>:reader=<readprogram>:writer=<writeprogram>"

Configuration 26.2: bpipe directive

plugin is the name of the plugin with the trailing -fd.so stripped off, so in this case, we would put bpipe in
the field.

309

310

filepath specifies the namespace, which for bpipe is the pseudo path and filename under which the backup
will be saved. This pseudo path and filename will be seen by the user in the restore file tree. For
example, if the value is /MySQL/mydump.sql, the data backed up by the plugin will be put under that
“pseudo” path and filename. You must be careful to choose a naming convention that is unique to
avoid a conflict with a path and filename that actually exists on your system.

readprogram for the bpipe plugin specifies the ”reader” program that is called by the plugin during backup
to read the data. bpipe will call this program by doing a popen on it.

writeprogram for the bpipe plugin specifies the ”writer” program that is called by the plugin during restore
to write the data back to the filesystem.

Please note that the two items above describing the ”reader” and ”writer”, these programs are ”executed”
by Bareos, which means there is no shell interpretation of any command line arguments you might use. If
you want to use shell characters (redirection of input or output, ...), then we recommend that you put your
command or commands in a shell script and execute the script. In addition if you backup a file with reader
program, when running the writer program during the restore, Bareos will not automatically create the path
to the file. Either the path must exist, or you must explicitly do so with your command or in a shell script.

See the examples about Backup of a PostgreSQL Database and Backup of a MySQL Database.

26.1.2 PGSQL Plugin

See chapter Backup of a PostgreSQL Databases by using the PGSQL-Plugin.

26.1.3 MySQL Plugin

See the chapters Backup of MySQL Databases using the Bareos MySQL Percona xtrabackup Plugin and
Backup of MySQL Databases using the Python MySQL plugin.

26.1.4 MSSQL Plugin

See chapter Backup of MSSQL Databases with Bareos Plugin.

26.1.5 LDAP Plugin

This plugin is intended to backup (and restore) the contents of a LDAP server. It uses normal LDAP
operation for this. The package bareos-filedaemon-ldap-python-plugin (Version >= 15.2.0) contains
an example configuration file, that must be adapted to your envirnoment.

26.1.6 Cephfs Plugin

Opposite to the Rados Backend that is used to store data on a CEPH Object Store, this plugin is
intended to backup a CEPH Object Store via the Cephfs interface to other media. The package
bareos-filedaemon-ceph-plugin (Version >= 15.2.0) contains an example configuration file, that must
be adapted to your envirnoment.

26.1.7 Rados Plugin

Opposite to the Rados Backend that is used to store data on a CEPH Object Store, this plugin
is intended to backup a CEPH Object Store via the Rados interface to other media. The package
bareos-filedaemon-ceph-plugin (Version >= 15.2.0) contains an example configuration file, that must
be adapted to your envirnoment.

26.1.8 GlusterFS Plugin

Opposite to the GFAPI Backend that is used to store data on a Gluster system, this plugin is intended to
backup data from a Gluster system to other media. The package bareos-filedaemon-glusterfs-plugin

(Version >= 15.2.0) contains an example configuration file, that must be adapted to your envirnoment.

311

26.1.9 python-fd Plugin

The python-fd plugin behaves similar to the python-dir Plugin. Base plugins and an example get installed
via the package bareos-filedaemon-python-plugin. Configuration is done in the FileSet Resource on the
director.
We basically distinguish between command-plugin and option-plugins.

Command Plugins

Command plugins are used to replace or extend the FileSet definition in the File Section. If you have a
command-plugin, you can use it like in this example:

FileSet {

Name = "mysql"

Include {

Options {

Signature = MD5 # calculate md5 checksum per file

}

File = "/etc"

Plugin = "python:module_path=/usr/lib/bareos/plugins:module_name=bareos-fd-mysql"

}

}

Configuration 26.3: bareos-dir.conf: Python FD command plugins

This example uses the MySQL plugin to backup MySQL dumps in addition to /etc.

Option Plugins

Option plugins are activated in the Options resource of a FileSet definition.
Example:

FileSet {

Name = "option"

Include {

Options {

Signature = MD5 # calculate md5 checksum per file

Plugin = "python:module_path=/usr/lib/bareos/plugins:module_name=bareos-fd-file-interact"

}

File = "/etc"

File = "/usr/lib/bareos/plugins"

}

}

Configuration 26.4: bareos-dir.conf: Python FD option plugins

This plugin bareos-fd-file-interact from https://github.com/bareos/bareos-contrib/tree/master/

fd-plugins/options-plugin-sample has a method that is called before and after each file that goes into
the backup, it can be used as a template for whatever plugin wants to interact with files before or after
backup.

26.1.10 VMware Plugin

The VMware
®

Plugin can be used for agentless backups of virtual machines running on VMware vSphere
®

.
It makes use of CBT (Changed Block Tracking) to do space efficient full and incremental backups, see below
for mandatory requirements.
It is included in Bareos since Version >= 15.2.0.

Status

The Plugin can do full, differential and incremental backup and restore of VM disks.
Current limitations amongst others are:

Normal VM disks can not be excluded from the backup. It is not yet possible to exclude normal
(dependent) VM disks from backups. However, independent disks are excluded implicitly because they are
not affected by snapshots which are required for CBT based backup.

https://github.com/bareos/bareos-contrib/tree/master/fd-plugins/options-plugin-sample
https://github.com/bareos/bareos-contrib/tree/master/fd-plugins/options-plugin-sample

312

VM configuration is not backed up. The VM configuration is not backed up, so that it is not yet
possible to recreate a completely deleted VM.

Virtual Disks have to be smaller than 2TB. Virtual Disks have to be smaller than 2 TB, see Ticket
#670.

Restore can only be done to the same VM or to local VMDK files. Until Bareos Version 15.2.2,
the restore has only be possible to the same existing VM with existing virtual disks. Since Version >= 15.2.3
it is also possible to restore to local VMDK files, see below for more details.

Requirements

As the Plugin is based on the VMware vSphere
®

Storage APIs for Data Protection, which requires at least

a VMware vSphere
®

Essentials License. It does not work with standalone unlicensed VMware® ESXi
�

.

Installation

Install the package bareos-vmware-plugin including its requirments by using an appropriate package man-
agement tool (eg. yum, zypper, apt)
The FAQ may have additional useful information.

Configuration

First add a user account in vCenter that has full privileges by assigning the account to an administrator role
or by adding the account to a group that is assigned to an administrator role. While any user account with
full privileges could be used, it is better practice to create a separate user account, so that the actions by
this account logged in vSphere are clearly distinguishable. In the future a more detailed set of required role
privilges may be defined.
When using the vCenter appliance with embedded SSO, a user account usually has the structure <username>
@vsphere.local, it may be different when using Active Directory as SSO in vCenter. For the examples
here, we will use bakadm@vsphere.local with the password Bak.Adm-1234.
For more details regarding users and permissions in vSphere see

� http://pubs.vmware.com/vsphere-55/topic/com.vmware.vsphere.security.doc/

GUID-72BFF98C-C530-4C50-BF31-B5779D2A4BBB.html and

� http://pubs.vmware.com/vsphere-55/topic/com.vmware.vsphere.security.doc/

GUID-5372F580-5C23-4E9C-8A4E-EF1B4DD9033E.html

Make sure to add or enable the following settings in /etc/bareos/bareos-fd.conf:

...

FileDaemon {

...

Plugin Directory = /usr/lib/bareos/plugins

Plugin Names = python

...

}

Configuration 26.5: bareos-fd.conf: Plugin Settings

Note: Depending on Platform, the Plugin Directory may also be /usr/lib64/bareos/plugins

To define the backup of a VM in Bareos, a job definition and a fileset resource must be added to the Bareos
director confguration. In vCenter, VMs are usually organized in datacenters and folders. The following
example shows how to configure the backup of the VM named websrv1 in the datacenter mydc1 folder
webservers on the vCenter server vcenter.example.org:

Job {

Name = "vm-websrv1"

JobDefs = "DefaultJob"

FileSet = "vm-websrv1_fileset"

}

FileSet {

Name = "vm-websrv1_fileset"

https://bugs.bareos.org/view.php?id=670
https://bugs.bareos.org/view.php?id=670
http://www.bareos.org/en/faq.html
http://pubs.vmware.com/vsphere-55/topic/com.vmware.vsphere.security.doc/GUID-72BFF98C-C530-4C50-BF31-B5779D2A4BBB.html
http://pubs.vmware.com/vsphere-55/topic/com.vmware.vsphere.security.doc/GUID-72BFF98C-C530-4C50-BF31-B5779D2A4BBB.html
http://pubs.vmware.com/vsphere-55/topic/com.vmware.vsphere.security.doc/GUID-5372F580-5C23-4E9C-8A4E-EF1B4DD9033E.html
http://pubs.vmware.com/vsphere-55/topic/com.vmware.vsphere.security.doc/GUID-5372F580-5C23-4E9C-8A4E-EF1B4DD9033E.html

313

Include {

Options {

signature = MD5

Compression = GZIP

}

Plugin = "python:module_path=/usr/lib64/bareos/plugins/vmware_plugin:module_name=bareos-fd-vmware:dc= ↙
↪→ mydc1:folder=/webservers:vmname=websrv1:vcserver=vcenter.example.org:vcuser=bakadm@vsphere.local: ↙
↪→ vcpass=Bak.Adm-1234"

}

}

Configuration 26.6: bareos-dir.conf: VMware Plugin Job and FileSet definition

For VMs defined in the root-folder, folder=/ must be specified in the Plugin definition.

Backup

Before running the first backup, CBT (Changed Block Tracking) must be enabled for the VMs to be backed
up.
As of http://kb.vmware.com/kb/2075984 manually enabling CBT is currently not working properly. The
API however works properly. To enable CBT use the Script vmware_cbt_tool.py, it is packaged in the
bareos-vmware-plugin package:

vmware cbt tool.py --help
usage: vmware_cbt_tool.py [-h] -s HOST [-o PORT] -u USER [-p PASSWORD] -d

DATACENTER -f FOLDER -v VMNAME [--enablecbt]

[--disablecbt] [--resetcbt] [--info]

Process args for enabling/disabling/resetting CBT

optional arguments:

-h, --help show this help message and exit

-s HOST, --host HOST Remote host to connect to

-o PORT, --port PORT Port to connect on

-u USER, --user USER User name to use when connecting to host

-p PASSWORD, --password PASSWORD

Password to use when connecting to host

-d DATACENTER, --datacenter DATACENTER

DataCenter Name

-f FOLDER, --folder FOLDER

Folder Name

-v VMNAME, --vmname VMNAME

Names of the Virtual Machines

--enablecbt Enable CBT

--disablecbt Disable CBT

--resetcbt Reset CBT (disable, then enable)

--info Show information (CBT supported and enabled or

disabled)

Commands 26.7: usage of vmware cbt tool.py

For the above configuration example, the command to enable CBT would be

vmware cbt tool.py -s vcenter.example.org -u bakadm@vsphere.local -p Bak.Adm-1234 -d mydc1 -f ↙
↪→ /webservers -v websrv1 --enablecbt

Commands 26.8: Example using vmware cbt tool.py

Note: CBT does not work if the virtual hardware version is 6 or earlier.
After enabling CBT, Backup Jobs can be run or scheduled as usual, for example in bconsole:
run job=vm-websrv1 level=Full

Restore

For restore, the VM must be powered off and no snapshot must exist. In bconsole use the restore menu 5,
select the correct FileSet and enter mark *, then done. After restore has finished, the VM can be powered
on.

Restore to local VMDK File

Since Version >= 15.2.3 it is possible to restore to local VMDK files. That means, instead of directly
restoring a disk that belongs to the VM, the restore creates VMDK disk image files on the filesystem of the

http://kb.vmware.com/kb/2075984

314

system that runs the Bareos File Daemon. As the VM that the backup was taken from is not affected by
this, it can remain switched on while restoring to local VMDK. Such a restored VMDK file can then be

uploaded to a VMware vSphere
®

datastore or accessed by tools like guestfish to extract single files.
For restoring to local VMDK, the plugin option localvmdk=yes must be passed. The following example
shows how to perform such a restore using bconsole:

*restore
Automatically selected Catalog: MyCatalog

Using Catalog "MyCatalog"

First you select one or more JobIds that contain files

to be restored. You will be presented several methods

of specifying the JobIds. Then you will be allowed to

select which files from those JobIds are to be restored.

To select the JobIds, you have the following choices:

1: List last 20 Jobs run

...

5: Select the most recent backup for a client

...

13: Cancel

Select item: (1-13): 5
Automatically selected Client: vmw5-bareos-centos6-64-devel-fd

The defined FileSet resources are:

1: Catalog

...

5: PyTestSetVmware-test02

6: PyTestSetVmware-test03

...

Select FileSet resource (1-10): 5
+-------+-------+----------+---------------+---------------------+------------------+

| jobid | level | jobfiles | jobbytes | starttime | volumename |

+-------+-------+----------+---------------+---------------------+------------------+

| 625 | F | 4 | 4,733,002,754 | 2016-02-18 10:32:03 | Full-0067 |

...

You have selected the following JobIds: 625,626,631,632,635

Building directory tree for JobId(s) 625,626,631,632,635 ...

10 files inserted into the tree.

You are now entering file selection mode where you add (mark) and

remove (unmark) files to be restored. No files are initially added, unless

you used the "all" keyword on the command line.

Enter "done" to leave this mode.

cwd is: /

$ mark *

10 files marked.

$ done
Bootstrap records written to /var/lib/bareos/vmw5-bareos-centos6-64-devel-dir.restore.1.bsr

The job will require the following

Volume(s) Storage(s) SD Device(s)

===

Full-0001 File FileStorage

...

Incremental-0078 File FileStorage

Volumes marked with "*" are online.

10 files selected to be restored.

Using Catalog "MyCatalog"

Run Restore job

JobName: RestoreFiles

Bootstrap: /var/lib/bareos/vmw5-bareos-centos6-64-devel-dir.restore.1.bsr

Where: /tmp/bareos-restores

Replace: Always

FileSet: Linux All

Backup Client: vmw5-bareos-centos6-64-devel-fd

Restore Client: vmw5-bareos-centos6-64-devel-fd

Format: Native

Storage: File

When: 2016-02-25 15:06:48

http://libguestfs.org/guestfish.1.html

315

Catalog: MyCatalog

Priority: 10

Plugin Options: *None*

OK to run? (yes/mod/no): mod
Parameters to modify:

1: Level

...

14: Plugin Options

Select parameter to modify (1-14): 14
Please enter Plugin Options string: python:localvmdk=yes
Run Restore job

JobName: RestoreFiles

Bootstrap: /var/lib/bareos/vmw5-bareos-centos6-64-devel-dir.restore.1.bsr

Where: /tmp/bareos-restores

Replace: Always

FileSet: Linux All

Backup Client: vmw5-bareos-centos6-64-devel-fd

Restore Client: vmw5-bareos-centos6-64-devel-fd

Format: Native

Storage: File

When: 2016-02-25 15:06:48

Catalog: MyCatalog

Priority: 10

Plugin Options: python: module_path=/usr/lib64/bareos/plugins/vmware_plugin: ↙
↪→ module_name=bareos-fd-vmware: dc=dass5:folder=/: vmname=stephand-test02: ↙
↪→ vcserver=virtualcenter5.dass-it:vcuser=bakadm@vsphere.local: vcpass=Bak.Adm-1234: localvmdk=yes

OK to run? (yes/mod/no): yes
Job queued. JobId=639

Commands 26.9: Example restore to local VMDK

Note: Since Bareos Version >= 15.2.3 it is sufficient to add Python plugin options, e.g. by

python:localvmdk=yes

Before, all Python plugin must be repeated and the additional be added, like: python:module_path=

/usr/lib64/bareos/plugins/vmware_plugin:module_name=bareos-fd-vmware:dc=dass5:folder=/:

vmname=stephand-test02:vcserver=virtualcenter5.dass-it:vcuser=bakadm@vsphere.local:

vcpass=Bak.Adm-1234:localvmdk=yes

After the restore process has finished, the restored VMDK files can be found under /tmp/bareos-restores/:

ls -laR /tmp/bareos-restores
/tmp/bareos-restores:

total 28

drwxr-x--x. 3 root root 4096 Feb 25 15:47 .

drwxrwxrwt. 17 root root 20480 Feb 25 15:44 ..

drwxr-xr-x. 2 root root 4096 Feb 25 15:19 [ESX5-PS100] stephand-test02

/tmp/bareos-restores/[ESX5-PS100] stephand-test02:

total 7898292

drwxr-xr-x. 2 root root 4096 Feb 25 15:19 .

drwxr-x--x. 3 root root 4096 Feb 25 15:47 ..

-rw-------. 1 root root 2075197440 Feb 25 15:19 stephand-test02_1.vmdk

-rw-------. 1 root root 6012731392 Feb 25 15:19 stephand-test02.vmdk

Commands 26.10: Example result of restore to local VMDK

26.2 Storage Daemon Plugins

26.2.1 autoxflate-sd

This plugin is part of the bareos-storage package.

The autoxflate-sd plugin can inflate (decompress) and deflate (compress) the data being written to or read
from a device. It can also do both.

316

Therefore the autoxflate plugin inserts a inflate and a deflate function block into the stream going to the
device (called OUT) and coming from the device (called IN).
Each stream passes first the inflate function block, then the deflate function block.
The inflate blocks are controlled by the setting of the Auto Inflate Sd

Device directive.
The deflate blocks are controlled by the setting of the Auto Deflate Sd

Device, Auto Deflate Algorithm Sd
Device and

Auto Deflate Level Sd
Device directives.

The inflate blocks, if enabled, will uncompress data if it is compressed using the algorithm that was used
during compression.
The deflate blocks, if enabled, will compress uncompressed data with the algorithm and level configured in
the according directives.
The series connection of the inflate and deflate function blocks makes the plugin very flexible.
Szenarios where this plugin can be used are for example:

� client computers with weak cpus can do backups without compression and let the sd do the compression
when writing to disk

� compressed backups can be recompressed to a different compression format (e.g. gzip � lzo) using
migration jobs

� client backups can be compressed with compression algorithms that the client itself does not support

Multi-core cpus will be utilized when using parallel jobs as the compression is done in each jobs’ thread.
When the autoxflate plugin is configured, it will write some status information into the joblog.

autodeflation: compressor on device FileStorage is FZ4H

Messages 26.11: used compression algorithm

autoxflate-sd.c: FileStorage OUT:[SD->inflate=yes->deflate=yes->DEV] IN:[DEV->inflate=yes->deflate=yes->SD]

Messages 26.12: configured inflation and deflation blocks

autoxflate-sd.c: deflate ratio: 50.59%

Messages 26.13: overall deflation/inflation ratio

Additional Auto XFlate On Replication Sd
Storage can be configured at the Storage resource.

26.2.2 scsicrypto-sd

This plugin is part of the bareos-storage-tape package.

General

LTO Hardware Encryption Modern tape-drives, for example LTO (from LTO4 onwards) support hard-
ware encryption. There are several ways of using encryption with these drives. The following three types
of key management are available for encrypting drives. The transmission of the keys to the volumes is
accomplished by either of the three:

� A backup application that supports Application Managed Encryption (AME)

317

� A tape library that supports Library Managed Encryption (LME)

� A Key Management Appliance (KMA)

We added support for Application Managed Encryption (AME) scheme, where on labeling a crypto key is
generated for a volume and when the volume is mounted, the crypto key is loaded. When finally the volume
is unmounted, the key is cleared from the memory of the Tape Drive using the SCSI SPOUT command set.

If you have implemented Library Managed Encryption (LME) or a Key Management Appliance (KMA),
there is no need to have support from Bareos on loading and clearing the encryption keys, as either the
Library knows the per volume encryption keys itself, or it will ask the KMA for the encryption key when it
needs it. For big installations you might consider using a KMA, but the Application Managed Encryption
implemented in Bareos should also scale rather well and have a low overhead as the keys are only loaded
and cleared when needed.

The scsicrypto-sd plugin The scsicrypto-sd hooks into the unload, label read, label write and
label verified events for loading and clearing the key. It checks whether it it needs to clear the drive by
either using an internal state (if it loaded a key before) or by checking the state of a special option that
first issues an encrytion status query. If there is a connection to the director and the volume information
is not available, it will ask the director for the data on the currently loaded volume. If no connection is
available, a cache will be used which should contain the most recently mounted volumes. If an encryption
key is available, it will be loaded into the drive’s memory.

Changes in the director The director has been extended with additional code for handling hardware
data encryption. The extra keyword encrypt on the label of a volume will force the director to generate
a new semi-random passphrase for the volume, which will be stored in the database as part of the media
information.

A passphrase is always stored in the database base64-encoded. When a so called Key Encryption Key
is set in the config of the director, the passphrase is first wrapped using RFC3394 key wrapping and then
base64-encoded. By using key wrapping, the keys in the database are safe against people sniffing the info,
as the data is still encrypted using the Key Encryption Key (which in essence is just an extra passphrase of
the same length as the volume passphrases used).

When the storage daemon needs to mount the volume, it will ask the director for the volume information
and that protocol is extended with the exchange of the base64-wrapped encryption key (passphrase). The
storage daemon provides an extra config option in which it records the Key Encryption Key of the particular
director, and as such can unwrap the key sent into the original passphrase.

As can be seen from the above info we don’t allow the user to enter a passphrase, but generate a semi-random
passphrase using the openssl random functions (if available) and convert that into a readable ASCII stream
of letters, numbers and most other characters, apart from the quotes and space etc. This will produce much
stronger passphrases than when requesting the info from a user. As we store this information in the database,
the user never has to enter these passphrases.

The volume label is written in unencrypted form to the volume, so we can always recognize a Bareos volume.
When the key is loaded onto the drive, we set the decryption mode to mixed, so we can read both unencrypted
and encrypted data from the volume. When no key or the wrong key has been loaded, the drive will give an
IO error when trying to read the volume. For disaster recovery you can store the Key Encryption Key and the
content of the wrapped encryption keys somewhere safe and the bscrypto tool together with the scsicrypto-sd
plugin can be used to get access to your volumes, in case you ever lose your complete environment.

If you don’t want to use the scsicrypto-sd plugin when doing DR and you are only reading one volume, you
can also set the crypto key using the bscrypto tool. Because we use the mixed decryption mode, in which
you can read both encrypted and unencrypted data from a volume, you can set the right encryption key
before reading the volume label.

If you need to read more than one volume, you better use the scsicrypto-sd plugin with tools like bscan/bex-
tract, as the plugin will then auto-load the correct encryption key when it loads the volume, similiarly to
what the storage daemon does when performing backups and restores.

The volume label is unencrypted, so a volume can also be recognized by a non-encrypted installation, but it
won’t be able to read the actual data from it. Using an encrypted volume label doesn’t add much security
(there is no security-related info in the volume label anyhow) and it makes it harder to recognize either a
labeled volume with encrypted data or an unlabeled new volume (both would return an IO-error on read of
the label.)

318

Configuration

SCSI crypto setup The initial setup of SCSI crypto looks something like this:

� Generate a Key Encryption Key e.g.

bscrypto -g -

Commands 26.14:

For details see bscrypto.

Security Setup Some security levels need to be increased for the storage daemon to be able to use the
low level SCSI interface for setting and getting the encryption status on a tape device.
The following additional security is needed for the following operating systems:

Linux (SG IO ioctl interface): The user running the storage daemon needs the following additional
capabilities:

� CAP_SYS_RAWIO (see capabilities(7))

– On older kernels you might need CAP_SYS_ADMIN. Try CAP_SYS_RAWIO first and if that doesn’t
work try CAP_SYS_ADMIN

� If you are running the storage daemon as another user than root (which has the CAP_SYS_RAWIO

capability), you need to add it to the current set of capabilities.

� If you are using systemd, you could add this additional capability to the CapabilityBoundingSet pa-
rameter.

– For systemd add the following to the bareos-sd.service: Capabilities=cap_sys_rawio+ep

You can also set up the extra capability on bscrypto and bareos-sd by running the following commands:

setcap cap_sys_rawio=ep bscrypto

setcap cap_sys_rawio=ep bareos-sd

Commands 26.15:

Check the setting with

getcap -v bscrypto

getcap -v bareos-sd

Commands 26.16:

getcap and setcap are part of libcap-progs.
If bareos-sd does not have the appropriate capabilities, all other tape operations may still work correctly,
but you will get “Unable to perform SG IO ioctl” errors.

Solaris (USCSI ioctl interface): The user running the storage daemon needs the following additional
privileges:

� PRIV_SYS_DEVICES (see privileges(5))

If you are running the storage daemon as another user than root (which has the PRIV_SYS_DEVICES privilege),
you need to add it to the current set of privileges. This can be set up by setting this either as a project for
the user, or as a set of extra privileges in the SMF definition starting the storage daemon. The SMF setup
is the cleanest one.
For SMF make sure you have something like this in the instance block:

<method_context working_directory=":default"> <method_credential user="bareos" group="bareos" privileges=" ↙
↪→ basic,sys_devices"/> </method_context>

Configuration 26.17:

319

Changes in bareos-sd.conf

� Set the Key Encryption Key

– Key Encryption Key Sd
Director = passphrase

� Enable the loading of storage daemon plugins

– Plugin Directory Sd
Storage = path_to_sd_plugins

� Enable the SCSI encryption option

– Drive Crypto Enabled Sd
Device = yes

� Enable this, if you want the plugin to probe the encryption status of the drive when it needs to clear
a pending key

– Query Crypto Status Sd
Device = yes

Changes in bareos-dir.conf

� Set the Key Encryption Key

– Key Encryption Key Dir
Director = passphrase

Testing

Restart the Storage Daemon and the Director. After this you can label new volumes with the encrypt option,
e.g.

label slots=1-5 barcodes encrypt

Configuration 26.18:

Disaster Recovery

For Disaster Recovery (DR) you need the following information:

� Actual bareos-sd.conf with config options enabled as described above, including, among others, a
definition of a director with the Key Encryption Key used for creating the encryption keys of the
volumes.

� The actual keys used for the encryption of the volumes.

This data needs to be availabe as a so called crypto cache file which is used by the plugin when no connection
to the director can be made to do a lookup (most likely on DR).
Most of the times the needed information, e.g. the bootstrap info, is available on recently written volumes
and most of the time the encryption cache will contain the most recent data, so a recent copy of the
bareos-sd.<portnr>.cryptoc file in the working directory is enough most of the time. You can also save
the info from database in a safe place and use bscrypto to populate this info (VolumeName �EncryptKey)
into the crypto cache file used by bextract and bscan. You can use bscrypto with the following flags to
create a new or update an existing crypto cache file e.g.:

bscrypto -p /var/lib/bareos/bareos-sd.<portnr>.cryptoc

Commands 26.19:

� A valid BSR file containing the location of the last safe of the database makes recovery much easier.
Adding a post script to the database save job could collect the needed info and make sure its stored
somewhere safe.

� Recover the database in the normal way e.g. for postgresql:

bextract -D <director_name> -c bareos-sd.conf -V <volname> \ /dev/nst0 /tmp -b bootstrap.bsr

/usr/lib64/bareos/create_bareos_database

/usr/lib64/bareos/grant_bareos_privileges

psql bareos < /tmp/var/lib/bareos/bareos.sql

Commands 26.20:

320

Or something similar (change paths to follow where you installed the software or where the package put it).
Note: As described at the beginning of this chapter, there are different types of key management, AME,
LME and KMA. If the Library is set up for LME or KMA, it probably won’t allow our AME setup and
the scsi-crypto plugin will fail to set/clear the encryption key. To be able to use AME you need to “Modify
Encryption Method” and set it to something like “Application Managed”. If you decide to use LME or KMA
you don’t have to bother with the whole setup of AME which may for big libraries be easier, although the
overhead of using AME even for very big libraries should be minimal.

26.2.3 scsitapealert-sd

This plugin is part of the bareos-storage-tape package.

26.2.4 python-sd Plugin

The python-sd plugin behaves similar to the python-dir Plugin.

26.3 Director Plugins

26.3.1 python-dir Plugin

The python-dir plugin is intended to extend the functionality of the Bareos Director by Python code. A
working example is included.

� install the bareos-director-python-plugin package

� change to the Bareos plugin directory (/usr/lib/bareos/plugins/ or /usr/lib64/bareos/

plugins/)

� copy bareos-dir.py.template to bareos-dir.py

� activate the plugin in the Bareos Director configuration

� restart the Bareos Director

� change bareos-dir.py as required

� restart the Bareos Director

Loading plugins

Since Version >= 14.4.0 multiple Python plugins can be loaded and plugin names can be arbitrary. Before
this, the Python plugin always loads the file bareos-dir.py.
The director plugins are configured in the Job-Resource (or JobDefs resource). To load a Python plugin you
need

module path= pointing to your plugin directory (needs to be enabled in the Director resource, too

module name= Your plugin (without the suffix .py)

instance= default is ’0’, you can leave this, as long as you only have 1 Director Python plugin. If you have more
than 1, start with instance=0 and increment the instance for each plugin.

� You can add plugin specific option key-value pairs, each pair separated by ’:’ key=value

Example:

Director {

...

Plugin directory

Plugin Directory = /usr/lib64/bareos/plugins

Load the python plugin

Plugin Names = "python"

}

JobDefs {

Name = "DefaultJob"

Type = Backup

321

...

Load the class based plugin with testoption=testparam

Dir Plugin Options = "python:instance=0:module_path=/usr/lib64/bareos/plugins:module_name=bareos-dir- ↙
↪→ class-plugins:testoption=testparam

...

}

Configuration 26.21: bareos-dir.conf: Python Plugins

Write your own Python Plugin

Some plugin examples are available on https://github.com/bareos/bareos-contrib. The class-based
approach lets you easily reuse stuff already defined in the baseclass BareosDirPluginBaseclass, which ships
with the bareos-director-python-plugin package. The examples contain the plugin bareos-dir-nsca-
sender, that submits the results and performance data of a backup job directly to Icinga or Nagios using the
NSCA protocol.

https://github.com/bareos/bareos-contrib

322

Chapter 27

The Windows Version of Bareos

The Windows version of Bareos is a native Win32 port, but there are very few source code changes to the
Unix code, which means that the Windows version is for the most part running code that has long proved
stable on Unix systems.

Chapter Operating Systems shows, what Windows versions are supported.

The Bareos component that is most often used in Windows is the File daemon or Client program. As a
consequence, when we speak of the Windows version of Bareos below, we are mostly referring to the File
daemon (client).

Once installed Bareos normally runs as a system service. This means that it is immediately started by the
operating system when the system is booted, and runs in the background even if there is no user logged into
the system.

27.1 Windows Installation

Normally, you will install the Windows version of Bareos from the binaries. The winbareos binary
packages are provided under http://download.bareos.org/bareos/release/latest/windows. Addition-
ally, there are OPSI packages available under http://download.bareos.org/bareos/release/latest/

windows/opsi.

This install is standard Windows .exe that runs an install wizard using the NSIS Free Software installer, so if
you have already installed Windows software, it should be very familiar to you. Providing you do not already
have Bareos installed, the installer installs the binaries and dlls in C:\Program Files\Bareos and the con-
figuration files in C:\ProgramData \Bareos (for Windows XP and older: C:\Documents and Settings\

All Users\Application Data\Bareos).

In addition, the Start>All Programs>Bareos menu item will be created during the installation, and on
that menu, you will find items for editing the configuration files, displaying the document, and starting a
user interface.

During installation you can decide, what Bareos components you want to install.

Typically, you only want to install the Bareos Client (Bareos File Daemon) and optionally some interface
tools on a Windows system. Normally, we recommend to let the server components run on a Linux or other
Unix system. However, it is possible, to run the Bareos Director, Bareos Storage Daemon and Bareos Webui
on a Windows systems. You should be aware about following limitations:

Windows Bareos Director does not support MySQL database backend. When running the Bareos
Director on Windows, only PostgreSQL (and SQLite) database backends are supported. SQLite is best suited
for test environments.

Bareos Storage Daemon only support backup to disk, not to tape.

The default installation of Bareos Webui is only suitable for local access. Normally the Bareos
Webui is running on a Apache server on Linux. While it is possible, to run the Bareos Webui under Apache
or another Webserver which supports PHP under Windows, the configuration shipped the the winbareos

package uses the PHP internal webserver. This is okay for local access, but not suitable for being accessed
via the network. To guarantee this, it is configured to only listen locally (http://localhost:9100).

323

http://download.bareos.org/bareos/release/latest/windows
http://www.opsi.org
http://download.bareos.org/bareos/release/latest/windows/opsi
http://download.bareos.org/bareos/release/latest/windows/opsi
http://localhost:9100

324

27.1.1 Graphical Installation

Here are the important steps.

� You must be logged in as an Administrator to the local machine to do a correct installation, if not,
please do so before continuing.

� For a standard installation you may only select the ”Tray-Monitor” and the ”Open Firewall for Client”
as additional optional components.

� You need to fill in the name of your bareos director in the client configuration dialogue and the FQDN
or ip address of your client.

325

� Add the client resource to your Bareos Director Configuration and a job resource for the client as it is
also described in the default bareos-dir.conf

27.1.2 Command Line (Silent) Installation

Silent installation is possible since Version >= 12.4.4. All inputs that are given during interactive install
can now directly be configured on the commandline, so that an automatic silent install is possible.

Commandline Switches

/? shows the list of available parameters.

/S sets the installer to silent. The Installation is done without user interaction. This switch is also available
for the uninstaller.

/CLIENTADDRESS network address of the client

/CLIENTNAME sets the name of the client resource

/CLIENTMONITORPASSWORD sets the password for monitor access

/CLIENTPASSWORD sets the password to access the client

/DBADMINUSER=user sets the database admin user, default=postgres. Version >= 14.2.1

/DBADMINPASSWORD=password sets the database admin password, default=none. Version >=
14.2.1

/DIRECTORADDRESS sets network address of the director for bconsole or bat access

/DIRECTORNAME sets the name of the director to access the client and of the director to accessed by
bconsole and bat

/DIRECTORPASSWORD set the password to access the director

/SILENTKEEPCONFIG keep configuration files on silent uninstall and use exinsting config files during
silent install. Version >= 12.4.4

/INSTALLDIRECTOR install the Bareos Director (and bconsole). Version >= 14.2.1

326

/INSTALLSTORAGE install the Bareos Storage Daemon. Version >= 14.2.1

/WRITELOGS makes also non-debug installer write a log file. Version >= 14.2.1

/D=C:\specify \installation \directory (Important: It has to be the last option!)

By setting the Installation Parameters via commandline and using the silent installer, you can install the
bareos client without having to do any configuration after the installation e.g. as follows:

c:\winbareos.exe /S /CLIENTNAME=hostname-fd /CLIENTPASSWORD="verysecretpassword" /DIRECTORNAME=bareos-dir

DBADMINUSER and DBADMINPASSWORD are used to create the bareos databases. If login is not
possible silent installer will abort

27.2 Dealing with Windows Problems

27.2.1 Antivirus Program

If you are not using the portable option, and you have Enable VSS Dir
FileSet (Volume Shadow Copy) enabled in

the Bareos Director and you experience problems with Bareos not being able to open files, it is most likely
that you are running an antivirus program that blocks Bareos from doing certain operations. In this case,
disable the antivirus program and try another backup. If it succeeds, either get a different (better) antivirus
program or use something like Client Run Before Job Dir

Job/Client Run Before Job Dir
Job to turn off the antivirus

program while the backup is running.
If turning off anti-virus software does not resolve your VSS problems, you might have to turn on VSS
debugging. The following link describes how to do this: http://support.microsoft.com/kb/887013/

en-us.

27.2.2 Enable Debuggging

In case of problems, you can enable the creation of log files. For this you have to use the bconsole setdebug
command:

*setdebug client=bareos-fd level=200 trace=1
Connecting to Client bareos-fd at bareos.example.com:9102

2000 OK setdebug=200 trace=1 hangup=0 tracefile=c:\bareos-fd.trace

bconsole 27.1: Enable debug

27.3 Windows Compatibility Considerations

27.3.1 Exclusively Opened Files

If you are not using the Volume Shadow Copy Service (VSS) option and if any applications are running
during the backup and they have files opened exclusively, Bareos will not be able to backup those files, so be
sure you close your applications (or tell your users to close their applications) before the backup. Fortunately,
most Microsoft applications do not open files exclusively so that they can be backed up. However, you will
need to experiment. In any case, if Bareos cannot open the file, it will print an error message, so you will
always know which files were not backed up. If Volume Shadow Copy Service is enabled, Bareos is able to
backing up any file.

27.3.2 Backing up the Windows Registry

During backup, Bareos doesn’t know about the system registry, so you will either need to write it out to an
ASCII file using regedit /e or use a program specifically designed to make a copy or backup the registry.

27.3.3 Windows Reparse Points

Version >= 12.4.5
Besides normal files and directories, Windows filesystems also support special files, called ”Reparse Points”.
Bareos can handle the following types of Reparse points:

� Symbolic links to directories

http://support.microsoft.com/kb/887013/en-us
http://support.microsoft.com/kb/887013/en-us

327

� Symbolic links to files

� Junction Points

� Volume Mount Points

The Volume Mount Points are a special case of a Junction Point. To make things easier, in the following
when talking about Junction Points, we mean only the Junction Points that are not Volume Mount Points.
The Symbolic Links and the Junction Points are comparable to Symbolic Links in Unix/Linux. They are
files that point to another location in the filesystem.
Symbolic Links and Junction Points can be created with the Windows commandline command mklink.
When doing a directory listing in the commandline (cmd) in Windows, it shows the filetypes JUNCTION,
SYMLINK or SYMLINKD and the target between the square brackets:

C:\linktest>dir

Volume in drive C has no label.

Volume Serial Number is C8A3-971F

Directory of C:\linktest

08/07/2014 03:05 PM <DIR> .

08/07/2014 03:05 PM <DIR> ..

08/07/2014 02:59 PM <SYMLINKD> dirlink [C:\Program Files\Bareos]

08/07/2014 03:02 PM <SYMLINK> filelink [C:\Program Files\Bareos\bareos-dir.exe]

08/07/2014 03:00 PM <JUNCTION> junction [C:\Program Files\Bareos]

08/07/2014 03:05 PM <JUNCTION> volumemountpoint [\??\Volume{e960247d-09a1-11e3-93ec-005056add71d}\]

1 File(s) 0 bytes

5 Dir(s) 90,315,137,024 bytes free

Commands 27.2: special files

Symbolic Links. Directory Symbolic Links, and Junctions that are not a Volume MountPoint are treated by
Bareos as symbolic links and are backed up and restored as they are, so the object is restored and points to
where it pointed when it was backed up.
Volume Mount Points are different. They allow to mount a harddisk partition as a subfolder of a drive
instead of a driveletter.
When backing up a Volume Mount Point, it is backed up as directory.
If OneFS is set to yes (default), the Volume Mount Point (VMP) is backed up as directory but the content
of the VMP will not be backed up. Also, the Joblog will contain a message like this:

C:/linktest/vmp is a different filesystem. Will not descend from C:/linktest into it.

Messages 27.3: Warning on Volume Moint Point and OneFS=yes

This is the normal behavior of the OneFS option.
If OneFS is set to no, the filedaemon will change into the VMP as if it was a normal directory and will
backup all files found inside of the VMP.

VMPs and VSS Snapshots

As Virtual Mount Points mounts another Volume into the current filesystem, it is desired that if the content
of the VMP will be backed up during the backup (onefs = no), we also want to have this volume snapshotted
via VSS.
To achieve this, we now automatically check every volume added to the VSS snapshotset if it contains VMPs,
and add the volumes mounted by those VMPs to the vss snapshotset recursively.
Volumes can be mounted nested and multiple times, but can only be added to the snapshotset once. This is
the reason why the number of vmps can be greater than the number of volumes added for the volume mount
points.
The Job Log will show how many VMPs were found like this:

Volume Mount Points found: 7, added to snapshotset: 5

Messages 27.4: Volume Mount Points are added automatically to VSS snapshots (if onefs=no)

Accordingly, if OneFS is set to yes, we do not need to handle Volume Mount Points this way. If OneFS is
set to yes (default), the joblog will contain the following information:

VolumeMountpoints are not processed as onefs = yes.

Messages 27.5: Volume Mount Points are ignored on VSS snapshots (if onefs=yes)

328

27.3.4 Hard Links

Windows also supports hard links, even so they are seldom used. These are treated as normal files and will
be restored as individual files (which will not be hardlinks again)

27.3.5 FilesNotToBackup Registry Key

Version >= 14.2.0

Windows supports a special Registry Key that specifies the names of the files and directories that backup
applications should not backup or restore.

The full path to this registry key is HKEY_LOCAL_MACHINE\SYSTEM \CurrentControlSet \Control \

BackupRestore \FilesNotToBackup

Bareos automatically converts these entries to wildcards which will be automatically excluded from backup.

The backup log shows a short information about the creation of the exludes like this:

Created 28 wildcard excludes from FilesNotToBackup Registry key

Messages 27.6: Excludes according to the FilesNotToBackup registry key

More details can be found if the filedaemon is run in debug mode inside of the bareos-fd.trace logfile.
Each entry and the resulting wildcard are logged.

client-win-fd: win32.c:465-0 (1) "WER" :

client-win-fd: win32.c:482-0 "C:\ProgramData\Microsoft\Windows\WER* /s"

client-win-fd: win32.c:527-0 -> "C:/ProgramData/Microsoft/Windows/WER/*"

client-win-fd: win32.c:465-0 (2) "Kernel Dumps" :

client-win-fd: win32.c:482-0 "C:\Windows\Minidump* /s"

client-win-fd: win32.c:527-0 -> "C:/Windows/Minidump/*"

client-win-fd: win32.c:482-0 "C:\Windows\memory.dmp"

client-win-fd: win32.c:527-0 -> "C:/Windows/memory.dmp"

client-win-fd: win32.c:465-0 (3) "Power Management" :

client-win-fd: win32.c:482-0 "\hiberfil.sys"

client-win-fd: win32.c:527-0 -> "[A-Z]:/hiberfil.sys"

client-win-fd: win32.c:465-0 (4) "MS Distributed Transaction Coordinator" :

client-win-fd: win32.c:482-0 "C:\Windows\system32\MSDtc\MSDTC.LOG"

client-win-fd: win32.c:527-0 -> "C:/Windows/system32/MSDtc/MSDTC.LOG"

client-win-fd: win32.c:482-0 "C:\Windows\system32\MSDtc\trace\dtctrace.log"

client-win-fd: win32.c:527-0 -> "C:/Windows/system32/MSDtc/trace/dtctrace.log"

Messages 27.7: translation between registry key FilesNotToBackup and Bareos Exclude FileSet

It is possible to disable this functionality by setting the FileSet option AutoExclude to no.
The JobLog will then show the following informational line:

Fileset has autoexclude disabled, ignoring FilesNotToBackup Registry key

Messages 27.8: AutoExclude disabled

For more details about the Windows registry key see http://msdn.microsoft.com/en-us/library/

windows/desktop/bb891959%28v=vs.85%29.aspx#filesnottobackup.

27.3.6 Windows dedup support

Version >= 12.4.5

Windows 2012 has dedup support which needs handling.

27.3.7 Store all file attributes

Version >= 12.4.5

Windows has gathered quite some special specific file flags over the years but not all are saved during backup
so some are never restored by the restore process. The most important ones are the ARCHIVE flag which
is ”misused” by some programs for storing some special information. Others that are known not to be
stored are the COMPRESSED flag which means that a restored file looses it and will be restored as an
uncompressed file.

http://msdn.microsoft.com/en-us/library/windows/desktop/bb891959%28v=vs.85%29.aspx#filesnottobackup
http://msdn.microsoft.com/en-us/library/windows/desktop/bb891959%28v=vs.85%29.aspx#filesnottobackup

329

27.3.8 Support for Windows EFS filesystems

Version >= 12.4.5
Windows has support for a so called EFS filesystem. This is an encrypted filesystem, to be able to backup
the data and to restore it we need to use a special API. With this API you in essence export the data on
backup and import it on restore. This way you never have access to the unencrypted data but just import
and export the encrypted data. This is the cleanest way of handling encryption by just seeing the data as
some opaque data and not try to do anything special with it.

27.4 Volume Shadow Copy Service (VSS)

VSS is available since Windows XP. From the perspective of a backup-solution for Windows, this is an
extremely important step. VSS allows Bareos to backup open files and even to interact with applications
like RDBMS to produce consistent file copies. VSS aware applications are called VSS Writers, they register
with the OS so that when Bareos wants to do a Snapshot, the OS will notify the register Writer programs,
which may then create a consistent state in their application, which will be backed up. Examples for these
writers are ”MSDE” (Microsoft database engine), ”Event Log Writer”, ”Registry Writer” plus 3rd party-
writers. If you have a non-vss aware application a shadow copy is still generated and the open files can be
backed up, but there is no guarantee that the file is consistent.
Bareos produces a message from each of the registered writer programs when it is doing a VSS backup so
you know which ones are correctly backed up.
Technically Bareos creates a shadow copy as soon as the backup process starts. It does then backup all files
from the shadow copy and destroys the shadow copy after the backup process. Please have in mind, that
VSS creates a snapshot and thus backs up the system at the state it had when starting the backup. It will
disregard file changes which occur during the backup process.
VSS can be turned on by placing an

Enable VSS = yes

in your FileSet resource.
The VSS aware File daemon has the letters VSS on the signon line that it produces when contacted by the
console. For example:

Tibs-fd Version: 1.37.32 (22 July 2005) VSS Windows XP MVS NT 5.1.2600

the VSS is shown in the line above. This only means that the File daemon is capable of doing VSS not that
VSS is turned on for a particular backup. There are two ways of telling if VSS is actually turned on during
a backup. The first is to look at the status output for a job, e.g.:

Running Jobs:

JobId 1 Job NightlySave.2005-07-23_13.25.45 is running.

VSS Backup Job started: 23-Jul-05 13:25

Files=70,113 Bytes=3,987,180,650 Bytes/sec=3,244,247

Files Examined=75,021

Processing file: c:/Documents and Settings/user/My Documents/My Pictures/Misc1/Sans titre - 39.pdd

SDReadSeqNo=5 fd=352

Here, you see under Running Jobs that JobId 1 is ”VSS Backup Job started ...” This means that VSS is
enabled for that job. If VSS is not enabled, it will simply show ”Backup Job started ...” without the letters
VSS.
The second way to know that the job was backed up with VSS is to look at the Job Report, which will look
something like the following:

23-Jul 13:25 rufus-dir: Start Backup JobId 1, Job=NightlySave.2005-07-23_13.25.45

23-Jul 13:26 rufus-sd: Wrote label to prelabeled Volume "TestVolume001" on device "DDS-4" (/dev/nst0)

23-Jul 13:26 rufus-sd: Spooling data ...

23-Jul 13:26 Tibs: Generate VSS snapshots. Driver="VSS WinXP", Drive(s)="C"

23-Jul 13:26 Tibs: VSS Writer: "MSDEWriter", State: 1 (VSS_WS_STABLE)

23-Jul 13:26 Tibs: VSS Writer: "Microsoft Writer (Bootable State)", State: 1 (VSS_WS_STABLE)

23-Jul 13:26 Tibs: VSS Writer: "WMI Writer", State: 1 (VSS_WS_STABLE)

23-Jul 13:26 Tibs: VSS Writer: "Microsoft Writer (Service State)", State: 1 (VSS_WS_STABLE)

In the above Job Report listing, you see that the VSS snapshot was generated for drive C (if other drives are
backed up, they will be listed on the Drive(s)="C" line. You also see the reports from each of the writer
program. Here they all report VSS WS STABLE, which means that you will get a consistent snapshot of
the data handled by that writer.

330

27.4.1 VSS Problems

If you are experiencing problems such as VSS hanging on MSDE, first try running vssadmin to check for
problems, then try running ntbackup which also uses VSS to see if it has similar problems. If so, you know
that the problem is in your Windows machine and not with Bareos.

The FD hang problems were reported with MSDEwriter when:

� a local firewall locked local access to the MSDE TCP port (MSDEwriter seems to use TCP/IP and
not Named Pipes).

� msdtcs was installed to run under ”localsystem”: try running msdtcs under networking account (instead
of local system) (com+ seems to work better with this configuration).

27.5 Windows Firewalls

The Windows buildin Firewall is enabled since Windows version WinXP SP2. The Bareos installer opens the
required network ports for Bareos. However, if you are using another Firewall, you might need to manually
open the Bareos network ports. The Bareos File Daemon listens on 9102/TCP.

27.5.1 Network TCP Port

If you want to see if the File daemon has properly opened the port and is listening, you can enter the
following command in a shell window:

netstat -an | findstr 910[123]

Commands 27.9:

27.6 Windows Restore Problems

Please see the Restoring on Windows chapter for problems that you might encounter doing a restore.

27.7 Windows Backup Problems

If during a Backup, you get the message: ERR=Access is denied and you are using the portable option,
you should try both adding both the non-portable (backup API) and the Volume Shadow Copy options to
your Director’s conf file.
In the Options resource:

portable = no

In the FileSet resource:

enablevss = yes

In general, specifying these two options should allow you to backup any file on a Windows system. However,
in some cases, if users have allowed to have full control of their folders, even system programs such a Bareos
can be locked out. In this case, you must identify which folders or files are creating the problem and do the
following:

1. Grant ownership of the file/folder to the Administrators group, with the option to replace the owner
on all child objects.

2. Grant full control permissions to the Administrators group, and change the user’s group to only have
Modify permission to the file/folder and all child objects.

Thanks to Georger Araujo for the above information.

331

27.8 Windows Ownership and Permissions Problems

If you restore files backed up from Windows to an alternate directory, Bareos may need to create some
higher level directories that were not saved (or restored). In this case, the File daemon will create them
under the SYSTEM account because that is the account that Bareos runs under as a service and with full
access permission. However, there may be cases where you have problems accessing those files even if you
run as administrator. In principle, Microsoft supplies you with the way to cease the ownership of those files
and thus change the permissions. However, a much better solution to working with and changing Win32
permissions is the program SetACL, which can be found at http://setacl.sourceforge.net/.
If you have not installed Bareos while running as Administrator and if Bareos is not running as a Process
with the userid (User Name) SYSTEM, then it is very unlikely that it will have sufficient permission to
access all your files.
Some users have experienced problems restoring files that participate in the Active Directory. They also
report that changing the userid under which Bareos (bareos-fd.exe) runs, from SYSTEM to a Domain Admin
userid, resolves the problem.

27.9 Advanced Windows Configuration

27.9.1 Windows Service

The Bareos File Daemon (and also the Bareos Director and Bareos Storage Daemon) is started as a Windows
service.
This is configured in the Registry at

� Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\Bareos-fd

You can use the command regedit to modify the settings.
E.g. to always start Bareos in debug mode, modify Computer\HKEY_LOCAL_MACHINE\SYSTEM\

CurrentControlSet\services\Bareos-fd ImagePath from

"C:\Program Files\Bareos\bareos-fd.exe" /service

to

"C:\Program Files\Bareos\bareos-fd.exe" /service -d200

After restarting the service, you will find a file called C:\bareos-fd.trace which will contain the debug
output created by the daemon.

Installing multiple Windows filedaemon services

It is possible to run multiple Bareos File Daemon instances on Windows. To achieve this, you need to create
a service for each instance, and a configuration file that at least has a individual fd port for each instance.
To create two bareos-fd services, you can call the following service create calls on the commandline on
windows as administrator:

sc create bareosfd2 binpath="\"C:\Program Files\Bareos\bareos-fd.exe\" /service -c ↙
↪→ \"C:\ProgramData\Bareos\bareos-fd2.conf\"" depend= "tcpip/afd"

sc create bareosfd3 binpath="\"C:\Program Files\Bareos\bareos-fd.exe\" /service -c ↙
↪→ \"C:\ProgramData\Bareos\bareos-fd3.conf\"" depend= "tcpip/afd"

Commands 27.10:

This will create two Bareos File Daemon services, one with the name bareosfd2 and the second with the
name bareosfd3.
The configuration files for the two services are bareos-fd.conf and bareos-fd2.conf, and need to have
different network settings.
The services can be started by calling

sc start bareosfd2

Commands 27.11:

and

sc start bareosfd3

Commands 27.12:

http://setacl.sourceforge.net/

332

27.9.2 Windows Specific Command Line Options

These options are not normally seen or used by the user, and are documented here only for information
purposes. At the current time, to change the default options, you must either manually run Bareos or you
must manually edit the system registry and modify the appropriate entries.
In order to avoid option clashes between the options necessary for Bareos to run on Windows and the
standard Bareos options, all Windows specific options are signaled with a forward slash character (/), while
as usual, the standard Bareos options are signaled with a minus (-), or a minus minus (--). All the standard
Bareos options can be used on the Windows version. In addition, the following Windows only options are
implemented:

/service Start Bareos as a service

/run Run the Bareos application

/install Install Bareos as a service in the system registry

/remove Uninstall Bareos from the system registry

/about Show the Bareos about dialogue box

/status Show the Bareos status dialogue box

/events Show the Bareos events dialogue box (not yet implemented)

/kill Stop any running Bareos

/help Show the Bareos help dialogue box

It is important to note that under normal circumstances the user should never need to use these options as
they are normally handled by the system automatically once Bareos is installed. However, you may note
these options in some of the .bat files that have been created for your use.

Chapter 28

Network setup

28.1 Client Initiated Connection

The Bareos Director knows, when it is required to talk to a client (Bareos File Daemon). Therefore, by
defaults, the Bareos Director connects to the clients.
However, there are setups where this can cause problems, as this means that:

� The client must be reachable by its configured Address Dir
Client. Address can be the DNS name or the IP

address. (For completeness: there are potential workarounds by using the setip command.)

� The Bareos Director must be able to connect to the Bareos File Daemon over the network.

To circumvent these problems, since Bareos Version >= 16.2.2 it is possible to let the Bareos File Daemon
initiate the network connection to the Bareos Director.
Which address the client connects to reach the Bareos Director is configured in the Address Fd

Director directive.
To additional allow this connection direction use:

� Connection From Client To Director Dir
Client = yes

� Heartbeat Interval Dir
Client = 60 # to keep the network connection established

� Connection From Client To Director Fd
Director = yes

To only allow Connection From the Client to the Director use:

� Connection From Director To Client Dir
Client = no

� Connection From Client To Director Dir
Client = yes

� Heartbeat Interval Dir
Client = 60 # to keep the network connection established

� Connection From Director To Client Fd
Director = no

� Connection From Client To Director Fd
Director = yes

Using Client Initiated Connections has disadvantages. Without Client Initiated Connections the Bareos
Director only establishes a network connection when this is required. With Client Initiated Connections, the
Bareos File Daemon connects to the Bareos Director and the Bareos Director keeps these connections open.
The command status dir will show all waiting connections:

*status dir
...

Client Initiated Connections (waiting for jobs):

Connect time Protocol Authenticated Name

==

19-Apr-16 21:50 54 1 client1.example.com

...

====

bconsole 28.1: show waiting client connections

When both connection directions are allowed, the Bareos Director

333

334

1. checks, if there is a waiting connection from this client.

2. tries to connect to the client (using the usual timeouts).

3. waits for a client connection to appear (using the same timeout as when trying to connect to a client).

If none of this worked, the job fails.
When a waiting connection is used for a job, the Bareos File Daemon will detect this and creates an additional
connection. This is required, to keep the client responsive for additional commands, like cancel .

28.2 Passive Clients

The normal way of initializing the data channel (the channel where the backup data itself is transported) is
done by the Bareos File Daemon (client) that connects to the Bareos Storage Daemon.
In many setups, this can cause problems, as this means that:

� The client must be able to resolve the name of the Bareos Storage Daemon (often not true, you have
to do tricks with the hosts file)

� The client must be allowed to create a new connection.

� The client must be able to connect to the Bareos Storage Daemon over the network (often difficult
over NAT or Firewall)

By using Passive Client, the initialization of the datachannel is reversed, so that the storage daemon connects
to the Bareos File Daemon. This solves almost every problem created by firewalls, NAT-gateways and
resolving issues, as

� The Bareos Storage Daemon initiates the connection, and thus can pass through the same or similar
firewall rules that the director already has to access the Bareos File Daemon.

� The client never initiates any connection, thus can be completely firewalled.

� The client never needs any name resolution and is totally independent from any resolving issues.

28.2.1 Usage

To use this new feature, just configure Passive Dir
Client=yes in the client definition of the Bareos Director:

Client {

Name = client1-fd

Password = "secretpassword"

Passive = yes
[...]

}

Configuration 28.2: Enable passive mode in bareos-dir.conf

Also, prior to bareos version 15, you need to set Compatible Fd
Client=no in the bareos-fd.conf configuration

file. Since Bareos Version 15, the compatible option is set to no per default and does not need to be specified
anymore.

335

Director {

Name = bareos-dir

Password = "secretpassword"

}

Client {

Name = client1-fd

[...]

Compatible = no
}

Configuration 28.3: Disable compatible mode for the Bareos File Daemon in bareos-fd.conf

336

Chapter 29

Transport Encryption

Bareos TLS (Transport Layer Security) is built-in network encryption code to provide secure network trans-
port similar to that offered by stunnel or ssh. The data written to Volumes by the Storage daemon is not
encrypted by this code. For data encryption, please see the Data Encryption chapter.
The initial Bacula encryption implementation has been written by Landon Fuller.
Supported features of this code include:

� Client/Server TLS Requirement Negotiation

� TLSv1 Connections with Server and Client Certificate Validation

� Forward Secrecy Support via Diffie-Hellman Ephemeral Keying

This document will refer to both “server” and “client” contexts. These terms refer to the accepting and
initiating peer, respectively.
Diffie-Hellman anonymous ciphers are not supported by this code. The use of DH anonymous ciphers
increases the code complexity and places explicit trust upon the two-way CRAM-MD5 implementation.
CRAM-MD5 is subject to known plaintext attacks, and it should be considered considerably less secure than
PKI certificate-based authentication.

29.1 TLS Configuration Directives

Additional configuration directives have been added to all the daemons (Director, File daemon, and Storage
daemon) as well as the various different Console programs. These directives are defined as follows:

TLS Enable = <yes|no> (default: no)
Enable TLS support. Without setting TLS Require=yes, the connection can fall back to unencrypted

connection, if the other side does not support TLS.

TLS Require = <yes|no> (default: no)
Require TLS connections. If TLS is not required, then Bareos will connect with other daemons either

with or without TLS depending on what the other daemon requests. If TLS is required, then Bareos
will refuse any connection that does not use TLS. TLS Require=yes implicitly sets TLS Enable=yes.

TLS Certificate = <filename>
The full path and filename of a PEM encoded TLS certificate. It can be used as either a client or

server certificate. It is used because PEM files are base64 encoded and hence ASCII text based rather
than binary. They may also contain encrypted information.

TLS Key = <filename>
The full path and filename of a PEM encoded TLS private key. It must correspond to the certificate

specified in the TLS Certificate configuration directive.

TLS Verify Peer = <yes|no>
Request and verify the peers certificate.

In server context, unless the TLS Allowed CN configuration directive is specified, any client certificate
signed by a known-CA will be accepted.

In client context, the server certificate common name attribute is checked against the Address and
TLS Allowed CN configuration directives.

337

338

TLS Allowed CN = <stringlist>
Common name attribute of allowed peer certificates. If TLS Verify Peer=yes, all connection request

certificates will be checked against this list.

This directive may be specified more than once.

TLS CA Certificate File = <filename>
The full path and filename specifying a PEM encoded TLS CA certificate(s). Multiple certificates are

permitted in the file.

In a client context, one of TLS CA Certificate File or TLS CA Certificate Dir is required.

In a server context, it is only required if TLS Verify Peer is used.

TLS CA Certificate Dir = <directory>
Full path to TLS CA certificate directory. In the current implementation, certificates must be stored

PEM encoded with OpenSSL-compatible hashes, which is the subject name’s hash and an extension
of .0.

In a client context, one of TLS CA Certificate File or TLS CA Certificate Dir is required.

In a server context, it is only required if TLS Verify Peer is used.

TLS DH File = <filename>
Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange will
be used for the ephemeral keying, allowing for forward secrecy of communications. DH key exchange
adds an additional level of security because the key used for encryption/decryption by the server and
the client is computed on each end and thus is never passed over the network if Diffie-Hellman key
exchange is used. Even if DH key exchange is not used, the encryption/decryption key is always passed
encrypted. This directive is only valid within a server context.

To generate the parameter file, you may use openssl:

openssl dhparam -out dh1024.pem -5 1024

Commands 29.1: create DH key

29.2 Getting TLS Certificates

To get a trusted certificate (CA or Certificate Authority signed certificate), you will either need to purchase
certificates signed by a commercial CA or become a CA yourself, and thus you can sign all your own
certificates.
Bareos is known to work well with RSA certificates.
You can use programs like xca or TinyCA to easily manage your own CA with a Graphical User Interface.

29.3 Example TLS Configuration Files

An example of the TLS portions of the configuration files are listed below:

Director { # define myself

Name = backup1-dir

...

TLS Enable = yes

TLS Require = yes

TLS Verify Peer = yes

TLS Allowed CN = "bareos@backup1.example.com"

TLS Allowed CN = "administrator@example.com"

TLS CA Certificate File = /etc/bareos/tls/ca.pem

This is a server certificate, used for incoming

console connections.

TLS Certificate = /etc/bareos/tls/backup1/cert.pem

TLS Key = /etc/bareos/tls/backup1/key.pem

}

Storage {

Name = File

Address = backup1.example.com

...

TLS Require = yes

http://xca.sourceforge.net/

339

TLS CA Certificate File = /etc/bareos/tls/ca.pem

This is a client certificate, used by the director to

connect to the storage daemon

TLS Certificate = /etc/bareos/tls/backup1/cert.pem

TLS Key = /etc/bareos/tls/backup1/key.pem

}

Client {

Name = backup1-fd

Address = client1.example.com

...

TLS Enable = yes

TLS Require = yes

TLS CA Certificate File = /etc/bareos/tls/ca.pem

TLS Certificate = /etc/bareos/tls/backup1/cert.pem

TLS Key = /etc/bareos/tls/backup1/key.pem

}

Configuration 29.2: bareos-dir.conf

Director {

Name = backup1-dir

...

TLS Enable = yes

TLS Require = yes

TLS Verify Peer = yes

Allow only the Director to connect

TLS Allowed CN = "bareos@backup1.example.com"

TLS CA Certificate File = /etc/bareos/tls/ca.pem

This is a server certificate. It is used by connecting

directors to verify the authenticity of this file daemon

TLS Certificate = /etc/bareos/tls/client11/cert.pem

TLS Key = /etc/bareos/tls/client1/key.pem

}

FileDaemon {

Name = backup1-fd

...

you need these TLS entries so the SD and FD can

communicate

TLS Enable = yes

TLS Require = yes

TLS CA Certificate File = /etc/bareos/tls/ca.pem

TLS Certificate = /etc/bareos/tls/client1/cert.pem

TLS Key = /etc/bareos/tls/client1/key.pem

}

Configuration 29.3: bareos-fd.conf

Storage { # definition of myself

Name = backup1-sd

...

These TLS configuration options are used for incoming

file daemon connections. Director TLS settings are handled

below.

TLS Enable = yes

TLS Require = yes

Peer certificate is not required/requested -- peer validity

is verified by the storage connection cookie provided to the

File Daemon by the director.

TLS Verify Peer = no

TLS CA Certificate File = /etc/bareos/tls/ca.pem

This is a server certificate. It is used by connecting

file daemons to verify the authenticity of this storage daemon

TLS Certificate = /etc/bareos/tls/backup1/cert.pem

TLS Key = /usr/local/etc/ssl/backup1/key.pem

}

#

List Directors who are permitted to contact Storage daemon

#

Director {

Name = backup1-dir

...

340

TLS Enable = yes

TLS Require = yes

Require the connecting director to provide a certificate

with the matching CN.

TLS Verify Peer = yes

TLS Allowed CN = "bareos@backup1.example.com"

TLS CA Certificate File = /etc/bareos/tls/ca.pem

This is a server certificate. It is used by the connecting

director to verify the authenticity of this storage daemon

TLS Certificate = /etc/bareos/tls/backup1/cert.pem

TLS Key = /etc/bareos/tls/backup1/key.pem

}

Configuration 29.4: bareos-sd.conf

Chapter 30

Data Encryption

Bareos permits file data encryption and signing within the File Daemon (or Client) prior to sending data to
the Storage Daemon. Upon restoration, file signatures are validated and any mismatches are reported. At
no time does the Director or the Storage Daemon have access to unencrypted file contents.
Please note! These feature is only available, if Bareos is build against OpenSSL.
It is very important to specify what this implementation does NOT do:

� The implementation does not encrypt file metadata such as file path names, permissions, ownership
and extended attributes. However, Mac OS X resource forks are encrypted.

Encryption and signing are implemented using RSA private keys coupled with self-signed x509 public cer-
tificates. This is also sometimes known as PKI or Public Key Infrastructure.
Each File Daemon should be given its own unique private/public key pair. In addition to this key pair, any
number of ”Master Keys” may be specified – these are key pairs that may be used to decrypt any backups
should the File Daemon key be lost. Only the Master Key’s public certificate should be made available to
the File Daemon. Under no circumstances should the Master Private Key be shared or stored on the Client
machine.
The Master Keys should be backed up to a secure location, such as a CD placed in a in a fire-proof safe or
bank safety deposit box. The Master Keys should never be kept on the same machine as the Storage Daemon
or Director if you are worried about an unauthorized party compromising either machine and accessing your
encrypted backups.
While less critical than the Master Keys, File Daemon Keys are also a prime candidate for off-site backups;
burn the key pair to a CD and send the CD home with the owner of the machine.
Please note! If you lose your encryption keys, backups will be unrecoverable. always store a copy of your
master keys in a secure, off-site location.
The basic algorithm used for each backup session (Job) is:

1. The File daemon generates a session key.

2. The FD encrypts that session key via PKE for all recipients (the file daemon, any master keys).

3. The FD uses that session key to perform symmetric encryption on the data.

30.1 Encryption Technical Details

The implementation uses 128bit AES-CBC, with RSA encrypted symmetric session keys. The RSA key is
user supplied. If you are running OpenSSL >= 0.9.8, the signed file hash uses SHA-256, otherwise SHA-1
is used.
End-user configuration settings for the algorithms are not currently exposed, only the algorithms listed
above are used. However, the data written to Volume supports arbitrary symmetric, asymmetric, and digest
algorithms for future extensibility, and the back-end implementation currently supports:

Symmetric Encryption:

- 128, 192, and 256-bit AES-CBC

- Blowfish-CBC

Asymmetric Encryption (used to encrypt symmetric session keys):

- RSA

341

342

Digest Algorithms:

- MD5

- SHA1

- SHA256

- SHA512

The various algorithms are exposed via an entirely re-usable, OpenSSL-agnostic API (ie, it is possible to drop
in a new encryption backend). The Volume format is DER-encoded ASN.1, modeled after the Cryptographic
Message Syntax from RFC 3852. Unfortunately, using CMS directly was not possible, as at the time of coding
a free software streaming DER decoder/encoder was not available.

30.2 Generating Private/Public Encryption Keys

Generate a Master Key Pair with:

openssl genrsa -out master.key 2048

openssl req -new -key master.key -x509 -out master.cert

Generate a File Daemon Key Pair for each FD:

openssl genrsa -out fd-example.key 2048

openssl req -new -key fd-example.key -x509 -out fd-example.cert

cat fd-example.key fd-example.cert >fd-example.pem

Note, there seems to be a lot of confusion around the file extensions given to these keys. For example, a
.pem file can contain all the following: private keys (RSA and DSA), public keys (RSA and DSA) and (x509)
certificates. It is the default format for OpenSSL. It stores data Base64 encoded DER format, surrounded by
ASCII headers, so is suitable for text mode transfers between systems. A .pem file may contain any number
of keys either public or private. We use it in cases where there is both a public and a private key.
Above we have used the .cert extension to refer to X509 certificate encoding that contains only a single
public key.

30.3 Example Data Encryption Configurations (bareos-fd.conf)

FileDaemon {

Name = client1-fd

encryption configuration

PKI Signatures = Yes # Enable Data Signing

PKI Encryption = Yes # Enable Data Encryption

PKI Keypair = "/etc/bareos/client1-fd.pem" # Public and Private Keys

PKI Master Key = "/etc/bareos/master.cert" # ONLY the Public Key

PKI Cipher = aes128 # specify desired PKI Cipher here

}

30.4 Decrypting with a Master Key

It is preferable to retain a secure, non-encrypted copy of the client’s own encryption keypair. However,
should you lose the client’s keypair, recovery with the master keypair is possible.
You must:

� Concatenate the master private and public key into a single keypair file, ie:

cat master.key master.cert > master.keypair

� Set the PKI Keypair statement in your bareos configuration file:

PKI Keypair = master.keypair

� Start the restore. The master keypair will be used to decrypt the file data.

Chapter 31

NDMP Backups with Bareos

NDMP

� is the abbreviation for Network Data Management Protocol.

� is a protocol that transports data between Network Attached Storages (NAS) and backup devices.

� is widely used by storage product vendors and OS vendors like NetApp, Isilon, EMC, Oracle.

� information are available at http://www.ndmp.org/.

� version is currently (2016) NDMP Version 4.

� uses TCP/IP and XDR (External Data Representation) for the communication.

The Bareos NDMP implementation is based on the NDMJOB NDMP reference implementation of Traakan,
Inc., Los Altos, CA which has a BSD style license (2 clause one) with some enhancements.
An NDMP system consists of basically three elements:

Data Management Application or DMA does the administration of the backup in NDMP and com-
mands the Primary and Secondary Storage Systems to do a backup or restore operation.

Primary Storage System or DATA AGENT is the Storage System that will be backed up, e.g. a NAS
Server that is NDMP enabled.

Secondary Storage System or TAPE AGENT is the Storage System that the backup data will be stored
on.

Bareos implements the “Data Management Application” inside of the Bareos Director, and a “Secondary
Storage System” or TAPE AGENT in the Bareos Storage Daemon.
The TAPE AGENT in the Bareos Storage Daemon emulates a NDMP tape drive that has an infinite tape.
The blocks being written to the NDMP tape are stored inside of a normal Bareos backup stream and then
stored into the volumes managed by Bareos.
Therefore, there is always a pair of storage resource definitions:

� a conventional Bareos storage resource and

� a NDMP storage resource

These two are linked together and the data that is stored via NDMP into the NDMP storage resource is
being really written into the paired conventional Bareos storage resource.
On restore, the data is read by the conventional resource, and then recovered as NDMP stream from the
NDMP resource.

31.1 Example Setup for NDMP backup

This example starts from a clean default Bareos installation.

31.1.1 Enable NDMP on your storage appliance

The storage appliance needs to be configured to allow NDMP connections. Therefore usually the NDMP
service needs to be enabled and configured with a username and password.

343

http://www.ndmp.org/

344

Figure 31.1: Relationship between Bareos and NDMP components

31.1.2 Bareos Director: Configure NDMP Client Resource

Add a Client resource to the Bareos Director configuration and configure it to access your NDMP storage
system (Primary Storage System/DATA AGENT).

� Protocol Dir
Client must be either NDMPv2, NDMPv3 or NDMPv4.

� Port Dir
Client is set to the NDMP Port (usually 10000).

� Username Dir
Client and Password Dir

Client are used for the authentication against the NDMP Storage System.

� Auth Type Dir
Client is either Cleartext or MD5. NDMP supports both.

In our example we connect to a Isilon storage appliance emulator:

Client {

Name = ndmp-client

Address = 10.20.250.91 # IP/FQDN of the storage appliance

Port = 10000 # Default port for NDMP

Protocol = NDMPv4 # Need to specify protocol before password as protocol determines password ↙
↪→ encoding used

Auth Type = Clear # Cleartext Authentication

Username = "ndmpadmin" # username of the NDMP user on the DATA AGENT e.g. storage box being backuped.

Password = "test" # password of the NDMP user on the DATA AGENT e.g. storage box being backuped.

}

Configuration 31.1:

Verify, that you can access your Primary Storage System via Bareos:

*status client=ndmp-client

Data Agent 10.20.250.91 NDMPv4

Host info

hostname isilonsim-1

os_type Isilon OneFS

os_vers v7.1.1.5

hostid 005056ad8483ba43cc55a711cd384506e3c1

Server info

vendor Isilon

345

product Isilon NDMP

revision 2.2

auths (2) NDMP4_AUTH_TEXT NDMP4_AUTH_MD5

Connection types

addr_types (2) NDMP4_ADDR_TCP NDMP4_ADDR_LOCAL

Backup type info of tar format

attrs 0x7fe

set FILESYSTEM=/ifs

set FILES=

set EXCLUDE=

set PER_DIRECTORY_MATCHING=N

set HIST=f

set DIRECT=N

set LEVEL=0

set UPDATE=Y

set RECURSIVE=Y

set ENCODING=UTF-8

set ENFORCE_UNIQUE_NODE=N

set PATHNAME_SEPARATOR=/

set DMP_NAME=

set BASE_DATE=0

set NDMP_UNICODE_FH=N

Backup type info of dump format

attrs 0x7fe

set FILESYSTEM=/ifs

set FILES=

set EXCLUDE=

set PER_DIRECTORY_MATCHING=N

set HIST=f

set DIRECT=N

set LEVEL=0

set UPDATE=Y

set RECURSIVE=Y

set ENCODING=UTF-8

set ENFORCE_UNIQUE_NODE=N

set PATHNAME_SEPARATOR=/

set DMP_NAME=

set BASE_DATE=0

set NDMP_UNICODE_FH=N

File system /ifs

physdev OneFS

unsupported 0x0

type NFS

status

space 12182519808 total, 686768128 used, 11495751680 avail

inodes 17664000 total, 16997501 used

set MNTOPTS=

set MNTTIME=00:00:00 00:00:00

bconsole 31.2: verify connection to NDMP Primary Storage System

This output shows that the access to the storage appliance was successful.

31.1.3 Bareos Storage Daemon: Configure NDMP

Enabling NDMP

To enable the NDMP TAPE AGENT inside of the Bareos Storage Daemon, set NDMP Enable Sd
Storage=yes:

#

Default SD config block: enable the NDMP protocol,

otherwise it won’t listen on port 10000.

#

346

Storage {

Name =

...

NDMP Enable = yes

}

Configuration 31.3: enable NDMP in Bareos Storage Daemon

Add a NDMP resource

Additionally, we need to define the access credentials for our NDMP TAPE AGENT (Secondary Storage)
inside of this Storage Daemon.
These are configured by adding a NDMP resource to bareos-sd.conf:

#

This resource gives the DMA in the Director access to the Bareos SD via the NDMP protocol.

This option is used via the NDMP protocol to open the right TAPE AGENT connection to your

Bareos SD via the NDMP protocol. The initialization of the SD is done via the native protocol

and is handled via the PairedStorage keyword.

#

Ndmp {

Name = bareos-dir-isilon

Username = ndmpadmin

Password = test

AuthType = Clear

}

Configuration 31.4:

Username and Password can be anything, but they will have to match the settings in the Bareos Director
NDMP Storage resource we configure next.
Now restart the Bareos Storage Daemon. If everything is correct, the Bareos Storage Daemon starts and
listens now on the usual port (9103) and additionally on port 10000 (ndmp).

root@linux:~# netstat -lntp | grep bareos-sd
tcp 0 0 0.0.0.0:9103 0.0.0.0:* LISTEN 10661/bareos-sd

tcp 0 0 0.0.0.0:10000 0.0.0.0:* LISTEN 10661/bareos-sd

Commands 31.5:

31.1.4 Bareos Director: Configure a Paired Storage

For NDMP Backups, we always need two storages that are paired together. The default configuration already
has a Storage FileDir

Storage defined:

Storage {

Name = File

Address = bareos

Password = "pNZ3TvFAL/t+MyOIQo58p5B/oB79SFncdAmLXKHa9U59"

Device = FileStorage

Media Type = File

}

Configuration 31.6:

We now add a paired storage to the already existing FileDir storage:

#

Same storage daemon but via NDMP protocol.

We link via the PairedStorage config option the Bareos SD

instance definition to a NDMP TAPE AGENT.

#

Storage {

Name = NDMPFile

Address = bareos

Port = 10000

Protocol = NDMPv4

Auth Type = Clear

Username = ndmpadmin

Password = "test"

Device = FileStorage

Media Type = File

347

PairedStorage = File

}

Configuration 31.7:

The settings of Username and Password need to match the settings of the Bareos Storage Daemon’s NDMP
resource we added before. The address will be used by the storage appliance’s NDMP Daemon to connect
to the Bareos Storage Daemon via NDMP. Make sure that the Storage appliance can resolve the name or
use an IP address.
Now save the director resource and restart the Bareos Director. Verify that the configuration is correct:

*status storage=NDMPFile
Connecting to Storage daemon File at bareos:9103

bareos-sd Version: 15.2.2 (16 November 2015) x86_64-redhat-linux-gnu redhat Red Hat Enterprise ↙
↪→ Linux Server release 7.0 (Maipo)

Daemon started 14-Jan-16 10:10. Jobs: run=0, running=0.

Heap: heap=135,168 smbytes=34,085 max_bytes=91,589 bufs=75 max_bufs=77

Sizes: boffset_t=8 size_t=8 int32_t=4 int64_t=8 mode=0 bwlimit=0kB/s

Running Jobs:

No Jobs running.

====

Jobs waiting to reserve a drive:

====

Terminated Jobs:

====

Device status:

Device "FileStorage" (/var/lib/bareos/storage) is not open.

==

====

Used Volume status:

====

====

*

bconsole 31.8: verify connection to the Bareos Storage Daemon

The output looks the same, as if a status storage=File would have been called.

31.1.5 Bareos Director: Configure NDMP Fileset

To specify what files and directories from the storage appliance should be backed up, a Fileset needs to be
specified. In our example, we decided to backup /ifs/home directory.
The specified directory needs to be a filesystem or a subdirectory of a filesystem which can be accessed by
NDMP. Which filesystems are available is showed in the status client output of the NDMP client.
Additionally, NDMP can be configured via NDMP environment variables. These can be specified in the
Options Block of the Fileset with the Meta keyword. Which variables are available is partly depending on
the NDMP implementation of the Storage Appliance.

Fileset {

Name = "NDMP Fileset"

Include {

Options {

meta = "USE_TBB_IF_AVAILABLE=y"

meta = "BUTYPE=DUMP"

meta = "ENCODING=ISO_8859_1"

meta = "RESTORE_HARDLINK_BY_TABLE=y"

meta = "FH_REPORT_FULL_DIRENTS=y"

}

File = /ifs/home

348

}

}

Configuration 31.9: NDMP Fileset

Use multiple File directives in Include Dir
FileSet to backup multiple directories.

Please note! Some NDMP environment variables are set automatically by the DMA in the director and
should NOT be set by the user. The following environment variables are currently set automatically:

� HIST

� TYPE

� DIRECT

� LEVEL

� UPDATE

� EXCLUDE

� INCLUDE

� FILESYSTEM

� PREFIX

Please note! Normally (Protocol Dir
Client=Native) Filesets get handled by the Bareos File Daemon. When

connecting directly to a NDMP Clients (Protocol Dir
Client=NDMP*), no Bareos File Daemon is involved and

therefore most Fileset options can’t be used. Instead, parameters are handled via Options - Meta from
Include Dir

FileSet.

31.1.6 Bareos Director: Configure NDMP Jobs

To do NDMP backups and restores, some special settings need to be configured. We define special Backup
and Restore jobs for NDMP.

Job {

Name = "ndmp-backup-job"

Type = Backup

Protocol = NDMP

Level = Incremental

Client = ndmp-client

Backup Format = dump

FileSet = "NDMP Fileset"

Storage = NDMPFile

Pool = Full

Messages = Standard

}

Configuration 31.10: NDMP backup job

Job {

Name = "ndmp-restore-job"

Type = Restore

Protocol = NDMP

Client = ndmp-client

Backup Format = dump

FileSet = "NDMP Fileset"

Storage = NDMPFile

Pool = Full

Messages = Standard

Where = /

}

Configuration 31.11: NDMP restore job

� Backup Format Dir
Job=dump is used in our example. Other Backup Formats have other advantages/dis-

advantages.

349

Figure 31.2: NDMP configuration overview

31.2 Run NDMP Backup

Now we are ready to do our first NDMP backup:

*run job=ndmp-backup-job
Using Catalog "MyCatalog"

Run Backup job

JobName: ndmp-backup-job

Level: Incremental

Client: ndmp-client

Format: dump

FileSet: NDMP Fileset

Pool: Full (From Job resource)

Storage: NDMPFile (From Job resource)

When: 2016-01-14 10:48:04

Priority: 10

OK to run? (yes/mod/no): yes
Job queued. JobId=1

*wait jobid=1
JobId=1

JobStatus=OK (T)

*list joblog jobid=1
2016-01-14 10:57:53 bareos-dir JobId 1: Start NDMP Backup JobId 1, ↙

↪→ Job=NDMPJob.2016-01-14_10.57.51_04

2016-01-14 10:57:53 bareos-dir JobId 1: Created new Volume "Full-0001" in catalog.

2016-01-14 10:57:53 bareos-dir JobId 1: Using Device "FileStorage" to write.

2016-01-14 10:57:53 bareos-dir JobId 1: Opening tape drive ↙
↪→ LPDA-DEJC-ENJL-AHAI-JCBD-LICP-LKHL-IEDK@/ifs/home%0 read/write

2016-01-14 10:57:53 bareos-sd JobId 1: Labeled new Volume "Full-0001" on device "FileStorage" ↙
↪→ (/var/lib/bareos/storage).

2016-01-14 10:57:53 bareos-sd JobId 1: Wrote label to prelabeled Volume "Full-0001" on device ↙
↪→ "FileStorage" (/var/lib/bareos/storage)

2016-01-14 10:57:53 bareos-dir JobId 1: Commanding tape drive to rewind

2016-01-14 10:57:53 bareos-dir JobId 1: Waiting for operation to start

2016-01-14 10:57:53 bareos-dir JobId 1: Async request NDMP4_LOG_MESSAGE

2016-01-14 10:57:53 bareos-dir JobId 1: Operation started

2016-01-14 10:57:53 bareos-dir JobId 1: Monitoring backup

2016-01-14 10:57:53 bareos-dir JobId 1: LOG_MESSAGE: ’Filetransfer: Transferred 5632 bytes in ↙

350

↪→ 0.087 seconds throughput of 63.133 KB/s’

2016-01-14 10:57:53 bareos-dir JobId 1: LOG_MESSAGE: ’Filetransfer: Transferred 5632 total ↙
↪→ bytes ’

2016-01-14 10:57:53 bareos-dir JobId 1: LOG_MESSAGE: ’CPU user=0.016416 sys=0.029437 ↙
↪→ ft=0.077296 cdb=0.000000’

2016-01-14 10:57:53 bareos-dir JobId 1: LOG_MESSAGE: ’maxrss=14576 in=13 out=22 vol=155 ↙
↪→ inv=72’

2016-01-14 10:57:53 bareos-dir JobId 1: LOG_MESSAGE: ’

Objects (scanned/included):

Regular Files: (1/1)

Sparse Files: (0/0)

Stub Files: (0/0)

Directories: (2/2)

ADS Entries: (0/0)

ADS Containers: (0/0)

Soft Links: (0/0)

Hard Links: (0/0)

Block Device: (0/0)

Char Device: (0/0)

FIFO: (0/0)

Socket: (0/0)

Whiteout: (0/0)

Unknown: (0/0)’

2016-01-14 10:57:53 bareos-dir JobId 1: LOG_MESSAGE: ’

Dir Depth (count)

Total Dirs: 2

Max Depth: 1

File Size (count)

== 0 0

<= 8k 1

<= 64k 0

<= 1M 0

<= 20M 0

<= 100M 0

<= 1G 0

> 1G 0

Total Files: 1

Total Bytes: 643

Max Size: 643

Mean Size: 643’

2016-01-14 10:57:53 bareos-dir JobId 1: LOG_MESSAGE: ’

File History

Num FH_HIST_FILE messages: 0

Num FH_HIST_DIR messages: 6

Num FH_HIST_NODE messages: 3’

2016-01-14 10:57:54 bareos-dir JobId 1: Async request NDMP4_NOTIFY_MOVER_HALTED

2016-01-14 10:57:54 bareos-dir JobId 1: DATA: bytes 2053KB MOVER: written 2079KB record 33

2016-01-14 10:57:54 bareos-dir JobId 1: Operation done, cleaning up

2016-01-14 10:57:54 bareos-dir JobId 1: Waiting for operation to halt

2016-01-14 10:57:54 bareos-dir JobId 1: Commanding tape drive to NDMP9_MTIO_EOF 2 times

2016-01-14 10:57:54 bareos-dir JobId 1: Commanding tape drive to rewind

2016-01-14 10:57:54 bareos-dir JobId 1: Closing tape drive ↙
↪→ LPDA-DEJC-ENJL-AHAI-JCBD-LICP-LKHL-IEDK@/ifs/home%0

2016-01-14 10:57:54 bareos-dir JobId 1: Operation halted, stopping

2016-01-14 10:57:54 bareos-dir JobId 1: Operation ended OKAY

2016-01-14 10:57:54 bareos-sd JobId 1: Elapsed time=00:00:01, Transfer rate=2.128 M Bytes/second

2016-01-14 10:57:54 bareos-dir JobId 1: Bareos bareos-dir 15.2.2 (16Nov15):

Build OS: x86_64-redhat-linux-gnu redhat Red Hat Enterprise Linux Server ↙
↪→ release 7.0 (Maipo)

351

JobId: 1

Job: ndmp-backup-job.2016-01-14_10.57.51_04

Backup Level: Full

Client: "ndmp-client"

FileSet: "NDMP Fileset" 2016-01-14 10:57:51

Pool: "Full" (From Job resource)

Catalog: "MyCatalog" (From Client resource)

Storage: "NDMPFile" (From Job resource)

Scheduled time: 14-Jan-2016 10:57:51

Start time: 14-Jan-2016 10:57:53

End time: 14-Jan-2016 10:57:54

Elapsed time: 1 sec

Priority: 10

NDMP Files Written: 3

SD Files Written: 1

NDMP Bytes Written: 2,102,784 (2.102 MB)

SD Bytes Written: 2,128,987 (2.128 MB)

Rate: 2102.8 KB/s

Volume name(s): Full-0001

Volume Session Id: 4

Volume Session Time: 1452764858

Last Volume Bytes: 2,131,177 (2.131 MB)

Termination: Backup OK

bconsole 31.12: run NDMP backup

We have successfully created our first NDMP backup.
Let us have a look what files are in our backup:

*list files jobid=1
/@NDMP/ifs/home%0

/ifs/home/

/ifs/home/admin/

/ifs/home/admin/.zshrc

bconsole 31.13: list the files of the backup job

The real backup data is stored in the file /@NDMP/ifs/home%0 (we will refer to it as “NDMP main backup
file” or “main backup file” later on). One NDMP main backup file is created for every directory specified in
the used Fileset. The other files show the file history and are hardlinks to the backup file.

31.2.1 NDMP Backup Level

The trailing number in the main backup file (after the % character) indicates the NDMP backup level:
Level Description

0 Full NDMP backup.
1 Differential or first Incremental backup.

2-9 second to ninth Incremental backup.

Differential Backups are supported. The NDMP backup level will be 1, visible as trailing number in the
backup file (/@NDMP/ifs/home%1).

Incremental Backups are supported. The NDMP backup level will increment with each run, until a Full
(0) or Differential (1) will be made. The maximum backup level will be 9. Additional Incremental backups
will result in a failed job and the message:

2016-01-21 13:35:51 bareos-dir JobId 12: Fatal error: NDMP dump format doesn’t support more than 8 ↙
↪→ incrementals, please run a Differential or a Full Backup

Messages 31.14:

31.3 Run NDMP Restore

Now that we have a NDMP backup, we of course also want to restore some data from the backup. If the
backup we just did saved the Filehistory, we are able to select single files for restore. Otherwise, we will only
be able to restore the whole backup.

352

31.3.1 Full Restore

Either select all files or the main backup file (/@NDMP/ifs/home%0). If file history is not included in the
backup job, than only the main backup file is available.

31.3.2 Restore files to original path

*restore jobid=1
You have selected the following JobId: 1

Building directory tree for JobId(s) 1 ...

2 files inserted into the tree.

You are now entering file selection mode where you add (mark) and

remove (unmark) files to be restored. No files are initially added, unless

you used the "all" keyword on the command line.

Enter "done" to leave this mode.

cwd is: /

$ mark /ifs/home/admin/.zshrc
$ done
Bootstrap records written to /var/lib/bareos/bareos-dir.restore.1.bsr

The job will require the following

Volume(s) Storage(s) SD Device(s)

===

Full-0001 File FileStorage

Volumes marked with "*" are online.

1 file selected to be restored.

The defined Restore Job resources are:

1: RestoreFiles

2: ndmp-restore-job

Select Restore Job (1-2): 2
Defined Clients:

1: bareos-fd

2: ndmp-client

Select the Client (1-2): 2
Run Restore job

JobName: ndmp-backup-job

Bootstrap: /var/lib/bareos/bareos-dir.restore.1.bsr

Where: /

Replace: Always

FileSet: NDMP Fileset

Backup Client: ndmp-client

Restore Client: ndmp-client

Format: dump

Storage: File

When: 2016-01-14 11:04:46

Catalog: MyCatalog

Priority: 10

Plugin Options: *None*

OK to run? (yes/mod/no): yes
Job queued. JobId=2

*wait jobid=2
JobId=2

JobStatus=OK (T)

*list joblog jobid=2
14-Jan 11:04 bareos-dir JobId 2: Start Restore Job ndmp-backup-job.2016-01-14_11.04.53_05

14-Jan 11:04 bareos-dir JobId 2: Using Device "FileStorage" to read.

353

14-Jan 11:04 bareos-dir JobId 2: Opening tape drive ↙
↪→ KKAE-IMLO-NHJD-GOCO-GJCO-GEHB-BODL-ADNG@/ifs/home read-only

14-Jan 11:04 bareos-dir JobId 2: Commanding tape drive to rewind

14-Jan 11:04 bareos-dir JobId 2: Waiting for operation to start

14-Jan 11:04 bareos-sd JobId 2: Ready to read from volume "Full-0001" on device "FileStorage" ↙
↪→ (/var/lib/bareos/storage).

14-Jan 11:04 bareos-sd JobId 2: Forward spacing Volume "Full-0001" to file:block 0:194.

14-Jan 11:04 bareos-dir JobId 2: Async request NDMP4_LOG_MESSAGE

14-Jan 11:04 bareos-dir JobId 2: Operation started

14-Jan 11:04 bareos-dir JobId 2: Monitoring recover

14-Jan 11:04 bareos-dir JobId 2: DATA: bytes 0KB MOVER: read 0KB record 0

14-Jan 11:04 bareos-dir JobId 2: LOG_MESSAGE: ’Filetransfer: Transferred 1048576 bytes in 0.135 ↙
↪→ seconds throughput of 7557.139 KB/s’

14-Jan 11:04 bareos-dir JobId 2: OK: /admin/.zshrc

14-Jan 11:04 bareos-dir JobId 2: LOG_MESSAGE: ’

Objects:

Regular Files: (1)

Stub Files: (0)

Directories: (0)

ADS Entries: (0)

Soft Links: (0)

Hard Links: (0)

Block Device: (0)

Char Device: (0)

FIFO: (0)

Socket: (0)

Unknown: (0)’

14-Jan 11:04 bareos-dir JobId 2: LOG_MESSAGE: ’

File Size (count)

== 0 0

<= 8k 1

<= 64k 0

<= 1M 0

<= 20M 0

<= 100M 0

<= 1G 0

> 1G 0

Total Files: 1

Total Bytes: 643

Max Size: 643

Mean Size: 643’

14-Jan 11:04 bareos-dir JobId 2: Async request NDMP4_NOTIFY_MOVER_PAUSED

14-Jan 11:04 bareos-dir JobId 2: DATA: bytes 1024KB MOVER: read 2079KB record 32

14-Jan 11:04 bareos-dir JobId 2: Mover paused, reason=NDMP9_MOVER_PAUSE_EOF

14-Jan 11:04 bareos-dir JobId 2: End of tapes

14-Jan 11:04 bareos-dir JobId 2: DATA: bytes 1024KB MOVER: read 2079KB record 32

14-Jan 11:04 bareos-dir JobId 2: Operation done, cleaning up

14-Jan 11:04 bareos-dir JobId 2: Waiting for operation to halt

14-Jan 11:04 bareos-dir JobId 2: Commanding tape drive to rewind

14-Jan 11:04 bareos-dir JobId 2: Closing tape drive ↙
↪→ KKAE-IMLO-NHJD-GOCO-GJCO-GEHB-BODL-ADNG@/ifs/home

14-Jan 11:04 bareos-dir JobId 2: Operation halted, stopping

14-Jan 11:04 bareos-dir JobId 2: Operation ended OKAY

14-Jan 11:04 bareos-dir JobId 2: LOG_FILE messages: 1 OK, 0 ERROR, total 1 of 1

14-Jan 11:04 bareos-dir JobId 2: Bareos bareos-dir 15.2.2 (16Nov15):

Build OS: x86_64-redhat-linux-gnu redhat Red Hat Enterprise Linux Server ↙
↪→ release 7.0 (Maipo)

JobId: 2

Job: ndmp-backup-job.2016-01-14_11.04.53_05

Restore Client: ndmp-client

Start time: 14-Jan-2016 11:04:55

End time: 14-Jan-2016 11:04:57

354

Elapsed time: 2 secs

Files Expected: 1

Files Restored: 1

Bytes Restored: 1,048,576

Rate: 524.3 KB/s

SD termination status: OK

Termination: Restore OK

bconsole 31.15:

31.3.3 Restore files to different path

The restore location is determined by the Where Dir
Job setting of the restore job. In NDMP, this parameter

works in a special manner, the prefix can be either “relative” to the filesystem or “absolute”. If a prefix is
set in form of a directory (like /bareos-restores), it will be a relative prefix and will be added between the
filesystem and the filename. This is needed to make sure that the data is restored in a different directory,
but into the same filesystem. If the prefix is set with a leading caret (ˆ), it will be an absolute prefix and will
be put at the front of the restore path. This is needed if the restored data should be stored into a different
filesystem.
Example:

original file name where restored file
/ifs/home/admin/.zshrc /bareos-restores /ifs/home/bareos-restores/admin/.zshrc

/ifs/home/admin/.zshrc ˆ/ifs/data/bareos-restores /ifs/data/bareos-restores/admin/.zshrc

31.4 NDMP Copy Jobs

To be able to do copy jobs, we need to have a second storage resource where we can copy the data to.
Depending on your requirements, this resource can be added to the existing Bareos Storage Daemon (e.g.
autochanger-0Sd

Storage for tape based backups) or to an additional Bareos Storage Daemon.
We set up an additional Bareos Storage Daemon on a host named bareos-sd2.example.com with the default
FileStorageSd

Storage device.
When this is done, add a second storage resource File2Dir

Storage to the bareos-dir.conf:

Storage {

Name = File2

Address = bareos-sd2.example.com

Password = <secretpassword>

Device = FileStorage

Media Type = File

}

Configuration 31.16: Storage resource File2

Copy Jobs copy data from one pool to another (see Migration and Copy). So we need to define a pool where
the copies will be written to:
Add a Pool that the copies will run to:

#

Copy Destination Pool

#

Pool {

Name = Copy

Pool Type = Backup

Recycle = yes # Bareos can automatically recycle Volumes

AutoPrune = yes # Prune expired volumes

Volume Retention = 365 days # How long should the Full Backups be kept? (#06)

Maximum Volume Bytes = 50G # Limit Volume size to something reasonable

Maximum Volumes = 100 # Limit number of Volumes in Pool

Label Format = "Copy-" # Volumes will be labeled "Full-<volume-id>"

Storage = File2 # Pool belongs to Storage File2

}

Configuration 31.17: Pool resource Copy

Then we need to define the just defined pool as the Next Pool Dir
Pool of the pool that actually holds the data

to be copied.
In our case this is the FullDir

Pool Pool:

355

#

Full Pool definition

#

Pool {

Name = Full

[...]

Next Pool = Copy # <- this line needs to be added!

}

Configuration 31.18: add Next Pool setting

Finally, we need to define a Copy Job that will select the jobs that are in the FullDir
Pool pool and copy them

over to the CopyDir
Pool pool reading the data via the FileDir

Storage Storage and writing the data via the File2Dir
Storage

Storage:

Job {

Name = NDMPCopy

Type = Copy

Messages = Standard

Selection Type = PoolUncopiedJobs

Pool = Full

Storage = NDMPFile

}

Configuration 31.19: NDMP copy job

After restarting the director and storage daemon, we can run the Copy job:

*run job=NDMPCopy
Run Copy job

JobName: NDMPCopy

Bootstrap: *None*

Pool: Full (From Job resource)

NextPool: Copy (From unknown source)

Write Storage: File2 (From Storage from Run NextPool override)

JobId: *None*

When: 2016-01-21 09:19:49

Catalog: MyCatalog

Priority: 10

OK to run? (yes/mod/no): yes
Job queued. JobId=74

*wait jobid=74
JobId=74

JobStatus=OK (T)

*list joblog jobid=74
21-Jan 09:19 bareos-dir JobId 74: The following 1 JobId was chosen to be copied: 73

21-Jan 09:19 bareos-dir JobId 74: Automatically selected Catalog: MyCatalog

21-Jan 09:19 bareos-dir JobId 74: Using Catalog "MyCatalog"

21-Jan 09:19 bareos-dir JobId 75: Copying using JobId=73 Job=NDMPJob.2016-01-21_09.18.50_49

21-Jan 09:19 bareos-dir JobId 75: Bootstrap records written to ↙
↪→ /var/lib/bareos/bareos-dir.restore.20.bsr

21-Jan 09:19 bareos-dir JobId 74: Job queued. JobId=75

21-Jan 09:19 bareos-dir JobId 74: Copying JobId 75 started.

21-Jan 09:19 bareos-dir JobId 74: Bareos bareos-dir 15.2.2 (16Nov15):

Build OS: x86_64-redhat-linux-gnu redhat Red Hat Enterprise Linux Server ↙
↪→ release 7.0 (Maipo)

Current JobId: 74

Current Job: NDMPCopy.2016-01-21_09.19.50_50

Catalog: "MyCatalog" (From Default catalog)

Start time: 21-Jan-2016 09:19:52

End time: 21-Jan-2016 09:19:52

Elapsed time: 0 secs

Priority: 10

Termination: Copying -- OK

21-Jan 09:19 bareos-dir JobId 75: Start Copying JobId 75, Job=NDMPCopy.2016-01-21_09.19.52_51

21-Jan 09:19 bareos-dir JobId 75: Using Device "FileStorage" to read.

21-Jan 09:19 bareos-dir JobId 76: Using Device "FileStorage2" to write.

356

21-Jan 09:19 bareos-sd JobId 75: Ready to read from volume "Full-0001" on device "FileStorage" ↙
↪→ (/var/lib/bareos/storage).

21-Jan 09:19 bareos-sd JobId 76: Volume "Copy-0004" previously written, moving to end of data.

21-Jan 09:19 bareos-sd JobId 76: Ready to append to end of Volume "Copy-0004" size=78177310

21-Jan 09:19 bareos-sd JobId 75: Forward spacing Volume "Full-0001" to file:block 0:78177310.

21-Jan 09:19 bareos-sd JobId 75: End of Volume at file 0 on device "FileStorage" ↙
↪→ (/var/lib/bareos/storage), Volume "Full-0001"

21-Jan 09:19 bareos-sd JobId 75: End of all volumes.

21-Jan 09:19 bareos-sd JobId 76: Elapsed time=00:00:01, Transfer rate=64.61 K Bytes/second

21-Jan 09:19 bareos-dir JobId 75: Bareos bareos-dir 15.2.2 (16Nov15):

Build OS: x86_64-redhat-linux-gnu redhat Red Hat Enterprise Linux Server ↙
↪→ release 7.0 (Maipo)

Prev Backup JobId: 73

Prev Backup Job: NDMPJob.2016-01-21_09.18.50_49

New Backup JobId: 76

Current JobId: 75

Current Job: NDMPCopy.2016-01-21_09.19.52_51

Backup Level: Incremental

Client: ndmp-client

FileSet: "NDMP Fileset"

Read Pool: "Full" (From Job resource)

Read Storage: "NDMPFile" (From Job resource)

Write Pool: "Copy" (From Job Pool’s NextPool resource)

Write Storage: "File2" (From Storage from Pool’s NextPool resource)

Next Pool: "Copy" (From Job Pool’s NextPool resource)

Catalog: "MyCatalog" (From Default catalog)

Start time: 21-Jan-2016 09:19:54

End time: 21-Jan-2016 09:19:54

Elapsed time: 0 secs

Priority: 10

SD Files Written: 1

SD Bytes Written: 64,614 (64.61 KB)

Rate: 0.0 KB/s

Volume name(s): Copy-0004

Volume Session Id: 43

Volume Session Time: 1453307753

Last Volume Bytes: 78,242,384 (78.24 MB)

SD Errors: 0

SD termination status: OK

Termination: Copying OK

bconsole 31.20: run copy job

Now we successfully copied over the NDMP job.
Please note! list jobs will only show the number of main backup files as JobFiles. However, with list

files jobid= .. . all files are visible.

31.4.1 Restore to NDMP Primary Storage System

Unfortunately, we are not able to restore the copied data to our NDMP storage. If we try we get this
message:

21-Jan 09:21 bareos-dir JobId 77: Fatal error: Read storage File2 doesn’t point to storage definition with ↙
↪→ paired storage option.

Messages 31.21:

To be able to do NDMP operations from the storage that was used to store the copies, we need to define
a NDMP storage that is paired with it. The definition is very similar to our NDMPFileDir

Storage Storage, as we
want to restore the data to the same NDMP Storage system:

Storage {

Name = NDMPFile2

Address = bareos-sd2.example.com

Port = 10000

Protocol = NDMPv4

Auth Type = Clear

Username = ndmpadmin

357

Password = "test"

Device = FileStorage2

Media Type = File

PairedStorage = File2

}

Configuration 31.22: add paired Storage resource for File2

Also we have to configure NDMP on the Bareos Storage Daemon bareos-sd2.example.com. For this follow
the instruction from Bareos Storage Daemon: Configure NDMP.

After this, a restore from bareos-sd2.example.com directly to the NDMP Primary Storage System is
possible.

31.5 NDMP Debugging

To debug the NDMP backups, these settings can be adapted:

� NDMP Snooping Dir
Director

� NDMP Log Level Dir
Director

� NDMP Log Level Dir
Client

� NDMP Snooping Sd
Storage

� NDMP Log Level Sd
Storage

This will create a lot of debugging output that will help to find the problem during NDMP backups.

31.6 Limitations

31.6.1 NDMP Job limitations when scanning in volumes

For NDMP jobs, all data is stored into a single big file. The file and directory information (File History in
NDMP Terms) is stored as hardlinks to this big file.

File information are not available in the Bareos backup stream. As hardlink information is only
stored in the Bareos database, but not int the backup stream itself, it is not possible to recover the file
history information from the NDMP stream with bscan.

As storing the database dump for disaster recovery and storing the bootstrap file offsite is recommended
anyway (see Steps to Take Before Disaster Strikes), this should be not a big problem in correctly setup
environments.

For the same reason, the information about the number of files of a job (e.g. JobFiles with list jobs

command) is limited to the number of NDMP backup files in copied jobs.

31.6.2 Single file restore on incremental backups

No single file restore on merged backups. Unfortunately, it is currently (bareos-15.2.2) not possible
to restore a chain of Full and Incremental backups at once. The workaround for that problem is to restore
the full backup and each incremental each in a single restore operation.

31.6.3 Restore always transfers the full main backup file to the Primary Storage
System

On restore, the full main backup file (@NDMP/...%.) is always transfered back to the Primary Storage System,
together with a description, want files to restore.

The reason for this is that the Primary Storage System handles the backup data by itself. Bareos will not
modify the backup data it receives from the Primary Storage System.

358

31.6.4 Temporary memory mapped database

64-bit system recommended. The Bareos Director uses a memory mapped database (LMBD) to tem-
porarily store NDMP file information. On some 32-bit systems the default File History Size Dir

Job requires
a larger memory area than available. In this case, you either have to lower the File History Size Dir

Job or
preferably run the Bareos Director on a 64-bit system.

31.7 Tested Environments

Bareos NDMP support have been tested against:
Vendor Product NDMP Subsystem Bareos version Features Remarks
Isilon Isilon OneFS v7.1.1.5 Isilon NDMP 2.2 bareos-15.2.2
NetApp Release 8.2.3 7-Mode bareos-15.2.2
Oracle/Sun ZFS Storage Appliance, OS 8.3 bareos-15.2.2

Chapter 32

Catalog Maintenance

32.1 Catalog Database

Bareos stores its catalog in a database. Different database backends are supported:

� PostgreSQL

� MariaDB/MySQL (see MySQL/MariaDB Support)

� Sqlite (only for testing)

What database will be used, can be configured in the Bareos Director configuration, see the Catalog Resource.

The database often runs on the same server as the Bareos Director. However, it is also possible to run it on
a different system. This might require some more manual configuration.

32.1.1 dbconfig-common (Debian)

Since Bareos Version >= 14.2.0 the Debian (and Ubuntu) based packages support the dbconfig-common

mechanism to create and update the Bareos database, according to the user choices.

The first choice is, if dbconfig-common should be used at all. If you decide against it, the database must be
configured manually, see Manual Configuration.

If you decided to use dbconfig-common, the next question will only be asked, if more than one Bareos
database backend (bareos-database-*) is installed. If this is the case, select the database backend you
want to use.

Depending on the selected database backend, more questions about how to access the database will be asked.
Often, the default values are suitable.

The dbconfig-common configuration (and credentials) is done by the bareos-database-common package.
Settings are stored in the file /etc/dbconfig-common/bareos-database-common.conf.

The Bareos database backend will get automatically configured in /etc/bareos/bareos-dir.conf. A later
reconfiguration might require manual adapt changes.
Please note! When using the PostgreSQL backend and updating to Bareos < 14.2.3, it is necessary to
manually grant database permissions (grant_ bareos_ privileges), normally by

root@linux:~# su - postgres -c /usr/lib/bareos/scripts/grant bareos privileges

Commands 32.1:

For details see chapter Manual Configuration.

359

360

32.1.2 Manual Configuration

Bareos comes with a number of scripts to prepare and update the databases. All these scripts are located
in the Bareos script directory, normally at /usr/lib/bareos/scripts/.

Script Stage Description

create_bareos_database installation create Bareos database
make_bareos_tables installation create Bareos tables
grant_bareos_privileges installation grant database access privileges
update_bareos_tables update update the database schema
drop_bareos_tables deinstallation remove Bareos database tables
drop_bareos_database deinstallation remove Bareos database
make_catalog_backup.pl backup backup the Bareos database, default on Linux
make_catalog_backup backup backup the Bareos database for systems without Perl
delete_catalog_backup backup helper remove the temporary Bareos database backup file

The database preparation scripts have following configuration options:

db type

� command line parameter $1

� config file /etc/bareos/bareos-dir.conf: catalog.MyCatalog.dbdriver

� installed database backends

� fallback: postgresql

db name

� environment variable db_name

� config file /etc/bareos/bareos-dir.conf: catalog.MyCatalog.dbname

� default: bareos

db user

� environment variable db_user

� config file /etc/bareos/bareos-dir.conf: catalog.MyCatalog.dbuser

� default: bareos

db password

� environment variable db_password

� config file /etc/bareos/bareos-dir.conf: catalog.MyCatalog.dbpassword

� default: none

Reading the settings from the configuration file /etc/bareos/bareos-dir.confis of course only possible,
if the current user have read access to this file. The normal PostgreSQL administrator user (postgres)
don’t have these permissions. So if you plan to use non-default database settings, you might add the user
postgres to the group bareos.
The database preparation scripts need to have password-less administrator access to the database. Depending
on the distribution you’re using, this require additional configuration. See the following section about howto
achieve this for the different database systems.
To view and test the currently configured settings, use following commands:

root@linux:~# /usr/sbin/bareos-dbcheck -B -c /etc/bareos/bareos-dir.conf
catalog=MyCatalog

db_name=bareos

db_driver=mysql

db_user=bareos

db_password=YourPassword

db_address=

db_port=0

db_socket=

db_type=MySQL

working_dir=/var/lib/bareos

Commands 32.2: Show current database configuration

361

root@linux:~# /usr/sbin/bareos-dir -t -f -d 500
[...]

bareos-dir: mysql.c:204-0 Error 1045 (28000): Access denied for user ’bareos’@’localhost’ (using password: ↙
↪→ YES)

bareos-dir: dird.c:1114-0 Could not open Catalog "MyCatalog", database "bareos".

bareos-dir: dird.c:1119-0 mysql.c:200 Unable to connect to MySQL server.

Database=bareos User=bareos

MySQL connect failed either server not running or your authorization is incorrect.

bareos-dir: mysql.c:239-0 closedb ref=0 connected=0 db=0

25-Apr 16:25 bareos-dir ERROR TERMINATION

Please correct configuration file: bareos-dir.conf

Commands 32.3: Test the database connection. Example: wrong password

PostgreSQL

On most distributions, PostgreSQL uses ident to allow access to the database system. The database admin-
istrator account is the Unix user postgres. Normally, this user can access the database without password,
as the ident mechanism is used to identify the user.
If this works on your system can be verified by

su - postgres

psql

Commands 32.4: Access the local PostgreSQL database

If your database is configured to to require a password, this must be definied in the file ~/.pgpass in the
following syntax: HOST:PORT:DATABASE:USER:PASSWORD, e.g.

localhost:*:bareos:bareos:secret

Configuration 32.5: PostgreSQL access credentials

The permission of this file must be 0600 (chmod 0600 ~/.pgpass).
Again, verify that you have specified the correct settings by calling the psql command. If this connects
you to the database, your credentials are good. Exit the PostgreSQL client and run the Bareos database
preparation scripts:

su - postgres

/usr/lib/bareos/scripts/create_bareos_database

/usr/lib/bareos/scripts/make_bareos_tables

/usr/lib/bareos/scripts/grant_bareos_privileges

Commands 32.6: Setup Bareos catalog database

The encoding of the bareos database must be SQL_ASCII. The command create_bareos_database auto-
matically creates the database with this encoding. This can be verified by the command psql -l, which
shows information about existing databases:

root@linux:~# psql -l
List of databases

Name | Owner | Encoding

-----------+----------+-----------

bareos | postgres | SQL_ASCII

postgres | postgres | UTF8

template0 | postgres | UTF8

template1 | postgres | UTF8

(4 rows)

Commands 32.7: List existing databases

The owner of the database may vary. The Bareos database maintance scripts don’t change the default owner
of the Bareos database, so it stays at the PostgreSQL administration user. The grant_bareos_privileges

script grant the required permissions to the Bareos database user. In contrast, when installing (not updating)
using dbconfig, the database owner will be identical with the Bareos database user.
By default, using PostgreSQL ident, a Unix user can access a database of the same name. Therefore the
user bareos can access the database bareos.

root@linux:~# su - bareos -s /bin/sh
bareos@linux:~# psql
Welcome to psql 8.3.23, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms

http://www.postgresql.org/docs/8.2/static/libpq-pgpass.html

362

\h for help with SQL commands

\? for help with psql commands

\g or terminate with semicolon to execute query

\q to quit

bareos=> \dt
List of relations

Schema | Name | Type | Owner

--------+------------------------+-------+----------

public | basefiles | table | postgres

public | cdimages | table | postgres

public | client | table | postgres

public | counters | table | postgres

public | device | table | postgres

public | devicestats | table | postgres

public | file | table | postgres

public | filename | table | postgres

public | fileset | table | postgres

public | job | table | postgres

public | jobhisto | table | postgres

public | jobmedia | table | postgres

public | jobstats | table | postgres

public | location | table | postgres

public | locationlog | table | postgres

public | log | table | postgres

public | media | table | postgres

public | mediatype | table | postgres

public | ndmpjobenvironment | table | postgres

public | ndmplevelmap | table | postgres

public | path | table | postgres

public | pathhierarchy | table | postgres

public | pathvisibility | table | postgres

public | pool | table | postgres

public | quota | table | postgres

public | restoreobject | table | postgres

public | status | table | postgres

public | storage | table | postgres

public | unsavedfiles | table | postgres

public | version | table | postgres

(30 rows)

bareos=> select * from Version;
versionid

2002

(1 row)

bareos=> \du
List of roles

Role name | Superuser | Create role | Create DB | Connections | Member of

---------------+-----------+-------------+-----------+-------------+-----------

bareos | no | no | no | no limit | {}

postgres | yes | yes | yes | no limit | {}

(2 rows)

bareos=> \dp
Access privileges for database "bareos"

Schema | Name | Type | Access privileges

--------+-----------------------------------+----------+--------------------------------------

public | basefiles | table | {root=arwdxt/root,bareos=arwdxt/root}

public | basefiles_baseid_seq | sequence | {root=rwU/root,bareos=rw/root}

...

bareos=>

Commands 32.8: Verify Bareos database on PostgreSQL as Unix user bareos

MySQL

MySQL user authentication is username, password and host-based. The database administrator is the user
root.

On some distributions access to the MySQL database is allowed password-less as database user root, on
other distributions, a password is required. On productive systems you normally want to have password

363

secured access.
The bareos database preparation scripts require password-less access to the database. To guarantee this,
create a MySQL credentials file ~/.my.cnf with the credentials of the database administrator:

[client]

host=localhost

user=root

password=YourPasswordForAccessingMysqlAsRoot

Configuration 32.9: MySQL credentials file /.my.cnf

Alternatively you can specifiy your database password by adding it to the file /etc/my.cnf.
Verify that you have specified the correct settings by calling the mysql command. If this connects you to
the database, your credentials are good. Exit the MySQL client.
For the Bareos database connection, you should specify a database password. Otherwise the Bareos database
user gets the permission to connect without password. This is not recommended. Choose a database password
and add it into the Bareos Director configuration file /etc/bareos/bareos-dir.conf:

...

#

Generic catalog service

#

Catalog {

Name = MyCatalog

Uncomment the following lines if you want the dbi driver

dbdriver = "dbi:postgresql"; dbaddress = 127.0.0.1; dbport =

dbdriver = "mysql"

dbname = "bareos"

dbuser = "bareos"

dbpassword = "YourSecretPassword"

}

...

Configuration 32.10: Bareos catalog configuration

After this, run the Bareos database preparation scripts. For Bareos <= 13.2.2, the database password must
be specified as environment variable db_password. From Version >= 13.2.3 the database password is read
from /etc/bareos/bareos-dir.conf, if no environment variable is given.

export db_password=YourSecretPassword
/usr/lib/bareos/scripts/create_bareos_database

/usr/lib/bareos/scripts/make_bareos_tables

/usr/lib/bareos/scripts/grant_bareos_privileges

Commands 32.11: Setup Bareos catalog database

After this, you can use the mysql command to verify that your database setup is okay and works with your
the Bareos database user. The result should look similar as this (here Bareos 13.2 is used on SLES11):

root@linux:~# mysql --user=bareos --password=YourSecretPassword bareos
Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 162

Server version: 5.5.32 SUSE MySQL package

Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the current input statement.

mysql> show tables;
+--------------------+

| Tables_in_bareos |

+--------------------+

| BaseFiles |

| CDImages |

| Client |

| Counters |

| Device |

| DeviceStats |

| File |

| FileSet |

| Filename |

http://dev.mysql.com/doc/refman/4.1/en/password-security.html

364

| Job |

| JobHisto |

| JobMedia |

| JobStats |

| Location |

| LocationLog |

| Log |

| Media |

| MediaType |

| NDMPJobEnvironment |

| NDMPLevelMap |

| Path |

| PathHierarchy |

| PathVisibility |

| Pool |

| Quota |

| RestoreObject |

| Status |

| Storage |

| UnsavedFiles |

| Version |

+--------------------+

30 rows in set (0.00 sec)

mysql> select * from Version;
+-----------+

| VersionId |

+-----------+

| 2002 |

+-----------+

1 row in set (0.00 sec)

mysql> exit
Bye

Commands 32.12: Verify Bareos database on MySQL

Modify database credentials If you want to change the Bareos database credentials, do the following:

� stop the Bareos director

� modify the configuration file /etc/bareos/bareos-dir.conf

� rerun the grant script grant_bareos_privileges (or modify database user directly)

� start the Bareos director

Modify the configuration file /etc/bareos/bareos-dir.conf:

...

#

Generic catalog service

#

Catalog {

Name = MyCatalog

Uncomment the following lines if you want the dbi driver

dbdriver = "dbi:postgresql"; dbaddress = 127.0.0.1; dbport =

dbdriver = "mysql"

dbname = "bareos"

dbuser = "bareos"

dbpassword = "MyNewSecretPassword"

}

...

Configuration 32.13: Bareos catalog configuration: set new password

Rerun the Bareos grant script grant_bareos_privileges ...

export db_password=MyNewSecretPassword
/usr/lib/bareos/scripts/grant_bareos_privileges

Commands 32.14: Modify database privileges

... or modify the database users directly:

365

root@linux:~# mysql
mysql> SELECT user,host,password FROM mysql.user WHERE user=’bareos’;
+--------+-----------+---+

| user | host | password |

+--------+-----------+---+

| bareos | 127.0.0.1 | *CD8C42695AC221807E2BA599FC392C650155C16C |

| bareos | localhost | *CD8C42695AC221807E2BA599FC392C650155C16C |

| bareos | ::1 | *CD8C42695AC221807E2BA599FC392C650155C16C |

+--------+-----------+---+

3 rows in set (0.00 sec)

mysql> UPDATE mysql.user SET Password=PASSWORD(’MyNewSecretPassword’) where User=’bareos’;
Query OK, 3 rows affected (0.00 sec)

Rows matched: 3 Changed: 3 Warnings: 0

mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT user,host,password FROM mysql.user WHERE user=’bareos’;
+--------+-----------+---+

| user | host | password |

+--------+-----------+---+

| bareos | 127.0.0.1 | *2119D34B0C0F7452E952EE3A73A7CAA30C1B1852 |

| bareos | localhost | *2119D34B0C0F7452E952EE3A73A7CAA30C1B1852 |

| bareos | ::1 | *2119D34B0C0F7452E952EE3A73A7CAA30C1B1852 |

+--------+-----------+---+

3 rows in set (0.00 sec)

mysql>

Commands 32.15: Show Bareos database users

Sqlite

There are different versions of Sqlite available. When we use the term Sqlite, we will always refer to Sqlite3.
Sqlite is a file based database. Access via network connection is not supported. Because its setup is easy, it
is a good database for testing. However please don’t use it in a production environment.
Sqlite stores a database in a single file. Bareos creates this file at /var/lib/bareos/bareos.db.
Sqlite does not offer access permissions. The only permissions that do apply are the Unix file permissions.
The database is accessable by following command:

root@linux:~# sqlite3 /var/lib/bareos/bareos.db
SQLite version 3.7.6.3

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite> .tables
BaseFiles Filename Media Pool

CDImages Job MediaType Quota

Client JobHisto NDMPJobEnvironment RestoreObject

Counters JobMedia NDMPLevelMap Status

Device JobStats NextId Storage

DeviceStats Location Path UnsavedFiles

File LocationLog PathHierarchy Version

FileSet Log PathVisibility

sqlite> select * from Version;
2002

sqlite>

Commands 32.16: Verify Bareos database on Sqlite3

32.2 Retention Periods

Without proper setup and maintenance, your Catalog may continue to grow indefinitely as you run Jobs
and backup Files, and/or it may become very inefficient and slow. How fast the size of your Catalog grows
depends on the number of Jobs you run and how many files they backup. By deleting records within the
database, you can make space available for the new records that will be added during the next Job. By
constantly deleting old expired records (dates older than the Retention period), your database size will
remain constant.

366

Setting Retention Periods

Bareos uses three Retention periods: the File Retention period, the Job Retention period, and the
Volume Retention period. Of these three, the File Retention period is by far the most important in
determining how large your database will become.
The File Retention and the Job Retention are specified in each Client resource as is shown below. The
Volume Retention period is specified in the Pool resource, and the details are given in the next chapter
of this manual.

File Retention = <time-period-specification> The File Retention record defines the length of time
that Bareos will keep File records in the Catalog database. When this time period expires, and if
AutoPrune is set to yes, Bareos will prune (remove) File records that are older than the specified
File Retention period. The pruning will occur at the end of a backup Job for the given Client. Note
that the Client database record contains a copy of the File and Job retention periods, but Bareos uses
the current values found in the Director’s Client resource to do the pruning.

Since File records in the database account for probably 80 percent of the size of the database, you
should carefully determine exactly what File Retention period you need. Once the File records have
been removed from the database, you will no longer be able to restore individual files in a Job. However,
as long as the Job record still exists, you will be able to restore all files in the job.

Retention periods are specified in seconds, but as a convenience, there are a number of modifiers that
permit easy specification in terms of minutes, hours, days, weeks, months, quarters, or years on the
record. See the Configuration chapter of this manual for additional details of modifier specification.

The default File retention period is 60 days.

Job Retention = <time-period-specification> The Job Retention record defines the length of time
that Bareos will keep Job records in the Catalog database. When this time period expires, and if
AutoPrune is set to yes Bareos will prune (remove) Job records that are older than the specified
Job Retention period. Note, if a Job record is selected for pruning, all associated File and JobMedia
records will also be pruned regardless of the File Retention period set. As a consequence, you normally
will set the File retention period to be less than the Job retention period.

As mentioned above, once the File records are removed from the database, you will no longer be able
to restore individual files from the Job. However, as long as the Job record remains in the database,
you will be able to restore all the files backuped for the Job. As a consequence, it is generally a good
idea to retain the Job records much longer than the File records.

The retention period is specified in seconds, but as a convenience, there are a number of modifiers that
permit easy specification in terms of minutes, hours, days, weeks, months, quarters, or years. See the
Configuration chapter of this manual for additional details of modifier specification.

The default Job Retention period is 180 days.

AutoPrune = <yes/no> If AutoPrune is set to yes (default), Bareos will automatically apply the File
retention period and the Job retention period for the Client at the end of the Job. If you turn this off
by setting it to no, your Catalog will grow each time you run a Job.

Job statistics

Bareos catalog contains lot of information about your IT infrastructure, how many files, their size, the
number of video or music files etc. Using Bareos catalog during the day to get them permit to save resources
on your servers.
In this chapter, you will find tips and information to measure Bareos efficiency and report statistics.
If you want to have statistics on your backups to provide some Service Level Agreement indicators, you could
use a few SQL queries on the Job table to report how many:

� jobs have run

� jobs have been successful

� files have been backed up

� ...

367

However, these statistics are accurate only if your job retention is greater than your statistics period. Ie, if
jobs are purged from the catalog, you won’t be able to use them.

Now, you can use the update stats [days=num] console command to fill the JobHistory table with new
Job records. If you want to be sure to take in account only good jobs, ie if one of your important job has
failed but you have fixed the problem and restarted it on time, you probably want to delete the first bad job
record and keep only the successful one. For that simply let your staff do the job, and update JobHistory
table after two or three days depending on your organization using the [days=num] option.

These statistics records aren’t used for restoring, but mainly for capacity planning, billings, etc.

The Statistics Retention = {\textless }time{\textgreater } director directive defines the length
of time that Bareos will keep statistics job records in the Catalog database after the Job End time. This
information is stored in the JobHistory table. When this time period expires, and if user runs prune stats

command, Bareos will prune (remove) Job records that are older than the specified period.

You can use the following Job resource in your nightly BackupCatalog job to maintain statistics.

Job {

Name = BackupCatalog

...

RunScript {

Console = "update stats days=3"

Console = "prune stats yes"

RunsWhen = After

RunsOnClient = no

}

}

32.3 PostgreSQL

32.3.1 Compacting Your PostgreSQL Database

Over time, as noted above, your database will tend to grow until Bareos starts deleting old expired records
based on retention periods. After that starts, it is expected that the database size remains constant, provided
that the amount of clients and files being backed up is constant.

Note that PostgreSQL uses multiversion concurrency control (MVCC), so that an UPDATE or DELETE of
a row does not immediately remove the old version of the row. Space occupied by outdated or deleted row
versions is only reclaimed for reuse by new rows when running VACUUM. Such outdated or deleted row
versions are also referred to as dead tuples.

Since PostgreSQL Version 8.3, autovacuum is enabled by default, so that setting up a cron job to run
VACUUM is not necesary in most of the cases. Note that there are two variants of VACUUM: standard
VACUUM and VACUUM FULL. Standard VACUUM only marks old row versions for reuse, it does not
free any allocated disk space to the operating system. Only VACUUM FULL can free up disk space, but it
requires exclusive table locks so that it can not be used in parallel with production database operations and
temporarily requires up to as much additional disk space that the table being processed occupies.

All database programs have some means of writing the database out in ASCII format and then reloading it.
Doing so will re-create the database from scratch producing a compacted result, so below, we show you how
you can do this for PostgreSQL.

For a PostgreSQL database, you could write the Bareos database as an ASCII file (bareos.sql) then reload
it by doing the following:

pg_dump -c bareos > bareos.sql

cat bareos.sql | psql bareos

rm -f bareos.sql

Commands 32.17:

Depending on the size of your database, this will take more or less time and a fair amount of disk space.
For example, you can cd to the location of the Bareos database (typically /var/lib/pgsql/data or possible
/usr/local/pgsql/data) and check the size.

Except from special cases PostgreSQL does not need to be dumped/restored to keep the database efficient.
A normal process of vacuuming will prevent the database from getting too large. If you want to fine-tweak
the database storage, commands such as VACUUM, VACUUM FULL, REINDEX, and CLUSTER exist
specifically to keep you from having to do a dump/restore.

368

More details on this subject can be found in the PostgreSQL documentation. The page http://www.

postgresql.org/docs/ contains links to the documentation for all PostgreSQL versions. The section Rou-
tine Vacuuming explains how VACUUM works and why it is required, see http://www.postgresql.org/

docs/current/static/routine-vacuuming.html for the current PostgreSQL version.

What To Do When The Database Keeps Growing

Especially when a high number of files are beeing backed up or when working with high retention periods, it
is probable that autovacuuming will not work. When starting to use Bareos with an empty Database, it is
normal that the file table and other tables grow, but the growth rate should drop as soon as jobs are deleted
by retention or pruning. The file table is usually the largest table in Bareos.
The reason for autovacuuming not beeing triggered is then probably the default setting of
autovacuum vacuum scale factor = 0.2, the current value can be shown with the following query or looked
up in postgresql.conf:

bareos=# show autovacuum_vacuum_scale_factor;

autovacuum_vacuum_scale_factor

0.2

(1 row)

Commands 32.18: SQL statement to show the autovacuum vacuum scale factor parameter

In essence, this means that a VACUUM is only triggered when 20% of table size are obsolete. Consequently,
the larger the table is, the less frequently VACUUM will be triggered by autovacuum. This make sense
because vacuuming has a performance impact. While it is possible to override the autovacuum parameters
on a table-by-table basis, it can then still be triggered at any time.
To learn more details about autovacuum see http://www.postgresql.org/docs/current/static/

routine-vacuuming.html#AUTOVACUUM

The following example shows how to configure running VACUUM on the file table by using an admin-job in
Bareos. The job will be scheduled to run at a time that should not run in parallel with normal backup jobs,
here by scheduling it to run after the BackupCatalog job.
First step is to check the amount of dead tuples and if autovacuum triggers VACUUM:

bareos=# SELECT relname, n_dead_tup, last_vacuum, last_autovacuum, last_analyze, last_autoanalyze

FROM pg_stat_user_tables WHERE n_dead_tup > 0 ORDER BY n_dead_tup DESC;

-[RECORD 1]----+------------------------------

relname | file

n_dead_tup | 2955116

last_vacuum |

last_autovacuum |

last_analyze |

last_autoanalyze |

-[RECORD 2]----+------------------------------

relname | log

n_dead_tup | 111298

last_vacuum |

last_autovacuum |

last_analyze |

last_autoanalyze |

-[RECORD 3]----+------------------------------

relname | job

n_dead_tup | 1785

last_vacuum |

last_autovacuum | 2015-01-08 01:13:20.70894+01

last_analyze |

last_autoanalyze | 2014-12-27 18:00:58.639319+01

...

Commands 32.19: Check dead tuples and vacuuming on PostgreSQL

In the above example, the file table has a high number of dead tuples and it has not been vacuumed. Same
for the log table, but the dead tuple count is not very high. On the job table autovacuum has been triggered.
Note that the statistics views in PostgreSQL are not persistent, their values are reset on restart of the
PostgreSQL service.
To setup a scheduled admin job for vacuuming the file table, the following must be done:

1. Create a file with the SQL statements for example
/usr/local/lib/bareos/scripts/postgresql file table maintenance.sql
with the following content:

http://www.postgresql.org/docs/
http://www.postgresql.org/docs/
http://www.postgresql.org/docs/current/static/routine-vacuuming.html
http://www.postgresql.org/docs/current/static/routine-vacuuming.html
http://www.postgresql.org/docs/current/static/routine-vacuuming.html#AUTOVACUUM
http://www.postgresql.org/docs/current/static/routine-vacuuming.html#AUTOVACUUM

369

\t \x

SELECT relname, n_dead_tup, last_vacuum, last_autovacuum, last_analyze, last_autoanalyze

FROM pg_stat_user_tables WHERE relname=’file’;

VACUUM VERBOSE ANALYZE file;

SELECT relname, n_dead_tup, last_vacuum, last_autovacuum, last_analyze, last_autoanalyze

FROM pg_stat_user_tables WHERE relname=’file’;

\t \x

SELECT table_name,

pg_size_pretty(pg_total_relation_size(table_name)) AS total_sz,

pg_size_pretty(pg_total_relation_size(table_name) - pg_relation_size(table_name)) AS idx_sz

FROM (SELECT (’"’ || relname || ’"’) AS table_name

FROM pg_stat_user_tables WHERE relname != ’batch’) AS all_tables

ORDER BY pg_total_relation_size(table_name) DESC LIMIT 5;

Commands 32.20: SQL Script for vacuuming the file table on PostgreSQL

The SELECT statements are for informational purposes only, the final statement shows the total and
index disk usage of the 5 largest tables.

2. Create a shell script that runs the SQL statements, for example
/usr/local/lib/bareos/scripts/postgresql file table maintenance.sh
with the following content:

#!/bin/sh

psql bareos < /usr/local/lib/bareos/scripts/postgresql_file_table_maintenance.sql

Commands 32.21: SQL Script for vacuuming the file table on PostgreSQL

3. As in PostgreSQL only the database owner or a database superuser is allowed to run VACUUM, the
script will be run as the postgres user. To permit the bareos user to run the script via sudo, write the
following sudo rule to a file by executing visudo -f /etc/sudoers.d/bareos postgres vacuum:

bareos ALL = (postgres) NOPASSWD: /usr/local/lib/bareos/scripts/postgresql_file_table_maintenance.sh

Commands 32.22: sudo rule for allowing bareos to run a script as postgres

and make sure that /etc/sudoers includes it, usually by the line

#includedir /etc/sudoers.d

4. Create the following admin job in the director configuration

PostgreSQL file table maintenance job

Job {

Name = FileTableMaintJob

JobDefs = DefaultJob

Schedule = "WeeklyCycleAfterBackup"

Type = Admin

Priority = 20

RunScript {

RunsWhen = Before

RunsOnClient = no

Fail Job On Error = yes

Command = "sudo -u postgres /usr/local/lib/bareos/scripts/postgresql_file_table_maintenance.sh"

}

}

Commands 32.23: SQL Script for vacuuming the file table on PostgreSQL

In this example the job will be run by the schedule WeeklyCycleAfterBackup, the Priority should be
set to a higher value than Priority in the BackupCatalog job.

32.3.2 Repairing Your PostgreSQL Database

The same considerations apply as for Repairing Your MySQL Database. Consult the PostgreSQL documents
for how to repair the database.

For Bareos specific problems, consider using bareos-dbcheck program .

370

32.4 MySQL/MariaDB

32.4.1 MySQL/MariaDB Support

As MariaDB is a fork of MySQL, we use MySQL as synonym for MariaDB and fully support it. We test our
packages against the preferred MySQL fork that a distribution provides.

Limitation: MySQL: MySQL ≥ 5.7 not supported. MySQL 5.7 did change it behavior in some
respects. The result is, that the Bareos database creation scripts do not work any more. For the time being,
we advise to use MariaDB instead, which is also the default on most Linux distributions. See Ticket #705.

32.4.2 Compacting Your MySQL Database

Over time, as noted above, your database will tend to grow. Even though Bareos regularly prunes files,
MySQL does not automatically reuse the space, and instead continues growing.
It is assumed that you are using the InnoDB database engine (which is the default since MySQL Version
5.5).
It is recommended that you use the OPTIMIZE TABLE and ANALYZE TABLE statements regularly.
This is to make sure that all indices are up to date and to recycle space inside the database files.
You can do this via the mysqlcheck command:

mysqlcheck -a -o -A

Please note that the database files are never shrunk by MySQL. If you really need to shrink the database
files, you need to recreate the database. This only works if you use per-table tablespaces by setting the inn-
odb file per table configuration option. See http://dev.mysql.com/doc/refman/5.5/en/innodb-multiple-
tablespaces.html for details.

mysqldump -f --opt bareos > bareos.sql

mysql bareos < bareos.sql

rm -f bareos.sql

Depending on the size of your database, this will take more or less time and a fair amount of disk space.

32.4.3 Repairing Your MySQL Database

If you find that you are getting errors writing to your MySQL database, or Bareos hangs each time it tries
to access the database, you should consider running MySQL’s database check and repair routines.
This can be done by running the mysqlcheck command:

mysqlcheck --all-databases

If the errors you are getting are simply SQL warnings, then you might try running bareos-dbcheck before
(or possibly after) using the MySQL database repair program. It can clean up many of the orphaned record
problems, and certain other inconsistencies in the Bareos database.
A typical cause of MySQL database problems is if your partition fills. In such a case, you will need to create
additional space on the partition.

32.4.4 MySQL Table is Full

If you are running into the error The table ’File’ is full ..., it is probably because on version 4.x MySQL,
the table is limited by default to a maximum size of 4 GB and you have probably run into the limit. The
solution can be found at: http://dev.mysql.com/doc/refman/5.0/en/full-table.html
You can display the maximum length of your table with:

mysql bareos

SHOW TABLE STATUS FROM bareos like "File";

If the column labeled ”Max data length” is around 4Gb, this is likely to be the source of your problem, and
you can modify it with:

mysql bareos

ALTER TABLE File MAX_ROWS=281474976710656;

https://bugs.bareos.org/view.php?id=705
http://dev.mysql.com/doc/refman/5.5/en/innodb-multiple-tablespaces.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-multiple-tablespaces.html
http://dev.mysql.com/doc/refman/5.0/en/full-table.html

371

32.4.5 MySQL Server Has Gone Away

If you are having problems with the MySQL server disconnecting or with messages saying that your MySQL
server has gone away, then please read the MySQL documentation, which can be found at:
http://dev.mysql.com/doc/refman/5.0/en/gone-away.html

32.4.6 MySQL Temporary Tables

When doing backups with large numbers of files, MySQL creates some temporary tables. When these tables
are small they can be held in system memory, but as they approach some size, they spool off to disk. The
default location for these temp tables is /tmp. Once that space fills up, Bareos daemons such as the Storage
daemon doing spooling can get strange errors. E.g.

Fatal error: spool.c:402 Spool data read error.

Fatal error: backup.c:892 Network send error to SD. ERR=Connection reset by

peer

What you need to do is setup MySQL to use a different (larger) temp directory, which can be set in the
/etc/my.cnf with these variables set:

tmpdir=/path/to/larger/tmpdir

bdb_tmpdir=/path/to/larger/tmpdir

32.5 Performance Issues Indexes

TODO: This chapter needs verification/updating.
One of the most important considerations for improving performance on the Bareos database is to ensure
that it has all the appropriate indexes. Several users have reported finding that their database did not
have all the indexes in the default configuration. In addition, you may find that because of your own usage
patterns, you need additional indexes.
The most important indexes for performance are the two indexes on the File table. The first index is on
FileId and is automatically made because it is the unique key used to access the table. The other one is
the (JobId, PathId, Filename) index. If these Indexes are not present, your performance may suffer a lot.

32.5.1 PostgreSQL Indexes

On PostgreSQL, you can check to see if you have the proper indexes using the following commands:

psql bareos

select * from pg_indexes where tablename=’file’;

If you do not see output that indicates that all three indexes are created, you can create the two additional
indexes using:

psql bareos

CREATE INDEX file_jobid_idx on file (jobid);

CREATE INDEX file_jpf_idx on file (jobid, pathid, filenameid);

Make sure that you doesn’t have an index on File (filenameid, pathid).

32.5.2 MySQL Indexes

On MySQL, you can check if you have the proper indexes by:

mysql bareos

show index from File;

If the indexes are not present, especially the JobId index, you can create them with the following commands:

mysql bareos

CREATE INDEX file_jobid_idx on File (JobId);

CREATE INDEX file_jpf_idx on File (JobId, FilenameId, PathId);

Though normally not a problem, you should ensure that the indexes defined for Filename and Path are
both set to 255 characters. Some users reported performance problems when their indexes were set to 50
characters. To check, do:

http://dev.mysql.com/doc/refman/5.0/en/gone-away.html

372

mysql bareos

show index from Filename;

show index from Path;

and what is important is that for Filename, you have an index with Key name ”Name” and Sub part ”255”.
For Path, you should have a Key name ”Path” and Sub part ”255”. If one or the other does not exist or
the Sub part is less that 255, you can drop and recreate the appropriate index with:

mysql bareos

DROP INDEX Path on Path;

CREATE INDEX Path on Path (Path(255));

DROP INDEX Name on Filename;

CREATE INDEX Name on Filename (Name(255));

32.5.3 SQLite Indexes

On SQLite, you can check if you have the proper indexes by:

sqlite <path>/bareos.db

select * from sqlite_master where type=’index’ and tbl_name=’File’;

If the indexes are not present, especially the JobId index, you can create them with the following commands:

sqlite <path>/bareos.db

CREATE INDEX file_jobid_idx on File (JobId);

CREATE INDEX file_jfp_idx on File (JobId, PathId, FilenameId);

32.6 Backing Up Your Bareos Database

If ever the machine on which your Bareos database crashes, and you need to restore from backup tapes, one
of your first priorities will probably be to recover the database. Although Bareos will happily backup your
catalog database if it is specified in the FileSet, this is not a very good way to do it, because the database
will be saved while Bareos is modifying it. Thus the database may be in an instable state. Worse yet, you
will backup the database before all the Bareos updates have been applied.
To resolve these problems, you need to backup the database after all the backup jobs have been run. In
addition, you will want to make a copy while Bareos is not modifying it. To do so, you can use two
scripts provided in the release make catalog backup and delete catalog backup. These files will be
automatically generated along with all the other Bareos scripts. The first script will make an ASCII copy of
your Bareos database into bareos.sql in the working directory you specified in your configuration, and the
second will delete the bareos.sql file.
The basic sequence of events to make this work correctly is as follows:

� Run all your nightly backups

� After running your nightly backups, run a Catalog backup Job

� The Catalog backup job must be scheduled after your last nightly backup

� You use RunBeforeJob to create the ASCII backup file and RunAfterJob to clean up

Assuming that you start all your nightly backup jobs at 1:05 am (and that they run one after another), you
can do the catalog backup with the following additional Director configuration statements:

Backup the catalog database (after the nightly save)

Job {

Name = "BackupCatalog"

Type = Backup

Client=rufus-fd

FileSet="Catalog"

Schedule = "WeeklyCycleAfterBackup"

Storage = DLTDrive

Messages = Standard

Pool = Default

This creates an ASCII copy of the catalog

Arguments to make_catalog_backup.pl are:

make_catalog_backup.pl <catalog-name>

RunBeforeJob = "/usr/lib/bareos/scripts/make_catalog_backup.pl MyCatalog"

373

This deletes the copy of the catalog

RunAfterJob = "/usr/lib/bareos/scripts/delete_catalog_backup"

This sends the bootstrap via mail for disaster recovery.

Should be sent to another system, please change recipient accordingly

Write Bootstrap = "|/usr/sbin/bsmtp -h localhost -f \"\(Bareos\) \" -s \"Bootstrap for Job %j\" ↙
↪→ root@localhost"

}

This schedule does the catalog. It starts after the WeeklyCycle

Schedule {

Name = "WeeklyCycleAfterBackup

Run = Level=Full sun-sat at 1:10

}

This is the backup of the catalog

FileSet {

Name = "Catalog"

Include {

Options {

signature=MD5

}

File = "/var/lib/bareos/bareos.sql" # database dump

File = "/etc/bareos" # configuration

}

}

Configuration 32.24: Bareos Catalog Backup Job

It is preferable to write/send the bootstrap file to another computer. It will allow you to quickly recover the
database backup should that be necessary. If you do not have a bootstrap file, it is still possible to recover
your database backup, but it will be more work and take longer.

32.7 Database Size

As mentioned above, if you do not do automatic pruning, your Catalog will grow each time you run a Job.
Normally, you should decide how long you want File records to be maintained in the Catalog and set the
File Retention period to that time. Then you can either wait and see how big your Catalog gets or make
a calculation assuming approximately 154 bytes for each File saved and knowing the number of Files that
are saved during each backup and the number of Clients you backup.
For example, suppose you do a backup of two systems, each with 100,000 files. Suppose further that you do
a Full backup weekly and an Incremental every day, and that the Incremental backup typically saves 4,000
files. The size of your database after a month can roughly be calculated as:

Size = 154 * No. Systems * (100,000 * 4 + 10,000 * 26)

where we have assumed four weeks in a month and 26 incremental backups per month. This would give the
following:

Size = 154 * 2 * (100,000 * 4 + 10,000 * 26) = 203,280,000 bytes

So for the above two systems, we should expect to have a database size of approximately 200 Megabytes. Of
course, this will vary according to how many files are actually backed up.
You will note that the File table (containing the file attributes) make up the large bulk of the number of
records as well as the space used. As a consequence, the most important Retention period will be the File
Retention period.

374

Chapter 33

Bareos Security Issues

� Security means being able to restore your files, so read the Critical Items Chapter of this manual.

� The clients (bareos-fd) must run as root to be able to access all the system files.

� It is not necessary to run the Director as root.

� It is not necessary to run the Storage daemon as root, but you must ensure that it can open the tape
drives, which are often restricted to root access by default. In addition, if you do not run the Storage
daemon as root, it will not be able to automatically set your tape drive parameters on most OSes since
these functions, unfortunately require root access.

� You should restrict access to the Bareos configuration files, so that the passwords are not world-
readable. The Bareos daemons are password protected using CRAM-MD5 (i.e. the password is not
sent across the network). This will ensure that not everyone can access the daemons. It is a reasonably
good protection, but can be cracked by experts.

� If you are using the recommended ports 9101, 9102, and 9103, you will probably want to protect these
ports from external access using a firewall and/or using tcp wrappers (etc/hosts.allow).

� By default, all data that is sent across the network is unencrypted. However, Bareos does support TLS
(transport layer security) and can encrypt transmitted data. Please read the TLS (SSL) Communica-
tions Encryption section of this manual.

� You should ensure that the Bareos working directories are readable and writable only by the Bareos
daemons.

� The default Bareos grant_bareos_privileges script grants all permissions to use the MySQL (and
PostgreSQL) database without a password. If you want security, please tighten this up!

� Don’t forget that Bareos is a network program, so anyone anywhere on the network with the console
program and the Director’s password can access Bareos and the backed up data.

� You can restrict what IP addresses Bareos will bind to by using the appropriate DirAddress, FDAd-
dress, or SDAddress records in the respective daemon configuration files.

33.1 Configuring and Testing TCP Wrappers

The TCP wrapper functionality is available on different platforms. Be default, it is activated on Bareos for
Linux. With this enabled, you may control who may access your daemons. This control is done by modifying
the file: /etc/hosts.allow. The program name that Bareos uses when applying these access restrictions is
the name you specify in the daemon configuration file (see below for examples). You must not use the twist
option in your /etc/hosts.allow or it will terminate the Bareos daemon when a connection is refused.

33.2 Secure Erase Command

From https://en.wikipedia.org/w/index.php?title=Data_erasure&oldid=675388437:

375

https://en.wikipedia.org/w/index.php?title=Data_erasure&oldid=675388437

376

Strict industry standards and government regulations are in place that force organizations to
mitigate the risk of unauthorized exposure of confidential corporate and government data. Reg-
ulations in the United States include HIPAA (Health Insurance Portability and Accountability
Act); FACTA (The Fair and Accurate Credit Transactions Act of 2003); GLB (Gramm-Leach
Bliley); Sarbanes-Oxley Act (SOx); and Payment Card Industry Data Security Standards (PCI
DSS) and the Data Protection Act in the United Kingdom. Failure to comply can result in fines
and damage to company reputation, as well as civil and criminal liability.

Bareos supports the secure erase of files that usually are simply deleted. Bareos uses an external command
to do the secure erase itself.
This makes it easy to choose a tool that meets the secure erase requirements.
To configure this functionality, a new configuration directive with the name Secure Erase Command has
been introduced.
This directive is optional and can be configured in:

� Secure Erase Command Dir
Director

� Secure Erase Command Sd
Storage

� Secure Erase Command Fd
Client

This directive configures the secure erase command globally for the daemon it was configured in.
If set, the secure erase command is used to delete files instead of the normal delete routine.
If files are securely erased during a job, the secure delete command output will be shown in the job log.

08-Sep 12:58 win-fd JobId 10: secure_erase: executing C:/cygwin64/bin/shred.exe "C:/temp/bareos-restores/C/ ↙
↪→ Program Files/Bareos/Plugins/bareos_fd_consts.py"

08-Sep 12:58 win-fd JobId 10: secure_erase: executing C:/cygwin64/bin/shred.exe "C:/temp/bareos-restores/C/ ↙
↪→ Program Files/Bareos/Plugins/bareos_sd_consts.py"

08-Sep 12:58 win-fd JobId 10: secure_erase: executing C:/cygwin64/bin/shred.exe "C:/temp/bareos-restores/C/ ↙
↪→ Program Files/Bareos/Plugins/bpipe-fd.dll"

Logging 33.1: bareos.log

The current status of the secure erase command is also shown in the output of status director, status client
and status storage.
If the secure erase command is configured, the current value is printed.
Example:

* status dir
backup1.example.com-dir Version: 15.3.0 (24 August 2015) x86_64-suse-linux-gnu suse openSUSE ↙

↪→ 13.2 (Harlequin) (x86_64)

Daemon started 08-Sep-15 12:50. Jobs: run=0, running=0 mode=0 db=sqlite3

Heap: heap=290,816 smbytes=89,166 max_bytes=89,166 bufs=334 max_bufs=335

secure erase command=’/usr/bin/wipe -V’

bconsole 33.2:

Example for Secure Erase Command Settings:

Linux: Secure Erase Command = "/usr/bin/wipe -V"

Windows: Secure Erase Command = "C:/cygwin64/bin/shred.exe"

Our tests with the sdelete command was not successful, as sdelete seems to stay active in the background.

Part IV

Appendix

377

Appendix A

System Requirements

� The minimum versions for each of the databases supported by Bareos are:

– PostgreSQL 8.4 (since Bareos 13.2.3)

– MySQL 4.1 - 5.6 or compatible fork (e.g. MariaDB), see MySQL/MariaDB Support

– SQLite 3

� Windows release is cross-compiled on Linux

� Bareos requires a good implementation of pthreads to work. This is not the case on some of the BSD
systems.

� The source code has been written with portability in mind and is mostly POSIX compatible. Thus
porting to any POSIX compatible operating system should be relatively easy.

� Jansson library: Bareos Version >= 15.2.0 offers a JSON API mode, see Bareos Developer Guide
(api-mode-2-json) . On some platform, the Jansson library is directory available. On others it can
easly be added. For some older platforms, we compile Bareos without JSON API mode.

379

http://doc.bareos.org/master/html/bareos-developer-guide.html#api-mode-2-json
http://doc.bareos.org/master/html/bareos-developer-guide.html#api-mode-2-json

380

Appendix B

Operating Systems

The Bareos project provides and supports packages that have been released at http://download.bareos.

org/bareos/release/

However, the following tabular gives an overview, what components are expected on which platforms to run:

Operating Systems Version Client Daemon Director Daemon Storage Daemon

Linux
Arch Linux X X X
CentOS current v12.4 v12.4 v12.4
Debian current v12.4 v12.4 v12.4
Fedora current v12.4 v12.4 v12.4
Gentoo X X X
openSUSE current v12.4 v12.4 v12.4
RHEL current v12.4 v12.4 v12.4
SLES current v12.4 v12.4 v12.4
Ubuntu current v12.4 v12.4 v12.4
Univention Corporate Linux App Center v12.4 v12.4 v12.4

MS Windows
MS Windows 32bit 10/8/7 v12.4 v15.2 v15.2

2008/Vista
2003/XP v12.4–v14.2

MS Windows 64bit 10/8/2012/7 v12.4 v15.2 v15.2
2008/Vista

Mac OS
Mac OS X/Darwin v14.2

BSD
FreeBSD ≥ 5.0 X X X
OpenBSD X
NetBSD X

Unix
AIX ≥ 4.3 com-13.2 ? ?
HP-UX com-13.2
Irix ?
Solaris ≥ 8 com-12.4 com-12.4 com-12.4
True64 ?

vVV.V starting with Bareos version VV.V, this platform is official supported by the Bareos.org
project

com-VV.V starting with Bareos version VV.V, this platform is supported. However, pre-build
packages are only available from Bareos.com

nightly provided by Bareos nightly build. Bug reports are welcome, however it is not official
supported

X known to work
? has been reported to work by the community

381

http://download.bareos.org/bareos/release/
http://download.bareos.org/bareos/release/
https://aur.archlinux.org/pkgbase/bareos/
https://aur.archlinux.org/pkgbase/bareos/
https://aur.archlinux.org/pkgbase/bareos/
https://packages.gentoo.org/package/app-backup/bareos
https://packages.gentoo.org/package/app-backup/bareos
https://packages.gentoo.org/package/app-backup/bareos
http://www.freshports.org/sysutils/bareos-client/
http://www.freshports.org/sysutils/bareos-server/
http://www.freshports.org/sysutils/bareos-server/

382

B.1

B.1.1 Packages for the different Linux platforms

The following tables summarize what packages are available for the different Linux platforms.
This information is generated based on http://download.bareos.com/bareos/release/. In most cases
this is identical to the packages provided by http://download.bareos.org/bareos/release/. Only if a
package have been added later in a maintenance release, these information may differ.
Distributions that are no longer relevant are left out. However, you might still find the packages on our
download servers.
Bareos tries to provide all packages for all current platforms. For extra packages, it depends if the distribution
contains the required dependencies.
Packages names not containing the word bareos are required packages where we decided to include them
ourselves.

CentOS RHEL
5 6 7 4 5 6 7

bareos 12.4-16.2 12.4-16.2 12.4-16.2 13.2-14.2 12.4-16.2 12.4-16.2 12.4-16.2
bareos-bat 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2
bareos-bconsole 12.4-16.2 12.4-16.2 12.4-16.2 13.2-14.2 12.4-16.2 12.4-16.2 12.4-16.2
bareos-client 12.4-16.2 12.4-16.2 12.4-16.2 13.2-14.2 12.4-16.2 12.4-16.2 12.4-16.2
bareos-common 12.4-16.2 12.4-16.2 12.4-16.2 13.2-14.2 12.4-16.2 12.4-16.2 12.4-16.2
bareos-database-common 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2
bareos-database-mysql 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2
bareos-database-postgresql 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2
bareos-database-sqlite3 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2
bareos-database-tools 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2
bareos-director 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2
bareos-director-python-plugin 14.2-16.2 14.2-16.2 14.2-16.2 14.2-16.2
bareos-filedaemon 12.4-16.2 12.4-16.2 12.4-16.2 13.2-14.2 12.4-16.2 12.4-16.2 12.4-16.2
bareos-filedaemon-ceph-plugin 15.2-16.2
bareos-filedaemon-glusterfs-plugin 15.2-16.2 15.2-16.2
bareos-filedaemon-ldap-python-plugin 15.2-16.2 15.2-16.2 15.2-16.2 15.2-16.2
bareos-filedaemon-python-plugin 14.2-16.2 14.2-16.2 14.2-16.2 14.2-16.2
bareos-storage 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2
bareos-storage-ceph 14.2-16.2
bareos-storage-fifo 14.2-16.2 14.2-16.2 14.2-16.2 14.2-16.2 14.2-16.2 14.2-16.2
bareos-storage-glusterfs 14.2-16.2 14.2-16.2
bareos-storage-python-plugin 14.2-16.2 14.2-16.2 14.2-16.2 14.2-16.2
bareos-storage-tape 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2
bareos-tools 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2
bareos-traymonitor 12.4-16.2 12.4-16.2 12.4-16.2 12.4-16.2
bareos-vadp-dumper 15.2-16.2 15.2-16.2
bareos-vmware-plugin 15.2-16.2 15.2-16.2
bareos-vmware-vix-disklib 15.2-16.2 15.2-16.2
bareos-webui 15.2 15.2-16.2 15.2 15.2-16.2
libfastlz 12.4-16.2 12.4-16.2 12.4-16.2 13.2-14.2 12.4-16.2 12.4-16.2 12.4-16.2
lzo 12.4-16.2 13.2-14.2 12.4-16.2

Fedora
20 21 22 23 24

bareos 12.4-15.2 14.2-15.2 15.2 15.2-16.2 16.2
bareos-bat 12.4-15.2 14.2-15.2 15.2 15.2-16.2 16.2
bareos-bconsole 12.4-15.2 14.2-15.2 15.2 15.2-16.2 16.2
bareos-client 12.4-15.2 14.2-15.2 15.2 15.2-16.2 16.2
bareos-common 12.4-15.2 14.2-15.2 15.2 15.2-16.2 16.2
bareos-database-common 12.4-15.2 14.2-15.2 15.2 15.2-16.2 16.2
bareos-database-mysql 12.4-15.2 14.2-15.2 15.2 15.2-16.2 16.2
bareos-database-postgresql 12.4-15.2 14.2-15.2 15.2 15.2-16.2 16.2
bareos-database-sqlite3 12.4-15.2 14.2-15.2 15.2 15.2-16.2 16.2

http://download.bareos.com/bareos/release/
http://download.bareos.org/bareos/release/

383

bareos-database-tools 12.4-15.2 14.2-15.2 15.2 15.2-16.2 16.2
bareos-director 12.4-15.2 14.2-15.2 15.2 15.2-16.2 16.2
bareos-director-python-plugin 14.2-15.2 14.2-15.2 15.2 15.2-16.2 16.2
bareos-filedaemon 12.4-15.2 14.2-15.2 15.2 15.2-16.2 16.2
bareos-filedaemon-glusterfs-plugin 15.2 15.2 15.2 15.2-16.2 16.2
bareos-filedaemon-ldap-python-plugin 15.2 15.2 15.2 15.2-16.2 16.2
bareos-filedaemon-python-plugin 14.2-15.2 14.2-15.2 15.2 15.2-16.2 16.2
bareos-storage 12.4-15.2 14.2-15.2 15.2 15.2-16.2 16.2
bareos-storage-fifo 14.2-15.2 14.2-15.2 15.2 15.2-16.2 16.2
bareos-storage-glusterfs 14.2-15.2 14.2-15.2 15.2 15.2-16.2 16.2
bareos-storage-python-plugin 14.2-15.2 14.2-15.2 15.2 15.2-16.2 16.2
bareos-storage-tape 12.4-15.2 14.2-15.2 15.2 15.2-16.2 16.2
bareos-tools 12.4-15.2 14.2-15.2 15.2 15.2-16.2 16.2
bareos-traymonitor 12.4-15.2 14.2-15.2 15.2 15.2-16.2 16.2
bareos-webui 15.2 15.2 15.2 15.2-16.2 16.2
libfastlz 12.4-15.2 14.2-15.2 15.2 15.2-16.2 16.2

SLES openSUSE
10sp4 11sp4 12sp1 13.1 13.2 42.1

bareos 14.2 14.2-16.2 14.2-16.2 12.4-15.2 13.2-16.2 15.2-16.2
bareos-bat 14.2-16.2 14.2-16.2 12.4-15.2 13.2-16.2 15.2-16.2
bareos-bconsole 14.2 14.2-16.2 14.2-16.2 12.4-15.2 13.2-16.2 15.2-16.2
bareos-client 14.2 14.2-16.2 14.2-16.2 12.4-15.2 13.2-16.2 15.2-16.2
bareos-common 14.2 14.2-16.2 14.2-16.2 12.4-15.2 13.2-16.2 15.2-16.2
bareos-database-common 14.2 14.2-16.2 14.2-16.2 12.4-15.2 13.2-16.2 15.2-16.2
bareos-database-mysql 14.2 14.2-16.2 14.2-16.2 12.4-15.2 13.2-16.2 15.2-16.2
bareos-database-postgresql 14.2 14.2-16.2 14.2-16.2 12.4-15.2 13.2-16.2 15.2-16.2
bareos-database-sqlite3 14.2-16.2 14.2-16.2 12.4-15.2 13.2-16.2 15.2-16.2
bareos-database-tools 14.2 14.2-16.2 14.2-16.2 12.4-15.2 13.2-16.2 15.2-16.2
bareos-director 14.2 14.2-16.2 14.2-16.2 12.4-15.2 13.2-16.2 15.2-16.2
bareos-director-python-plugin 14.2-16.2 14.2-16.2 14.2-15.2 14.2-16.2 15.2-16.2
bareos-filedaemon 14.2 14.2-16.2 14.2-16.2 12.4-15.2 13.2-16.2 15.2-16.2
bareos-filedaemon-ceph-plugin 15.2-16.2
bareos-filedaemon-ldap-python-plugin 15.2-16.2 15.2-16.2 15.2 15.2-16.2 15.2-16.2
bareos-filedaemon-python-plugin 14.2-16.2 14.2-16.2 14.2-15.2 14.2-16.2 15.2-16.2
bareos-storage 14.2 14.2-16.2 14.2-16.2 12.4-15.2 13.2-16.2 15.2-16.2
bareos-storage-ceph 15.2-16.2
bareos-storage-fifo 14.2 14.2-16.2 14.2-16.2 14.2-15.2 14.2-16.2 15.2-16.2
bareos-storage-python-plugin 14.2-16.2 14.2-16.2 14.2-15.2 14.2-16.2 15.2-16.2
bareos-storage-tape 14.2 14.2-16.2 14.2-16.2 12.4-15.2 13.2-16.2 15.2-16.2
bareos-tools 14.2 14.2-16.2 14.2-16.2 12.4-15.2 13.2-16.2 15.2-16.2
bareos-traymonitor 14.2-16.2 14.2-16.2 12.4-15.2 13.2-16.2 15.2-16.2
bareos-vadp-dumper 15.2-16.2 16.2
bareos-vmware-plugin 15.2-16.2 16.2
bareos-vmware-vix-disklib 15.2-16.2 16.2
bareos-webui 15.2-16.2 15.2-16.2 15.2 15.2-16.2 15.2-16.2
libfastlz 14.2 14.2-16.2 14.2-16.2 12.4-15.2 13.2-16.2 15.2-16.2
libjansson4 15.2-16.2 15.2-16.2
libjansson4-32bit 15.2-16.2
libjansson4-x86 15.2-16.2
php-ZendFramework2 15.2 15.2 15.2 15.2 15.2
python-py 15.2-16.2
python-pyvmomi 15.2-16.2 16.2
python-requests 15.2-16.2
python-six 15.2-16.2

Debian Univention
6 7 8 4.0

384

bareos 12.4-15.2 12.4-16.2 14.2-16.2 15.2-16.2
bareos-bat 12.4-15.2 12.4-16.2 14.2-16.2 15.2-16.2
bareos-bconsole 12.4-15.2 12.4-16.2 14.2-16.2 15.2-16.2
bareos-client 12.4-15.2 12.4-16.2 14.2-16.2 15.2-16.2
bareos-common 12.4-15.2 12.4-16.2 14.2-16.2 15.2-16.2
bareos-database-common 12.4-15.2 12.4-16.2 14.2-16.2 15.2-16.2
bareos-database-mysql 12.4-15.2 12.4-16.2 14.2-16.2 15.2-16.2
bareos-database-postgresql 12.4-15.2 12.4-16.2 14.2-16.2 15.2-16.2
bareos-database-sqlite3 12.4-15.2 12.4-16.2 14.2-16.2 15.2-16.2
bareos-database-tools 12.4-15.2 12.4-16.2 14.2-16.2 15.2-16.2
bareos-director 12.4-15.2 12.4-16.2 14.2-16.2 15.2-16.2
bareos-director-python-plugin 14.2-15.2 14.2-16.2 14.2-16.2 15.2-16.2
bareos-filedaemon 12.4-15.2 12.4-16.2 14.2-16.2 15.2-16.2
bareos-filedaemon-ceph-plugin 15.2-16.2
bareos-filedaemon-glusterfs-plugin 15.2-16.2
bareos-filedaemon-ldap-python-plugin 15.2 15.2-16.2 15.2-16.2 15.2-16.2
bareos-filedaemon-python-plugin 14.2-15.2 14.2-16.2 14.2-16.2 15.2-16.2
bareos-storage 12.4-15.2 12.4-16.2 14.2-16.2 15.2-16.2
bareos-storage-ceph 15.2-16.2
bareos-storage-fifo 14.2-15.2 14.2-16.2 14.2-16.2 15.2-16.2
bareos-storage-glusterfs 15.2-16.2
bareos-storage-python-plugin 14.2-15.2 14.2-16.2 14.2-16.2 15.2-16.2
bareos-storage-tape 12.4-15.2 12.4-16.2 14.2-16.2 15.2-16.2
bareos-tools 12.4-15.2 12.4-16.2 14.2-16.2 15.2-16.2
bareos-traymonitor 12.4-15.2 12.4-16.2 14.2-16.2 15.2-16.2
bareos-vadp-dumper 15.2-16.2
bareos-vmware-plugin 15.2-16.2
bareos-vmware-vix-disklib5 15.2-16.2
bareos-webui 15.2-16.2 15.2-16.2 15.2-16.2
libfastlz 12.4-15.2 12.4-16.2 14.2-16.2 15.2-16.2
libjansson4 15.2
php5-zendframework2 15.2 15.2 15.2 15.2
univention-bareos 15.2-16.2

Ubuntu
10.04 12.04 14.04 16.04 8.04

bareos 12.4-15.2 12.4-16.2 13.2-16.2 15.2-16.2 13.2-14.2
bareos-bat 12.4-15.2 12.4-16.2 13.2-16.2 15.2-16.2
bareos-bconsole 12.4-15.2 12.4-16.2 13.2-16.2 15.2-16.2 13.2-14.2
bareos-client 12.4-15.2 12.4-16.2 13.2-16.2 15.2-16.2 13.2-14.2
bareos-common 12.4-15.2 12.4-16.2 13.2-16.2 15.2-16.2 13.2-14.2
bareos-database-common 12.4-15.2 12.4-16.2 13.2-16.2 15.2-16.2 13.2-14.2
bareos-database-mysql 12.4-15.2 12.4-16.2 13.2-16.2 15.2-16.2 13.2-14.2
bareos-database-postgresql 12.4-15.2 12.4-16.2 13.2-16.2 15.2-16.2 13.2-14.2
bareos-database-sqlite3 12.4-15.2 12.4-16.2 13.2-16.2 15.2-16.2 13.2-14.2
bareos-database-tools 12.4-15.2 12.4-16.2 13.2-16.2 15.2-16.2 13.2-14.2
bareos-director 12.4-15.2 12.4-16.2 13.2-16.2 15.2-16.2 13.2-14.2
bareos-director-python-plugin 14.2-15.2 14.2-16.2 14.2-16.2 15.2-16.2
bareos-filedaemon 12.4-15.2 12.4-16.2 13.2-16.2 15.2-16.2 13.2-14.2
bareos-filedaemon-ceph-plugin 15.2-16.2 15.2-16.2
bareos-filedaemon-glusterfs-plugin 15.2-16.2
bareos-filedaemon-ldap-python-plugin 15.2 15.2-16.2 15.2-16.2 15.2-16.2
bareos-filedaemon-python-plugin 14.2-15.2 14.2-16.2 14.2-16.2 15.2-16.2
bareos-storage 12.4-15.2 12.4-16.2 13.2-16.2 15.2-16.2 13.2-14.2
bareos-storage-ceph 15.2-16.2 15.2-16.2
bareos-storage-fifo 14.2-15.2 14.2-16.2 14.2-16.2 15.2-16.2 14.2
bareos-storage-glusterfs 15.2-16.2
bareos-storage-python-plugin 14.2-15.2 14.2-16.2 14.2-16.2 15.2-16.2
bareos-storage-tape 12.4-15.2 12.4-16.2 13.2-16.2 15.2-16.2 13.2-14.2
bareos-tools 12.4-15.2 12.4-16.2 13.2-16.2 15.2-16.2 13.2-14.2
bareos-traymonitor 12.4-15.2 12.4-16.2 13.2-16.2 15.2-16.2

385

bareos-webui 15.2 15.2-16.2 15.2-16.2 15.2-16.2
libfastlz 12.4-15.2 12.4-16.2 12.4-16.2 15.2-16.2 13.2-14.2
libjansson4 15.2
php5-zendframework2 15.2 15.2 15.2

B.1.2 Univention Corporate Server

The Bareos version for the Univention App Center integraties into the Univention Enterprise Linux environ-
ment, making it easy to backup all the systems managed by the central Univention Corporate Server.

Preamble

The Univention Corporate Server is an enterprise Linux distribution based on Debian. It consists of an
integrated management system for the centralised administration of servers, computer workplaces, users and
their rights as well as a wide range of server applications. It also includes an Unvention App Center for the
easy installation and management of extensions and appliances.
Bareos is part of the App Center and therefore an Univention environment can easily be extended to provide
backup functionality for the Univention servers as well as for the connected client systems. Using the
Univention Management Console (UMC), you can also create backup jobs for client computers (Windows or
Linux systems), without the need of editing configuration files.
The Bareos Univention App is shipped with a default configuration for the director daemon and the storage
daemon.
Please note! You need to review some Univention configuration registry (UCR) variables. Most likely, you
will want to set the location where the backups are stored. Otherwise, you may quickly run out of disk space
on your backup server!
You will find further information under Backup Storage.

Quick Start

� Determine the space requirements and where to store your backup data

� Set the bareos/* UCR variables according to your needs, see UCR variables

� Restart bareos-dir, bareos-sd and bareos-fd (or simply reboot the server)

� Install the Bareos file daemon on clients and copy Director configuration resource file from

– /etc/bareos/bareos-dir-export/client/<clientname>-fd/bareos-fd.d/director/*.

conf

– (or /etc/bareos/autogenerated/client-configs/<hostname>.conf, if Bareos < 16.2.0)

For details, see Add a client to the backup.

� Enable backup jobs for clients in the Univention Management Console

UCR variables

bareos/filestorage : /var/lib/bareos/storage (default)

� Location where to store the backup files. Make sure, it offers enough disk space for a configured
backup volumes.

bareos/max_full_volume_bytes : 20 (default)

� Maximum size (in GB) of a volume for the FullDir
Pool backup pool

bareos/max_full_volumes : 1 (default)

� Maximum number of volumes for the FullDir
Pool backup pool

bareos/max_diff_volume_bytes : 10 (default)

� Maximum size (in GB) of a volume for the DifferentialDir
Pool backup pool

http://www.univention.de/
https://www.univention.de/produkte/univention-app-center/app-katalog/bareos/

386

bareos/max_diff_volumes : 1 (default)

� Maximum number of volumes for the DifferentialDir
Pool backup pool

bareos/max_incr_volume_bytes : 1 (default)

� Maximum size (in GB) of a volume for the IncrementalDir
Pool backup pool

bareos/max_incr_volumes : 1 (default)

� Maximum number of volumes for the IncrementalDir
Pool backup pool

bareos/backup_myself : no (default)

no don’t backup the server itself

yes backup the server itself

bareos/webui/console/user1/username : Administrator (default)

� User name to login at the bareos-webui

bareos/webui/console/user1/password : (no default value)

� Password to login at the bareos-webui

UCR variables can be set via the Univention Configuration Registry Web interface

or using the ucr command line tool:

root@ucs:~# ucr set bareos/backup myself=yes
Setting bareos/backup_myself

File: /etc/bareos/bareos-dir.conf

[ok] Reloading Bareos Director: bareos-dir.

Commands B.1: Enable backup of the server itself

Please note! univention-bareos < 15.2 did require a manual reload/restart of the bareos-dir service:

root@ucs:~# service bareos-dir reload
[ok] Reloading Bareos Director: bareos-dir.

Commands B.2: let bareos-dir reload its configuration

387

Setup

After installation of the Bareos app, Bareos is ready for operation. A default configuration is created
automatically.
Bareos consists of three daemons called director (or bareos-dir), storage-daemon (or bareos-sd) and
filedaemon (or bareos-fd). All three daemons are started right after the installation by the Univention
App Center.
If you want to enable automatic backups of the server, you need to set the Univention configuration registry
(UCR) variable bareos/backup_myself to yes and reload the director daemon.

Administration

For general tasks the bareos-webui can be used. Additional, there is the bconsole command line tool:

root@ucs:~# bconsole
Connecting to Director ucs:9101

1000 OK: ucs-dir Version: 15.2.2 (15 November 2015)

Enter a period to cancel a command.

*

Commands B.3: Starting the bconsole

For general information, see the Bconsole Tuturial.

Backup Schedule

As a result of the default configuration located at the bareos-dir, the backup schedule will look as follows:

Full Backups � are written into the FullDir
Pool pool

� on the first saturday at 21:00 o’clock

� and kept for 365 days

Differential Backups � are written into the DifferentialDir
Pool pool

� on every 2nd to 5th saturday at 21:00 o’clock

� and kept for 90 days

Incremental Backups � are written into the IncrementalDir
Pool pool

� on every day from monday to friday at 21:00 o’clock

� and kept for 30 days

That means full backups will be written every first saturday at 21:00 o’clock, differential backups every 2nd
to 5th saturday at 21:00 o’clock and incremental backups from monday to friday at 21:00 o’clock. So you
have got one full backup every month, four weekly differential and 20 daily incremental backups per month.
This schedule is active for the Univention server backup of itself and all other clients, which are backed up
through the bareos-dir on the Univention server.
There is also a special backup task, which is the Bareos backups itself for a possible disaster recovery. This
backup has got its own backup cycle which starts after the main backups. The backup consists of a database
backup for the metadata of the Bareos backup server and a backup of the Bareos configuration files under
/etc/bareos/.

Backup data management

Data from the backup jobs is written to volumes, which are organized in pools (see chapter Pool Resource).
The default configuration uses three different pools, called FullDir

Pool, Differential
Dir
Pool and IncrementalDir

Pool,
which are used for full backups, differential and incremental backups, respectively.
If you change the UCR variables, the configuration files will be rewritten automatically. After each change
you will need to reload the director daemon.

root@ucs:~# ucr set bareos/max full volumes=10
Setting bareos/max_full_volumes

File: /etc/bareos/bareos-dir.conf

[ok] Reloading Bareos Director: bareos-dir.

root@ucs:~# ucr set bareos/max full volume bytes=20
Setting bareos/max_full_volume_bytes

File: /etc/bareos/bareos-dir.conf

388

[ok] Reloading Bareos Director: bareos-dir.

Commands B.4: Example for changing the Full pool size to 10 ∗ 20 GB

Please note! This only affects new volumes. Existing volumes will not change there size.

Backup Storage

Please note! Using the default configuration, Bareos will store backups on your local disk. You may want to
store the data to another location to avoid using up all of your disk space.
The location for backups is /var/lib/bareos/storage in the default configuration.
For example, to use a NAS device for storing backups, you can mount your NAS volume via NFS on
/var/lib/bareos/storage. Alternatively, you can mount the NAS volume to another directory of your
own choice, and change the UCR variable bareos/filestorage to the corresponding path. The directory
needs to be writable by user bareos.

root@ucs:/etc/bareos# ucr set bareos/filestorage=/path/to your/storage
Setting bareos/filestorage

File: /etc/bareos/bareos-sd.conf

Commands B.5: Example for changing the storage path

Please note! You need to restart the Bareos storage daemon after having changed the storage path:

root@ucs:/# service bareos-sd restart

Commands B.6:

Bareos Webui Configuration

After installation you just need to setup your login credentials via UCR variables. Therefore, set the
Univention configuration registry (UCR) variable bareos/webui/console/user1/username and bareos/

webui/consoles/user1/password according to your needs. The director configuration is automatically
reloaded if one of those two variables changes.
Alternatively you can also set those UCR variables via commandline.

root@ucs:~# ucr set bareos/webui/console/user1/username=”bareos”
Setting bareos/webui/console/user1/username

File: /etc/bareos/bareos-dir.conf

[ok] Reloading Bareos Director: bareos-dir.

root@ucs:~# ucr set bareos/webui/console/user1/password=”secret”
Setting bareos/webui/console/user1/password

File: /etc/bareos/bareos-dir.conf

[ok] Reloading Bareos Director: bareos-dir.

Commands B.7: Example for changing webui login credentials

When your login credentials are set, you can login into Bareos Webui by following the entry in your Admin-
istration UCS Overview or directly via https://<UCS_SERVER>/bareos-webui/.

https://<UCS_SERVER>/bareos-webui/

389

Add a client to the backup

Overview

� Install the Bareos client software on the target system, see Adding a Bareos Client

� Use the Univention Management Console to add the client to the backup, see the screenshot below

� Copy the filedaemon resource configuration file from the Univention server to the target system

Bareos >= 16.2.4

Server-side The Univention Bareos application comes with an automatism for the client and job con-
figuration. If you want to add a client to the Bareos director configuration, you need use the Univention
Management Console, select the client you want to backup and set the enable backup job checkbox to true,
as shown in the screenshot below.

If the name of the client is testw1.example.com, corresponding configuration files will be generated:

� /etc/bareos/autogenerated/clients/testw1.example.com.include

� /etc/bareos/bareos-dir-export/client/testw1.example.com-fd/bareos-fd.d/director/

bareos-dir.conf

Generated configuration files under /etc/bareos/bareos-dir-export/client/ are intended for the tar-
get systems. After you have installed the Bareos client on the target system, copy the generated client
configuration over to the client and save it to following directories:

� on Linux: /etc/bareos/bareos-fd.d/director/

� on Windows: C:\Program Files\Bareos\bareos-fd.d/director/

root@ucs:~# CLIENTNAME=testw1.example.com
root@ucs:~# scp /etc/bareos/bareos-dir-export/client/${CLIENTNAME}-fd/bareos-fd.d/director/*.conf ↙

↪→ root@${CLIENTNAME}:/etc/bareos/bareos-fd.d/director/

Commands B.8: copy client configuration from the server to the testw1.example.com client (Linux)

Background The settings for each job resource are defined by the template files you see below:
The files

� /etc/bareos/autogenerated/clients/generic.template

� /etc/bareos/autogenerated/clients/windows.template

are used as templates for new clients. For Windows clients the file windows.template is used, the generic.

template is used for all other client types.
If you disable the Bareos backup for a client, the client will not be removed from the configuration files.
Only the backup job will be set inactive.
If you add three client, your client directory will look similar to this:

390

root@ucs:/etc/bareos/autogenerated/clients# ls -l
-rw-r--r-- 1 root root 430 16. Mai 15:15 generic.template

-rw-r----- 1 root bareos 513 21. Mai 14:46 testw1.example.com.include

-rw-r----- 1 root bareos 518 21. Mai 14:49 testw2.example.com.include

-rw-r----- 1 root bareos 518 16. Mai 18:17 testw3.example.com.include

-rw-r--r-- 1 root root 439 16. Mai 15:15 windows.template

Commands B.9:

The client configuration file contains, as you can see below, the client connection and the job information:

root@ucs:/etc/bareos/autogenerated/clients# cat testw2.example.com.include
Client {

Name = "testw2.example.com-fd"

Address = "testw2.example.com"

Password = "DBLtVnRKq5nRUOrnB3i3qAE38SiDtV8tyhzXIxqR"

}

Job {

Name = "Backup-testw2.example.com" # job name

Client = "testw2.example.com-fd" # client name

JobDefs = "DefaultJob" # job definition for the job

FileSet = "Windows All Drives" # FileSet (data which is backed up)

Schedule = "WeeklyCycle" # schedule for the backup tasks

Enabled = "Yes" #this is the ressource which is toggled on/off by enabling or disabling a backup from the ↙
↪→ univention gui

}

Commands B.10:

Bareos < 16.2.0 Older versions of Bareos handle generating the client configuration similar, but not
identical:

If the name of the client is testw1.example.com, corresponding configuration files will be generat-
ed/adapted:

� creates /etc/bareos/autogenerated/fd-configs/testw1.example.com.conf

� creates /etc/bareos/autogenerated/clients/testw1.example.com.include

� extends /etc/bareos/autogenerated/clients.include

Here the files intended for the target systems are generated under /etc/bareos/autogenerated/

fd-configs/ and they do not only definr a director resource, but are full configuration files for the client.
After you have installed the Bareos client on the target system, copy the generated client configuration over
to the client and save it to

� on Linux: /etc/bareos/bareos-fd.conf

� on Windows: C:\Program Files\Bareos\bareos-fd.conf

root@ucs:~# CLIENTNAME=testw1.example.com
root@ucs:~# scp /etc/bareos/autogenerated/fd-configs/${CLIENTNAME}.conf ↙

↪→ root@${CLIENTNAME}:/etc/bareos/bareos-fd.conf

Commands B.11: copy client configuration from the server to the testw1.example.com client (Linux)

B.1.3 Debian.org / Ubuntu Universe

The distributions of Debian >= 8 include a version of Bareos. Ubuntu Universe >= 15.04 does also include
these packages.

In the further text, these version will be named Bareos (Debian.org) (also for the Ubuntu Universe version,
as this is based on the Debian version).

391

Limitations of the Debian.org/Ubuntu Universe version of Bareos

� Debian.org does not include the libfastlz compression library and therefore the Bareos (Debian.org)
packages do not offer the fileset options compression=LZFAST, compression=LZ4 and compression=

LZ4HC.

� Debian.org prefers that Bareos (Debian.org) is linked against GnuTLS instead of OpenSSL. Therefore,
the Bareos (Debian.org) package only support Transport Encryption but no Data Encryption.

� Debian.org does not include the bareos-webui package.

B.1.4 Mac OS X

The Bareos installer package for Mac OS X contains the Bareos File Daemon for Mac OS X 10.4 or later
built as an universal binary for PPC and Intel processors.

Requirements

The Bareos File Daemon is only the client component of the backup system. For proper operation the file
daemon needs to have access to a Bareos Director and Bareos Storage Daemon.

Installation

Download the Bareos File Daemon installer package from http://download.bareos.org/bareos/release/

latest/MacOS/, open it and follow the directions given to you.

Configuration

After the installation is complete you have to adapt the configuration file to your needs. The file is located
at /usr/local/etc/bareos/bareos-fd.conf.
Please note! The configuration file contains passwords and therefore must not be accessible for any users
except root. Use the following command line to edit the file as root-user:

sudo /Applications/TextEdit.app/Contents/MacOS/TextEdit /usr/local/etc/bareos/bareos-fd.conf

Commands B.12: Adapt the bareos-fd configuration file

Operating the File Daemon

Use launchctl to enable and disable the bareos file daemon.

sudo launchctl load -w /Library/LaunchDaemons/org.bareos.bareos-fd.plist

Commands B.13: Load (start) the Bareos File Daemon

sudo launchctl unload -w /Library/LaunchDaemons/org.bareos.bareos-fd.plist

Commands B.14: Unload (stop) the Bareos File Daemon

http://download.bareos.org/bareos/release/latest/MacOS/
http://download.bareos.org/bareos/release/latest/MacOS/

392

Appendix C

Bareos Programs

This document describes the utility programs written to aid Bareos users and developers in dealing with
Volumes external to Bareos and to perform other useful tasks.

C.1 Parameter

C.1.1 Specifying the Configuration File

Each of the utilities that deal with Volumes require a valid Storage daemon configuration file bareos-sd.conf
(actually, the only part of the configuration file that these programs need is the Device resource definitions).
This permits the programs to find the configuration parameters for your archive device (generally a tape
drive). Using the -c option a custom storage daemon configuration file can be selected.

C.1.2 Specifying a Device Name For a Tape

Each of these programs require a device-name where the Volume can be found. In the case of a tape, this
is the physical device name such as /dev/nst0 or /dev/rmt/0ubn depending on your system. For the
program to work, it must find the identical name in the Device resource of the configuration file. See below
for specifying Volume names.
Please note that if you have Bareos running and you want to use one of these programs, you will either need
to stop the Storage daemon, or unmount any tape drive you want to use, otherwise the drive will busy
because Bareos is using it.

C.1.3 Specifying a Device Name For a File

If you are attempting to read or write an archive file rather than a tape, the device-name should be the
full path to the archive location including the filename. The filename (last part of the specification) will be
stripped and used as the Volume name, and the path (first part before the filename) must have the same
entry in the configuration file. So, the path is equivalent to the archive device name, and the filename is
equivalent to the volume name. The default file storage path is /var/lib/bareos/storage/.

C.1.4 Specifying Volumes

Often you must specify the Volume name to the programs below. The best method to do so is to specify a
bootstrap file on the command line with the -b option. As part of the bootstrap file, you will then specify
the Volume name or Volume names if more than one volume is needed. For example, suppose you want to
read tapes tape1 and tape2. First construct a bootstrap file named say, list.bsr which contains:

Volume=test1|test2

where each Volume is separated by a vertical bar. Then simply use:

bls -b list.bsr /dev/nst0

In the case of Bareos Volumes that are on files, you may simply append volumes as follows:

bls /tmp/test1\|test2

393

394

where the backslash (\) was necessary as a shell escape to permit entering the vertical bar (—).
And finally, if you feel that specifying a Volume name is a bit complicated with a bootstrap file, you can
use the -V option (on all programs except bcopy) to specify one or more Volume names separated by the
vertical bar (—). For example,

bls -V Vol001 /dev/nst0

You may also specify an asterisk (*) to indicate that the program should accept any volume. For example:

bls -V* /dev/nst0

C.2 Bareos Daemons

C.2.1 Daemon Command Line Options

Each of the three daemons (Director, File, Storage) accepts a small set of options on the command line. In
general, each of the daemons as well as the Console program accepts the following options:

-c <file> Define the file to use as a configuration file. The default is the daemon name followed by .conf
i.e. bareos-dir.conf for the Director, bareos-fd.conf for the File daemon, and bareos-sd for the
Storage daemon.

-d nnn Set the debug level to nnn. Generally anything between 50 and 200 is reasonable. The higher the
number, the more output is produced. The output is written to standard output. The debug level can
also be set during runtime, see section bconsole: setdebug.

-f Run the daemon in the foreground. This option is needed to run the daemon under the debugger.

-g <group> Run the daemon under this group. This must be a group name, not a GID.

-s Do not trap signals. This option is needed to run the daemon under the debugger.

-t Read the configuration file and print any error messages, then immediately exit. Useful for syntax testing
of new configuration files.

-u <user> Run the daemon as this user. This must be a user name, not a UID.

-v Be more verbose or more complete in printing error and informational messages. Recommended.

-? Print the version and list of options.

C.2.2 bareos-dir

Bareos Director. TODO: Bareos Director describe command line arguments

C.2.3 bareos-sd

Bareos Storage Daemon TODO: Bareos Storage Daemon describe command line arguments

C.2.4 bareos-fd

Bareos File Daemon TODO: Bareos File Daemon describe command line arguments

C.3 Interactive Programs

C.3.1 bconsole

There is an own chapter on bconsole. Please refer to chapter Bareos Console.

C.3.2 bareos-webui

For further information regarding the Bareos Webui, please refer to the chapter Installing Bareos Webui.

395

C.3.3 bat

The Bacula/Bareos Administration Tool (bat) is a native GUI for Bareos. Please note that, although bat

is still a part of Bareos and still receives maintenance bugfixes, the main development effort will be spent
on bareos-webui. For Version >= 15.2.0 we therefore encourage the use of Bareos Webui, which will, in the
long term, replace bat. By now Bareos Webui does not have all the features bat offers.

C.4 Volume Utility Commands

Please note! If you use Bareos with non-default block sizes defined in the pools, it might be necessary to
specify the maximum block level also in the storage device resource, see Direct access to Volumes with
non-default blocksizes.

C.4.1 bls

bls can be used to do an ls type listing of a Bareos tape or file. It is called:

Usage: bls [options] <device-name>

-b <file> specify a bootstrap file

-c <file> specify a Storage configuration file

-D <director> specify a director name specified in the Storage

configuration file for the Key Encryption Key selection

-d <nn> set debug level to <nn>

-dt print timestamp in debug output

-e <file> exclude list

-i <file> include list

-j list jobs

-k list blocks

(no j or k option) list saved files

-L dump label

-p proceed inspite of errors

-v be verbose

-V specify Volume names (separated by |)

-? print this message

For example, to list the contents of a tape:

bls -V Volume-name /dev/nst0

Or to list the contents of a file:

bls /var/lib/bareos/storage/testvol

or

bls -V testvol /var/lib/bareos/storage

Note that, in the case of a file, the Volume name becomes the filename, so in the above example, you will
replace the Volume-name with the name of the volume (file) you wrote.

Normally if no options are specified, bls will produce the equivalent output to the ls -l command for each
file on the tape. Using other options listed above, it is possible to display only the Job records, only the
tape blocks, etc. For example:

bls: butil.c:282-0 Using device: "/var/lib/bareos/storage" for reading.

12-Sep 18:30 bls JobId 0: Ready to read from volume "testvol" on device "FileStorage" (/var/lib/bareos/storage).

bls JobId 1: -rwxr-xr-x 1 root root 4614 2013-01-22 22:24:11 /usr/sbin/service

bls JobId 1: -rwxr-xr-x 1 root root 13992 2013-01-22 22:24:12 /usr/sbin/rtcwake

bls JobId 1: -rwxr-xr-x 1 root root 6243 2013-02-06 11:01:29 /usr/sbin/update-fonts-scale

bls JobId 1: -rwxr-xr-x 1 root root 43240 2013-01-22 22:24:10 /usr/sbin/grpck

bls JobId 1: -rwxr-xr-x 1 root root 16894 2013-01-22 22:24:11 /usr/sbin/update-rc.d

bls JobId 1: -rwxr-xr-x 1 root root 9480 2013-01-22 22:47:43 /usr/sbin/gss_clnt_send_err

...

bls JobId 456: -rw-r----- 1 root bareos 1008 2013-05-23 13:17:45 /etc/bareos/bareos-fd.conf

bls JobId 456: -rw-r----- 1 bareos bareos 6026 2013-04-22 12:00:33 /etc/bareos/bareos-sd.conf.dpkg-dist

bls JobId 456: drwxr-xr-x 2 root root 4096 2013-07-04 17:40:21 /etc/bareos/

12-Sep 18:30 bls JobId 0: End of Volume at file 0 on device "FileStorage" (/var/lib/bareos/storage), Volume "testvol"

12-Sep 18:30 bls JobId 0: End of all volumes.

2972 files found.

396

Show Label Information

Using the -L the label information of a Volume is shown:

root@linux:~# bls -L /var/lib/bareos/storage/testvol

bls: butil.c:282-0 Using device: "/var/lib/bareos/storage" for reading.

12-Sep 18:41 bls JobId 0: Ready to read from volume "testvol" on device "FileStorage" (/var/lib/bareos/storage).

Volume Label:

Id : Bareos 0.9 mortal

VerNo : 10

VolName : File002

PrevVolName :

VolFile : 0

LabelType : VOL_LABEL

LabelSize : 147

PoolName : Default

MediaType : File

PoolType : Backup

HostName : debian6

Date label written: 06-Mar-2013 17:21

Command 2: bls, Show Volume Label

Listing Jobs

If you are listing a Volume to determine what Jobs to restore, normally the -j option provides you with most
of what you will need as long as you don’t have multiple clients. For example:

root@linux:~# bls /var/lib/bareos/storage/testvol -j

bls: butil.c:282-0 Using device: "/var/lib/bareos/storage" for reading.

12-Sep 18:33 bls JobId 0: Ready to read from volume "testvol" on device "FileStorage" (/var/lib/bareos/storage).

Volume Record: File:blk=0:193 SessId=1 SessTime=1362582744 JobId=0 DataLen=158

Begin Job Session Record: File:blk=0:64705 SessId=1 SessTime=1362582744 JobId=1

Job=BackupClient1.2013-03-06_17.22.48_05 Date=06-Mar-2013 17:22:51 Level=F Type=B

End Job Session Record: File:blk=0:6499290 SessId=1 SessTime=1362582744 JobId=1

Date=06-Mar-2013 17:22:52 Level=F Type=B Files=162 Bytes=6,489,071 Errors=0 Status=T

Begin Job Session Record: File:blk=0:6563802 SessId=2 SessTime=1362582744 JobId=2

Job=BackupClient1.2013-03-06_23.05.00_02 Date=06-Mar-2013 23:05:02 Level=I Type=B

End Job Session Record: File:blk=0:18832687 SessId=2 SessTime=1362582744 JobId=2

Date=06-Mar-2013 23:05:02 Level=I Type=B Files=3 Bytes=12,323,791 Errors=0 Status=T

...

Begin Job Session Record: File:blk=0:319219736 SessId=299 SessTime=1369307832 JobId=454

Job=BackupClient1.2013-09-11_23.05.00_25 Date=11-Sep-2013 23:05:03 Level=I Type=B

End Job Session Record: File:blk=0:319219736 SessId=299 SessTime=1369307832 JobId=454

Date=11-Sep-2013 23:05:03 Level=I Type=B Files=0 Bytes=0 Errors=0 Status=T

Begin Job Session Record: File:blk=0:319284248 SessId=301 SessTime=1369307832 JobId=456

Job=BackupCatalog.2013-09-11_23.10.00_28 Date=11-Sep-2013 23:10:03 Level=F Type=B

End Job Session Record: File:blk=0:320694269 SessId=301 SessTime=1369307832 JobId=456

Date=11-Sep-2013 23:10:03 Level=F Type=B Files=12 Bytes=1,472,681 Errors=0 Status=T

12-Sep 18:32 bls JobId 0: End of Volume at file 0 on device "FileStorage" (/var/lib/bareos/storage), Volume "testvol"

12-Sep 18:32 bls JobId 0: End of all volumes.

Command 3: bls, Listing Jobs
Adding the -v option will display virtually all information that is available for each record.

Listing Blocks

Normally, except for debugging purposes, you will not need to list Bareos blocks (the ”primitive” unit of
Bareos data on the Volume). However, you can do so with:

bls -k /tmp/File002

bls: butil.c:148 Using device: /tmp

Block: 1 size=64512

Block: 2 size=64512

...

Block: 65 size=64512

Block: 66 size=19195

bls: Got EOF on device /tmp

End of File on device

397

By adding the -v option, you can get more information, which can be useful in knowing what sessions were
written to the volume:

bls -k -v /tmp/File002

Date label written: 2002-10-19 at 21:16

Block: 1 blen=64512 First rec FI=VOL_LABEL SessId=1 SessTim=1035062102 Strm=0 rlen=147

Block: 2 blen=64512 First rec FI=6 SessId=1 SessTim=1035062102 Strm=DATA rlen=4087

Block: 3 blen=64512 First rec FI=12 SessId=1 SessTim=1035062102 Strm=DATA rlen=5902

Block: 4 blen=64512 First rec FI=19 SessId=1 SessTim=1035062102 Strm=DATA rlen=28382

...

Block: 65 blen=64512 First rec FI=83 SessId=1 SessTim=1035062102 Strm=DATA rlen=1873

Block: 66 blen=19195 First rec FI=83 SessId=1 SessTim=1035062102 Strm=DATA rlen=2973

bls: Got EOF on device /tmp

End of File on device

Armed with the SessionId and the SessionTime, you can extract just about anything.

If you want to know even more, add a second -v to the command line to get a dump of every record in every
block.

bls -k -v -v /tmp/File002

bls: block.c:79 Dump block 80f8ad0: size=64512 BlkNum=1

Hdrcksum=b1bdfd6d cksum=b1bdfd6d

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=VOL_LABEL Strm=0 len=147 p=80f8b40

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=SOS_LABEL Strm=-7 len=122 p=80f8be7

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=1 Strm=UATTR len=86 p=80f8c75

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=2 Strm=UATTR len=90 p=80f8cdf

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=3 Strm=UATTR len=92 p=80f8d4d

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=3 Strm=DATA len=54 p=80f8dbd

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=3 Strm=MD5 len=16 p=80f8e07

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=4 Strm=UATTR len=98 p=80f8e2b

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=4 Strm=DATA len=16 p=80f8ea1

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=4 Strm=MD5 len=16 p=80f8ec5

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=5 Strm=UATTR len=96 p=80f8ee9

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=5 Strm=DATA len=1783 p=80f8f5d

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=5 Strm=MD5 len=16 p=80f9668

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=UATTR len=95 p=80f968c

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=DATA len=32768 p=80f96ff

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=DATA len=32768 p=8101713

bls: block.c:79 Dump block 80f8ad0: size=64512 BlkNum=2

Hdrcksum=9acc1e7f cksum=9acc1e7f

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=contDATA len=4087 p=80f8b40

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=DATA len=31970 p=80f9b4b

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=MD5 len=16 p=8101841

...

C.4.2 bextract

If you find yourself using bextract, you probably have done something wrong. For example, if you are
trying to recover a file but are having problems, please see the Restoring When Things Go Wrong chapter.

Normally, you will restore files by running a Restore Job from the Console program. However, bextract
can be used to extract a single file or a list of files from a Bareos tape or file. In fact, bextract can be
a useful tool to restore files to an empty system assuming you are able to boot, you have statically linked
bextract and you have an appropriate bootstrap file.

Please note that some of the current limitations of bextract are:

1. It cannot restore access control lists (ACL) that have been backed up along with the file data.

2. It cannot restore encrypted files.

3. The command line length is relatively limited, which means that you cannot enter a huge number of
volumes. If you need to enter more volumes than the command line supports, please use a bootstrap
file (see below).

4. Extracting files from a Windows backup on a Linux system will only extract the plain files, not the
additional Windows file information. If you have to extract files from a Windows backup, you should
use the Windows version of bextract.

It is called:

398

Usage: bextract <options> <bareos-archive-device-name> <directory-to-store-files>

-b <file> specify a bootstrap file

-c <file> specify a Storage configuration file

-D <director> specify a director name specified in the Storage

configuration file for the Key Encryption Key selection

-d <nn> set debug level to <nn>

-dt print timestamp in debug output

-e <file> exclude list

-i <file> include list

-p proceed inspite of I/O errors

-v verbose

-V <volumes> specify Volume names (separated by |)

-? print this message

where device-name is the Archive Device (raw device name or full filename) of the device to be read, and
directory-to-store-files is a path prefix to prepend to all the files restored.
NOTE: On Windows systems, if you specify a prefix of say d:/tmp, any file that would have been restored to
c:/My Documents will be restored to d:/tmp/My Documents. That is, the original drive specification
will be stripped. If no prefix is specified, the file will be restored to the original drive.

Extracting with Include or Exclude Lists

Using the -e option, you can specify a file containing a list of files to be excluded. Wildcards can be used
in the exclusion list. This option will normally be used in conjunction with the -i option (see below). Both
the -e and the -i options may be specified at the same time as the -b option. The bootstrap filters will be
applied first, then the include list, then the exclude list.
Likewise, and probably more importantly, with the -i option, you can specify a file that contains a list (one
file per line) of files and directories to include to be restored. The list must contain the full filename with
the path. If you specify a path name only, all files and subdirectories of that path will be restored. If you
specify a line containing only the filename (e.g. my-file.txt) it probably will not be extracted because you
have not specified the full path.
For example, if the file include-list contains:

/etc/bareos

/usr/sbin

Then the command:

bextract -i include-list -V Volume /dev/nst0 /tmp

will restore from the Bareos archive /dev/nst0 all files and directories in the backup from /etc/bareos
and from /usr/sbin. The restored files will be placed in a file of the original name under the directory
/tmp (i.e. /tmp/etc/bareos/... and /tmp/usr/sbin/...).

Extracting With a Bootstrap File

The -b option is used to specify a bootstrap file containing the information needed to restore precisely
the files you want. Specifying a bootstrap file is optional but recommended because it gives you the most
control over which files will be restored. For more details on the bootstrap file, please see Restoring Files
with the Bootstrap File chapter of this document. Note, you may also use a bootstrap file produced by the
restore command. For example:

bextract -b bootstrap-file /dev/nst0 /tmp

The bootstrap file allows detailed specification of what files you want restored (extracted). You may specify
a bootstrap file and include and/or exclude files at the same time. The bootstrap conditions will first be
applied, and then each file record seen will be compared to the include and exclude lists.

Extracting From Multiple Volumes

If you wish to extract files that span several Volumes, you can specify the Volume names in the bootstrap file
or you may specify the Volume names on the command line by separating them with a vertical bar. See the
section above under the bls program entitled Listing Multiple Volumes for more information. The same
techniques apply equally well to the bextract program or read the Bootstrap chapter of this document.

399

Extracting Under Windows

Please note! If you use bextract under Windows, the ordering of the parameters is essential.
To use bextract, the Bareos Storage Daemon must be installed. As bextract works on tapes or disk volumes,
these must be configured in the Storage Daemon configuration file, normally found at C:\ProgrammData \

Bareos \bareos -sd.conf. However, it is not required to start the Bareos Storage Daemon. Normally, if
the Storage Daemon would be able to run, bextract would not be required.
After installing, bextract can be called via command line:

C:\Program Files\Bareos .\bextract.exe -c "C:\ProgrammData\Bareos\bareos-sd.conf" -V <Volume> ↙
↪→ <YourStorage> <YourDestination>

Commands C.1: Call of bextract

If you want to use exclude or include files you need to write them like you do on Linux. That means each
path begins with a ”/” and not with ”yourdrive:/”. You need to specify the parameter -e exclude.list as
first parameter. For example:

/Program Files/Bareos/bareos-dir.exe

/ProgramData/

Configuration C.2: Example exclude.list

C:\Program Files\Bareos .\bextract.exe -e exclude.list -c "C:\ProgrammData\Bareos\bareos-sd.conf" -V ↙
↪→ <Volume> <YourStorage> <YourDestination>

Commands C.3: Call bextract with exclude list

C.4.3 bscan

If you find yourself using this program, you have probably done something wrong. For example, the best
way to recover a lost or damaged Bareos database is to reload the database by using the bootstrap file that
was written when you saved it (default Bareos-dir.conf file).
The bscan program can be used to re-create a database (catalog) records from the backup information
written to one or more Volumes. This is normally needed only if one or more Volumes have been pruned
or purged from your catalog so that the records on the Volume are no longer in the catalog, or for Volumes
that you have archived. Note, if you scan in Volumes that were previously purged, you will be able to do
restores from those Volumes. However, unless you modify the Job and File retention times for the Jobs that
were added by scanning, the next time you run any backup Job with the same name, the records will be
pruned again. Since it takes a long time to scan Volumes this can be very frustrating.
With some care, bscan can also be used to synchronize your existing catalog with a Volume. Although we
have never seen a case of bscan damaging a catalog, since bscan modifies your catalog, we recommend that
you do a simple ASCII backup of your database before running bscan just to be sure. See Compacting Your
Database for the details of making a copy of your database.
bscan can also be useful in a disaster recovery situation, after the loss of a hard disk, if you do not have a
valid bootstrap file for reloading your system, or if a Volume has been recycled but not overwritten, you
can use bscan to re-create your database, which can then be used to restore your system or a file to its
previous state.
It is called:

Usage: bscan [options] <Bareos-archive>

-B <driver name> specify the database driver name (default NULL) <postgresql|mysql|sqlite>

-b bootstrap specify a bootstrap file

-c <file> specify configuration file

-d <nn> set debug level to nn

-dt print timestamp in debug output

-m update media info in database

-D <director> specify a director name specified in the Storage

configuration file for the Key Encryption Key selection

-n <name> specify the database name (default Bareos)

-u <user> specify database user name (default Bareos)

-P <password> specify database password (default none)

-h <host> specify database host (default NULL)

-t <port> specify database port (default 0)

-p proceed inspite of I/O errors

-r list records

400

-s synchronize or store in database

-S show scan progress periodically

-v verbose

-V <Volumes> specify Volume names (separated by |)

-w <dir> specify working directory (default from conf file)

-? print this message

As Bareos supports loading its database backend dynamically you need to specify the right database driver
to use using the -B option.
If you are using MySQL or PostgreSQL, there is no need to supply a working directory since in that case,
bscan knows where the databases are. However, if you have provided security on your database, you may
need to supply either the database name (-b option), the user name (-u option), and/or the password (-p)
options.
NOTE: before bscan can work, it needs at least a bare bones valid database. If your database exists but
some records are missing because they were pruned, then you are all set. If your database was lost or
destroyed, then you must first ensure that you have the SQL program running (MySQL or PostgreSQL),
then you must create the Bareos database (normally named bareos), and you must create the Bareos tables.
This is explained in Prepare Bareos database chapter of the manual. Finally, before scanning into an empty
database, you must start and stop the Director with the appropriate Bareos-dir.conf file so that it can create
the Client and Storage records which are not stored on the Volumes. Without these records, scanning is
unable to connect the Job records to the proper client.
Forgetting for the moment the extra complications of a full rebuild of your catalog, let’s suppose that you did
a backup to Volumes ”Vol001” and ”Vol002”, then sometime later all records of one or both those Volumes
were pruned or purged from the database. By using bscan you can recreate the catalog entries for those
Volumes and then use the restore command in the Console to restore whatever you want. A command
something like:

bscan -v -V Vol001\|Vol002 /dev/nst0

will give you an idea of what is going to happen without changing your catalog. Of course, you may need to
change the path to the Storage daemon’s conf file, the Volume name, and your tape (or disk) device name.
This command must read the entire tape, so if it has a lot of data, it may take a long time, and thus you
might want to immediately use the command listed below. Note, if you are writing to a disk file, replace the
device name with the path to the directory that contains the Volumes. This must correspond to the Archive
Device in the conf file.
Then to actually write or store the records in the catalog, add the -s option as follows:

bscan -s -m -v -V Vol001\|Vol002 /dev/nst0

When writing to the database, if bscan finds existing records, it will generally either update them if something
is wrong or leave them alone. Thus if the Volumes you are scanning are all or partially in the catalog already,
no harm will be done to that existing data. Any missing data will simply be added.
If you have multiple tapes, you should scan them with:

bscan -s -m -v -V Vol001\|Vol002\|Vol003 /dev/nst0

Since there is a limit on the command line length (511 bytes) accepted by bscan, if you have too many
Volumes, you will need to manually create a bootstrap file. See the Bootstrap chapter of this manual for
more details, in particular the section entitled Bootstrap for bscan. Basically, the .bsr file for the above
example might look like:

Volume=Vol001

Volume=Vol002

Volume=Vol003

Note: bscan does not support supplying Volume names on the command line and at the same time in a
bootstrap file. Please use only one or the other.
You should, always try to specify the tapes in the order they are written. If you do not, any Jobs that span
a volume may not be fully or properly restored. However, bscan can handle scanning tapes that are not
sequential. Any incomplete records at the end of the tape will simply be ignored in that case. If you are
simply repairing an existing catalog, this may be OK, but if you are creating a new catalog from scratch, it
will leave your database in an incorrect state. If you do not specify all necessary Volumes on a single bscan
command, bscan will not be able to correctly restore the records that span two volumes. In other words, it
is much better to specify two or three volumes on a single bscan command (or in a .bsr file) rather than run
bscan two or three times, each with a single volume.

401

Note, the restoration process using bscan is not identical to the original creation of the catalog data. This
is because certain data such as Client records and other non-essential data such as volume reads, volume
mounts, etc is not stored on the Volume, and thus is not restored by bscan. The results of bscanning are,
however, perfectly valid, and will permit restoration of any or all the files in the catalog using the normal
Bareos console commands. If you are starting with an empty catalog and expecting bscan to reconstruct
it, you may be a bit disappointed, but at a minimum, you must ensure that your Bareos-dir.conf file is the
same as what it previously was – that is, it must contain all the appropriate Client resources so that they
will be recreated in your new database before running bscan. Normally when the Director starts, it will
recreate any missing Client records in the catalog. Another problem you will have is that even if the Volumes
(Media records) are recreated in the database, they will not have their autochanger status and slots properly
set. As a result, you will need to repair that by using the update slots command. There may be other
considerations as well. Rather than bscanning, you should always attempt to recover you previous catalog
backup.

Using bscan to Compare a Volume to an existing Catalog

If you wish to compare the contents of a Volume to an existing catalog without changing the catalog, you
can safely do so if and only if you do not specify either the -m or the -s options. However, the comparison
routines are not as good or as thorough as they should be, so we don’t particularly recommend this mode
other than for testing.

Using bscan to Recreate a Catalog from a Volume

This is the mode for which bscan is most useful. You can either bscan into a freshly created catalog, or
directly into your existing catalog (after having made an ASCII copy as described above). Normally, you
should start with a freshly created catalog that contains no data.
Starting with a single Volume named TestVolume1, you run a command such as:

bscan -V TestVolume1 -v -s -m /dev/nst0

If there is more than one volume, simply append it to the first one separating it with a vertical bar. You may
need to precede the vertical bar with a forward slash escape the shell – e.g. TestVolume1\—TestVolume2.
The -v option was added for verbose output (this can be omitted if desired). The -s option that tells bscan
to store information in the database. The physical device name /dev/nst0 is specified after all the options.
For example, after having done a full backup of a directory, then two incrementals, I reinitialized the SQLite
database as described above, and using the bootstrap.bsr file noted above, I entered the following command:

bscan -b bootstrap.bsr -v -s /dev/nst0

which produced the following output:

bscan: bscan.c:182 Using Database: Bareos, User: bacula

bscan: bscan.c:673 Created Pool record for Pool: Default

bscan: bscan.c:271 Pool type "Backup" is OK.

bscan: bscan.c:632 Created Media record for Volume: TestVolume1

bscan: bscan.c:298 Media type "DDS-4" is OK.

bscan: bscan.c:307 VOL_LABEL: OK for Volume: TestVolume1

bscan: bscan.c:693 Created Client record for Client: Rufus

bscan: bscan.c:769 Created new JobId=1 record for original JobId=2

bscan: bscan.c:717 Created FileSet record "Users Files"

bscan: bscan.c:819 Updated Job termination record for new JobId=1

bscan: bscan.c:905 Created JobMedia record JobId 1, MediaId 1

bscan: Got EOF on device /dev/nst0

bscan: bscan.c:693 Created Client record for Client: Rufus

bscan: bscan.c:769 Created new JobId=2 record for original JobId=3

bscan: bscan.c:708 Fileset "Users Files" already exists.

bscan: bscan.c:819 Updated Job termination record for new JobId=2

bscan: bscan.c:905 Created JobMedia record JobId 2, MediaId 1

bscan: Got EOF on device /dev/nst0

bscan: bscan.c:693 Created Client record for Client: Rufus

bscan: bscan.c:769 Created new JobId=3 record for original JobId=4

bscan: bscan.c:708 Fileset "Users Files" already exists.

bscan: bscan.c:819 Updated Job termination record for new JobId=3

bscan: bscan.c:905 Created JobMedia record JobId 3, MediaId 1

bscan: Got EOF on device /dev/nst0

bscan: bscan.c:652 Updated Media record at end of Volume: TestVolume1

bscan: bscan.c:428 End of Volume. VolFiles=3 VolBlocks=57 VolBytes=10,027,437

402

The key points to note are that bscan prints a line when each major record is created. Due to the volume
of output, it does not print a line for each file record unless you supply the -v option twice or more on the
command line.
In the case of a Job record, the new JobId will not normally be the same as the original Jobid. For example,
for the first JobId above, the new JobId is 1, but the original JobId is 2. This is nothing to be concerned
about as it is the normal nature of databases. bscan will keep everything straight.
Although bscan claims that it created a Client record for Client: Rufus three times, it was actually only
created the first time. This is normal.
You will also notice that it read an end of file after each Job (Got EOF on device ...). Finally the last line
gives the total statistics for the bscan.
If you had added a second -v option to the command line, Bareos would have been even more verbose,
dumping virtually all the details of each Job record it encountered.
Now if you start Bareos and enter a list jobs command to the console program, you will get:

+-------+----------+------------------+------+-----+----------+----------+---------+

| JobId | Name | StartTime | Type | Lvl | JobFiles | JobBytes | JobStat |

+-------+----------+------------------+------+-----+----------+----------+---------+

| 1 | usersave | 2002-10-07 14:59 | B | F | 84 | 4180207 | T |

| 2 | usersave | 2002-10-07 15:00 | B | I | 15 | 2170314 | T |

| 3 | usersave | 2002-10-07 15:01 | B | I | 33 | 3662184 | T |

+-------+----------+------------------+------+-----+----------+----------+---------+

which corresponds virtually identically with what the database contained before it was re-initialized and
restored with bscan. All the Jobs and Files found on the tape are restored including most of the Media
record. The Volume (Media) records restored will be marked as Full so that they cannot be rewritten
without operator intervention.
It should be noted that bscan cannot restore a database to the exact condition it was in previously because
a lot of the less important information contained in the database is not saved to the tape. Nevertheless, the
reconstruction is sufficiently complete, that you can run restore against it and get valid results.
An interesting aspect of restoring a catalog backup using bscan is that the backup was made while Bareos
was running and writing to a tape. At the point the backup of the catalog is made, the tape Bareos is
writing to will have say 10 files on it, but after the catalog backup is made, there will be 11 files on the
tape Bareos is writing. This there is a difference between what is contained in the backed up catalog and
what is actually on the tape. If after restoring a catalog, you attempt to write on the same tape that was
used to backup the catalog, Bareos will detect the difference in the number of files registered in the catalog
compared to what is on the tape, and will mark the tape in error.
There are two solutions to this problem. The first is possibly the simplest and is to mark the volume as
Used before doing any backups. The second is to manually correct the number of files listed in the Media
record of the catalog. This procedure is documented elsewhere in the manual and involves using the update
volume command in bconsole.

Using bscan to Correct the Volume File Count

If the Storage daemon crashes during a backup Job, the catalog will not be properly updated for the Volume
being used at the time of the crash. This means that the Storage daemon will have written say 20 files on
the tape, but the catalog record for the Volume indicates only 19 files.
Bareos refuses to write on a tape that contains a different number of files from what is in the catalog. To
correct this situation, you may run a bscan with the -m option (but without the -s option) to update only
the final Media record for the Volumes read.

After bscan

If you use bscan to enter the contents of the Volume into an existing catalog, you should be aware that the
records you entered may be immediately pruned during the next job, particularly if the Volume is very old
or had been previously purged. To avoid this, after running bscan, you can manually set the volume status
(VolStatus) to Read-Only by using the update command in the catalog. This will allow you to restore
from the volume without having it immediately purged. When you have restored and backed up the data,
you can reset the VolStatus to Used and the Volume will be purged from the catalog.

C.4.4 bcopy

The bcopy program can be used to copy one Bareos archive file to another. For example, you may copy a
tape to a file, a file to a tape, a file to a file, or a tape to a tape. For tape to tape, you will need two tape

403

drives. In the process of making the copy, no record of the information written to the new Volume is stored
in the catalog. This means that the new Volume, though it contains valid backup data, cannot be accessed
directly from existing catalog entries. If you wish to be able to use the Volume with the Console restore
command, for example, you must first bscan the new Volume into the catalog.

Usage: bcopy [-d debug_level] <input-archive> <output-archive>

-b bootstrap specify a bootstrap file

-c <file> specify configuration file

-D <director> specify a director name specified in the Storage

configuration file for the Key Encryption Key selection

-dnn set debug level to nn

-dt print timestamp in debug output

-i specify input Volume names (separated by |)

-o specify output Volume names (separated by |)

-p proceed inspite of I/O errors

-v verbose

-w dir specify working directory (default /tmp)

-? print this message

By using a bootstrap file, you can copy parts of a Bareos archive file to another archive.

One of the objectives of this program is to be able to recover as much data as possible from a damaged tape.
However, the current version does not yet have this feature.

As this is a new program, any feedback on its use would be appreciated. In addition, I only have a single
tape drive, so I have never been able to test this program with two tape drives.

C.4.5 btape

This program permits a number of elementary tape operations via a tty command interface. It works only
with tapes and not with other kinds of Bareos storage media (DVD, File, ...). The test command, described
below, can be very useful for testing older tape drive compatibility problems. Aside from initial testing of
tape drive compatibility with Bareos, btape will be mostly used by developers writing new tape drivers.

btape can be dangerous to use with existing Bareos tapes because it will relabel a tape or write on the
tape if so requested regardless that the tape may contain valuable data, so please be careful and use it only
on blank tapes.

To work properly, btape needs to read the Storage daemon’s configuration file. As a default, it will look for
Bareos-sd.conf in the current directory. If your configuration file is elsewhere, please use the -c option to
specify where.

The physical device name must be specified on the command line, and this same device name must be present
in the Storage daemon’s configuration file read by btape

Usage: btape <options> <device_name>

-b <file> specify bootstrap file

-c <file> set configuration file to file

-D <director> specify a director name specified in the Storage

configuration file for the Key Encryption Key selection

-d <nn> set debug level to nn

-dt print timestamp in debug output

-p proceed inspite of I/O errors

-s turn off signals

-v be verbose

-? print this message.

Using btape to Verify your Tape Drive

An important reason for this program is to ensure that a Storage daemon configuration file is defined so that
Bareos will correctly read and write tapes.

It is highly recommended that you run the test command before running your first Bareos job to ensure
that the parameters you have defined for your storage device (tape drive) will permit Bareos to function
properly. You only need to mount a blank tape, enter the command, and the output should be reasonably
self explanatory. Please see the Tape Testing Chapter of this manual for the details.

btape Commands

The full list of commands are:

404

Command Description

======= ===========

autochanger test autochanger

bsf backspace file

bsr backspace record

cap list device capabilities

clear clear tape errors

eod go to end of Bareos data for append

eom go to the physical end of medium

fill fill tape, write onto second volume

unfill read filled tape

fsf forward space a file

fsr forward space a record

help print this command

label write a Bareos label to the tape

load load a tape

quit quit btape

rawfill use write() to fill tape

readlabel read and print the Bareos tape label

rectest test record handling functions

rewind rewind the tape

scan read() tape block by block to EOT and report

scanblocks Bareos read block by block to EOT and report

speed report drive speed

status print tape status

test General test Bareos tape functions

weof write an EOF on the tape

wr write a single Bareos block

rr read a single record

qfill quick fill command

The most useful commands are:

� test – test writing records and EOF marks and reading them back.

� fill – completely fill a volume with records, then write a few records on a second volume, and finally,
both volumes will be read back. This command writes blocks containing random data, so your drive
will not be able to compress the data, and thus it is a good test of the real physical capacity of your
tapes.

� readlabel – read and dump the label on a Bareos tape.

� cap – list the device capabilities as defined in the configuration file and as perceived by the Storage
daemon.

The readlabel command can be used to display the details of a Bareos tape label. This can be useful if the
physical tape label was lost or damaged.

In the event that you want to relabel a Bareos volume, you can simply use the label command which will
write over any existing label. However, please note for labeling tapes, we recommend that you use the label
command in the Console program since it will never overwrite a valid Bareos tape.

Testing your Tape Drive To determine the best configuration of your tape drive, you can run the new
speed command available in the btape program.

This command can have the following arguments:

file size=n Specify the Maximum File Size for this test (between 1 and 5GB). This counter is in GB.

nb file=n Specify the number of file to be written. The amount of data should be greater than your memory
(file size ∗ nb file).

skip zero This flag permits to skip tests with constant data.

skip random This flag permits to skip tests with random data.

skip raw This flag permits to skip tests with raw access.

skip block This flag permits to skip tests with Bareos block access.

405

*speed file_size=3 skip_raw

btape.c:1078 Test with zero data and Bareos block structure.

btape.c:956 Begin writing 3 files of 3.221 GB with blocks of 129024 bytes.

++

btape.c:604 Wrote 1 EOF to "Drive-0" (/dev/nst0)

btape.c:406 Volume bytes=3.221 GB. Write rate = 44.128 MB/s

...

btape.c:383 Total Volume bytes=9.664 GB. Total Write rate = 43.531 MB/s

btape.c:1090 Test with random data, should give the minimum throughput.

btape.c:956 Begin writing 3 files of 3.221 GB with blocks of 129024 bytes.

+++

btape.c:604 Wrote 1 EOF to "Drive-0" (/dev/nst0)

btape.c:406 Volume bytes=3.221 GB. Write rate = 7.271 MB/s

+++

...

btape.c:383 Total Volume bytes=9.664 GB. Total Write rate = 7.365 MB/s

When using compression, the random test will give your the minimum throughput of your drive . The test
using constant string will give you the maximum speed of your hardware chain. (cpu, memory, scsi card,
cable, drive, tape).
You can change the block size in the Storage Daemon configuration file.

C.4.6 bscrypto

bscrypto is used in the process of encrypting tapes (see also LTO Hardware Encryption). The storage
daemon and the btools (bls, bextract, bscan, btape, bextract) will use a so called storage daemon plugin
to perform the setting and clearing of the encryption keys. To bootstrap the encryption support and for
populating things like the crypto cache with encryption keys of volumes that you want to scan, you need to
use the bscrypto tool. The bscrypto tool has the following capabilities:

� Generate a new passphrase

– to be used as a so called Key Encryption Key (KEK) for wrapping a passphrase using RFC3394
key wrapping with aes-wrap
- or -

– for usage as a clear text encryption key loaded into the tape drive.

� Base64-encode a key if requested

� Generate a wrapped passphrase which performs the following steps:

– generate a semi random clear text passphrase

– wrap the passphrase using the Key Encryption Key using RFC3394

– base64-encode the wrapped key (as the wrapped key is binary, we always need to base64-encode
it in order to be able to pass the data as part of the director to storage daemon protocol

� show the content of a wrapped or unwrapped keyfile.
This can be used to reveal the content of the passphrase when a passphrase is stored in the database
and you have the urge to change the Key Encryption Key. Normally it is unwise to change the Key
Encryption Key, as this means that you have to redo all your stored encryption keys, as they are stored
in the database wrapped using the Key Encryption Key available in the config during the label phase
of the volume.

� Clear the crypto cache on the machine running the bareos-sd, which keeps a cache of used encryption
keys, which can be used when the bareos-sd is restarted without the need to connect to the bareos-dir
to retrieve the encryption keys.

� Set the encryption key of the drive

� Clear the encryption key of the drive

� Show the encryption status of the drive

406

� Show the encryption status of the next block (e.g. volume)

� Populate the crypto cache with data

C.5 Other Programs

The following programs are general utility programs and in general do not need a configuration file nor a
device name.

C.5.1 bsmtp

bsmtp is a simple mail transport program that permits more flexibility than the standard mail programs
typically found on Unix systems. It can even be used on Windows machines.
It is called:

Usage: bsmtp [-f from] [-h mailhost] [-s subject] [-c copy] [recipient ...t

-4 forces bsmtp to use IPv4 addresses only.

-6 forces bsmtp to use IPv6 addresses only.

-8 set charset to UTF-8

-a use any ip protocol for address resolution

-c set the Cc: field

-d <nn> set debug level to <nn>

-dt print a timestamp in debug output

-f set the From: field

-h use mailhost:port as the SMTP server

-s set the Subject: field

-r set the Reply-To: field

-l set the maximum number of lines to send (default: unlimited)

-? print this message.

Commands C.4: bsmtp

If the -f option is not specified, bsmtp will use your userid. If the option -h is not specified bsmtp will use
the value in the environment variable bsmtpSERVER or if there is none localhost. By default port 25 is
used.
If a line count limit is set with the -l option, bsmtp will not send an email with a body text exceeding that
number of lines. This is especially useful for large restore job reports where the list of files restored might
produce very long mails your mail-server would refuse or crash. However, be aware that you will probably
suppress the job report and any error messages unless you check the log file written by the Director (see the
messages resource in this manual for details).
recipients is a space separated list of email recipients.
The body of the email message is read from standard input.
An example of the use of bsmtp would be to put the following statement in the Messages resource of your
bareos-dir.conf file.

Mail Command = "bsmtp -h mail.example.com -f \"\(Bareos\) %r\" -s \"Bareos: %t %e of %c %l\" %r"

Operator Command = "bsmtp -h mail.example.com -f \"\(Bareos\) %r\" -s \"Bareos: Intervention needed for %j ↙
↪→ \" %r"

Configuration C.5: bsmtp in Message resource

You have to replace mail.example.com with the fully qualified name of your SMTP (email) server, which
normally listens on port 25. For more details on the substitution characters (e.g. %r) used in the above line,
please see the documentation of the MailCommand in the Messages Resource chapter of this manual.
It is HIGHLY recommended that you test one or two cases by hand to make sure that the mailhost that you
specified is correct and that it will accept your email requests. Since bsmtp always uses a TCP connection
rather than writing in the spool file, you may find that your from address is being rejected because it
does not contain a valid domain, or because your message is caught in your spam filtering rules. Generally,
you should specify a fully qualified domain name in the from field, and depending on whether your bsmtp
gateway is Exim or Sendmail, you may need to modify the syntax of the from part of the message. Please
test.
When running bsmtp by hand, you will need to terminate the message by entering a ctrl-d in column 1 of
the last line.
If you are getting incorrect dates (e.g. 1970) and you are running with a non-English language setting, you
might try adding a LANG=C immediately before the bsmtp call.

407

In general, bsmtp attempts to cleanup email addresses that you specify in the from, copy, mailhost, and
recipient fields, by adding the necessary < and > characters around the address part. However, if you include
a display-name (see RFC 5332), some SMTP servers such as Exchange may not accept the message if the
display-name is also included in < and >. As mentioned above, you must test, and if you run into this
situation, you may manually add the < and > to the Bareos Mail Command Dir

Messages or Operator Command
Dir
Messages and when bsmtp is formatting an address if it already contains a < or > character, it will leave the
address unchanged.

C.5.2 bareos-dbcheck

bareos-dbcheck is a simple program that will search for logical inconsistencies in the Bareos tables in your
database, and optionally fix them. It is a database maintenance routine, in the sense that it can detect and
remove unused rows, but it is not a database repair routine. To repair a database, see the tools furnished
by the database vendor. Normally bareos-dbcheck should never need to be run, but if Bareos has crashed
or you have a lot of Clients, Pools, or Jobs that you have removed, it could be useful.
It is called:

Usage: dbcheck [-c config] [-B] [-C catalog name] [-d debug level] [-D driver name] <working-directory> <bareos-database> <user> <password> [<dbhost>] [<dbport>]

-b batch mode

-C catalog name in the director conf file

-c Director conf filename

-B print catalog configuration and exit

-d <nn> set debug level to <nn>

-dt print a timestamp in debug output

-D <driver name> specify the database driver name (default NULL) <postgresql|mysql|sqlite>

-f fix inconsistencies

-v verbose

-? print this message

As Bareos supports loading its database backend dynamically you need to specify the right database driver
to use using the -D option.
If the -B option is specified, bareos-dbcheck will print out catalog information in a simple text based format.
This is useful to backup it in a secure way.

$ bareos-dbcheck -B

catalog=MyCatalog

db_type=SQLite

db_name=regress

db_driver=

db_user=regress

db_password=

db_address=

db_port=0

db_socket=

If the -c option is given with the Director’s conf file, there is no need to enter any of the command line
arguments, in particular the working directory as dbcheck will read them from the file.
If the -f option is specified, bareos-dbcheck will repair (fix) the inconsistencies it finds. Otherwise, it will
report only.
If the -b option is specified, bareos-dbcheck will run in batch mode, and it will proceed to examine and
fix (if -f is set) all programmed inconsistency checks. If the -b option is not specified, bareos-dbcheck will
enter interactive mode and prompt with the following:

Hello, this is the database check/correct program.

Please select the function you want to perform.

1) Toggle modify database flag

2) Toggle verbose flag

3) Repair bad Filename records

4) Repair bad Path records

5) Eliminate duplicate Filename records

6) Eliminate duplicate Path records

7) Eliminate orphaned Jobmedia records

8) Eliminate orphaned File records

9) Eliminate orphaned Path records

10) Eliminate orphaned Filename records

11) Eliminate orphaned FileSet records

408

12) Eliminate orphaned Client records

13) Eliminate orphaned Job records

14) Eliminate all Admin records

15) Eliminate all Restore records

16) All (3-15)

17) Quit

Select function number:

By entering 1 or 2, you can toggle the modify database flag (-f option) and the verbose flag (-v). It can be
helpful and reassuring to turn off the modify database flag, then select one or more of the consistency checks
(items 3 through 9) to see what will be done, then toggle the modify flag on and re-run the check.
The inconsistencies examined are the following:

� Duplicate filename records. This can happen if you accidentally run two copies of Bareos at the same
time, and they are both adding filenames simultaneously. It is a rare occurrence, but will create
an inconsistent database. If this is the case, you will receive error messages during Jobs warning of
duplicate database records. If you are not getting these error messages, there is no reason to run this
check.

� Repair bad Filename records. This checks and corrects filenames that have a trailing slash. They
should not.

� Repair bad Path records. This checks and corrects path names that do not have a trailing slash. They
should.

� Duplicate path records. This can happen if you accidentally run two copies of Bareos at the same
time, and they are both adding filenames simultaneously. It is a rare occurrence, but will create an
inconsistent database. See the item above for why this occurs and how you know it is happening.

� Orphaned JobMedia records. This happens when a Job record is deleted (perhaps by a user issued
SQL statement), but the corresponding JobMedia record (one for each Volume used in the Job) was
not deleted. Normally, this should not happen, and even if it does, these records generally do not take
much space in your database. However, by running this check, you can eliminate any such orphans.

� Orphaned File records. This happens when a Job record is deleted (perhaps by a user issued SQL
statement), but the corresponding File record (one for each Volume used in the Job) was not deleted.
Note, searching for these records can be very time consuming (i.e. it may take hours) for a large
database. Normally this should not happen as Bareos takes care to prevent it. Just the same, this
check can remove any orphaned File records. It is recommended that you run this once a year since
orphaned File records can take a large amount of space in your database. You might want to ensure
that you have indexes on JobId, FilenameId, and PathId for the File table in your catalog before
running this command.

� Orphaned Path records. This condition happens any time a directory is deleted from your system and
all associated Job records have been purged. During standard purging (or pruning) of Job records,
Bareos does not check for orphaned Path records. As a consequence, over a period of time, old unused
Path records will tend to accumulate and use space in your database. This check will eliminate them.
It is recommended that you run this check at least once a year.

� Orphaned Filename records. This condition happens any time a file is deleted from your system and all
associated Job records have been purged. This can happen quite frequently as there are quite a large
number of files that are created and then deleted. In addition, if you do a system update or delete an
entire directory, there can be a very large number of Filename records that remain in the catalog but
are no longer used.

During standard purging (or pruning) of Job records, Bareos does not check for orphaned Filename
records. As a consequence, over a period of time, old unused Filename records will accumulate and use
space in your database. This check will eliminate them. It is strongly recommended that you run this
check at least once a year, and for large database (more than 200 Megabytes), it is probably better to
run this once every 6 months.

� Orphaned Client records. These records can remain in the database long after you have removed a
client.

� Orphaned Job records. If no client is defined for a job or you do not run a job for a long time, you can
accumulate old job records. This option allow you to remove jobs that are not attached to any client
(and thus useless).

409

� All Admin records. This command will remove all Admin records, regardless of their age.

� All Restore records. This command will remove all Restore records, regardless of their age.

If you are using MySQL, bareos-dbcheck will ask you if you want to create temporary indexes to speed up
orphaned Path and Filename elimination.
If you are using bvfs (e.g. used by bareos-webui), don’t eliminate orphaned path, else you will have to rebuild
brestore_pathvisibility and brestore_pathhierarchy indexes.
Normally you should never need to run bareos-dbcheck in spite of the recommendations given above, which
are given so that users don’t waste their time running bareos-dbcheck too often.

C.5.3 bregex

bregex is a simple program that will allow you to test regular expressions against a file of data. This
can be useful because the regex libraries on most systems differ, and in addition, regex expressions can be
complicated.
To run it, use:

Usage: bregex [-d debug_level] -f <data-file>

-f specify file of data to be matched

-l suppress line numbers

-n print lines that do not match

-? print this message.

The <data-file> is a filename that contains lines of data to be matched (or not) against one or more patterns.
When the program is run, it will prompt you for a regular expression pattern, then apply it one line at a
time against the data in the file. Each line that matches will be printed preceded by its line number. You
will then be prompted again for another pattern.
Enter an empty line for a pattern to terminate the program. You can print only lines that do not match by
using the -n option, and you can suppress printing of line numbers with the -l option.
This program can be useful for testing regex expressions to be applied against a list of filenames.

C.5.4 bwild

bwild is a simple program that will allow you to test wild-card expressions against a file of data.
To run it, use:

Usage: bwild [-d debug_level] -f <data-file>

-f specify file of data to be matched

-l suppress line numbers

-n print lines that do not match

-? print this message.

The <data-file> is a filename that contains lines of data to be matched (or not) against one or more patterns.
When the program is run, it will prompt you for a wild-card pattern, then apply it one line at a time against
the data in the file. Each line that matches will be printed preceded by its line number. You will then be
prompted again for another pattern.
Enter an empty line for a pattern to terminate the program. You can print only lines that do not match by
using the -n option, and you can suppress printing of line numbers with the -l option.
This program can be useful for testing wild expressions to be applied against a list of filenames.

C.5.5 bpluginfo

The main purpose of bpluginfo is to display different information about Bareos plugin. You can use it to
check a plugin name, author, license and short description. You can use -f option to display API implemented
by the plugin. Some plugins may require additional ’-a’ option for val- idating a Bareos Daemons API. In
most cases it is not required.

410

Appendix D

The Bootstrap File

TODO: This chapter is going to be rewritten (by Philipp).
The information in this chapter is provided so that you may either create your own bootstrap files, or so that
you can edit a bootstrap file produced by Bareos. However, normally the bootstrap file will be automatically
created for you during the restore in the Console program, or by using a Write Bootstrap Dir

Job record in
your Backup Jobs, and thus you will never need to know the details of this file.
The bootstrap file contains ASCII information that permits precise specification of what files should be
restored, what volume they are on, and where they are on the volume. It is a relatively compact form of
specifying the information, is human readable, and can be edited with any text editor.

D.1 Bootstrap File Format

The general format of a bootstrap file is:
<keyword>= <value>
Where each keyword and the value specify which files to restore. More precisely the keyword and their
values serve to limit which files will be restored and thus act as a filter. The absence of a keyword means
that all records will be accepted.
Blank lines and lines beginning with a pound sign (#) in the bootstrap file are ignored.
There are keywords which permit filtering by Volume, Client, Job, FileIndex, Session Id, Session Time, ...
The more keywords that are specified, the more selective the specification of which files to restore will be.
In fact, each keyword is ANDed with other keywords that may be present.
For example,

Volume = Test-001

VolSessionId = 1

VolSessionTime = 108927638

directs the Storage daemon (or the bextract program) to restore only those files on Volume Test-001 AND
having VolumeSessionId equal to one AND having VolumeSession time equal to 108927638.
The full set of permitted keywords presented in the order in which they are matched against the Volume
records are:

Volume The value field specifies what Volume the following commands apply to. Each Volume specification
becomes the current Volume, to which all the following commands apply until a new current Volume
(if any) is specified. If the Volume name contains spaces, it should be enclosed in quotes. At lease one
Volume specification is required.

Count The value is the total number of files that will be restored for this Volume. This allows the Storage
daemon to know when to stop reading the Volume. This value is optional.

VolFile The value is a file number, a list of file numbers, or a range of file numbers to match on the current
Volume. The file number represents the physical file on the Volume where the data is stored. For a
tape volume, this record is used to position to the correct starting file, and once the tape is past the
last specified file, reading will stop.

VolBlock The value is a block number, a list of block numbers, or a range of block numbers to match on
the current Volume. The block number represents the physical block within the file on the Volume
where the data is stored.

411

412

VolSessionTime The value specifies a Volume Session Time to be matched from the current volume.

VolSessionId The value specifies a VolSessionId, a list of volume session ids, or a range of volume session
ids to be matched from the current Volume. Each VolSessionId and VolSessionTime pair corresponds
to a unique Job that is backed up on the Volume.

JobId The value specifies a JobId, list of JobIds, or range of JobIds to be selected from the current Volume.
Note, the JobId may not be unique if you have multiple Directors, or if you have reinitialized your
database. The JobId filter works only if you do not run multiple simultaneous jobs. This value is
optional and not used by Bareos to restore files.

Job The value specifies a Job name or list of Job names to be matched on the current Volume. The Job
corresponds to a unique VolSessionId and VolSessionTime pair. However, the Job is perhaps a bit
more readable by humans. Standard regular expressions (wildcards) may be used to match Job names.
The Job filter works only if you do not run multiple simultaneous jobs. This value is optional and not
used by Bareos to restore files.

Client The value specifies a Client name or list of Clients to will be matched on the current Volume.
Standard regular expressions (wildcards) may be used to match Client names. The Client filter works
only if you do not run multiple simultaneous jobs. This value is optional and not used by Bareos to
restore files.

FileIndex The value specifies a FileIndex, list of FileIndexes, or range of FileIndexes to be selected from
the current Volume. Each file (data) stored on a Volume within a Session has a unique FileIndex.
For each Session, the first file written is assigned FileIndex equal to one and incremented for each file
backed up.

This for a given Volume, the triple VolSessionId, VolSessionTime, and FileIndex uniquely identifies a
file stored on the Volume. Multiple copies of the same file may be stored on the same Volume, but for
each file, the triple VolSessionId, VolSessionTime, and FileIndex will be unique. This triple is stored
in the Catalog database for each file.

To restore a particular file, this value (or a range of FileIndexes) is required.

FileRegex The value is a regular expression. When specified, only matching filenames will be restored.

FileRegex=^/etc/passwd(.old)?

Slot The value specifies the autochanger slot. There may be only a single Slot specification for each Volume.

Stream The value specifies a Stream, a list of Streams, or a range of Streams to be selected from the current
Volume. Unless you really know what you are doing (the internals of Bareos), you should avoid this
specification. This value is optional and not used by Bareos to restore files.

The Volume record is a bit special in that it must be the first record. The other keyword records may
appear in any order and any number following a Volume record.
Multiple Volume records may be specified in the same bootstrap file, but each one starts a new set of filter
criteria for the Volume.
In processing the bootstrap file within the current Volume, each filter specified by a keyword is ANDed
with the next. Thus,

Volume = Test-01

Client = "My machine"

FileIndex = 1

will match records on Volume Test-01 AND Client records for My machine AND FileIndex equal to
one.
Multiple occurrences of the same record are ORed together. Thus,

Volume = Test-01

Client = "My machine"

Client = "Backup machine"

FileIndex = 1

will match records on Volume Test-01 AND (Client records for My machine OR Backup machine)
AND FileIndex equal to one.
For integer values, you may supply a range or a list, and for all other values except Volumes, you may specify
a list. A list is equivalent to multiple records of the same keyword. For example,

413

Volume = Test-01

Client = "My machine", "Backup machine"

FileIndex = 1-20, 35

will match records on Volume Test-01 AND (Client records for My machine OR Backup machine)
AND (FileIndex 1 OR 2 OR 3 ... OR 20 OR 35).
As previously mentioned above, there may be multiple Volume records in the same bootstrap file. Each new
Volume definition begins a new set of filter conditions that apply to that Volume and will be ORed with
any other Volume definitions.
As an example, suppose we query for the current set of tapes to restore all files on Client Rufus using the
query command in the console program:

Using default Catalog name=MySQL DB=bareos

*query

Available queries:

1: List Job totals:

2: List where a file is saved:

3: List where the most recent copies of a file are saved:

4: List total files/bytes by Job:

5: List total files/bytes by Volume:

6: List last 10 Full Backups for a Client:

7: List Volumes used by selected JobId:

8: List Volumes to Restore All Files:

Choose a query (1-8): 8

Enter Client Name: Rufus

+-------+------------------+------------+-----------+----------+------------+

| JobId | StartTime | VolumeName | StartFile | VolSesId | VolSesTime |

+-------+------------------+------------+-----------+----------+------------+

| 154 | 2002-05-30 12:08 | test-02 | 0 | 1 | 1022753312 |

| 202 | 2002-06-15 10:16 | test-02 | 0 | 2 | 1024128917 |

| 203 | 2002-06-15 11:12 | test-02 | 3 | 1 | 1024132350 |

| 204 | 2002-06-18 08:11 | test-02 | 4 | 1 | 1024380678 |

+-------+------------------+------------+-----------+----------+------------+

The output shows us that there are four Jobs that must be restored. The first one is a Full backup, and the
following three are all Incremental backups.
The following bootstrap file will restore those files:

Volume=test-02

VolSessionId=1

VolSessionTime=1022753312

Volume=test-02

VolSessionId=2

VolSessionTime=1024128917

Volume=test-02

VolSessionId=1

VolSessionTime=1024132350

Volume=test-02

VolSessionId=1

VolSessionTime=1024380678

As a final example, assume that the initial Full save spanned two Volumes. The output from query might
look like:

+-------+------------------+------------+-----------+----------+------------+

| JobId | StartTime | VolumeName | StartFile | VolSesId | VolSesTime |

+-------+------------------+------------+-----------+----------+------------+

| 242 | 2002-06-25 16:50 | File0003 | 0 | 1 | 1025016612 |

| 242 | 2002-06-25 16:50 | File0004 | 0 | 1 | 1025016612 |

| 243 | 2002-06-25 16:52 | File0005 | 0 | 2 | 1025016612 |

| 246 | 2002-06-25 19:19 | File0006 | 0 | 2 | 1025025494 |

+-------+------------------+------------+-----------+----------+------------+

and the following bootstrap file would restore those files:

Volume=File0003

VolSessionId=1

VolSessionTime=1025016612

Volume=File0004

VolSessionId=1

VolSessionTime=1025016612

Volume=File0005

414

VolSessionId=2

VolSessionTime=1025016612

Volume=File0006

VolSessionId=2

VolSessionTime=1025025494

D.2 Automatic Generation of Bootstrap Files

One thing that is probably worth knowing: the bootstrap files that are generated automatically at the end of
the job are not as optimized as those generated by the restore command. This is because during Incremental
and Differential jobs, the records pertaining to the files written for the Job are appended to the end of the
bootstrap file. As consequence, all the files saved to an Incremental or Differential job will be restored first
by the Full save, then by any Incremental or Differential saves.
When the bootstrap file is generated for the restore command, only one copy (the most recent) of each file
is restored.
So if you have spare cycles on your machine, you could optimize the bootstrap files by doing the following:

bconsole

restore client=xxx select all

done

no

quit

Backup bootstrap file.

The above will not work if you have multiple FileSets because that will be an extra prompt. However, the
restore client=xxx select all builds the in-memory tree, selecting everything and creates the bootstrap
file.
The no answers the Do you want to run this (yes/mod/no) question.

D.3 Bootstrap for bscan

If you have a very large number of Volumes to scan with bscan, you may exceed the command line limit
(511 characters). In that case, you can create a simple bootstrap file that consists of only the volume names.
An example might be:

Volume="Vol001"

Volume="Vol002"

Volume="Vol003"

Volume="Vol004"

Volume="Vol005"

D.4 Bootstrap Example

If you want to extract or copy a single Job, you can do it by selecting by JobId (code not tested) or better
yet, if you know the VolSessionTime and the VolSessionId (printed on Job report and in Catalog), specifying
this is by far the best. Using the VolSessionTime and VolSessionId is the way Bareos does restores. A bsr
file might look like the following:

Volume="Vol001"

VolSessionId=10

VolSessionTime=1080847820

If you know how many files are backed up (on the job report), you can enormously speed up the selection
by adding (let’s assume there are 157 files):

FileIndex=1-157

Count=157

Finally, if you know the File number where the Job starts, you can also cause bcopy to forward space to the
right file without reading every record:

VolFile=20

There is nothing magic or complicated about a BSR file. Parsing it and properly applying it within Bareos
is magic, but you don’t need to worry about that.
If you want to see a *real* bsr file, simply fire up the restore command in the console program, select
something, then answer no when it prompts to run the job. Then look at the file restore.bsr in your
working directory.

Appendix E

Verify File Integrity with Bareos

Since Bareos maintains a catalog of files, their attributes, and either SHA1 or MD5 signatures, it can be an
ideal tool for improving computer security. This is done by making a snapshot of your system files with a
Verify Job and then checking the current state of your system against the snapshot, on a regular basis (e.g.
nightly).
The first step is to set up a Verify Job and to run it with:

Level = InitCatalog

The InitCatalog level tells Bareos simply to get the information on the specified files and to put it into
the catalog. That is your database is initialized and no comparison is done. The InitCatalog is normally
run one time manually.
Thereafter, you will run a Verify Job on a daily (or whatever) basis with:

Level = Catalog

The Level = Catalog level tells Bareos to compare the current state of the files on the Client to the last
InitCatalog that is stored in the catalog and to report any differences. See the example below for the
format of the output.
You decide what files you want to form your ”snapshot” by specifying them in a FileSet resource, and
normally, they will be system files that do not change, or that only certain features change.
Then you decide what attributes of each file you want compared by specifying comparison options on the
Include statements that you use in the FileSet resource of your Catalog Jobs.

E.1 The Details

In the discussion that follows, we will make reference to the Verify Configuration Example that is included
below in the A Verify Configuration Example section. You might want to look it over now to get an
idea of what it does.
The main elements consist of adding a schedule, which will normally be run daily, or perhaps more often.
This is provided by the VerifyCycle Schedule, which runs at 5:05 in the morning every day.
Then you must define a Job, much as is done below. We recommend that the Job name contain the name
of your machine as well as the word Verify or Check. In our example, we named it MatouVerify. This
will permit you to easily identify your job when running it from the Console.
You will notice that most records of the Job are quite standard, but that the FileSet resource contains
verify=pins1 option in addition to the standard signature=SHA1 option. If you don’t want SHA1
signature comparison, and we cannot imagine why not, you can drop the signature=SHA1 and none will
be computed nor stored in the catalog. Or alternatively, you can use verify=pins5 and signature=MD5,
which will use the MD5 hash algorithm. The MD5 hash computes faster than SHA1, but is cryptographically
less secure.
The verify=pins1 is ignored during the InitCatalog Job, but is used during the subsequent Catalog
Jobs to specify what attributes of the files should be compared to those found in the catalog. pins1 is a
reasonable set to begin with, but you may want to look at the details of these and other options. They can
be found in the FileSet Resource section of this manual. Briefly, however, the p of the pins1 tells Verify to
compare the permissions bits, the i is to compare inodes, the n causes comparison of the number of links,
the s compares the file size, and the 1 compares the SHA1 checksums (this requires the signature=SHA1
option to have been set also).

415

416

You must also specify the Client and the Catalog resources for your Verify job, but you probably already
have them created for your client and do not need to recreate them, they are included in the example below
for completeness.
As mentioned above, you will need to have a FileSet resource for the Verify job, which will have the
additional verify=pins1 option. You will want to take some care in defining the list of files to be included
in your FileSet. Basically, you will want to include all system (or other) files that should not change on your
system. If you select files, such as log files or mail files, which are constantly changing, your automatic Verify
job will be constantly finding differences. The objective in forming the FileSet is to choose all unchanging
important system files. Then if any of those files has changed, you will be notified, and you can determine
if it changed because you loaded a new package, or because someone has broken into your computer and
modified your files. The example below shows a list of files that I use on my Red Hat 7.3 system. Since I
didn’t spend a lot of time working on it, it probably is missing a few important files (if you find one, please
send it to me). On the other hand, as long as I don’t load any new packages, none of these files change
during normal operation of the system.

E.2 Running the Verify

The first thing you will want to do is to run an InitCatalog level Verify Job. This will initialize the catalog
to contain the file information that will later be used as a basis for comparisons with the actual file system,
thus allowing you to detect any changes (and possible intrusions into your system).
The easiest way to run the InitCatalog is manually with the console program by simply entering run. You
will be presented with a list of Jobs that can be run, and you will choose the one that corresponds to your
Verify Job, MatouVerify in this example.

The defined Job resources are:

1: MatouVerify

2: usersrestore

3: Filetest

4: usersave

Select Job resource (1-4): 1

Next, the console program will show you the basic parameters of the Job and ask you:

Run Verify job

JobName: MatouVerify

FileSet: Verify Set

Level: Catalog

Client: MatouVerify

Storage: DLTDrive

Verify Job:

Verify List: /tmp/regress/working/MatouVerify.bsr

OK to run? (yes/mod/no): mod

Here, you want to respond mod to modify the parameters because the Level is by default set to Catalog
and we want to run an InitCatalog Job. After responding mod, the console will ask:

Parameters to modify:

1: Level

2: Storage

3: Job

4: FileSet

5: Client

6: When

7: Priority

8: Pool

9: Verify Job

Select parameter to modify (1-5): 1

you should select number 2 to modify the Level, and it will display:

Levels:

1: Initialize Catalog

2: Verify Catalog

3: Verify Volume to Catalog

4: Verify Disk to Catalog

5: Verify Volume Data (not yet implemented)

Select level (1-4): 1

417

Choose item 1, and you will see the final display:

Run Verify job

JobName: MatouVerify

FileSet: Verify Set

Level: Initcatalog

Client: MatouVerify

Storage: DLTDrive

Verify Job:

Verify List: /tmp/regress/working/MatouVerify.bsr

OK to run? (yes/mod/no): yes

at which point you respond yes, and the Job will begin.
Thereafter the Job will automatically start according to the schedule you have defined. If you wish to
immediately verify it, you can simply run a Verify Catalog which will be the default. No differences should
be found.
To use a previous job, you can add jobid=xxx option in run command line. It will run the Verify job against
the specified job.

*run jobid=1 job=MatouVerify

Run Verify job

JobName: MatouVerify

Level: Catalog

Client: 127.0.0.1-fd

FileSet: Full Set

Pool: Default (From Job resource)

Storage: File (From Job resource)

Verify Job: MatouVerify.2010-09-08_15.33.33_03

Verify List: /tmp/regress/working/MatouVerify.bsr

When: 2010-09-08 15:35:32

Priority: 10

OK to run? (yes/mod/no):

E.3 What To Do When Differences Are Found

If you have setup your messages correctly, you should be notified if there are any differences and exactly
what they are. For example, below is the email received after doing an update of OpenSSH:

HeadMan: Start Verify JobId 83 Job=RufusVerify.2002-06-25.21:41:05

HeadMan: Verifying against Init JobId 70 run 2002-06-21 18:58:51

HeadMan: File: /etc/pam.d/sshd

HeadMan: st_ino differ. Cat: 4674b File: 46765

HeadMan: File: /etc/rc.d/init.d/sshd

HeadMan: st_ino differ. Cat: 56230 File: 56231

HeadMan: File: /etc/ssh/ssh_config

HeadMan: st_ino differ. Cat: 81317 File: 8131b

HeadMan: st_size differ. Cat: 1202 File: 1297

HeadMan: SHA1 differs.

HeadMan: File: /etc/ssh/sshd_config

HeadMan: st_ino differ. Cat: 81398 File: 81325

HeadMan: st_size differ. Cat: 1182 File: 1579

HeadMan: SHA1 differs.

HeadMan: File: /etc/ssh/ssh_config.rpmnew

HeadMan: st_ino differ. Cat: 812dd File: 812b3

HeadMan: st_size differ. Cat: 1167 File: 1114

HeadMan: SHA1 differs.

HeadMan: File: /etc/ssh/sshd_config.rpmnew

HeadMan: st_ino differ. Cat: 81397 File: 812dd

HeadMan: st_size differ. Cat: 2528 File: 2407

HeadMan: SHA1 differs.

HeadMan: File: /etc/ssh/moduli

HeadMan: st_ino differ. Cat: 812b3 File: 812ab

HeadMan: File: /usr/bin/scp

HeadMan: st_ino differ. Cat: 5e07e File: 5e343

HeadMan: st_size differ. Cat: 26728 File: 26952

HeadMan: SHA1 differs.

HeadMan: File: /usr/bin/ssh-keygen

HeadMan: st_ino differ. Cat: 5df1d File: 5e07e

HeadMan: st_size differ. Cat: 80488 File: 84648

418

HeadMan: SHA1 differs.

HeadMan: File: /usr/bin/sftp

HeadMan: st_ino differ. Cat: 5e2e8 File: 5df1d

HeadMan: st_size differ. Cat: 46952 File: 46984

HeadMan: SHA1 differs.

HeadMan: File: /usr/bin/slogin

HeadMan: st_ino differ. Cat: 5e359 File: 5e2e8

HeadMan: File: /usr/bin/ssh

HeadMan: st_mode differ. Cat: 89ed File: 81ed

HeadMan: st_ino differ. Cat: 5e35a File: 5e359

HeadMan: st_size differ. Cat: 219932 File: 234440

HeadMan: SHA1 differs.

HeadMan: File: /usr/bin/ssh-add

HeadMan: st_ino differ. Cat: 5e35b File: 5e35a

HeadMan: st_size differ. Cat: 76328 File: 81448

HeadMan: SHA1 differs.

HeadMan: File: /usr/bin/ssh-agent

HeadMan: st_ino differ. Cat: 5e35c File: 5e35b

HeadMan: st_size differ. Cat: 43208 File: 47368

HeadMan: SHA1 differs.

HeadMan: File: /usr/bin/ssh-keyscan

HeadMan: st_ino differ. Cat: 5e35d File: 5e96a

HeadMan: st_size differ. Cat: 139272 File: 151560

HeadMan: SHA1 differs.

HeadMan: 25-Jun-2002 21:41

JobId: 83

Job: RufusVerify.2002-06-25.21:41:05

FileSet: Verify Set

Verify Level: Catalog

Client: RufusVerify

Start time: 25-Jun-2002 21:41

End time: 25-Jun-2002 21:41

Files Examined: 4,258

Termination: Verify Differences

At this point, it was obvious that these files were modified during installation of the RPMs. If you want to
be super safe, you should run a Verify Level=Catalog immediately before installing new software to verify
that there are no differences, then run a Verify Level=InitCatalog immediately after the installation.
To keep the above email from being sent every night when the Verify Job runs, we simply re-run the Verify
Job setting the level to InitCatalog (as we did above in the very beginning). This will re-establish the
current state of the system as your new basis for future comparisons. Take care that you don’t do an
InitCatalog after someone has placed a Trojan horse on your system!
If you have included in your FileSet a file that is changed by the normal operation of your system, you will
get false matches, and you will need to modify the FileSet to exclude that file (or not to Include it), and
then re-run the InitCatalog.
The FileSet that is shown below is what I use on my Red Hat 7.3 system. With a bit more thought, you
can probably add quite a number of additional files that should be monitored.

E.4 A Verify Configuration Example

Schedule {

Name = "VerifyCycle"

Run = Level=Catalog sun-sat at 5:05

}

Job {

Name = "MatouVerify"

Type = Verify

Level = Catalog # default level

Client = MatouVerify

FileSet = "Verify Set"

Messages = Standard

Storage = DLTDrive

Pool = Default

Schedule = "VerifyCycle"

}

#

The list of files in this FileSet should be carefully

chosen. This is a good starting point.

#

FileSet {

Name = "Verify Set"

419

Include {

Options {

verify=pins1

signature=SHA1

}

File = /boot

File = /bin

File = /sbin

File = /usr/bin

File = /lib

File = /root/.ssh

File = /home/user/.ssh

File = /var/named

File = /etc/sysconfig

File = /etc/ssh

File = /etc/security

File = /etc/exports

File = /etc/rc.d/init.d

File = /etc/sendmail.cf

File = /etc/sysctl.conf

File = /etc/services

File = /etc/xinetd.d

File = /etc/hosts.allow

File = /etc/hosts.deny

File = /etc/hosts

File = /etc/modules.conf

File = /etc/named.conf

File = /etc/pam.d

File = /etc/resolv.conf

}

Exclude = { }

}

Client {

Name = MatouVerify

Address = lmatou

Catalog = Bareos

Password = ""

File Retention = 80d # 80 days

Job Retention = 1y # one year

AutoPrune = yes # Prune expired Jobs/Files

}

Catalog {

Name = Bareos

dbname = verify; user = bareos; password = ""

}

420

Appendix F

Backward Compatibility

F.1 Tape Formats

One of the major goals of Backup softare is to ensure that you can restore tapes (the word tape should also
include disk volumes) that you wrote years ago. This means that each new version of the software should be
able to read old format tapes. The first problem you will have is to ensure that the hardware is still working
some years down the road, and the second problem will be to ensure that the media will still be good, then
your OS must be able to interface to the device, and finally Bareos must be able to recognize old formats.
All the problems except the last are ones that we cannot solve, but by careful planning you can.

Since the very beginning of Bacula (January 2000) until today (2015), there have been three major Bac-
ula/Bareos tape formats. The second format was introduced in Bacula version 1.27 in November of 2002.
Bareos has been required to adapt the tape format to avoid potential trademark issues, but is able to read
also the old Bacula tape formats.

Though the tape format is basically fixed, the kinds of data that we can put on the tapes are extensible,
and that is how we added new features such as ACLs, Win32 data, encrypted data, ... Obviously, an older
version of Bacula/Bareos would not know how to read these newer data streams, but each newer version of
Bareos should know how to read all the older streams.

F.2 Compatibility between Bareos and Bacula

A Director and a Storage Daemon should (must) always run at the same version. This is true for Bareos
as well as for Bacula. It is not possible to mix these components. This is because the protocol between
Director and Storage Daemon itself is not versioned (also true for Bareos and Bacula). If you want to be
able to switch back from Bareos to Bacula after using a Bareos director and storage daemon you have to
enable the compatible mode in the Bareos storage daemon to have it write the data in the same format as
the Bacula storage daemon.

The Bareos File Daemon is compatible with all version of the Bacula director (tested with version 5.2.13 and
lower) when you enable the compatible mode in the config of the file daemon. The compatible option was
set by default in Bareos < 15.2.0, and is disabled by default since Version Version >= 15.2.0. To be sure
this is enabled you can explicitly set the compatible option by putting the following in the bareos-fd.conf:

compatible=true

Configuration F.1: Compatibility directive

A Bareos director can only talk to Bacula file daemons of version 2.0 or higher.

These combinations of Bareos and Bacula are know to work together:

Director Storage Daemon File Daemon Remarks

Bareos Bareos Bareos
Bareos Bareos Bacula ≥ 2.0
Bacula Bacula Bacula
Bacula Bacula Bareos (compatibe mode)

Other combinations like Bacula director (dir) with Bareos storage daemon (sd) will not work. However this
wasn’t even possible with different versions of bacula-dir and bacula-sd.

421

422

F.2.1 Upgrade from Bacula 5.2 to Bareos

Upgrade is supported from Bacula version 5.2.x. If you are running any older version of Bacula, please
update to 5.2 first (see Bacula documentation). Note: Updating from the latest Bacula 7.0 to Bareos has
not been tested.

Rename user and group before upgrading

To have bareos running without any permission hazzle, it is recommended to rename the user and group
bacula to the user and group bareos before upgrading. That way, we minimize the effort for the user to
recheck all config files and the rights on every script/directory etc. involved in the existing setup.
The required commands should look something like this:

usermod -l bareos bacula

groupmod -n bareos bacula

Commands F.2:

MySQL

Proceed with the following steps:

� Stop bacula services

� Backup your catalog database:

mysqldump bacula > /tmp/bacula_5.2.sql

Commands F.3:

� Make the user bareos have the same userid and the group bareos the same groupid as the user/group
bacula had before. This will solve a lot of rights problems.

� Install Bareos packages

� Run the update script on the old bacula database:

export db_name=bacula

/usr/lib/bareos/update_bareos_tables

unset db_name

Commands F.4:

� Backup upgraded DB:

mysqldump bacula > /tmp/bacula.sql

Commands F.5:

� Create bareos database:

/usr/lib/bareos/create_bareos_database

Commands F.6:

� Insert backuped db into new database:

cat /tmp/bacula.sql | mysql bareos

Commands F.7:

� Grant permissions:

/usr/lib/bareos/grant_mysql_privileges

Commands F.8:

� Adapt file permissions to bareos, if you have any file storage

423

� Adapt configs (not complete)

– With bacula the default setting for pid files was /var/run, which may not work if the bareos-
director runs as user bareos. Best way is to comment out the entry Pid Directory = "/var/run"

in your director config. Bareos will set a working default value (supposed to be /var/lib/

bareos/)

PostgreSQL

Renaming a postgresql database:

� Become postgresql user

� psql template1

ALTER DATABASE bacula RENAME TO bareos;

ALTER USER bacula RENAME TO bareos;

ALTER USER bareos UNENCRYPTED PASSWORD ’password’;

Commands F.9:

424

Appendix G

Catalog Tables

Bareos stores its information in a database, named Catalog. It is configured by Catalog Resource.

G.1 Job

G.1.1 JobStatus

The status of a Bareos job is stored as abbreviation in the Catalog database table Job. It is also displayed
by some bconsole commands, eg. list jobs.
This table lists the abbreviations together with its description and weight. The weight is used, when multiple
states are applicable for a job. In this case, only the status with the highest weight/priority is applied.

Abbr. Description Weight

C Created, not yet running 15
R Running 15
B Blocked 15
T Completed successfully 10
E Terminated with errors 25
e Non-fatal error 20
f Fatal error 100
D Verify found differences 15
A Canceled by user 90
I Incomplete job 15
L Committing data 15
W Terminated with warnings 20
l Doing data despooling 15
q Queued waiting for device 15
F Waiting for Client 15
S Waiting for Storage daemon 15
m Waiting for new media 15
M Waiting for media mount 15
s Waiting for storage resource 15
j Waiting for job resource 15
c Waiting for client resource 15
d Waiting on maximum jobs 15
t Waiting on start time 15
p Waiting on higher priority jobs 15
i Doing batch insert file records 15
a SD despooling attributes 15

425

426

Appendix H

Howtos

H.1 Use a dummy device to test the backup

If your are testing your configuration, but don’t want to store the backup data, it is possible to use a dummy
FIFO device to test your configuration, see Stored configuration.

Obviously, it can not be used to do a restore.

Device {

Name = NULL

Media Type = NULL

Device Type = Fifo

Archive Device = /dev/null

LabelMedia = yes

Random Access = no

AutomaticMount = no

RemovableMedia = no

MaximumOpenWait = 60

AlwaysOpen = no

}

Configuration H.1: FIFO Storage Device Configuration

H.2 Backup Of Third Party Databases

If you are running a database in production mode on your machine, Bareos will happily backup the files,
but if the database is in use while Bareos is reading it, you may back it up in an unstable state.

The best solution is to shutdown your database before backing it up, or use some tool specific to your
database to make a valid live copy perhaps by dumping the database in ASCII format.

H.2.1 Backup of MSSQL Databases with Bareos Plugin

Version >= 13.2.0

Preparation

If you like to use the MSSQL-Plugin to backing up your Databases you need to consider some things:

� Database Mode
The database need to run in Full Recovery Mode. Otherwise you are not able to use differential
and incremental backups or to use point in time recovery.
Please note! If you set the databases into the mentionend mode you have to consider some maintance
facts. The database doesn’t shrink or delete the logs unanttended, so you have to shrink them manual
once a week and you have to truncate the logs once in a month.

� Security and Access
For connections you can use a SQL-User or a integrated systemaccount (Windows NT user). Both
connection types are supported.

427

428

– Standard Security
You have to provide user credentials within your options which do belong to user with the suf-
ficent right performing restores and backups from the database. This way stands for an extra
backup/restore user.

– Trusted Security
You use a systemaccount which have the sufficent rights to performing backups and restores on a
database. This systemaccount have to be same account like the bareos-filedeamon runs on.

� Permissions and Roles

– Server-Role
The user should be in the groups sysadmin and dbcreator.

– Database permissions
The user have to be a backupoperator and dbowner of the database which you like to backup.

There is no difference for the rights and roles between using a systemaccount (trusted security method) or a
extra backup user (standard security method). Please keep in mind if you use the trusted security method
you have to use the same system account like the bareos-filedeamon runs on.

MSSQL Plugin Installation

For Bareos < 14.2, install the Bareos MSSQL plugin onto the MSSQL server you want to backup. Bareos
>= 14.2 also allows to backup remote MSSQL servers (option serveraddress).

Bareos Windows-Installer Install the Bareos filedaemon including the component ”Bareos FileDameon
Plugins”. Make sure, that you install the file daemon without the ”compatible” option.

Manual install After downloading the plugin you need to copy it into C:\Program Files\Bareos\

Plugins. Then you need to define the plugin directory and which plugin the bareos-filedaemon should
use. You have to edit the bareos-filedaemon resource in C:\Program Data\bareos-fd.conf as follows:

FileDaemon {

Name = mssqlserver-fd

Maximum Concurrent Jobs = 20

remove comment in next line to load plugins from specified directory

Plugin Directory = "C:/Program Files/Bareos/Plugins"

Plugin Names = "mssqlvdi"

compatible = no # this is the default since bareos 15

}

Configuration H.2: MSSQL plugin configuration

Plugin Test

*status client=mssqlserver-fd
Connecting to Client mssqlserver-fd at 192.168.10.101:9102

mssqlserver-fd Version: 13.2.2 (12 November 2013) VSS Linux Cross-compile Win64

Daemon started 18-Nov-13 11:51. Jobs: run=0 running=0.

Microsoft Windows Server 2012 Standard Edition (build 9200), 64-bit

Heap: heap=0 smbytes=20,320 max_bytes=20,522 bufs=71 max_bufs=73

Sizeof: boffset_t=8 size_t=8 debug=0 trace=1 bwlimit=0kB/s

Plugin Info:

Plugin : mssqlvdi-fd.dll

Description: Bareos MSSQL VDI Windows File Daemon Plugin

Version : 1, Date: July 2013

Author : Zilvinas Krapavickas

License : Bareos AGPLv3

Usage :

mssqlvdi:

serveraddress=<hostname>:

instance=<instance name>:

429

database=<database name>:

username=<database username>:

password=<database password>:

norecovery=<yes|no>:

replace=<yes|no>:

recoverafterrestore=<yes|no>:

stopbeforemark=<log sequence number specification>:

stopatmark=<log sequence number specification>:

stopat=<timestamp>

examples:

timestamp: ’Apr 15, 2020 12:00 AM’

log sequence number: ’lsn:15000000040000037’

bconsole H.3: status client=mssqlserver-fd

Configure the FileSet

To use the plugin you need to configure it in the fileset as a plugin resource. For each database instance you
need to define a exclusive backup job and fileset.

Fileset {

Name = "Mssql"

Enable VSS = no

Include {

Options {

Signature = MD5

}

Plugin = "mssqlvdi:instance=default:database=myDatabase:username=bareos:password=bareos"

}

}

Configuration H.4: MSSQL FileSet

In this example we use the standard security method for the connection.
Used options in the plugin string are:

mssqlvdi This is the reference to the MSSQL plugin.

serveraddress (Version >= 14.2.2) Defines the server address to connect to (if empty defaults to localhost).

instance Defines the instance within the database server.

database Defines the database that should get backuped.

username and password Username and Password are required, when the connection is done using a
MSSQL user. If the systemaccount the bareos-fd runs with has succifient permissions, this is not
required.

It is recommend to define an additional restore job.
For every database separate job and FileSet are required.

Run Backups

Here you can see an example for a backup:

*run job=MSSQLBak
Using Catalog "MyCatalog"

Run Backup job

JobName: MSSQLBak

Level: Full

Client: mssqlserver-fd

Format: Native

FileSet: Mssql

Pool: File (From Job resource)

Storage: File (From Job resource)

When: 2013-11-21 09:48:27

Priority: 10

430

OK to run? (yes/mod/no): yes
Job queued. JobId=7

You have no messages.

*mess
21-Nov 09:48 bareos-dir JobId 7: Start Backup JobId 7, Job=MSSQLBak.2013-11-21_09.48.30_04

21-Nov 09:48 bareos-dir JobId 7: Using Device "FileStorage" to write.

21-Nov 09:49 bareos-sd JobId 7: Volume "test1" previously written, moving to end of data.

21-Nov 09:49 bareos-sd JobId 7: Ready to append to end of Volume "test1" size=2300114868

21-Nov 09:49 bareos-sd JobId 7: Elapsed time=00:00:27, Transfer rate=7.364 M Bytes/second

21-Nov 09:49 bareos-dir JobId 7: Bareos bareos-dir 13.4.0 (01Oct13):

Build OS: x86_64-pc-linux-gnu debian Debian GNU/Linux 7.0 (wheezy)

JobId: 7

Job: MSSQLBak.2013-11-21_09.48.30_04

Backup Level: Full

Client: "mssqlserver-fd" 13.2.2 (12Nov13) Microsoft Windows Server 2012 ↙
↪→ Standard Edition (build 9200), 64-bit,Cross-compile,Win64

FileSet: "Mssql" 2013-11-04 23:00:01

Pool: "File" (From Job resource)

Catalog: "MyCatalog" (From Client resource)

Storage: "File" (From Job resource)

Scheduled time: 21-Nov-2013 09:48:27

Start time: 21-Nov-2013 09:49:13

End time: 21-Nov-2013 09:49:41

Elapsed time: 28 secs

Priority: 10

FD Files Written: 1

SD Files Written: 1

FD Bytes Written: 198,836,224 (198.8 MB)

SD Bytes Written: 198,836,435 (198.8 MB)

Rate: 7101.3 KB/s

Software Compression: None

VSS: no

Encryption: no

Accurate: no

Volume name(s): test1

Volume Session Id: 1

Volume Session Time: 1384961357

Last Volume Bytes: 2,499,099,145 (2.499 GB)

Non-fatal FD errors: 0

SD Errors: 0

FD termination status: OK

SD termination status: OK

Termination: Backup OK

bconsole H.5: run MSSQL backup job

At least you gain a full backup which contains the follow:

@MSSQL/

@MSSQL/default/

@MSSQL/default/myDatabase/

@MSSQL/default/myDatabase/db-full

So if you perform your first full backup your are capable to perfom differntial and incremental backups.

Differntial FileSet example:

/@MSSQL/

/@MSSQL/default/

/@MSSQL/default/myDatabase/

/@MSSQL/default/myDatabase/db-full

/@MSSQL/default/myDatabase/db-diff

Incremental FileSet example:

*@MSSQL/

*default/

431

*myDatabase/

*db-diff

*db-full

*log-2013-11-21 17:32:20

Restores

If you want to perfom a restore of a full backup without differentials or incrementals you have some options
which helps you to restore even the corrupted database still exist. But you have to specifiy the options like
plugin, instance and database during every backup.

replace=<yes|no> With this option you can replace the database if it still exist.

instance Defines the server instance whithin the database is running.

database Defines the database you want to backup.

If you want to restore the actual backup to a set of backup files which you can use to restore a database
under an new name or perform any kind of special operations using for example the sql management studio,
you can use a where setting for the restore other then ’/’. When the where is set to ’/’ it will restore to the
Virtual Device Interface (VDI).
When you specify for restore a where path which is lets say ’c:/temp’ the plugin will restore the selected
backup files under a relocated path under c:/temp/@MSSQL@/...
Example for a full restore:

*restore client=mssqlserver-fd
Using Catalog "MyCatalog"

First you select one or more JobIds that contain files

to be restored. You will be presented several methods

of specifying the JobIds. Then you will be allowed to

select which files from those JobIds are to be restored.

To select the JobIds, you have the following choices:

1: List last 20 Jobs run

2: List Jobs where a given File is saved

3: Enter list of comma separated JobIds to select

4: Enter SQL list command

5: Select the most recent backup for a client

6: Select backup for a client before a specified time

7: Enter a list of files to restore

8: Enter a list of files to restore before a specified time

9: Find the JobIds of the most recent backup for a client

10: Find the JobIds for a backup for a client before a specified time

11: Enter a list of directories to restore for found JobIds

12: Select full restore to a specified Job date

13: Cancel

Select item: (1-13): 5
Automatically selected FileSet: Mssql

+-------+-------+----------+-------------+---------------------+------------+

| JobId | Level | JobFiles | JobBytes | StartTime | VolumeName |

+-------+-------+----------+-------------+---------------------+------------+

| 8 | F | 1 | 198,836,224 | 2013-11-21 09:52:28 | test1 |

+-------+-------+----------+-------------+---------------------+------------+

You have selected the following JobId: 8

Building directory tree for JobId(s) 8 ...

1 files inserted into the tree.

You are now entering file selection mode where you add (mark) and

remove (unmark) files to be restored. No files are initially added, unless

you used the "all" keyword on the command line.

Enter "done" to leave this mode.

cwd is: /

$ mark *

432

1 file marked.

$ done
Bootstrap records written to /var/lib/bareos/bareos-dir.restore.4.bsr

The job will require the following

Volume(s) Storage(s) SD Device(s)

===

test1 File FileStorage

Volumes marked with "*" are online.

1 file selected to be restored.

The defined Restore Job resources are:

1: RestoreMSSQL

2: RestoreFiles

Select Restore Job (1-2): 1
Using Catalog "MyCatalog"

Run Restore job

JobName: RestoreMSSQL

Bootstrap: /var/lib/bareos/bareos-dir.restore.4.bsr

Where: /

Replace: Always

FileSet: Mssql

Backup Client: mssqlserver-fd

Restore Client: mssqlserver-fd

Format: Native

Storage: File

When: 2013-11-21 17:12:05

Catalog: MyCatalog

Priority: 10

Plugin Options: *None*

OK to run? (yes/mod/no): mod
Parameters to modify:

1: Level

2: Storage

3: Job

4: FileSet

5: Restore Client

6: Backup Format

7: When

8: Priority

9: Bootstrap

10: Where

11: File Relocation

12: Replace

13: JobId

14: Plugin Options

Select parameter to modify (1-14): 14
Please enter Plugin Options string: mssqlvdi:instance=default:database=myDatabase:replace=yes
Run Restore job

JobName: RestoreMSSQL

Bootstrap: /var/lib/bareos/bareos-dir.restore.4.bsr

Where: /

Replace: Always

FileSet: Mssql

Backup Client: mssqlserver-fd

Restore Client: mssqlserver-fd

Format: Native

Storage: File

When: 2013-11-21 17:12:05

Catalog: MyCatalog

Priority: 10

433

Plugin Options: mssqlvdi:instance=default:database=myDatabase:replace=yes

OK to run? (yes/mod/no): yes
Job queued. JobId=10

You have messages.

*mess
21-Nov 17:12 bareos-dir JobId 10: Start Restore Job RestoreMSSQL.2013-11-21_17.12.26_11

21-Nov 17:12 bareos-dir JobId 10: Using Device "FileStorage" to read.

21-Nov 17:13 damorgan-sd JobId 10: Ready to read from volume "test1" on device "FileStorage" ↙
↪→ (/storage).

21-Nov 17:13 damorgan-sd JobId 10: Forward spacing Volume "test1" to file:block 0:2499099145.

21-Nov 17:13 damorgan-sd JobId 10: End of Volume at file 0 on device "FileStorage" (/storage), ↙
↪→ Volume "test1"

21-Nov 17:13 damorgan-sd JobId 10: End of all volumes.

21-Nov 17:13 bareos-dir JobId 10: Bareos bareos-dir 13.4.0 (01Oct13):

Build OS: x86_64-pc-linux-gnu debian Debian GNU/Linux 7.0 (wheezy)

JobId: 10

Job: RestoreMSSQL.2013-11-21_17.12.26_11

Restore Client: mssqlserver-fd

Start time: 21-Nov-2013 17:12:28

End time: 21-Nov-2013 17:13:21

Files Expected: 1

Files Restored: 1

Bytes Restored: 198,836,224

Rate: 3751.6 KB/s

FD Errors: 0

FD termination status: OK

SD termination status: OK

Termination: Restore OK

bconsole H.6: restore MSSQL database

Restore a Backup Chain If you like to restore a specific state or a whole chain consists of full, incremental
and differential backups you need to use the ”norecovery=yes” option. After this the database is in ”recovery
mode”. You can also use a option which put the database right after the restore back into the right mode.
If you like to restore certains point with protocols or ”LSN” it it not recommend to work with this option.

norecovery=<yes|no> This option must be set to yes, if the database server should not do a automatic
recovery after the backup. Instead, additional manual maintenace operations are possible.

recoverafterrestore=<yes|no> With this command the database is right after backup in the correct
mode. If you not use this you have to use the followed tsql statement:

Restore DATABASE yourDatabase WITH RECOVERY

GO

stopbeforemark=<log sequence number specification> used for point in time recovery.

stopatmark=<log sequence number specification> used for point in time recovery.

stopat=<timestamp> used for point in time recovery.

Followed is a example for a restore of full, differential and incremental backup with a replace of the original
database:

*restore client=mssqlserver-fd

First you select one or more JobIds that contain files

to be restored. You will be presented several methods

of specifying the JobIds. Then you will be allowed to

select which files from those JobIds are to be restored.

To select the JobIds, you have the following choices:

1: List last 20 Jobs run

2: List Jobs where a given File is saved

3: Enter list of comma separated JobIds to select

434

4: Enter SQL list command

5: Select the most recent backup for a client

6: Select backup for a client before a specified time

7: Enter a list of files to restore

8: Enter a list of files to restore before a specified time

9: Find the JobIds of the most recent backup for a client

10: Find the JobIds for a backup for a client before a specified time

11: Enter a list of directories to restore for found JobIds

12: Select full restore to a specified Job date

13: Cancel

Select item: (1-13): 5
Automatically selected FileSet: Mssql

+-------+-------+----------+-------------+---------------------+------------+

| JobId | Level | JobFiles | JobBytes | StartTime | VolumeName |

+-------+-------+----------+-------------+---------------------+------------+

| 8 | F | 1 | 198,836,224 | 2013-11-21 09:52:28 | test1 |

| 11 | D | 1 | 2,555,904 | 2013-11-21 17:19:45 | test1 |

| 12 | I | 1 | 720,896 | 2013-11-21 17:29:39 | test1 |

+-------+-------+----------+-------------+---------------------+------------+

You have selected the following JobIds: 8,11,12

Building directory tree for JobId(s) 8,11,12 ...

3 files inserted into the tree.

You are now entering file selection mode where you add (mark) and

remove (unmark) files to be restored. No files are initially added, unless

you used the "all" keyword on the command line.

Enter "done" to leave this mode.

cwd is: /

$ mark *

3 files marked.

$ lsmark
*@MSSQL/

*default/

*myDatabase/

*db-diff

*db-full

*log-2013-11-21 17:32:20

$ done
Bootstrap records written to /var/lib/bareos/bareos-dir.restore.6.bsr

The job will require the following

Volume(s) Storage(s) SD Device(s)

===

test1 File FileStorage

Volumes marked with "*" are online.

1 file selected to be restored.

The defined Restore Job resources are:

1: RestoreMSSQL

2: RestoreFiles

Select Restore Job (1-2): 1
Run Restore job

JobName: RestoreMSSQL

Bootstrap: /var/lib/bareos/bareos-dir.restore.6.bsr

Where: /

Replace: Always

FileSet: Mssql

Backup Client: mssqlserver-fd

Restore Client: mssqlserver-fd

435

Format: Native

Storage: File

When: 2013-11-21 17:34:23

Catalog: MyCatalog

Priority: 10

Plugin Options: *None*

OK to run? (yes/mod/no): mod
Parameters to modify:

1: Level

2: Storage

3: Job

4: FileSet

5: Restore Client

6: Backup Format

7: When

8: Priority

9: Bootstrap

10: Where

11: File Relocation

12: Replace

13: JobId

14: Plugin Options

Select parameter to modify (1-14): 14
Please enter Plugin Options string: ↙

↪→ mssqlvdi:instance=default:database=myDatabase:replace=yes:norecovery=yes
Run Restore job

JobName: RestoreMSSQL

Bootstrap: /var/lib/bareos/bareos-dir.restore.6.bsr

Where: /

Replace: Always

FileSet: Mssql

Backup Client: mssqlserver-fd

Restore Client: mssqlserver-fd

Format: Native

Storage: File

When: 2013-11-21 17:34:23

Catalog: MyCatalog

Priority: 10

Plugin Options: mssqlvdi:instance=default:database=myDatabase:replace=yes:norecovery=yes

OK to run? (yes/mod/no): yes
Job queued. JobId=14

21-Nov 17:34 bareos-dir JobId 14: Start Restore Job RestoreMSSQL.2013-11-21_17.34.40_16

21-Nov 17:34 bareos-dir JobId 14: Using Device "FileStorage" to read.

21-Nov 17:35 damorgan-sd JobId 14: Ready to read from volume "test1" on device "FileStorage" ↙
↪→ (/storage).

21-Nov 17:35 damorgan-sd JobId 14: Forward spacing Volume "test1" to file:block 0:2499099145.

21-Nov 17:35 damorgan-sd JobId 14: End of Volume at file 0 on device "FileStorage" (/storage), ↙
↪→ Volume "test1"

21-Nov 17:35 damorgan-sd JobId 14: End of all volumes.

21-Nov 17:35 bareos-dir JobId 14: Bareos bareos-dir 13.4.0 (01Oct13):

Build OS: x86_64-pc-linux-gnu debian Debian GNU/Linux 7.0 (wheezy)

JobId: 14

Job: RestoreMSSQL.2013-11-21_17.34.40_16

Restore Client: mssqlserver-fd

Start time: 21-Nov-2013 17:34:42

End time: 21-Nov-2013 17:35:36

Files Expected: 1

Files Restored: 3

Bytes Restored: 202,113,024

Rate: 3742.8 KB/s

FD Errors: 0

FD termination status: OK

SD termination status: OK

Termination: Restore OK

bconsole H.7: restore MSSQL database chain

436

H.2.2 Backup of a PostgreSQL Database

In this section, we describe different methods how to do backups of the PostgreSQL databases.

Backup of a PostgreSQL Database by using the RunScript directive

One method to backup a PostgreSQL database is to use the pg_dumpall tool to dump the database into a
file and then backup it as a normal file. After the backup, the file can be removed. It may also be an option
not to remove it, so that the latest version is always available immediately. On the next job run it will be
overwritten anyway.
This can be done by using Run Script Dir

Job directives inside a Job Resource, for example:

Job {

Name = "BackupDatabase"

JobDefs = "DefaultJob"

Client = dbserver-fd

Level = Full

FileSet="Database"

This creates a dump of our database in the local filesystem on the client

RunScript {

FailJobOnError = Yes

RunsOnClient = Yes

RunsWhen = Before

Command = "sh -c ’pg_dumpall -U postgres > /var/lib/bareos/postgresql_dump.sql’"

}

This deletes the dump in our local filesystem on the client

RunScript {

RunsOnSuccess = Yes

RunsOnClient = Yes

RunsWhen = After

Command = "rm /var/lib/bareos/postgresql_dump.sql"

}

}

FileSet {

Name = "Database"

Include {

Options {

signature = MD5

compression = gzip

}

database dump file

File = "/var/lib/bareos/postgresql_dump.sql"

}

}

Configuration H.8: RunScript job resource for a PostgreSQL backup

Note that redirecting the pg_dumpall output to a file requires to run the whole command line through a
shell, otherwise the pg_dumpall would not know what do with the > character and the job would fail. As no
shell features like redirection or piping are used for the rm, the sh -c is not needed there. See Run Script
Dir
Job for more details.

Backup of a PostgreSQL Databases by using the bpipe plugin

Instead of creating a temporary database dump file, the bpipe plugin can be used. For general information
about bpipe, see the bpipe Plugin section. The bpipe plugin is configured inside the Include Dir

FileSet section of
a File Set, e.g.:

FileSet {

Name = "postgresql-all"

Include {

Plugin = "bpipe:file=/POSTGRESQL/dump.sql:reader=pg_dumpall -U postgres:writer=psql -U postgres"

Options {

signature = MD5

compression = gzip

}

}

}

Configuration H.9: bpipe directive for PostgreSQL backup

437

This causes the File Daemon to call bpipe plugin, which will write its data into the ”pseudo” file
/POSTGRESQL/dump.sql by calling the program pg_dumpall -U postgres to read the data during backup.
The pg_dumpall command outputs all the data for the database, which will be read by the plugin and stored
in the backup. During restore, the data that was backed up will be sent to the program specified in the last
field, which in this case is psql. When psql is called, it will read the data sent to it by the plugin then write
it back to the same database from which it came from.
This can also be used, to backup a database that is running on a remote host:

FileSet {

Name = "postgresql-remote"

Include {

Plugin = "bpipe:file=/POSTGRESQL/dump.sql:reader=pg_dumpall -h <hostname> -U <username> -W <password>: ↙
↪→ writer=psql -h <hostname> -U <username> -W <password>"

Options {

signature = MD5

compression = gzip

}

}

}

Configuration H.10: bpipe directive to backup a PostgreSQL database that is running on a remote host

Backup of a PostgreSQL Databases by using the PGSQL-Plugin

The PGSQL-Plugin supports an online (Hot) backup of database files and database transaction logs (WAL)
archiving (with pgsql-archlog) and backup. With online database and transaction logs the backup plugin
can perform Poin-In-Time-Restore up to a single selected transaction or date/time.
Database recovery is performed fully automatic with dedicated pgsql-restore utility.
For a full description, see https://github.com/bareos/contrib-pgsql-plugin/wiki.

H.2.3 Backup of a MySQL Database

In this section, we describe different methods to do a full backup of a MySQL database.

Backup of MySQL Databases using the Bareos MySQL Percona xtrabackup Plugin

This plugin is available since Version >= 16.2.4, it uses the xtrabackup tool from Percona to perform full
and incremental hot-backups of MySQL / MariaDB tables of type InnoDB. It can also backup MyISAM
tables but only as full backups. On restore it requires a preparation using the xtrabackup tools, before the
tables can be restored. If you simply want to backup full dumps, then using Backup of MySQL Databases
using the Python MySQL plugin is the easier way.

Prerequisites Install the xtrabackup tool from Percona. Documentation and packages are available here:
https://www.percona.com/software/mysql-database/percona-xtrabackup. The plugin was success-
fully tested with xtrabackup versions 2.3.5 and 2.4.4.
As it is a Python plugin, it will also require to have the package bareos-filedaemon-python-plugin

installed on the Bareos File Daemon, where you run it.
For authentication the .mycnf file of the user running the Bareos File Daemon. Before proceeding, make
sure that xtrabackup can connect to the database and create backups.

Installation Make sure you have met the prerequisites. Install the files BareosFdPercona.py and
bareos-fd-percona.py in your Bareos plugin directory (usually /usr/lib64/bareos/plugins). These
files are available in the Git repository https://github.com/bareos/bareos-contrib/tree/master/

fd-plugins/bareos_percona.

Configuration Activate your plugin directory in the fd resource conf on the client. See File Daemon
Plugins for more about plugins in general.

Client {

Name = mysql-fd

#...

Plugin Directory = /usr/lib64/bareos/plugins

Plugin Name = "python"

}

https://github.com/bareos/contrib-pgsql-plugin/wiki
https://www.percona.com/software/mysql-database/percona-xtrabackup
https://github.com/bareos/bareos-contrib/tree/master/fd-plugins/bareos_percona
https://github.com/bareos/bareos-contrib/tree/master/fd-plugins/bareos_percona

438

Resource H.11: bareos-fd.d/client/mysql-fd.conf

Now include the plugin as command-plugin in the Fileset resource:

FileSet {

Name = "mysql"

Include {

Options {

compression=GZIP

signature = MD5

}

File = /etc

#...

Plugin = "python:module_path=/usr/lib64/bareos/plugins:module_name=bareos-fd-percona"

}

}

Resource H.12: bareos-dir.d/fileset/mysql.conf

If used this way, the plugin will call xtrabackup to create a backup of all databases in the xbstream format.
This stream will be processed by Bareos. If job level is incremental, xtrabackup will perform an incremental
backup since the last backup – for InnoDB tables. If you have MyISAM tables, you will get a full backup of
those.

You can append options to the plugin call as key=value pairs, separated by ’:’. The following options are
available:

� With mycnf you can make xtrabackup use a special mycnf-file with login credentials.

� dumpbinary lets you modify the default command xtrabackup.

� dumpoptions to modify the options for xtrabackup. Default setting is: --backup --datadir=/var/

lib/mysql/ --stream=xbstream --extra-lsndir=/tmp/individual_tempdir

� restorecommand to modify the command for restore. Default setting is: xbstream -x -C

� strictIncremental: By default (false), an incremental backup will create data, even if the Log
Sequence Number (LSN) wasn’t increased since last backup. This is to ensure, that eventual changes
to MYISAM tables get into the backup. MYISAM does not support incremental backups, you will
always get a full bakcup of these tables. If set to true, no data will be written into backup, if the LSN
wasn’t changed.

Restore With the usual Bareos restore mechanism a file-hierarchy will be created on the restore client
under the default restore location:

/tmp/bareos-restores/_percona/

Each restore job gets an own subdirectory, because Percona expects an empty directory. In that subdirectory,
a new directory is created for every backup job that was part of the Full-Incremental sequence.

The naming scheme is: fromLSN_toLSN_jobid

Example:

/tmp/bareos-restores/_percona/351/

|-- 00000000000000000000_00000000000010129154_0000000334

|-- 00000000000010129154_00000000000010142295_0000000335

|-- 00000000000010142295_00000000000010201260_0000000338

This example shows the restore tree for restore job with ID 351. First subdirectory has all files from the
first full backup job with ID 334. It starts at LSN 0 and goes until LSN 10129154.

Next line is the first incremental job with ID 335, starting at LSN 10129154 until 10142295. The third line
is the 2nd incremental job with ID 338.

To further prepare the restored files, use the xtrabackup --prepare command. Read https://www.

percona.com/doc/percona-xtrabackup/2.4/xtrabackup_bin/incremental_backups.html for more in-
formation.

https://www.percona.com/doc/percona-xtrabackup/2.4/xtrabackup_bin/incremental_backups.html
https://www.percona.com/doc/percona-xtrabackup/2.4/xtrabackup_bin/incremental_backups.html

439

Backup of MySQL Databases using the Python MySQL plugin

The Pyhton plugin from https://github.com/bareos/bareos-contrib/tree/master/fd-plugins/

mysql-python makes a backup of all or selected MySQL databases from the Bareos File Daemon or any
other MySQL server. It makes use of the mysqldump command and basically grabs data from mysqldump
via pipe. This plugin is suitable to backup database dumps. If you prefer to use mechanisms like incremental
hot-backups of InnoDB tables, please use the Bareos MySQL / MariaDB Percona xtrabackup Plugin (see
Backup of MySQL Databases using the Bareos MySQL Percona xtrabackup Plugin).
Following settings must be done on the Bareos client (Bareos File Daemon):

� install and enable the Bareos File Daemon Python plugin

� install the Python MySQL plugin (for some platforms it is available prepackaged from http://

download.bareos.org/bareos/contrib/, on the other platforms: copy the plugin files to the Bareos
Plugin Directory)

� disable bacula compatibility (default for Bareos >= 15.2)

Client {

Name = mysql-fd

...

Plugin Directory = /usr/lib64/bareos/plugins

Plugin Name = "python"

compatible = no

}

Resource H.13: bareos-fd.d/client/mysql-fd.conf

Configure the plugin in the Bareos Director:

FileSet {

Name = "mysql"

Include {

Options {

signature = MD5

compression = lz4

}

Plugin = "python:module_path=/usr/lib64/bareos/plugins:module_name=bareos-fd-mysql:db=test,wikidb"

#Plugin = "python:module_path=/usr/lib64/bareos/plugins:module_name=bareos-fd-mysql:mysqlhost=dbhost: ↙
↪→ mysqluser=bareos:mysqlpassword=bareos"

}

}

Resource H.14: bareos-dir.d/fileset/mysql.conf

In the above example the plugin creates and saves a dump from the databases called test and wikidb, running
on the file-daemon. The commented example below specifies an explicit MySQL server called dbhost, and
connects with user bareos, password bareos, to create and save a backup of all databases.
The plugin creates a pipe internally, thus no extra space on disk is needed. You will find one file per database
in the backups in the virtual directory /_mysqlbackups_.
List of supported options:

db comma separated list of databases to save, where each database will be stored in a separate file. If
ommited, all databases will be saved.

dumpbinary command (with or without full path) to create the dumps. Default: mysqldump

dumpoptions options for dumpbinary, default: “–events –single-transaction”

drop and recreate if not set to false, adds –add-drop-database –databases to dumpoptions

mysqlhost MySQL host to connect to, default: localhost

mysqluser MySQL user. Default: unset, the user running the file-daemon will be used (usually root)

mysqlpassword MySQL password. Default: unset (better use my.cnf to store passwords)

On restore, the database dumps are restored to the subdirectory _mysqlbackups_ in the restore path. The
database restore must be triggered manually (mysql < _mysqlbackups_/DATABASENAME.sql).

https://github.com/bareos/bareos-contrib/tree/master/fd-plugins/mysql-python
https://github.com/bareos/bareos-contrib/tree/master/fd-plugins/mysql-python
http://download.bareos.org/bareos/contrib/
http://download.bareos.org/bareos/contrib/

440

Backup of a MySQL Database by using the RunScript directive

One method to backup a MySQL database is to use the mysqldump tool to dump the database into a file
and then backup it as a normal file. After the backup, the file can be removed. It may also be an option
not to remove it, so that the latest version is always available immediately. On the next job run it will be
overwritten anyway.
This can be done by using Run Script Dir

Job directives, for example:

Job {

Name = "BackupDatabase"

JobDefs = "DefaultJob"

Client = dbserver-fd

Level = Full

FileSet="Database"

This creates a dump of our database in the local filesystem on the Client

RunScript {

FailJobOnError = Yes

RunsOnClient = Yes

RunsWhen = Before

Command = "sh -c ’mysqldump --user=<username> --password=<password> --opt --all-databases > /var/lib/ ↙
↪→ bareos/mysql_dump.sql’"

}

This deletes the dump in the local filesystem on the Client

RunScript {

RunsOnSuccess = Yes

RunsOnClient = Yes

RunsWhen = After

Command = "rm /var/lib/bareos/mysql_dump.sql"

}

}

FileSet {

Name = "Database"

Include {

Options {

signature = MD5

compression = gzip

}

database dump file

File = "/var/lib/bareos/mysql_dump.sql"

}

}

Configuration H.15: RunScript job resource for a MySQL backup

Note that redirecting the mysqldump output to a file requires to run the whole command line through a shell,
otherwise the mysqldump would not know what do with the > character and the job would fail. As no shell
features like redirection or piping are used for the rm, the sh -c is not needed there. See Run Script Dir

Job for
more details.

Backup of a MySQL Database by using the bpipe plugin

Instead of creating a temporary database dump file, the bpipe plugin can be used. For general information
about bpipe, see the bpipe Plugin section. The bpipe plugin is configured inside the Include section of a File
Set, e.g.:

FileSet {

Name = "mysql-all"

Include {

Plugin = "bpipe:file=/MYSQL/dump.sql:reader=mysqldump --user=<user> --password=<password> --opt --all- ↙
↪→ databases:writer=mysql --user=<user> --password=<password>"

Options {

signature = MD5

compression = gzip

}

}

}

Configuration H.16: bpipe fileset for MySQL backup

This can also be used, to backup a database that is running on a remote host:

441

FileSet{

Name = "mysql-all"

Include {

Plugin = "bpipe:file=/MYSQL/dump.sql:reader=mysqldump --host=<hostname> --user=<user> --password=< ↙
↪→ password> --opt --all-databases:writer=mysql --host=<hostname> --user=<user> --password=<password>"

Options {

signature = MD5

compression = gzip

}

}

}

Configuration H.17: bpipe directive to backup a MySQL database that is running on a remote host

If you do not want a direct restore of your data in your plugin directive, as shown in the examples above,
there is the possibility to restore the dump to the filesystem first, which offers you more control over the
restore process, e.g.:

FileSet{

Name = "mysql-all"

Include {

Plugin = "bpipe:file=/MYSQL/dump.sql:reader=mysqldump --host=<hostname> --user=<user> --password=< ↙
↪→ password> --opt --all-databases:writer=/usr/lib/bareos/scripts/bpipe-restore.sh"

Options {

signature = MD5

compression = gzip

}

}

}

Configuration H.18:
bpipe directive to backup a MySQL database and restore the dump to the filesystem first

A very simple corresponding shell script (bpipe-restore.sh) to the method above might look like the
following one:

#!/bin/bash

cat - > /tmp/dump.sql

exit 0

Configuration H.19: bpipe shell script for a restore to filesystem

442

Appendix I

Disaster Recovery Using Bareos

I.1 General

When disaster strikes, you must have a plan, and you must have prepared in advance, otherwise the work of
recovering your system and your files will be considerably greater. For example, if you have not previously
saved the partitioning information for your hard disk, how can you properly rebuild it if the disk must be
replaced?

Unfortunately, many of the steps one must take before and immediately after a disaster are very much
dependent on the operating system in use. As a consequence, this chapter will discuss in detail disaster
recovery only for selected operating systems.

I.1.1 Important Considerations

Here are a few important considerations concerning disaster recovery that you should take into account
before a disaster strikes.

� If the building which houses your computers burns down or is otherwise destroyed, do you have off-site
backup data?

� Disaster recovery is much easier if you have several machines. If you have a single machine, how will
you handle unforeseen events if your only machine is down?

� Do you want to protect your whole system and use Bareos to recover everything? Or do you want
to try to restore your system from the original installation disks, apply any other updates and only
restore the user files?

I.2 Steps to Take Before Disaster Strikes

� Create a rescue or CDROM for your systems. Generally, they are offered by each distribution, and
there are many good rescue disks on the Web

� Ensure that you always have a valid bootstrap file for your backup and that it is saved to an alternate
machine. This will permit you to easily do a full restore of your system.

� If possible copy your catalog nightly to an alternate machine. If you have a valid bootstrap file, this is
not necessary, but can be very useful if you do not want to reload everything.

� Ensure that you always have a valid bootstrap file for your catalog backup that is saved to an alternate
machine. This will permit you to restore your catalog more easily if needed.

� Try out how to use the Rescue CDROM before you are forced to use it in an emergency situation.

� Make a copy of your Bareos .conf files, particularly your bareos-dir.conf, and your bareos-sd.conf files,
because if your server goes down, these files will be needed to get it back up and running, and they
can be difficult to rebuild from memory.

443

444

I.3 Bare Metal Recovery of Bareos Clients

A so called ”Bare Metal” recovery is one where you start with an empty hard disk and you restore your
machine.
Generally, following components are required for a Bare Metal Recovery:

� A rescue CDROM containing a copy of your OS and including the Bareos File daemon, including all
libraries

� The Bareos client configuration files

� Useful: a copy of your hard disk information

� A full Bareos backup of your system

I.3.1 Linux

From the Relax-and-Recover web site (http://relax-and-recover.org):

Relax-and-Recover is a setup-and-forget Linux bare metal disaster recovery solution. It is easy
to set up and requires no maintenance so there is no excuse for not using it.

Relax-and-Recover (ReaR) is quite easy to use with Bareos.

Installation

Bareos is a supported backend for ReaR >= 1.15. To use the BAREOS_CLIENT option, ReaR >= 1.17 is
required. If ReaR >= 1.17 is not part of your distribution, check the download section on the ReaR website.

Configuration

Assuming you have a working Bareos configuration on the system you want to protect with ReaR and Bareos
references this system by the name bareosclient-fd, the only configuration for ReaR is:

BACKUP=BAREOS

BAREOS_CLIENT=bareosclient-fd

You also need to specify in your ReaR configuration file (/etc/rear/local.conf) where you want to store
your recovery images. Please refer to the ReaR documentation for details.
For example, if you want to create an ISO image and store it to an NFS server with the IP Address
192.168.10.1, you can use the following configuration:

This is default:

#OUTPUT=ISO

Where to write the iso image

You can use NFS, if you want to write your iso image to a nfs server

If you leave this blank, it will

be written to: /var/lib/rear/output/

OUTPUT_URL=nfs://192.168.10.1/rear

BACKUP=BAREOS

BAREOS_CLIENT=bareosclient-fd

Configuration I.1: Full Rear configuration in /etc/rear/local.conf

Backup

If you have installed and configured ReaR on your system, type

root@linux:~# rear -v mkrescue

Commands I.2: Create Rescue Image

to create the rescue image. If you used the configuration example above, you will get a bootable ISO image
which can be burned onto a CD.
Please note! This will not create a Bareos backup on your system! You will have to do that by other means,
e.g. by a regular Bareos backup schedule. Also rear mkbackup will not create a backup. In this configuration
it will only create the rescue ISO (same as the rear mkrescue command).

http://relax-and-recover.org
http://relax-and-recover.org/download/
http://relax-and-recover.org/documentation/

445

Recovery

In case, you want to recover your system, boot it using the generated ReaR recovery ISO. After booting log
in as user root and type

root@linux:~# rear recover

Commands I.3: Restore your system using Rear and Bareos

ReaR will now use the most recent backup from Bareos to restore your system. When the restore job has
finished, ReaR will start a new shell which you can use to verify if the system has been restored correctly.
The restored system can be found under the /mnt/local directory. When you are done¡ with the verification,
type ’exit’ to leave the shell, getting back to the recovery process. Finally, you will be asked to confirm that
everything is correct. Type ’yes’ to continue. After that, ReaR will restore your bootloader. Recovery is
complete.

I.4 Restoring a Bareos Server

Above, we considered how to recover a client machine where a valid Bareos server was running on another
machine. However, what happens if your server goes down and you no longer have a running Director,
Catalog, or Storage daemon? There are several solutions:

1. Bring up static versions of your Director, Catalog, and Storage daemon on the damaged machine.

2. Move your server to another machine.

3. Use a Hot Spare Server on another Machine.

The first option, is very difficult because it requires you to have created a static version of the Director and
the Storage daemon as well as the Catalog. If the Catalog uses MySQL or PostgreSQL, this may or may
not be possible. In addition, to loading all these programs on a bare system (quite possible), you will need
to make sure you have a valid driver for your tape drive.
The second suggestion is probably a much simpler solution, and one I have done myself. To do so, you might
want to consider the following steps:

� Install the same database server as on the original system.

� Install Bareos and initialize the Bareos database.

� Ideally, you will have a copy of all the Bareos conf files that were being used on your server. If not,
you will at a minimum need create a bareos-dir.conf that has the same Client resource that was used
to backup your system.

� If you have a valid saved Bootstrap file as created for your damaged machine with WriteBootstrap,
use it to restore the files to the damaged machine, where you have loaded a static Bareos File daemon
using the Rescue disk). This is done by using the restore command and at the yes/mod/no prompt,
selecting mod then specifying the path to the bootstrap file.

� If you have the Bootstrap file, you should now be back up and running, if you do not have a Bootstrap
file, continue with the suggestions below.

� Using bscan scan the last set of backup tapes into your MySQL, PostgreSQL or SQLite database.

� Start Bareos, and using the Console restore command, restore the last valid copy of the Bareos
database and the Bareos configuration files.

� Move the database to the correct location.

� Start the database, and restart Bareos. Then use the Console restore command, restore all the files
on the damaged machine, where you have loaded a Bareos File daemon using the Rescue disk.

For additional details of restoring your database, please see the Restoring When Things Go Wrong chapter.

446

Appendix J

Troubleshooting

J.1 Debug Messages

The Bareos programs contain a lot of debug messages. Normally, these are not printed. See the setdebug
chapter about how to enable them.

J.2 Client Access Problems

There are several reasons why a Bareos Director could not contact a client on a different machine. They are:

� Check if the client file daemon is really running.

� The Client address or port is incorrect or not resolved by DNS. See if you can ping the client machine
using the same address as in the Client record.

� You have a firewall, and it is blocking traffic on port 9102 between the Director’s machine and the
Client’s machine (or on port 9103 between the Client and the Storage daemon machines).

� If your system is using Tcpwrapper (hosts.allow or hosts.deny file), verify that is permitting access.

� Your password or names are not correct in both the Director and the Client machine. Try configuring
everything identical to how you run the client on the same machine as the Director, but just change
the address. If that works, make the other changes one step at a time until it works.

Some of the DNS and Firewall problems can be circumvented by configuring clients using Client Initiated
Connection or as Passive Clients.

J.2.1 Difficulties Connecting from the FD to the SD

If you are having difficulties getting one or more of your File daemons to connect to the Storage daemon,
it is most likely because you have not used a fully qualified domain name on the Address Dir

Storage directive.
That is the resolver on the File daemon’s machine (not on the Director’s) must be able to resolve the name
you supply into an IP address. An example of an address that is guaranteed not to work: localhost. An
example that may work: bareos-sd1. An example that is more likely to work: bareos-sd1.example.com.
You can verify how a Bareos File Daemon resolves a DNS name by the following command:

*resolve client=bareos-fd NONEXISTINGHOSTNAME
Connecting to Client bareos-fd at bareos:9102

bareos-fd: Failed to resolve NONEXISTINGHOSTNAME

*resolve client=bareos-fd bareos-sd1.example.com
Connecting to Client bareos-fd at bareos:9102

bareos-fd resolves bareos-sd1.example.com to host[ipv4;192.168.0.1]

bconsole J.1: Test DNS resolution of the Bareos File Daemon bareos-fd

If your address is correct, then make sure that no other program is using the port 9103 on the Storage
daemon’s machine. The Bacula project has reserved these port numbers by IANA, therefore they should
only be used by Bacula and its replacements like Bareos. However, apparently some HP printers do use these
port numbers. A netstat -lntp on the Bareos Storage Daemon’s machine can determine who is listening
on the 9103 port (used for FD to SD communications in Bareos).

447

448

J.2.2 Authorization Errors

For security reasons, Bareos requires that both the File daemon and the Storage daemon know the name of
the Director as well as its password. As a consequence, if you change the Director’s name or password, you
must make the corresponding change in the Storage daemon’s and in the File daemon’s configuration files.

During the authorization process, the Storage daemon and File daemon also require that the Director
authenticates itself, so both ends require the other to have the correct name and password.

If you have edited the configuration files and modified any name or any password, and you are getting
authentication errors, then your best bet is to go back to the original configuration files generated by the
Bareos installation process. Make only the absolutely necessary modifications to these files – e.g. add the
correct email address. Then follow the instructions in the Running Bareos chapter of this manual. You
will run a backup to disk and a restore. Only when that works, should you begin customization of the
configuration files.

Some users report that authentication fails if there is not a proper reverse DNS lookup entry for the machine.
This seems to be a requirement of gethostbyname(), which is what Bareos uses to translate names into IP
addresses. If you cannot add a reverse DNS entry, or you don’t know how to do so, you can avoid the
problem by specifying an IP address rather than a machine name in the appropriate Bareos configuration
file.

Here is a picture that indicates what names/passwords in which files/Resources must match up:

In the left column, you will find the Director, Storage, and Client resources, with their names and passwords
– these are all in the Bareos Director configuration. The right column is where the corresponding values
should be found in the Console, Storage daemon (SD), and File daemon (FD) configuration files.

449

Another thing to check is to ensure that the Bareos component you are trying to access has
Maximum Concurrent Jobs set large enough to handle each of the Jobs and the Console that want to
connect simultaneously. Once the maximum connections has been reached, each Bareos component will
reject all new connections.

J.3 Concurrent Jobs

Bareos can run multiple concurrent jobs. Using the Maximum Concurrent Jobs directives, you can configure
how many and which jobs can be run simultaneously:

Bareos Director

� Maximum Concurrent Jobs Dir
Director

� Maximum Concurrent Jobs Dir
Client

� Maximum Concurrent Jobs Dir
Job

� Maximum Concurrent Jobs Dir
Storage

Bareos Storage Daemon

� Maximum Concurrent Jobs Sd
Storage

� Maximum Concurrent Jobs Sd
Device

Bareos File Daemon

� Maximum Concurrent Jobs Fd
Client

For example, if you want two different jobs to run simultaneously backing up the same Client to the same
Storage device, they will run concurrently only if you have set Maximum Concurrent Jobs greater than one
in the Director resource, the Client resource, and the Storage resource in Bareos Director configuration.
When running concurrent jobs without Data Spooling, the volume format becomes more complicated, con-
sequently, restores may take longer if Bareos must sort through interleaved volume blocks from multiple
simultaneous jobs. This can be avoided by having each simultaneous job write to a different volume or by
using data spooling We recommend that you read the Data Spooling of this manual first, then test your
multiple concurrent backup including restore testing before you put it into production.
When using random access media as backup space (e.g. disk), you should also read the chapter about
Concurrent Disk Jobs.
Below is a super stripped down bareos-dir.conf file showing you the four places where the the file must
be modified to allow the same job NightlySaveDir

Job to run up to four times concurrently. The change to the
Job resource is not necessary if you want different Jobs to run at the same time, which is the normal case.

#

Bareos Director Configuration file -- bareos-dir.conf

#

Director {

Name = rufus-dir

Maximum Concurrent Jobs = 4

...

}

Job {

Name = "NightlySave"

Maximum Concurrent Jobs = 4

Client = rufus-fd

Storage = File

...

}

Client {

Name = rufus-fd

Maximum Concurrent Jobs = 4

...

}

Storage {

Name = File

Maximum Concurrent Jobs = 4

450

...

}

Configuration J.2: Concurrent Jobs Example

J.4 Tape Labels: ANSI or IBM

By default, Bareos uses its own tape label (see Tape Formats and Label Type Dir
Pool). However, Bareos also

supports reading and write ANSI and IBM tape labels.

J.4.1 Reading

Reading ANSI/IBM labels is important, if some of your tapes are used by other programs that also support
ANSI/IBM labels. For example, LTFS tapes are indicated by an ANSI label.
If your are running Bareos in such an environment, you must set Check Labels Sd

Device to yes, otherwise Bareos
will not recognize that these tapes are already in use.

J.4.2 Writing

To configure Bareos to also write ANSI/IBM tape labels, use Label Type Dir
Pool or Label Type Sd

Device. With the
proper configuration, you can force Bareos to require ANSI or IBM labels.
Even though Bareos will recognize and write ANSI and IBM labels, it always writes its own tape labels as
well.
If you have labeled your volumes outside of Bareos, then the ANSI/IBM label will be recognized by Bareos
only if you have created the HDR1 label with BAREOS.DATA in the filename field (starting with character
5). If Bareos writes the labels, it will use this information to recognize the tape as a Bareos tape. This
allows ANSI/IBM labeled tapes to be used at sites with multiple machines and multiple backup programs.

J.5 Tape Drive

This chapter is concerned with testing and configuring your tape drive to make sure that it will work properly
with Bareos using the btape program.

J.5.1 Get Your Tape Drive Working

In general, you should follow the following steps to get your tape drive to work with Bareos. Start with a
tape mounted in your drive. If you have an autochanger, load a tape into the drive. We use /dev/nst0 as
the tape drive name, you will need to adapt it according to your system.
Do not proceed to the next item until you have succeeded with the previous one.

1. Make sure that Bareos (the Storage daemon) is not running or that you have unmounted the drive
you will use for testing.

2. Use tar to write to, then read from your drive:

mt -f /dev/nst0 rewind

tar cvf /dev/nst0 .

mt -f /dev/nst0 rewind

tar tvf /dev/nst0

3. Make sure you have a valid and correct Device resource corresponding to your drive. For Linux users,
generally, the default one works. For FreeBSD users, there are two possible Device configurations (see
below). For other drives and/or OSes, you will need to first ensure that your system tape modes are
properly setup (see below), then possibly modify you Device resource depending on the output from the
btape program (next item). When doing this, you should consult the Storage Daemon Configuration
of this manual.

4. If you are using a Fibre Channel to connect your tape drive to Bareos, please be sure to disable any
caching in the NSR (network storage router, which is a Fibre Channel to SCSI converter).

5. Run the btape test command:

451

btape /dev/nst0

test

It isn’t necessary to run the autochanger part of the test at this time, but do not go past this point
until the basic test succeeds. If you do have an autochanger, please be sure to read the Autochanger
chapter of this manual.

6. Run the btape fill command, preferably with two volumes. This can take a long time. If you have an
autochanger and it is configured, Bareos will automatically use it. If you do not have it configured,
you can manually issue the appropriate mtx command, or press the autochanger buttons to change
the tape when requested to do so.

7. Run Bareos, and backup a reasonably small directory, say 60 Megabytes. Do three successive backups
of this directory.

8. Stop Bareos, then restart it. Do another full backup of the same directory. Then stop and restart
Bareos.

9. Do a restore of the directory backed up, by entering the following restore command, being careful to
restore it to an alternate location:

restore select all done

yes

Do a diff on the restored directory to ensure it is identical to the original directory. If you are going
to backup multiple different systems (Linux, Windows, Mac, Solaris, FreeBSD, ...), be sure you test
the restore on each system type.

10. If you have an autochanger, you should now go back to the btape program and run the autochanger
test:

btape /dev/nst0

auto

Adjust your autochanger as necessary to ensure that it works correctly. See the Autochanger chapter
of this manual for a complete discussion of testing your autochanger.

J.6 Autochanger

J.6.1 Testing Autochanger and Adapting mtx-changer script

In case, Bareos does not work well with the Autochanger, it is preferable to ”hand-test” that the changer
works. To do so, we suggest you do the following commands:

Make sure Bareos is not running.

/usr/lib/bareos/scripts/mtx-changer /dev/sg0 list 0 /dev/nst0 0

This command should print:

1:

2:

3:

...

or one number per line for each slot that is occupied in your changer, and the number should be terminated
by a colon (:). If your changer has barcodes, the barcode will follow the colon. If an error message is printed,
you must resolve the problem (e.g. try a different SCSI control device name if /dev/sg0 is incorrect). For
example, on FreeBSD systems, the autochanger SCSI control device is generally /dev/pass2.

/usr/lib/bareos/scripts/mtx-changer /dev/sg0 listall 0 /dev/nst0 0

This command should print:

452

Drive content: D:Drive num:F:Slot loaded:Volume Name

D:0:F:2:vol2 or D:Drive num:E

D:1:F:42:vol42

D:3:E

Slot content:

S:1:F:vol1 S:Slot num:F:Volume Name

S:2:E or S:Slot num:E

S:3:F:vol4

Import/Export tray slots:

I:10:F:vol10 I:Slot num:F:Volume Name

I:11:E or I:Slot num:E

I:12:F:vol40

/usr/lib/bareos/scripts/mtx-changer /dev/sg0 transfer 1 2

This command should transfer a volume from source (1) to destination (2)

/usr/lib/bareos/scripts/mtx-changer /dev/sg0 slots

This command should return the number of slots in your autochanger.

/usr/lib/bareos/scripts/mtx-changer /dev/sg0 unload 1 /dev/nst0 0

If a tape is loaded from slot 1, this should cause it to be unloaded.

/usr/lib/bareos/scripts/mtx-changer /dev/sg0 load 3 /dev/nst0 0

Assuming you have a tape in slot 3, it will be loaded into drive (0).

/usr/lib/bareos/scripts/mtx-changer /dev/sg0 loaded 0 /dev/nst0 0

It should print ”3” Note, we have used an ”illegal” slot number 0. In this case, it is simply ignored because
the slot number is not used. However, it must be specified because the drive parameter at the end of the
command is needed to select the correct drive.

/usr/lib/bareos/scripts/mtx-changer /dev/sg0 unload 3 /dev/nst0 0

will unload the tape into slot 3.

Once all the above commands work correctly, assuming that you have the right Changer Command in
your configuration, Bareos should be able to operate the changer. The only remaining area of problems
will be if your autoloader needs some time to get the tape loaded after issuing the command. After the
mtx-changer script returns, Bareos will immediately rewind and read the tape. If Bareos gets rewind I/O
errors after a tape change, you will probably need to configure the load_sleep paramenter in the config file
/etc/bareos/mtx-changer.conf. You can test whether or not you need a sleep by putting the following
commands into a file and running it as a script:

#!/bin/sh

/usr/lib/bareos/scripts/mtx-changer /dev/sg0 unload 1 /dev/nst0 0

/usr/lib/bareos/scripts/mtx-changer /dev/sg0 load 3 /dev/nst0 0

mt -f /dev/st0 rewind

mt -f /dev/st0 weof

If the above script runs, you probably have no timing problems. If it does not run, start by putting a
sleep 30 or possibly a sleep 60 in the script just after the mtx-changer load command. If that works, then
you should configure the load_sleep paramenter in the config file /etc/bareos/mtx-changer.conf to the
specified value so that it will be effective when Bareos runs.

A second problem that comes up with a small number of autochangers is that they need to have the cartridge
ejected before it can be removed. If this is the case, the load 3 will never succeed regardless of how long
you wait. If this seems to be your problem, you can insert an eject just after the unload so that the script
looks like:

#!/bin/sh

/usr/lib/bareos/scripts/mtx-changer /dev/sg0 unload 1 /dev/nst0 0

mt -f /dev/st0 offline

/usr/lib/bareos/scripts/mtx-changer /dev/sg0 load 3 /dev/nst0 0

mt -f /dev/st0 rewind

mt -f /dev/st0 weof

If this solves your problems, set the parameter offline in the config file /etc/bareos/mtx-changer.conf

to ”1”.

453

J.7 Restore

J.7.1 Restore a pruned job using a pattern

It is possible to configure Bareos in a way, that job information are still stored in the Bareos catalog, while
the individual file information are already pruned.

If all File records are pruned from the catalog for a Job, normally Bareos can restore only all files saved.
That is there is no way using the catalog to select individual files. With this new feature, Bareos will ask if
you want to specify a Regex expression for extracting only a part of the full backup.

Building directory tree for JobId(s) 1,3 ...

There were no files inserted into the tree, so file selection

is not possible.Most likely your retention policy pruned the files

Do you want to restore all the files? (yes|no): no

Regexp matching files to restore? (empty to abort): /etc/.*

Bootstrap records written to /tmp/regress/working/zog4-dir.restore.1.bsr

See also FileRegex bsr option for more information.

J.7.2 Problems Restoring Files

The most frequent problems users have restoring files are error messages such as:

04-Jan 00:33 z217-sd: RestoreFiles.2005-01-04_00.31.04 Error:

block.c:868 Volume data error at 20:0! Short block of 512 bytes on

device /dev/tape discarded.

or

04-Jan 00:33 z217-sd: RestoreFiles.2005-01-04_00.31.04 Error:

block.c:264 Volume data error at 20:0! Wanted ID: "BB02", got ".".

Buffer discarded.

Both these kinds of messages indicate that you were probably running your tape drive in fixed block mode
rather than variable block mode. Fixed block mode will work with any program that reads tapes sequentially
such as tar, but Bareos repositions the tape on a block basis when restoring files because this will speed up
the restore by orders of magnitude when only a few files are being restored. There are several ways that you
can attempt to recover from this unfortunate situation.

Try the following things, each separately, and reset your Device resource to what it is now after each
individual test:

1. Set ”Block Positioning = no” in your Device resource and try the restore. This is a new directive and
untested.

2. Set ”Minimum Block Size = 512” and ”Maximum Block Size = 512” and try the restore. If you are
able to determine the block size your drive was previously using, you should try that size if 512 does
not work. This is a really horrible solution, and it is not at all recommended to continue backing up
your data without correcting this condition. Please see the Tape Drive section for more on this.

3. Try editing the restore.bsr file at the Run xxx yes/mod/no prompt before starting the restore job and
remove all the VolBlock statements. These are what causes Bareos to reposition the tape, and where
problems occur if you have a fixed block size set for your drive. The VolFile commands also cause
repositioning, but this will work regardless of the block size.

4. Use bextract to extract the files you want – it reads the Volume sequentially if you use the include list
feature, or if you use a .bsr file, but remove all the VolBlock statements after the .bsr file is created
(at the Run yes/mod/no) prompt but before you start the restore.

454

J.7.3 Restoring Files Can Be Slow

Restoring files is generally much slower than backing them up for several reasons. The first is that during a
backup the tape is normally already positioned and Bareos only needs to write. On the other hand, because
restoring files is done so rarely, Bareos keeps only the start file and block on the tape for the whole job rather
than on a file by file basis which would use quite a lot of space in the catalog.
Bareos will forward space to the correct file mark on the tape for the Job, then forward space to the correct
block, and finally sequentially read each record until it gets to the correct one(s) for the file or files you want
to restore. Once the desired files are restored, Bareos will stop reading the tape.
Finally, instead of just reading a file for backup, during the restore, Bareos must create the file, and the
operating system must allocate disk space for the file as Bareos is restoring it.
For all the above reasons the restore process is generally much slower than backing up (sometimes it takes
three times as long).

J.7.4 Restoring When Things Go Wrong

This and the following sections will try to present a few of the kinds of problems that can come up making
restoring more difficult. We will try to provide a few ideas how to get out of these problem situations. In
addition to what is presented here, there is more specific information on restoring a Client and your Server
in the Disaster Recovery Using Bareos chapter of this manual.

Problem My database is broken.

Solution For SQLite, use the vacuum command to try to fix the database. For either MySQL or Post-
greSQL, see the vendor’s documentation. They have specific tools that check and repair databases, see
the Catalog Maintenance sections of this manual for links to vendor information.

Assuming the above does not resolve the problem, you will need to restore or rebuild your catalog.
Note, if it is a matter of some inconsistencies in the Bareos tables rather than a broken database,
then running bareos-dbcheck might help, but you will need to ensure that your database indexes are
properly setup.

Problem How do I restore my catalog?

Solution with a Catalog backup If you have backed up your database nightly (as you should) and you
have made a bootstrap file, you can immediately load back your database (or the ASCII SQL output).
Make a copy of your current database, then re-initialize it, by running the following scripts:

./drop_bareos_tables

./make_bareos_tables

After re-initializing the database, you should be able to run Bareos. If you now try to use the restore
command, it will not work because the database will be empty. However, you can manually run a
restore job and specify your bootstrap file. You do so by entering the run command in the console
and selecting the restore job. If you are using the default bareos-dir.conf, this Job will be named
RestoreFiles. Most likely it will prompt you with something such as:

Run Restore job

JobName: RestoreFiles

Bootstrap: /home/user/bareos/working/restore.bsr

Where: /tmp/bareos-restores

Replace: always

FileSet: Full Set

Client: rufus-fd

Storage: File

When: 2005-07-10 17:33:40

Catalog: MyCatalog

Priority: 10

OK to run? (yes/mod/no):

A number of the items will be different in your case. What you want to do is: to use the mod option
to change the Bootstrap to point to your saved bootstrap file; and to make sure all the other items
such as Client, Storage, Catalog, and Where are correct. The FileSet is not used when you specify a
bootstrap file. Once you have set all the correct values, run the Job and it will restore the backup of
your database, which is most likely an ASCII dump.

455

You will then need to follow the instructions for your database type to recreate the database from the
ASCII backup file. See the Catalog Maintenance chapter of this manual for examples of the command
needed to restore a database from an ASCII dump (they are shown in the Compacting Your XXX
Database sections).

Also, please note that after you restore your database from an ASCII backup, you do NOT want to do
a make bareos tables command, or you will probably erase your newly restored database tables.

Solution with a Job listing If you did save your database but did not make a bootstrap file, then recover-
ing the database is more difficult. You will probably need to use bextract to extract the backup copy.
First you should locate the listing of the job report from the last catalog backup. It has important
information that will allow you to quickly find your database file. For example, in the job report for
the CatalogBackup shown below, the critical items are the Volume name(s), the Volume Session Id
and the Volume Session Time. If you know those, you can easily restore your Catalog.

22-Apr 10:22 HeadMan: Start Backup JobId 7510,

Job=CatalogBackup.2005-04-22_01.10.0

22-Apr 10:23 HeadMan: Bareos 1.37.14 (21Apr05): 22-Apr-2005 10:23:06

JobId: 7510

Job: CatalogBackup.2005-04-22_01.10.00

Backup Level: Full

Client: Polymatou

FileSet: "CatalogFile" 2003-04-10 01:24:01

Pool: "Default"

Storage: "DLTDrive"

Start time: 22-Apr-2005 10:21:00

End time: 22-Apr-2005 10:23:06

FD Files Written: 1

SD Files Written: 1

FD Bytes Written: 210,739,395

SD Bytes Written: 210,739,521

Rate: 1672.5 KB/s

Software Compression: None

Volume name(s): DLT-22Apr05

Volume Session Id: 11

Volume Session Time: 1114075126

Last Volume Bytes: 1,428,240,465

Non-fatal FD errors: 0

SD Errors: 0

FD termination status: OK

SD termination status: OK

Termination: Backup OK

From the above information, you can manually create a bootstrap file, and then follow the instructions
given above for restoring your database. A reconstructed bootstrap file for the above backup Job would
look like the following:

Volume="DLT-22Apr05"

VolSessionId=11

VolSessionTime=1114075126

FileIndex=1-1

Where we have inserted the Volume name, Volume Session Id, and Volume Session Time that corre-
spond to the values in the job report. We’ve also used a FileIndex of one, which will always be the
case providing that there was only one file backed up in the job.

The disadvantage of this bootstrap file compared to what is created when you ask for one to be written,
is that there is no File and Block specified, so the restore code must search all data in the Volume
to find the requested file. A fully specified bootstrap file would have the File and Blocks specified as
follows:

Volume="DLT-22Apr05"

VolSessionId=11

VolSessionTime=1114075126

VolFile=118-118

VolBlock=0-4053

FileIndex=1-1

456

Once you have restored the ASCII dump of the database, you will then to follow the instructions for
your database type to recreate the database from the ASCII backup file. See the Catalog Maintenance
chapter of this manual for examples of the command needed to restore a database from an ASCII
dump (they are shown in the Compacting Your XXX Database sections).

Also, please note that after you restore your database from an ASCII backup, you do NOT want to do
a make bareos tables command, or you will probably erase your newly restored database tables.

Solution without a Job Listing If you do not have a job listing, then it is a bit more difficult. Either
you use the bscan program to scan the contents of your tape into a database, which can be very time
consuming depending on the size of the tape, or you can use the bls program to list everything on the
tape, and reconstruct a bootstrap file from the bls listing for the file or files you want following the
instructions given above.

There is a specific example of how to use bls below.

Problem Trying to restore the last known good full backup by specifying item 3 on the restore menu then
the JobId to restore, but Bareos then reports:

1 Job 0 Files

and restores nothing.

Solution Most likely the File records were pruned from the database either due to the File Retention period
expiring or by explicitly purging the Job. By using the ”llist jobid=nn” command, you can obtain all
the important information about the job:

llist jobid=120

JobId: 120

Job: save.2005-12-05_18.27.33

Job.Name: save

PurgedFiles: 0

Type: B

Level: F

Job.ClientId: 1

Client.Name: Rufus

JobStatus: T

SchedTime: 2005-12-05 18:27:32

StartTime: 2005-12-05 18:27:35

EndTime: 2005-12-05 18:27:37

JobTDate: 1133803657

VolSessionId: 1

VolSessionTime: 1133803624

JobFiles: 236

JobErrors: 0

JobMissingFiles: 0

Job.PoolId: 4

Pool.Name: Full

Job.FileSetId: 1

FileSet.FileSet: BackupSet

Then you can find the Volume(s) used by doing:

sql

select VolumeName from JobMedia,Media where JobId=1 and JobMedia.MediaId=Media.MediaId;

Finally, you can create a bootstrap file as described in the previous problem above using this informa-
tion.

Bareos will ask you if you would like to restore all the files in the job, and it will collect the above
information and write the bootstrap file for you.

Problem You don’t have a bootstrap file, and you don’t have the Job report for the backup of your database,
but you did backup the database, and you know the Volume to which it was backed up.

Solution Either bscan the tape (see below for bscanning), or better use bls to find where it is on the tape,
then use bextract to restore the database. For example,

./bls -j -V DLT-22Apr05 /dev/nst0

457

Might produce the following output:

bls: butil.c:258 Using device: "/dev/nst0" for reading.

21-Jul 18:34 bls: Ready to read from volume "DLT-22Apr05" on device "DLTDrive"

(/dev/nst0).

Volume Record: File:blk=0:0 SessId=11 SessTime=1114075126 JobId=0 DataLen=164

...

Begin Job Session Record: File:blk=118:0 SessId=11 SessTime=1114075126

JobId=7510

Job=CatalogBackup.2005-04-22_01.10.0 Date=22-Apr-2005 10:21:00 Level=F Type=B

End Job Session Record: File:blk=118:4053 SessId=11 SessTime=1114075126

JobId=7510

Date=22-Apr-2005 10:23:06 Level=F Type=B Files=1 Bytes=210,739,395 Errors=0

Status=T

...

21-Jul 18:34 bls: End of Volume at file 201 on device "DLTDrive" (/dev/nst0),

Volume "DLT-22Apr05"

21-Jul 18:34 bls: End of all volumes.

Of course, there will be many more records printed, but we have indicated the essential lines of output.
From the information on the Begin Job and End Job Session Records, you can reconstruct a bootstrap
file such as the one shown above.

Problem How can I find where a file is stored?

Solution Normally, it is not necessary, you just use the restore command to restore the most recently
saved version (menu option 5), or a version saved before a given date (menu option 8). If you know
the JobId of the job in which it was saved, you can use menu option 3 to enter that JobId.

If you would like to know the JobId where a file was saved, select restore menu option 2.

You can also use the query command to find information such as:

*query

Available queries:

1: List up to 20 places where a File is saved regardless of the

directory

2: List where the most recent copies of a file are saved

3: List last 20 Full Backups for a Client

4: List all backups for a Client after a specified time

5: List all backups for a Client

6: List Volume Attributes for a selected Volume

7: List Volumes used by selected JobId

8: List Volumes to Restore All Files

9: List Pool Attributes for a selected Pool

10: List total files/bytes by Job

11: List total files/bytes by Volume

12: List Files for a selected JobId

13: List Jobs stored on a selected MediaId

14: List Jobs stored for a given Volume name

15: List Volumes Bareos thinks are in changer

16: List Volumes likely to need replacement from age or errors

Choose a query (1-16):

Problem I didn’t backup my database. What do I do now?

Solution This is probably the worst of all cases, and you will probably have to re-create your database from
scratch and then bscan in all your volumes, which is a very long, painful, and inexact process.

There are basically three steps to take:

1. Ensure that your SQL server is running (MySQL or PostgreSQL) and that the Bareos database
(normally bareos) exists. See the Prepare Bareos database chapter of the manual.

2. Ensure that the Bareos databases are created. This is also described at the above link.

3. Start and stop the Bareos Director using the propriate bareos-dir.conf file so that it can create the
Client and Storage records which are not stored on the Volumes. Without these records, scanning
is unable to connect the Job records to the proper client.

When the above is complete, you can begin bscanning your Volumes. Please see the bscan chapter for
more details.

458

Appendix K

Debugging

This chapter describes, how to debug Bareos, when the program crashes. If you are just interested about
how to get more information about a running Bareos daemon, please read Debug Messages.

If you are running on a Linux system, and you have a set of working configuration files, it is very unlikely
that Bareos will crash. As with all software, however, it is inevitable that someday, it may crash.

This chapter explains what you should do if one of the three Bareos daemons (Director, File, Storage)
crashes. When we speak of crashing, we mean that the daemon terminates abnormally because of an error.
There are many cases where Bareos detects errors (such as PIPE errors) and will fail a job. These are not
considered crashes. In addition, under certain conditions, Bareos will detect a fatal in the configuration,
such as lack of permission to read/write the working directory. In that case, Bareos will force itself to crash
with a SEGFAULT. However, before crashing, Bareos will normally display a message indicating why. For
more details, please read on.

K.1 Traceback

Each of the three Bareos daemons has a built-in exception handler which, in case of an error, will attempt
to produce a traceback. If successful the traceback will be emailed to you.

For this to work, you need to ensure that a few things are setup correctly on your system:

1. You must have a version of Bareos with debug information and not stripped of debugging sym-
bols. When using a packaged version of Bareos, this requires to install the Bareos debug packages
(bareos-debug on RPM based systems, bareos-dbg on Debian based systems).

2. On Linux, gdb (the GNU debugger) must be installed. On some systems such as Solaris, gdb may be
replaced by dbx.

3. By default, btraceback uses bsmtp to send the traceback via email. Therefore it expects a local mail
transfer daemon running. It send the traceback to root@localhost via localhost.

4. Some Linux distributions, e.g. Ubuntu, disable the possibility to examine the memory of other pro-
cesses. While this is a good idea for hardening a system, our debug mechanismen will fail. To disable
this feature, run (as root):

root@linux:~#
test -e /proc/sys/kernel/yama/ptrace scope && echo 0 > /proc/sys/kernel/yama/ptrace scope

Commands K.1: disable ptrace protection to enable debugging (required on Ubuntu Linux)

If all the above conditions are met, the daemon that crashes will produce a traceback report and email it.
If the above conditions are not true, you can run the debugger by hand as described below.

K.2 Testing The Traceback

To ”manually” test the traceback feature, you simply start Bareos then obtain the PID of the main daemon
thread (there are multiple threads). The output produced here will look different depending on what OS
and what version of the kernel you are running.

459

root@localhost

460

root@linux:~# ps fax | grep bareos-dir
2103 ? S 0:00 /usr/sbin/bareos-dir

Commands K.2: get the process ID of a running Bareos daemon

which in this case is 2103. Then while Bareos is running, you call the program giving it the path to the
Bareos executable and the PID. In this case, it is:

root@linux:~# btraceback /usr/sbin/bareos-dir 2103

Commands K.3: get traceback of running Bareos director daemon

It should produce an email showing you the current state of the daemon (in this case the Director), and
then exit leaving Bareos running as if nothing happened. If this is not the case, you will need to correct
the problem by modifying the btraceback script.

K.2.1 Getting A Traceback On Other Systems

It should be possible to produce a similar traceback on systems other than Linux, either using gdb or some
other debugger. Solaris with dbx loaded works quite fine. On other systems, you will need to modify the
btraceback program to invoke the correct debugger, and possibly correct the btraceback.gdb script to
have appropriate commands for your debugger. Please keep in mind that for any debugger to work, it will
most likely need to run as root.

K.3 Manually Running Bareos Under The Debugger

If for some reason you cannot get the automatic traceback, or if you want to interactively examine the
variable contents after a crash, you can run Bareos under the debugger. Assuming you want to run the
Storage daemon under the debugger (the technique is the same for the other daemons, only the name
changes), you would do the following:

1. The Director and the File daemon should be running but the Storage daemon should not.

2. Start the Storage daemon under the debugger:

root@linux:~# gdb --args /usr/sbin/bareos-sd -f -s -d 200
(gdb) run

Commands K.4: run the Bareos Storage daemon in the debugger

Parameter:

-f foreground

-s no signals

-d nnn debug level

See section daemon command line options for a detailed list of options.

3. At this point, Bareos will be fully operational.

4. In another shell command window, start the Console program and do what is necessary to cause Bareos
to die.

5. When Bareos crashes, the gdb shell window will become active and gdb will show you the error that
occurred.

6. To get a general traceback of all threads, issue the following command:

(gdb) thread apply all bt

Commands K.5: run the Bareos Storage daemon in the debugger

After that you can issue any debugging command.

Appendix L

Release Notes

The technical changelog is automatically generated from the Bareos bug tracking system, see http://bugs.

bareos.org/changelog_page.php.
Please note, that some of the subreleases are only internal development releases.
Open issues for a specific version are shown at http://bugs.bareos.org/roadmap_page.php.
The overview about new feature of a release are shown at https://github.com/bareos/bareos and in the
Index of this document.
This chapter concentrates on things to do when updating an existing Bareos installation.
Please note! While all the source code is published on GitHub, the releases of packages on http:

// download. bareos. org is limited to the initial versions of a major release. Later maintenance releases
are only published on https: // download. bareos. com .

Bareos-16.2

bareos-16.2.4

Code Release 2016-10-28
Database Version 2004 (unchanged)
Release Ticket Ticket #698
Url http://download.bareos.org/bareos/release/16.2/

https://download.bareos.com/bareos/release/16.2/

First stable release of the Bareos 16.2 branch.

� Configuration

– Bareos packages contain the default configuration in Subdirectory Configuration Scheme. Please
read Updates from Bareos < 16.2.4 before updating (make a copy of your configuration direc-
tories for your Bareos Director and Bareos Storage Daemon before updating). Note: as the old
configuration files are still supported, in most cases no changes are required.

– The default configuration does no longer name the DirectorDir and StorageSd resources after
the systems hostname ($HOSTNAME-dir resp. $HOSTNAME-sd) but use bareos-dirDir

Director resp.
bareos-sdSd

Storage as defaults. The prior solution had the disadvantage, that $HOSTNAME-dir has
also been set on Bareos File Daemon not running on the Bareos Director, which almost ever did re-
quire changing this setting. Also the new approach aligns better with Subdirectory Configuration
Scheme.

– Due to limitation of the build system, the default resource Linux AllDir
FileSet have been renamed to

LinuxAllDir
FileSet (no space between Linux and All).

– The configuration of the bareos-traymonitor has also been split into resource files. Additional,
these resource files are now packaged in other packages:

* $CONFIGDIR/tray-monitor.d/monitor/bareos-mon.conf: bareos-traymonitor

* $CONFIGDIR/tray-monitor.d/client/FileDaemon-local.conf: bareos-filedaemon

* $CONFIGDIR/tray-monitor.d/storage/StorageDaemon-local.conf: bareos-storage

* $CONFIGDIR/tray-monitor.d/director/Director-local.conf: bareos-director

This way, the bareos-traymonitor will be configured automatically for the installed components.

461

http://bugs.bareos.org/changelog_page.php
http://bugs.bareos.org/changelog_page.php
http://bugs.bareos.org/roadmap_page.php
https://github.com/bareos/bareos
https://github.com/bareos/bareos
http://download.bareos.org
http://download.bareos.org
https://download.bareos.com
https://bugs.bareos.org/view.php?id=698
http://download.bareos.org/bareos/release/16.2/
https://download.bareos.com/bareos/release/16.2/

462

� Strict ACL handling

– Bareos Console acls do no longer automatically matches substrings (to avoid that e.g. Pool ACL
Dir
Console = Full also matches VirtualFullDir

Pool). To configure the ACL to work as before, Pool
ACL Dir

Console = .*Full.* must be set. Unfortunately the Bareos Webui 15.2 webuiDir
Profile did use

Command ACL Dir
Console = .bvfs*, which is also no longer works as intended. Moreover, to use all

of Bareos Webui 16.2 features, some additional commands must be permitted, so best use the
new webui-adminDir

Profile.

� Bareos Webui

– Updating from Bareos 15.2: Adapt webuiDir
Profile (from bareos 15.2) to allow all commands of

webui-adminDir
Profile (Command ACL Dir

Console). Alternately modify all ConsoleDirs currently using
webuiDir

Profile to use webui-adminDir
Profile instead.

– While RHEL 6 and CentOS 6 are still platforms supported by Bareos, the package bareos-webui

is not available for these platforms, as the required ZendFramework 2.4 do require PHP >= 5.3.17
(5.3.23). However, it is possible to use bareos-webui 15.2 against bareos-director 16.2. Also
here, the profile must be adapted.

Bareos-15.2

bareos-15.2.4

Code Release 2016-06-10
Database Version 2004 (unchanged)
Release Ticket Ticket #641
Url https://download.bareos.com/bareos/release/15.2/

For upgrading from 14.2, please see releasenotes for 15.2.1.

This release contains several bugfixes and enhancements. Excerpt:

� Automatic mount of disks by SD

� NDMP performance enhancements

� Windows: sparse file restore

� Director memory leak caused by frequent bconsole calls

bareos-15.2.3

Code Release 2016-03-11
Database Version 2004 (unchanged)
Release Ticket Ticket #625
Url https://download.bareos.com/bareos/release/15.2/

For upgrading from 14.2, please see releasenotes for 15.2.1.

This release contains several bugfixes and enhancements. Excerpt:

� VMWare plugin can now restore to VMDK file

� Ceph support for SLES12 included

� Multiple gfapi and ceph enhancements

� NDMP enhancements and bugfixes

� Windows: multiple VSS Jobs can now run concurrently in one FD, installer fixes

� bpipe: fix stderr/stdout problems

� reload command enhancements (limitations eliminated)

� label barcodes now can run without interaction

https://bugs.bareos.org/view.php?id=641
https://download.bareos.com/bareos/release/15.2/
https://bugs.bareos.org/view.php?id=625
https://download.bareos.com/bareos/release/15.2/

463

bareos-15.2.2

Code Release 2015-11-19
Database Version 2004

Database update required (if coming from bareos-14.2). See the Updating Bareos
section.

Release Ticket Ticket #554
Url http://download.bareos.org/bareos/release/15.2/

https://download.bareos.com/bareos/release/15.2/
First stable release of the Bareos 15.2 branch.
When coming from bareos-14.2.x, the following things have changed (same as in bareos-15.2.1):

� The default setting for the Bacula Compatbile mode in Compatible Fd
Client and Compatible Sd

Storage have
been changed from yes to no.

� The configuration syntax for Storage Daemon Cloud Backends Ceph and GlusterFS have changed.
Before bareos-15.2, options have been configured as part of the Archive Device Sd

Device directive, while
now the Archive Device contains only information text and options are defined via the Device Options
Sd
Device directive. See examples in Device Options Sd

Device.

bareos-15.2.1

Code Release 2015-09-16
Database Version 2004

Database update required, see the Updating Bareos section.
Release Ticket Ticket #501
Url http://download.bareos.org/bareos/release/15.2/

Beta release.

� The default setting for the Bacula Compatbile mode in Compatible Fd
Client and Compatible Sd

Storage have
been changed from yes to no.

� The configuration syntax for Storage Daemon Cloud Backends Ceph and GlusterFS have changed.
Before bareos-15.2, options have been configured as part of the Archive Device Sd

Device directive, while
now the Archive Device contains only information text and options are defined via the Device Options
Sd
Device directive. See examples in Device Options Sd

Device.

Bareos-14.2

It is known, that drop_database scripts will not longer work on PostgreSQL < 8.4. However, as drop_

database scripts are very seldom needed, package dependencies do not yet enforce PostgreSQL >= 8.4. We
plan to ensure this in future version of Bareos.

bareos-14.2.7

Code Release 2016-07-11
Database Version 2003 (unchanged)
Release Ticket Ticket #584
Url https://download.bareos.com/bareos/release/14.2/

This release contains several bugfixes. Excerpt:

� bareos-dir

– Fixes pretty printing of Fileset options block
Ticket #591: config pretty-printer does not print filesets correctly

– run command: fixes changing the pool when changing the backup level in interactive mode
Ticket #633: Interactive run doesn’t update pool on level change

– Ignore the Fileset option DriveType on non Windows systems
Ticket #644: Setting DriveType causes empty backups on Linux

– Suppress already queued jobs for disabled schedules
Ticket #659: Suppress already queued jobs for disabled schedules

� NDMP

https://bugs.bareos.org/view.php?id=554
http://download.bareos.org/bareos/release/15.2/
https://download.bareos.com/bareos/release/15.2/
https://bugs.bareos.org/view.php?id=501
http://download.bareos.org/bareos/release/15.2/
https://bugs.bareos.org/view.php?id=584
https://download.bareos.com/bareos/release/14.2/
https://bugs.bareos.org/view.php?id=591
https://bugs.bareos.org/view.php?id=633
https://bugs.bareos.org/view.php?id=644
https://bugs.bareos.org/view.php?id=659

464

– Fixes cancel of NDMP jobs
Ticket #604: Cancel a NDMP Job causes the sd to crash

� bpipe-fd plugin

– Only take stdout into account, ignore stderr (like earlier versions)
Ticket #632: fd-bpipe plugin merges stderr with stdout, which can result in corrupted backups

� win32

– Fix symlink and junction support
Ticket #575: charset problem in symlinks/junctions windows restore
Ticket #615: symlinks/junctions wrong target path on restore (wide chars)

– Fixes quoting for bmail.exe in bareos-dir.conf
Ticket #581: Installer is setting up a wrong path to bmail.exe without quotes / bmail not called

– Fix crash on restore of sparse files
Ticket #640: File daemon crashed after restoring sparse file on windows

� win32 mssql plugin

– Allow connecting to non default instance
Ticket #383: mssqldvi problem with connection to mssql not default instance

– Fix backup/restore of incremental backups
Ticket #588: Incremental MSSQL backup fails when database name contains spaces

bareos-14.2.6

Code Release 2015-12-03
Database Version 2003 (unchanged)
Release Ticket Ticket #474
Url https://download.bareos.com/bareos/release/14.2/

This release contains several bugfixes.

bareos-14.2.5

Code Release 2015-06-01
Database Version 2003 (unchanged)
Release Ticket Ticket #447
Url https://download.bareos.com/bareos/release/14.2/

This release contains several bugfixes and added the platforms Debian 8 and Fedora 21.

bareos-14.2.4

Code Release 2015-03-23
Database Version 2003 (unchanged)
Release Ticket Ticket #420
Url https://download.bareos.com/bareos/release/14.2/

This release contains several bugfixes, including one major bugfix (Ticket #437), relevant for those of you
using backup to disk with autolabeling enabled.
It can lead to loss of a 64k block of data when all of this conditions apply:

� backups are written to disk (tape backups are not affected)

� autolabelling is enabled

� a backup spans over multiple volumes

� the additional volumes are newly created and labeled during the backup

If existing volumes are used for backups spanning over multiple volumes, the problem does not occur.
We recommend to update to the latest packages as soon as possible.
If an update is not possible immediately, autolabeling should be disabled and volumes should be labelled
manually until the update can be installed.
If you are affected by the 64k bug, we recommend that you schedule a full backup after fixing the problem
in order to get a proper full backup of all files.

https://bugs.bareos.org/view.php?id=604
https://bugs.bareos.org/view.php?id=632
https://bugs.bareos.org/view.php?id=575
https://bugs.bareos.org/view.php?id=615
https://bugs.bareos.org/view.php?id=581
https://bugs.bareos.org/view.php?id=640
https://bugs.bareos.org/view.php?id=383
https://bugs.bareos.org/view.php?id=588
https://bugs.bareos.org/view.php?id=474
https://download.bareos.com/bareos/release/14.2/
https://bugs.bareos.org/view.php?id=447
https://download.bareos.com/bareos/release/14.2/
https://bugs.bareos.org/view.php?id=420
https://download.bareos.com/bareos/release/14.2/
https://bugs.bareos.org/view.php?id=437

465

bareos-14.2.3

Code Release 2015-02-02
Database Version 2003 (unchanged)
Release Ticket Ticket #393
Url https://download.bareos.com/bareos/release/14.2/

bareos-14.2.2

Code Release 2014-12-12
Database Version 2003 (unchanged)

Database update required if updating from version < 14.2.
See the Updating Bareos section for details.

Url http://download.bareos.org/bareos/release/14.2/

https://download.bareos.com/bareos/release/14.2/

First stable release of the Bareos 14.2 branch.

bareos-14.2.1

Code Release 2014-09-22
Database Version 2003

Database update required, see the Updating Bareos section.
Url http://download.bareos.org/bareos/release/14.2/

Beta release.

Bareos-13.2

bareos-13.2.5

Code Release 2015-12-03
Database Version 2002 (unchanged)
Url https://download.bareos.com/bareos/release/13.2/

This release contains several bugfixes.

bareos-13.2.4

Code Release 2014-11-05
Database Version 2002 (unchanged)
Url https://download.bareos.com/bareos/release/13.2/

bareos-13.2.3

Code Release 2014-03-11
Database Version 2002

Database update required, see the Updating Bareos section.
Url https://download.bareos.com/bareos/release/13.2/

It is known, that drop_database scripts will not longer work on PostgreSQL < 8.4. However, as drop_

database scripts are very seldom needed, package dependencies do not yet enforce PostgreSQL >= 8.4. We
plan to ensure this in future version of Bareos.

bareos-13.2.2

Code Release 2013-11-19
Database Version 2001 (unchanged)
Url http://download.bareos.org/bareos/release/13.2/

https://download.bareos.com/bareos/release/13.2/

https://bugs.bareos.org/view.php?id=393
https://download.bareos.com/bareos/release/14.2/
http://download.bareos.org/bareos/release/14.2/
https://download.bareos.com/bareos/release/14.2/
http://download.bareos.org/bareos/release/14.2/
https://download.bareos.com/bareos/release/13.2/
https://download.bareos.com/bareos/release/13.2/
https://download.bareos.com/bareos/release/13.2/
http://download.bareos.org/bareos/release/13.2/
https://download.bareos.com/bareos/release/13.2/

466

Bareos-12.4

bareos-12.4.8

Code Release 2015-11-18
Database Version 2001 (unchanged)
Url https://download.bareos.com/bareos/release/12.4/

This release contains several bugfixes.

bareos-12.4.6

Code Release 2013-11-19
Database Version 2001 (unchanged)
Url http://download.bareos.org/bareos/release/12.4/

https://download.bareos.com/bareos/release/12.4/

bareos-12.4.5

Code Release 2013-09-10
Database Version 2001 (unchanged)
Url https://download.bareos.com/bareos/release/12.4/

bareos-12.4.4

Code Release 2013-06-17
Database Version 2001 (unchanged)
Url http://download.bareos.org/bareos/release/12.4/

https://download.bareos.com/bareos/release/12.4/

bareos-12.4.3

Code Release 2013-04-15
Database Version 2001 (unchanged)
Url http://download.bareos.org/bareos/release/12.4/

https://download.bareos.com/bareos/release/12.4/

bareos-12.4.2

Code Release 2013-03-03
Database Version 2001 (unchanged)

bareos-12.4.1

Code Release 2013-02-06
Database Version 2001 (initial)

This have been the initial release of Bareos.
Information about migrating from Bacula to Bareos are available at Howto upgrade from Bacula to Bareos
and in section Compatibility between Bareos and Bacula.

https://download.bareos.com/bareos/release/12.4/
http://download.bareos.org/bareos/release/12.4/
https://download.bareos.com/bareos/release/12.4/
https://download.bareos.com/bareos/release/12.4/
http://download.bareos.org/bareos/release/12.4/
https://download.bareos.com/bareos/release/12.4/
http://download.bareos.org/bareos/release/12.4/
https://download.bareos.com/bareos/release/12.4/
http://www.bareos.org/en/HOWTO/articles/upgrade_bacula_bareos.html

Appendix M

Bareos Copyright, Trademark, and
Licenses

M.1 Licenses Overview

There are a number of different licenses that are used in Bareos.

FDL

The GNU Free Documentation License (FDL) is used for this manual, which is a free and open license. This
means that you may freely reproduce it and even make changes to it.

AGPL

The vast bulk of the source code is released under the GNU Affero General Public License (AGPL) version
3.

Most of this code is copyrighted: Copyright ©2000-2012 Free Software Foundation Europe e.V.

All new code is copyrighted: Copyright ©2013-2013 Bareos GmbH & Co. KG

Portions may be copyrighted by other people. These files are released under different licenses which are
compatible with the AGPL license.

LGPL

Some of the Bareos library source code is released under the GNU Lesser General Public License (LGPL).
This permits third parties to use these parts of our code in their proprietary programs to interface to Bareos.

Public Domain

Some of the Bareos code, or code that Bareos references, has been released to the public domain. E.g. md5.c,
SQLite.

Trademark

Bareos
®

is a registered trademark of Bareos GmbH & Co. KG.

Bacula
®

is a registered trademark of Kern Sibbald.

Disclaimer

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

467

468

FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PER-
FORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-
TRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

Other Copyrights and Trademarks

Certain words and/or products are Copyrighted or Trademarked such as Windows (by Microsoft). Since
they are numerous, and we are not necessarily aware of the details of each, we don’t try to list them here.
However, we acknowledge all such Copyrights and Trademarks, and if any copyright or trademark holder
wishes a specific acknowledgment, notify us, and we will be happy to add it where appropriate.

469

M.2 GNU Free Documentation License

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other

functional and useful document "free" in the sense of freedom: to

assure everyone the effective freedom to copy and redistribute it,

with or without modifying it, either commercially or noncommercially.

Secondarily, this License preserves for the author and publisher a way

to get credit for their work, while not being considered responsible

for modifications made by others.

This License is a kind of "copyleft", which means that derivative

works of the document must themselves be free in the same sense. It

complements the GNU General Public License, which is a copyleft

license designed for free software.

We have designed this License in order to use it for manuals for free

software, because free software needs free documentation: a free

program should come with manuals providing the same freedoms that the

software does. But this License is not limited to software manuals;

it can be used for any textual work, regardless of subject matter or

whether it is published as a printed book. We recommend this License

principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that

contains a notice placed by the copyright holder saying it can be

distributed under the terms of this License. Such a notice grants a

world-wide, royalty-free license, unlimited in duration, to use that

work under the conditions stated herein. The "Document", below,

refers to any such manual or work. Any member of the public is a

licensee, and is addressed as "you". You accept the license if you

copy, modify or distribute the work in a way requiring permission

under copyright law.

A "Modified Version" of the Document means any work containing the

Document or a portion of it, either copied verbatim, or with

modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of

the Document that deals exclusively with the relationship of the

publishers or authors of the Document to the Document’s overall

subject (or to related matters) and contains nothing that could fall

directly within that overall subject. (Thus, if the Document is in

part a textbook of mathematics, a Secondary Section may not explain

any mathematics.) The relationship could be a matter of historical

connection with the subject or with related matters, or of legal,

470

commercial, philosophical, ethical or political position regarding

them.

The "Invariant Sections" are certain Secondary Sections whose titles

are designated, as being those of Invariant Sections, in the notice

that says that the Document is released under this License. If a

section does not fit the above definition of Secondary then it is not

allowed to be designated as Invariant. The Document may contain zero

Invariant Sections. If the Document does not identify any Invariant

Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,

as Front-Cover Texts or Back-Cover Texts, in the notice that says that

the Document is released under this License. A Front-Cover Text may

be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,

represented in a format whose specification is available to the

general public, that is suitable for revising the document

straightforwardly with generic text editors or (for images composed of

pixels) generic paint programs or (for drawings) some widely available

drawing editor, and that is suitable for input to text formatters or

for automatic translation to a variety of formats suitable for input

to text formatters. A copy made in an otherwise Transparent file

format whose markup, or absence of markup, has been arranged to thwart

or discourage subsequent modification by readers is not Transparent.

An image format is not Transparent if used for any substantial amount

of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain

ASCII without markup, Texinfo input format, LaTeX input format, SGML

or XML using a publicly available DTD, and standard-conforming simple

HTML, PostScript or PDF designed for human modification. Examples of

transparent image formats include PNG, XCF and JPG. Opaque formats

include proprietary formats that can be read and edited only by

proprietary word processors, SGML or XML for which the DTD and/or

processing tools are not generally available, and the

machine-generated HTML, PostScript or PDF produced by some word

processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,

plus such following pages as are needed to hold, legibly, the material

this License requires to appear in the title page. For works in

formats which do not have any title page as such, "Title Page" means

the text near the most prominent appearance of the work’s title,

preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of

the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose

title either is precisely XYZ or contains XYZ in parentheses following

text that translates XYZ in another language. (Here XYZ stands for a

specific section name mentioned below, such as "Acknowledgements",

"Dedications", "Endorsements", or "History".) To "Preserve the Title"

of such a section when you modify the Document means that it remains a

section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which

states that this License applies to the Document. These Warranty

471

Disclaimers are considered to be included by reference in this

License, but only as regards disclaiming warranties: any other

implication that these Warranty Disclaimers may have is void and has

no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either

commercially or noncommercially, provided that this License, the

copyright notices, and the license notice saying this License applies

to the Document are reproduced in all copies, and that you add no

other conditions whatsoever to those of this License. You may not use

technical measures to obstruct or control the reading or further

copying of the copies you make or distribute. However, you may accept

compensation in exchange for copies. If you distribute a large enough

number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and

you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have

printed covers) of the Document, numbering more than 100, and the

Document’s license notice requires Cover Texts, you must enclose the

copies in covers that carry, clearly and legibly, all these Cover

Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on

the back cover. Both covers must also clearly and legibly identify

you as the publisher of these copies. The front cover must present

the full title with all words of the title equally prominent and

visible. You may add other material on the covers in addition.

Copying with changes limited to the covers, as long as they preserve

the title of the Document and satisfy these conditions, can be treated

as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit

legibly, you should put the first ones listed (as many as fit

reasonably) on the actual cover, and continue the rest onto adjacent

pages.

If you publish or distribute Opaque copies of the Document numbering

more than 100, you must either include a machine-readable Transparent

copy along with each Opaque copy, or state in or with each Opaque copy

a computer-network location from which the general network-using

public has access to download using public-standard network protocols

a complete Transparent copy of the Document, free of added material.

If you use the latter option, you must take reasonably prudent steps,

when you begin distribution of Opaque copies in quantity, to ensure

that this Transparent copy will remain thus accessible at the stated

location until at least one year after the last time you distribute an

Opaque copy (directly or through your agents or retailers) of that

edition to the public.

It is requested, but not required, that you contact the authors of the

Document well before redistributing any large number of copies, to

give them a chance to provide you with an updated version of the

Document.

472

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under

the conditions of sections 2 and 3 above, provided that you release

the Modified Version under precisely this License, with the Modified

Version filling the role of the Document, thus licensing distribution

and modification of the Modified Version to whoever possesses a copy

of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct

from that of the Document, and from those of previous versions

(which should, if there were any, be listed in the History section

of the Document). You may use the same title as a previous version

if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities

responsible for authorship of the modifications in the Modified

Version, together with at least five of the principal authors of the

Document (all of its principal authors, if it has fewer than five),

unless they release you from this requirement.

C. State on the Title page the name of the publisher of the

Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the

terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections

and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add

to it an item stating at least the title, year, new authors, and

publisher of the Modified Version as given on the Title Page. If

there is no section Entitled "History" in the Document, create one

stating the title, year, authors, and publisher of the Document as

given on its Title Page, then add an item describing the Modified

Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for

public access to a Transparent copy of the Document, and likewise

the network locations given in the Document for previous versions

it was based on. These may be placed in the "History" section.

You may omit a network location for a work that was published at

least four years before the Document itself, or if the original

publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications",

Preserve the Title of the section, and preserve in the section all

the substance and tone of each of the contributor acknowledgements

and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,

unaltered in their text and in their titles. Section numbers

or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section

may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements"

or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or

appendices that qualify as Secondary Sections and contain no material

copied from the Document, you may at your option designate some or all

473

of these sections as invariant. To do this, add their titles to the

list of Invariant Sections in the Modified Version’s license notice.

These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains

nothing but endorsements of your Modified Version by various

parties--for example, statements of peer review or that the text has

been approved by an organization as the authoritative definition of a

standard.

You may add a passage of up to five words as a Front-Cover Text, and a

passage of up to 25 words as a Back-Cover Text, to the end of the list

of Cover Texts in the Modified Version. Only one passage of

Front-Cover Text and one of Back-Cover Text may be added by (or

through arrangements made by) any one entity. If the Document already

includes a cover text for the same cover, previously added by you or

by arrangement made by the same entity you are acting on behalf of,

you may not add another; but you may replace the old one, on explicit

permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License

give permission to use their names for publicity for or to assert or

imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this

License, under the terms defined in section 4 above for modified

versions, provided that you include in the combination all of the

Invariant Sections of all of the original documents, unmodified, and

list them all as Invariant Sections of your combined work in its

license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and

multiple identical Invariant Sections may be replaced with a single

copy. If there are multiple Invariant Sections with the same name but

different contents, make the title of each such section unique by

adding at the end of it, in parentheses, the name of the original

author or publisher of that section if known, or else a unique number.

Make the same adjustment to the section titles in the list of

Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"

in the various original documents, forming one section Entitled

"History"; likewise combine any sections Entitled "Acknowledgements",

and any sections Entitled "Dedications". You must delete all sections

Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other

documents released under this License, and replace the individual

copies of this License in the various documents with a single copy

that is included in the collection, provided that you follow the rules

of this License for verbatim copying of each of the documents in all

other respects.

You may extract a single document from such a collection, and

474

distribute it individually under this License, provided you insert a

copy of this License into the extracted document, and follow this

License in all other respects regarding verbatim copying of that

document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate

and independent documents or works, in or on a volume of a storage or

distribution medium, is called an "aggregate" if the copyright

resulting from the compilation is not used to limit the legal rights

of the compilation’s users beyond what the individual works permit.

When the Document is included in an aggregate, this License does not

apply to the other works in the aggregate which are not themselves

derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these

copies of the Document, then if the Document is less than one half of

the entire aggregate, the Document’s Cover Texts may be placed on

covers that bracket the Document within the aggregate, or the

electronic equivalent of covers if the Document is in electronic form.

Otherwise they must appear on printed covers that bracket the whole

aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may

distribute translations of the Document under the terms of section 4.

Replacing Invariant Sections with translations requires special

permission from their copyright holders, but you may include

translations of some or all Invariant Sections in addition to the

original versions of these Invariant Sections. You may include a

translation of this License, and all the license notices in the

Document, and any Warranty Disclaimers, provided that you also include

the original English version of this License and the original versions

of those notices and disclaimers. In case of a disagreement between

the translation and the original version of this License or a notice

or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",

"Dedications", or "History", the requirement (section 4) to Preserve

its Title (section 1) will typically require changing the actual

title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document

except as expressly provided under this License. Any attempt

otherwise to copy, modify, sublicense, or distribute it is void, and

will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license

from a particular copyright holder is reinstated (a) provisionally,

unless and until the copyright holder explicitly and finally

terminates your license, and (b) permanently, if the copyright holder

fails to notify you of the violation by some reasonable means prior to

60 days after the cessation.

475

Moreover, your license from a particular copyright holder is

reinstated permanently if the copyright holder notifies you of the

violation by some reasonable means, this is the first time you have

received notice of violation of this License (for any work) from that

copyright holder, and you cure the violation prior to 30 days after

your receipt of the notice.

Termination of your rights under this section does not terminate the

licenses of parties who have received copies or rights from you under

this License. If your rights have been terminated and not permanently

reinstated, receipt of a copy of some or all of the same material does

not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the

GNU Free Documentation License from time to time. Such new versions

will be similar in spirit to the present version, but may differ in

detail to address new problems or concerns. See

http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.

If the Document specifies that a particular numbered version of this

License "or any later version" applies to it, you have the option of

following the terms and conditions either of that specified version or

of any later version that has been published (not as a draft) by the

Free Software Foundation. If the Document does not specify a version

number of this License, you may choose any version ever published (not

as a draft) by the Free Software Foundation. If the Document

specifies that a proxy can decide which future versions of this

License can be used, that proxy’s public statement of acceptance of a

version permanently authorizes you to choose that version for the

Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any

World Wide Web server that publishes copyrightable works and also

provides prominent facilities for anybody to edit those works. A

public wiki that anybody can edit is an example of such a server. A

"Massive Multiauthor Collaboration" (or "MMC") contained in the site

means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0

license published by Creative Commons Corporation, a not-for-profit

corporation with a principal place of business in San Francisco,

California, as well as future copyleft versions of that license

published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in

part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this

License, and if all works that were first published under this License

somewhere other than this MMC, and subsequently incorporated in whole or

in part into the MMC, (1) had no cover texts or invariant sections, and

(2) were thus incorporated prior to November 1, 2008.

476

The operator of an MMC Site may republish an MMC contained in the site

under CC-BY-SA on the same site at any time before August 1, 2009,

provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of

the License in the document and put the following copyright and

license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled "GNU

Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,

replace the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the

Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other

combination of the three, merge those two alternatives to suit the

situation.

If your document contains nontrivial examples of program code, we

recommend releasing these examples in parallel under your choice of

free software license, such as the GNU General Public License,

to permit their use in free software.

477

M.3 GNU Affero Gerneral Public License

GNU AFFERO GENERAL PUBLIC LICENSE

Version 3, 19 November 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The GNU Affero General Public License is a free, copyleft license for

software and other kinds of works, specifically designed to ensure

cooperation with the community in the case of network server software.

The licenses for most software and other practical works are designed

to take away your freedom to share and change the works. By contrast,

our General Public Licenses are intended to guarantee your freedom to

share and change all versions of a program--to make sure it remains free

software for all its users.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you

have the freedom to distribute copies of free software (and charge for

them if you wish), that you receive source code or can get it if you

want it, that you can change the software or use pieces of it in new

free programs, and that you know you can do these things.

Developers that use our General Public Licenses protect your rights

with two steps: (1) assert copyright on the software, and (2) offer

you this License which gives you legal permission to copy, distribute

and/or modify the software.

A secondary benefit of defending all users’ freedom is that

improvements made in alternate versions of the program, if they

receive widespread use, become available for other developers to

incorporate. Many developers of free software are heartened and

encouraged by the resulting cooperation. However, in the case of

software used on network servers, this result may fail to come about.

The GNU General Public License permits making a modified version and

letting the public access it on a server without ever releasing its

source code to the public.

The GNU Affero General Public License is designed specifically to

ensure that, in such cases, the modified source code becomes available

to the community. It requires the operator of a network server to

provide the source code of the modified version running there to the

users of that server. Therefore, public use of a modified version, on

a publicly accessible server, gives the public access to the source

code of the modified version.

An older license, called the Affero General Public License and

published by Affero, was designed to accomplish similar goals. This is

a different license, not a version of the Affero GPL, but Affero has

released a new version of the Affero GPL which permits relicensing under

this license.

The precise terms and conditions for copying, distribution and

modification follow.

478

TERMS AND CONDITIONS

0. Definitions.

"This License" refers to version 3 of the GNU Affero General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of

works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this

License. Each licensee is addressed as "you". "Licensees" and

"recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work

in a fashion requiring copyright permission, other than the making of an

exact copy. The resulting work is called a "modified version" of the

earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based

on the Program.

To "propagate" a work means to do anything with it that, without

permission, would make you directly or secondarily liable for

infringement under applicable copyright law, except executing it on a

computer or modifying a private copy. Propagation includes copying,

distribution (with or without modification), making available to the

public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other

parties to make or receive copies. Mere interaction with a user through

a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices"

to the extent that it includes a convenient and prominently visible

feature that (1) displays an appropriate copyright notice, and (2)

tells the user that there is no warranty for the work (except to the

extent that warranties are provided), that licensees may convey the

work under this License, and how to view a copy of this License. If

the interface presents a list of user commands or options, such as a

menu, a prominent item in the list meets this criterion.

1. Source Code.

The "source code" for a work means the preferred form of the work

for making modifications to it. "Object code" means any non-source

form of a work.

A "Standard Interface" means an interface that either is an official

standard defined by a recognized standards body, or, in the case of

interfaces specified for a particular programming language, one that

is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other

than the work as a whole, that (a) is included in the normal form of

packaging a Major Component, but which is not part of that Major

Component, and (b) serves only to enable use of the work with that

Major Component, or to implement a Standard Interface for which an

implementation is available to the public in source code form. A

"Major Component", in this context, means a major essential component

(kernel, window system, and so on) of the specific operating system

479

(if any) on which the executable work runs, or a compiler used to

produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all

the source code needed to generate, install, and (for an executable

work) run the object code and to modify the work, including scripts to

control those activities. However, it does not include the work’s

System Libraries, or general-purpose tools or generally available free

programs which are used unmodified in performing those activities but

which are not part of the work. For example, Corresponding Source

includes interface definition files associated with source files for

the work, and the source code for shared libraries and dynamically

linked subprograms that the work is specifically designed to require,

such as by intimate data communication or control flow between those

subprograms and other parts of the work.

The Corresponding Source need not include anything that users

can regenerate automatically from other parts of the Corresponding

Source.

The Corresponding Source for a work in source code form is that

same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of

copyright on the Program, and are irrevocable provided the stated

conditions are met. This License explicitly affirms your unlimited

permission to run the unmodified Program. The output from running a

covered work is covered by this License only if the output, given its

content, constitutes a covered work. This License acknowledges your

rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not

convey, without conditions so long as your license otherwise remains

in force. You may convey covered works to others for the sole purpose

of having them make modifications exclusively for you, or provide you

with facilities for running those works, provided that you comply with

the terms of this License in conveying all material for which you do

not control copyright. Those thus making or running the covered works

for you must do so exclusively on your behalf, under your direction

and control, on terms that prohibit them from making any copies of

your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under

the conditions stated below. Sublicensing is not allowed; section 10

makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological

measure under any applicable law fulfilling obligations under article

11 of the WIPO copyright treaty adopted on 20 December 1996, or

similar laws prohibiting or restricting circumvention of such

measures.

When you convey a covered work, you waive any legal power to forbid

circumvention of technological measures to the extent such circumvention

is effected by exercising rights under this License with respect to

the covered work, and you disclaim any intention to limit operation or

480

modification of the work as a means of enforcing, against the work’s

users, your or third parties’ legal rights to forbid circumvention of

technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you

receive it, in any medium, provided that you conspicuously and

appropriately publish on each copy an appropriate copyright notice;

keep intact all notices stating that this License and any

non-permissive terms added in accord with section 7 apply to the code;

keep intact all notices of the absence of any warranty; and give all

recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,

and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to

produce it from the Program, in the form of source code under the

terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified

it, and giving a relevant date.

b) The work must carry prominent notices stating that it is

released under this License and any conditions added under section

7. This requirement modifies the requirement in section 4 to

"keep intact all notices".

c) You must license the entire work, as a whole, under this

License to anyone who comes into possession of a copy. This

License will therefore apply, along with any applicable section 7

additional terms, to the whole of the work, and all its parts,

regardless of how they are packaged. This License gives no

permission to license the work in any other way, but it does not

invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display

Appropriate Legal Notices; however, if the Program has interactive

interfaces that do not display Appropriate Legal Notices, your

work need not make them do so.

A compilation of a covered work with other separate and independent

works, which are not by their nature extensions of the covered work,

and which are not combined with it such as to form a larger program,

in or on a volume of a storage or distribution medium, is called an

"aggregate" if the compilation and its resulting copyright are not

used to limit the access or legal rights of the compilation’s users

beyond what the individual works permit. Inclusion of a covered work

in an aggregate does not cause this License to apply to the other

parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms

of sections 4 and 5, provided that you also convey the

machine-readable Corresponding Source under the terms of this License,

in one of these ways:

481

a) Convey the object code in, or embodied in, a physical product

(including a physical distribution medium), accompanied by the

Corresponding Source fixed on a durable physical medium

customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product

(including a physical distribution medium), accompanied by a

written offer, valid for at least three years and valid for as

long as you offer spare parts or customer support for that product

model, to give anyone who possesses the object code either (1) a

copy of the Corresponding Source for all the software in the

product that is covered by this License, on a durable physical

medium customarily used for software interchange, for a price no

more than your reasonable cost of physically performing this

conveying of source, or (2) access to copy the

Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the

written offer to provide the Corresponding Source. This

alternative is allowed only occasionally and noncommercially, and

only if you received the object code with such an offer, in accord

with subsection 6b.

d) Convey the object code by offering access from a designated

place (gratis or for a charge), and offer equivalent access to the

Corresponding Source in the same way through the same place at no

further charge. You need not require recipients to copy the

Corresponding Source along with the object code. If the place to

copy the object code is a network server, the Corresponding Source

may be on a different server (operated by you or a third party)

that supports equivalent copying facilities, provided you maintain

clear directions next to the object code saying where to find the

Corresponding Source. Regardless of what server hosts the

Corresponding Source, you remain obligated to ensure that it is

available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided

you inform other peers where the object code and Corresponding

Source of the work are being offered to the general public at no

charge under subsection 6d.

A separable portion of the object code, whose source code is excluded

from the Corresponding Source as a System Library, need not be

included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any

tangible personal property which is normally used for personal, family,

or household purposes, or (2) anything designed or sold for incorporation

into a dwelling. In determining whether a product is a consumer product,

doubtful cases shall be resolved in favor of coverage. For a particular

product received by a particular user, "normally used" refers to a

typical or common use of that class of product, regardless of the status

of the particular user or of the way in which the particular user

actually uses, or expects or is expected to use, the product. A product

is a consumer product regardless of whether the product has substantial

commercial, industrial or non-consumer uses, unless such uses represent

the only significant mode of use of the product.

"Installation Information" for a User Product means any methods,

482

procedures, authorization keys, or other information required to install

and execute modified versions of a covered work in that User Product from

a modified version of its Corresponding Source. The information must

suffice to ensure that the continued functioning of the modified object

code is in no case prevented or interfered with solely because

modification has been made.

If you convey an object code work under this section in, or with, or

specifically for use in, a User Product, and the conveying occurs as

part of a transaction in which the right of possession and use of the

User Product is transferred to the recipient in perpetuity or for a

fixed term (regardless of how the transaction is characterized), the

Corresponding Source conveyed under this section must be accompanied

by the Installation Information. But this requirement does not apply

if neither you nor any third party retains the ability to install

modified object code on the User Product (for example, the work has

been installed in ROM).

The requirement to provide Installation Information does not include a

requirement to continue to provide support service, warranty, or updates

for a work that has been modified or installed by the recipient, or for

the User Product in which it has been modified or installed. Access to a

network may be denied when the modification itself materially and

adversely affects the operation of the network or violates the rules and

protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,

in accord with this section must be in a format that is publicly

documented (and with an implementation available to the public in

source code form), and must require no special password or key for

unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this

License by making exceptions from one or more of its conditions.

Additional permissions that are applicable to the entire Program shall

be treated as though they were included in this License, to the extent

that they are valid under applicable law. If additional permissions

apply only to part of the Program, that part may be used separately

under those permissions, but the entire Program remains governed by

this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option

remove any additional permissions from that copy, or from any part of

it. (Additional permissions may be written to require their own

removal in certain cases when you modify the work.) You may place

additional permissions on material, added by you to a covered work,

for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you

add to a covered work, you may (if authorized by the copyright holders of

that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the

terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or

author attributions in that material or in the Appropriate Legal

Notices displayed by works containing it; or

483

c) Prohibiting misrepresentation of the origin of that material, or

requiring that modified versions of such material be marked in

reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or

authors of the material; or

e) Declining to grant rights under trademark law for use of some

trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that

material by anyone who conveys the material (or modified versions of

it) with contractual assumptions of liability to the recipient, for

any liability that these contractual assumptions directly impose on

those licensors and authors.

All other non-permissive additional terms are considered "further

restrictions" within the meaning of section 10. If the Program as you

received it, or any part of it, contains a notice stating that it is

governed by this License along with a term that is a further

restriction, you may remove that term. If a license document contains

a further restriction but permits relicensing or conveying under this

License, you may add to a covered work material governed by the terms

of that license document, provided that the further restriction does

not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you

must place, in the relevant source files, a statement of the

additional terms that apply to those files, or a notice indicating

where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the

form of a separately written license, or stated as exceptions;

the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly

provided under this License. Any attempt otherwise to propagate or

modify it is void, and will automatically terminate your rights under

this License (including any patent licenses granted under the third

paragraph of section 11).

However, if you cease all violation of this License, then your

license from a particular copyright holder is reinstated (a)

provisionally, unless and until the copyright holder explicitly and

finally terminates your license, and (b) permanently, if the copyright

holder fails to notify you of the violation by some reasonable means

prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is

reinstated permanently if the copyright holder notifies you of the

violation by some reasonable means, this is the first time you have

received notice of violation of this License (for any work) from that

copyright holder, and you cure the violation prior to 30 days after

your receipt of the notice.

Termination of your rights under this section does not terminate the

licenses of parties who have received copies or rights from you under

484

this License. If your rights have been terminated and not permanently

reinstated, you do not qualify to receive new licenses for the same

material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or

run a copy of the Program. Ancillary propagation of a covered work

occurring solely as a consequence of using peer-to-peer transmission

to receive a copy likewise does not require acceptance. However,

nothing other than this License grants you permission to propagate or

modify any covered work. These actions infringe copyright if you do

not accept this License. Therefore, by modifying or propagating a

covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically

receives a license from the original licensors, to run, modify and

propagate that work, subject to this License. You are not responsible

for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an

organization, or substantially all assets of one, or subdividing an

organization, or merging organizations. If propagation of a covered

work results from an entity transaction, each party to that

transaction who receives a copy of the work also receives whatever

licenses to the work the party’s predecessor in interest had or could

give under the previous paragraph, plus a right to possession of the

Corresponding Source of the work from the predecessor in interest, if

the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the

rights granted or affirmed under this License. For example, you may

not impose a license fee, royalty, or other charge for exercise of

rights granted under this License, and you may not initiate litigation

(including a cross-claim or counterclaim in a lawsuit) alleging that

any patent claim is infringed by making, using, selling, offering for

sale, or importing the Program or any portion of it.

11. Patents.

A "contributor" is a copyright holder who authorizes use under this

License of the Program or a work on which the Program is based. The

work thus licensed is called the contributor’s "contributor version".

A contributor’s "essential patent claims" are all patent claims

owned or controlled by the contributor, whether already acquired or

hereafter acquired, that would be infringed by some manner, permitted

by this License, of making, using, or selling its contributor version,

but do not include claims that would be infringed only as a

consequence of further modification of the contributor version. For

purposes of this definition, "control" includes the right to grant

patent sublicenses in a manner consistent with the requirements of

this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free

patent license under the contributor’s essential patent claims, to

make, use, sell, offer for sale, import and otherwise run, modify and

propagate the contents of its contributor version.

485

In the following three paragraphs, a "patent license" is any express

agreement or commitment, however denominated, not to enforce a patent

(such as an express permission to practice a patent or covenant not to

sue for patent infringement). To "grant" such a patent license to a

party means to make such an agreement or commitment not to enforce a

patent against the party.

If you convey a covered work, knowingly relying on a patent license,

and the Corresponding Source of the work is not available for anyone

to copy, free of charge and under the terms of this License, through a

publicly available network server or other readily accessible means,

then you must either (1) cause the Corresponding Source to be so

available, or (2) arrange to deprive yourself of the benefit of the

patent license for this particular work, or (3) arrange, in a manner

consistent with the requirements of this License, to extend the patent

license to downstream recipients. "Knowingly relying" means you have

actual knowledge that, but for the patent license, your conveying the

covered work in a country, or your recipient’s use of the covered work

in a country, would infringe one or more identifiable patents in that

country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or

arrangement, you convey, or propagate by procuring conveyance of, a

covered work, and grant a patent license to some of the parties

receiving the covered work authorizing them to use, propagate, modify

or convey a specific copy of the covered work, then the patent license

you grant is automatically extended to all recipients of the covered

work and works based on it.

A patent license is "discriminatory" if it does not include within

the scope of its coverage, prohibits the exercise of, or is

conditioned on the non-exercise of one or more of the rights that are

specifically granted under this License. You may not convey a covered

work if you are a party to an arrangement with a third party that is

in the business of distributing software, under which you make payment

to the third party based on the extent of your activity of conveying

the work, and under which the third party grants, to any of the

parties who would receive the covered work from you, a discriminatory

patent license (a) in connection with copies of the covered work

conveyed by you (or copies made from those copies), or (b) primarily

for and in connection with specific products or compilations that

contain the covered work, unless you entered into that arrangement,

or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting

any implied license or other defenses to infringement that may

otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot convey a

covered work so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you may

not convey it at all. For example, if you agree to terms that obligate you

to collect a royalty for further conveying from those to whom you convey

the Program, the only way you could satisfy both those terms and this

License would be to refrain entirely from conveying the Program.

486

13. Remote Network Interaction; Use with the GNU General Public License.

Notwithstanding any other provision of this License, if you modify the

Program, your modified version must prominently offer all users

interacting with it remotely through a computer network (if your version

supports such interaction) an opportunity to receive the Corresponding

Source of your version by providing access to the Corresponding Source

from a network server at no charge, through some standard or customary

means of facilitating copying of software. This Corresponding Source

shall include the Corresponding Source for any work covered by version 3

of the GNU General Public License that is incorporated pursuant to the

following paragraph.

Notwithstanding any other provision of this License, you have

permission to link or combine any covered work with a work licensed

under version 3 of the GNU General Public License into a single

combined work, and to convey the resulting work. The terms of this

License will continue to apply to the part which is the covered work,

but the work with which it is combined will remain governed by version

3 of the GNU General Public License.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of

the GNU Affero General Public License from time to time. Such new versions

will be similar in spirit to the present version, but may differ in detail to

address new problems or concerns.

Each version is given a distinguishing version number. If the

Program specifies that a certain numbered version of the GNU Affero General

Public License "or any later version" applies to it, you have the

option of following the terms and conditions either of that numbered

version or of any later version published by the Free Software

Foundation. If the Program does not specify a version number of the

GNU Affero General Public License, you may choose any version ever published

by the Free Software Foundation.

If the Program specifies that a proxy can decide which future

versions of the GNU Affero General Public License can be used, that proxy’s

public statement of acceptance of a version permanently authorizes you

to choose that version for the Program.

Later license versions may give you additional or different

permissions. However, no additional obligations are imposed on any

author or copyright holder as a result of your choosing to follow a

later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT

HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM

IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF

ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

487

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS

THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY

GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE

USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF

DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD

PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),

EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided

above cannot be given local legal effect according to their terms,

reviewing courts shall apply local law that most closely approximates

an absolute waiver of all civil liability in connection with the

Program, unless a warranty or assumption of liability accompanies a

copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it

free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively

state the exclusion of warranty; and each file should have at least

the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU Affero General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If your software can interact with users remotely through a computer

network, you should also make sure that it provides a way for users to

get its source. For example, if your program is a web application, its

interface could display a "Source" link that leads users to an archive

of the code. There are many ways you could offer source, and different

solutions will be better for different programs; see section 13 for the

specific requirements.

You should also get your employer (if you work as a programmer) or school,

488

if any, to sign a "copyright disclaimer" for the program, if necessary.

For more information on this, and how to apply and follow the GNU AGPL, see

<http://www.gnu.org/licenses/>.

489

M.4 GNU Lesser Gerneral Public License

GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates

the terms and conditions of version 3 of the GNU General Public

License, supplemented by the additional permissions listed below.

0. Additional Definitions.

As used herein, "this License" refers to version 3 of the GNU Lesser

General Public License, and the "GNU GPL" refers to version 3 of the GNU

General Public License.

"The Library" refers to a covered work governed by this License,

other than an Application or a Combined Work as defined below.

An "Application" is any work that makes use of an interface provided

by the Library, but which is not otherwise based on the Library.

Defining a subclass of a class defined by the Library is deemed a mode

of using an interface provided by the Library.

A "Combined Work" is a work produced by combining or linking an

Application with the Library. The particular version of the Library

with which the Combined Work was made is also called the "Linked

Version".

The "Minimal Corresponding Source" for a Combined Work means the

Corresponding Source for the Combined Work, excluding any source code

for portions of the Combined Work that, considered in isolation, are

based on the Application, and not on the Linked Version.

The "Corresponding Application Code" for a Combined Work means the

object code and/or source code for the Application, including any data

and utility programs needed for reproducing the Combined Work from the

Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License

without being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a

facility refers to a function or data to be supplied by an Application

that uses the facility (other than as an argument passed when the

facility is invoked), then you may convey a copy of the modified

version:

a) under this License, provided that you make a good faith effort to

ensure that, in the event an Application does not supply the

function or data, the facility still operates, and performs

whatever part of its purpose remains meaningful, or

490

b) under the GNU GPL, with none of the additional permissions of

this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from

a header file that is part of the Library. You may convey such object

code under terms of your choice, provided that, if the incorporated

material is not limited to numerical parameters, data structure

layouts and accessors, or small macros, inline functions and templates

(ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the

Library is used in it and that the Library and its use are

covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license

document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that,

taken together, effectively do not restrict modification of the

portions of the Library contained in the Combined Work and reverse

engineering for debugging such modifications, if you also do each of

the following:

a) Give prominent notice with each copy of the Combined Work that

the Library is used in it and that the Library and its use are

covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license

document.

c) For a Combined Work that displays copyright notices during

execution, include the copyright notice for the Library among

these notices, as well as a reference directing the user to the

copies of the GNU GPL and this license document.

d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this

License, and the Corresponding Application Code in a form

suitable for, and under terms that permit, the user to

recombine or relink the Application with a modified version of

the Linked Version to produce a modified Combined Work, in the

manner specified by section 6 of the GNU GPL for conveying

Corresponding Source.

1) Use a suitable shared library mechanism for linking with the

Library. A suitable mechanism is one that (a) uses at run time

a copy of the Library already present on the user’s computer

system, and (b) will operate properly with a modified version

of the Library that is interface-compatible with the Linked

Version.

e) Provide Installation Information, but only if you would otherwise

be required to provide such information under section 6 of the

GNU GPL, and only to the extent that such information is

491

necessary to install and execute a modified version of the

Combined Work produced by recombining or relinking the

Application with a modified version of the Linked Version. (If

you use option 4d0, the Installation Information must accompany

the Minimal Corresponding Source and Corresponding Application

Code. If you use option 4d1, you must provide the Installation

Information in the manner specified by section 6 of the GNU GPL

for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the

Library side by side in a single library together with other library

facilities that are not Applications and are not covered by this

License, and convey such a combined library under terms of your

choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based

on the Library, uncombined with any other library facilities,

conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it

is a work based on the Library, and explaining where to find the

accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions

of the GNU Lesser General Public License from time to time. Such new

versions will be similar in spirit to the present version, but may

differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the

Library as you received it specifies that a certain numbered version

of the GNU Lesser General Public License "or any later version"

applies to it, you have the option of following the terms and

conditions either of that published version or of any later version

published by the Free Software Foundation. If the Library as you

received it does not specify a version number of the GNU Lesser

General Public License, you may choose any version of the GNU Lesser

General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide

whether future versions of the GNU Lesser General Public License shall

apply, that proxy’s public statement of acceptance of any version is

permanent authorization for you to choose that version for the

Library.

492

Part V

Index

493

495

General Index

Adding a Client, 38
Administrator, 6
Algorithm

New Volume, 252
Recycling, 252

Always Incremental, 291
Always Incremental Backup

Limitation
Only suitable for file based backups, 293

Apache
bareos-webui, 22

Attributes
Restoring Directory, 238

auditing, 189
Authorization

Names and Passwords, 57
Autochanger

Interface, 272
mtx-changer, 451
Support, 265
Testing, 451
Using the, 270

Automated Disk Backup, 259
Automatic

Pruning, 251
Pruning and Recycling Example, 255

AutoPrune, 366

Backup, 6
Bareos database, 372
Catalog, 372
of Third Party Databases, 427
One Tape, 277
Partitions, 96
Raw Partitions, 96

Backup Strategies, 277
Bacula, 421
Barcode Support, 271
Bareos

Installing, 13
Upgrading, 422

Bareos Console, 207
Bareos Copyright, Trademark, and Licenses, 467
bareos-12.4.1

Release Notes, 466
setbandwidth, 222

bareos-12.4.2
Release Notes, 466

bareos-12.4.3
Release Notes, 466

bareos-12.4.4
Release Notes, 466
status scheduler, 224
status subscriptions, 225
Subscriptions, 66
Windows

silent installation, 325
Windows Installation

SILENTKEEPCONFIG, 325
bareos-12.4.5

Release Notes, 466
Windows

dedupclication, 328
Encrypted Filesystems (EFS), 329
file attributes, 328
Reparse points, 326

bareos-12.4.6
Release Notes, 466

bareos-12.4.8
Release Notes, 466

bareos-13.2.0
Copy and Migration Jobs between different

Storage Daemons, 288
MSSQL, 427
NDMP Log Level, 64
NDMP Snooping, 64
Passive, 116
Protocol, 116

bareos-13.2.2
Release Notes, 465

bareos-13.2.3
MySQL password from configuration file, 363
Release Notes, 465

bareos-13.2.4
Release Notes, 465

bareos-13.2.5
Release Notes, 465

bareos-13.3.0
Director Job Resource isn’t required for Copy

or Migrate jobs, 72
bareos-13.4.0

Auto Deflate, 157
Auto Deflate Algorithm, 157
Auto Deflate Level, 157
Auto Inflate, 157
Auto XFlate On Replication, 146
Catalog, 72
Job catalog overwritten by Pool catalog, 125

bareos-14.2.0
Absolute Job Timeout, 63

496

497

Audit Events, 63
Auditing, 63
dbconfig-common (Debian), 16, 27, 359
Label Block Size, 161
Maximum Block Size, 126, 273
Plugin Directory, 65
Plugin Names, 65
Save File History, 85
Statistics Collect Interval, 65
Windows

FilesNotToBackup, 328
bareos-14.2.1

Release Notes, 465
Windows Installation

DBADMINPASSWORD, 325
DBADMINUSER, 325
INSTALLDIRECTOR, 325
INSTALLSTORAGE, 326
WRITELOGS, 326

bareos-14.2.2
AutoExclude, 98
Ceph (Rados), 160
GlusterFS (gfapi), 160
MSSQL: serveraddress, 429
Release Notes, 465

bareos-14.2.3
Profile, 136
Release Notes, 465

bareos-14.2.4
Release Notes, 464

bareos-14.2.5
Release Notes, 464

bareos-14.2.6
Release Notes, 464

bareos-14.2.7
Release Notes, 463

bareos-14.4.0
Max Virtual Full Interval, 77
multiple Python plugins, 320
Syslog Level, 188

bareos-15.1.0
Exit On Fatal, 133
Reconnect, 133

bareos-15.2.0
bareos-webui, 19
bat vs. bareos-webui, 395
CEPH Rados Plugin, 310
Ceph Storage, 160
Cephfs Plugin, 310
Compatible = no, 147, 175, 421
Device Options, 156, 160
GlusterFS Plugin, 310
GlusterFS Storage, 159
LDAP Plugin, 310
requires

jansson, 14, 15, 379
VMware Plugin, 311

bareos-15.2.1
Release Notes, 463
Secure Erase Command, 65, 149, 178

bareos-15.2.2
Release Notes, 463

bareos-15.2.3
Add additional python plugin options, 315
Log Timestamp Format, 64, 147, 176
Maximum Connections, 148, 177
Release Notes, 462
VMware Plugin: restore to VMDK files, 312,

313
bareos-15.2.4

File History Size, 73
Release Notes, 462

bareos-16.2.1
Including configuration files by wildcard, 51

bareos-16.2.2
/etc/bareos-webui/configuration.ini, 23
Client Initiated Connection, 333
Connection From Client To Director, 114, 181
Connection From Director To Client, 114, 181
Port, 181
Subdirectory Configuration Scheme, 47

bareos-16.2.4
ACL: strict regular expression handling, 53
Always Incremental, 71, 291
Always Incremental Job Retention, 71
Always Incremental Keep Number, 71
Always Incremental Max Full Age, 71
bareos-webui incorporates Zend Framework 2,

20
Client resource files, 39
configure add, 38, 213
configure export, 213
Job Type Consolidate, 88
Max Full Consolidations, 77
MySQL Incremental Backup Plugin for using

Percona xtrabackup, 437
Release Notes, 461
Subdirectory Configuration Scheme used as

Default, 30, 49
bareos-dbcheck, 407
Base Jobs, 307
bconsole, 207
bcopy, 402
bextract, 397

block size, 274
Blocksize

optimize, 272
bls, 395

block size, 274
Label, 396
Listing Blocks, 396
Listing Jobs, 396

Bootstrap, 393
Automatic Generation, 414
bscan, 414
Client, 412
Count, 411
Example, 414
File, 411
File Format, 411

498

FileIndex, 412
FileRegex, 412
Job, 412
JobId, 412
Slot, 412
Stream, 412
VolBlock, 411
VolFile, 411
VolSessionId, 412
VolSessionTime, 412
Volume, 411

Bootstrap File, 6
bpipe

MySQL backup, 440
PostgreSQL backup, 436

bpluginfo, 409
bregex, 409
Broken pipe, 147
bscan, 399, 414

after, 402
bootstrap, 414
Correct Volume File Count, 402
Recreate Catalog, 401

bscrypto, 405
bsmtp, 406
btape, 403
bwild, 409

Cartridges
Changing, 269

Catalog, 6, 425
database check, 407
Job, 425

JobStatus, 425
Recreate Using bscan, 401
Restore, 454
Using bscan to Compare a Volume to an ex-

isting, 401
Catalog Maintenance, 359
Catalog Resource, 131
Ceph

Cephfs Plugin, 310
Rados Plugin, 310

Ceph Object Store
Rados, 159, 160

Character Sets, 51
Client, 6

Adding a Second, 38
Client Resource, 112, 173, 201
Client/File daemon Configuration, 173
Command

bareos-dbcheck, 407
bareos-dir, 394
bareos-fd, 394
bareos-sd, 394
bat, 395
bconsole, 207

exit, 208
bcopy, 402
bextract, 397

block size, 274
bls, 395

block size, 274
bpluginfo, 409
bregex, 409
bscan, 399, 414
bscrypto, 405
bsmtp, 406
btape, 403
bwild, 409
mtx-changer, 451

Command Line Options
Daemon, 394

Communications Encryption, 337
Compatibility

Backward, 421
Bacula, 421

Concurrent Disk Jobs, 246
Concurrent Jobs, 64, 448, 449
Configuration

bconsole, 196, 207
Client/File daemon, 173
Comments, 51
Console, 191, 207
Data Types, 52
Director, 61

Example, 140
Directories, 47
Files, 30
Including Files, 51
Monitor, 199
Naming Convention, 52
Resource, 51
Storage Daemon, 145
Subdirectories, 47
Tray Monitor, 203
WebUI, 22

Console, 6
Adding a Volume to a Pool, 228
Command

. commands, 227
@# anything, 228
@exit, 228
@help, 228
@input <filename>, 228
@output <filename> <w|a>, 228
@quit, 228
@separator, 228
@sleep <seconds>, 228
@tee <filename> <w|a>, 228
@time, 228
@version, 228
add, 210
autodisplay on/off, 211
automount on/off, 211
cancel jobid, 211
configure add, 212
configure export, 213
create pool, 212
delete, 213

499

disable, 213
enable, 213
estimate, 214
exit, 214
export, 214
gui, 215
help, 215
import, 215
label, 216
list, 217
list files jobid, 42
list jobid, 42
list jobmedia, 42
list jobs, 42
list jobtotals, 42
list pools, 42
list volumes, 42
llist, 218
memory, 219
messages, 42, 219
mount, 219
move, 219
prune, 219
purge, 219
query, 220
quit, 42
relabel, 216, 220
release, 220
reload, 221
rerun, 221
resolve, 220
restore, 221, 231
run, 222
setbandwidth, 222
setdebug, 222
setip, 222
show, 223
sqlquery, 223
status, 42, 223
status dir, 42
status jobid, 42
time, 226
trace, 226
umount, 226
unmount, 226
update, 226
update slots, 270
use, 227
var, 227
version, 227
wait, 227

Commands
Useful, 42

File Selection, 221, 240
?, 241
cd, 240
count, 241
dir, 240
done, 241
estimate, 240

exit, 241
find, 240
help, 241
ls, 240
lsmark, 240
mark, 240
pwd, 241
quit, 241
unmark, 241

Keywords, 209
Running from a Shell, 208

Console Configuration, 191
Console Resource, 134, 193
Copy, 285

NDMP, 354
Counter Resource, 139
Crash, 459
Critical Items, 43
Critical Items to Implement Before Production, 43
Customizing the Configuration, 47

Daemon, 6
Command Line Options, 394
Start, 31

Daily Tape Rotation, 278
Data Encryption, 341
Data Spooling, 283

Directives, 283
Data Type, 52

yes|no, 55
acl, 52
audit command list, 55
auth-type, 53
boolean, 55
integer, 53
long integer, 53
name, 53
net-address, 54
net-addresses, 54
net-port, 54
password, 54
path, 54
positive integer, 54
resource, 54
size, 54
speed, 54
string, 54
string list, 54
strname, 54
time, 55

Database
Backup Bareos database, 372
Backup Of Third Party, 427
MSSQL, 427
MySQL, 370

Backup, 437
Compacting, 370

MySQL Server Has Gone Away, 371
MySQL Table is Full, 370
PostgreSQL, 367

500

Backup, 436
Compacting, 367

Repairing Your MySQL, 370
Repairing Your PostgreSQL, 369

Database Performance Issues Indexes, 371
Database Size, 373
Debug

crash, 459
setdebug, 222
Windows, 222

Decrypting with a Master Key, 342
Design

Limitations, 12
Device Configuration Records, 267
Devices

Detecting, 266
Multiple, 267
SCSI, 266

Devices that require a mount (USB), 166
Differential, 6
Differential Pool, 260
Directive, 6
Director, 6

Configuration, 61
Resource Types, 61

Director Resource, 61, 180, 191, 200
Disaster

Before, 443
Recovery, 443

bextract, 397
Catalog, 454
Linux, 444

Disclaimer, 467
Disk

Automated Backup, 259
Disk Volumes, 243
Drive

Verify using btape, 403

Edit Codes for Mount and Unmount Directives,
166

Encryption
Communication, 337
Data, 341
Decrypting with a Master Key, 342
Generating Private/Public Encryption Key-

pairs, 342
Technical Details, 341
Transport, 337

Errors
Restore, 239

Example
Automatic Pruning and Recycling, 255
Bootstrap, 414
Data Encryption Configuration File, 342
FileSet, 107
Migration Jobs, 287
TLS Configuration Files, 338

Excluding Files and Directories, 106

Fifo, 160

File, 160
Bootstrap, 411
Device Name, 393

File Attributes, 6
File Daemon, see Client, 6
File Deduplication, 307
File Relocation

using, 237
File Retention, 366
File Selection Commands, 240
Files

Automatic Generation of Bootstrap, 414
Including other Configuration, 51
Restoring Your, 36

FileSet
Example, 107
Resource, 93
Testing Your, 112
Windows, 111
Windows Example, 112

Firewall
Windows, 330

Full Pool, 260

GFAPI (GlusterFS), 159, 160
GlusterFS

GFAPI, 159, 160
Plugin, 310

Icinga, 321
Implementation

What is implemented, 10
Including other Configuration Files, 51
Incremental, 6
Incremental Pool, 260
Installation

Linux, 13
MacOS, 391
Windows, 323

Items to Note, 12

Jansson
see JSON 379

Job, 7
Catalog, 425
Concurrent Jobs, 449
JobDefs Resource, 89
JobStatus, 425
Resource, 67
Retention, 366

AutoPrune, 366
Running a, 33
Statistics, 366

JSON, 379

Label
Automatic Volume Labeling, 244
Label Media, 161
Specifying Slots When Labeling, 269
Tape Labels, 450
Understanding Labels, 29

501

libwrappers, 375
License

AGPL, 467
Bareos Copyright Trademark Licenses, 467
FDL, 467
LGPL, 467
Public Domain, 467

Limitation
Always Incremental Backup

Only suitable for file based backups, 293
MySQL

MySQL ≥ 5.7 not supported, 370
NDMP

64-bit system recommended, 357
File information are not available in the

Bareos backup stream, 357
No single file restore on merged backups,

357
VMware Plugin

Normal VM disks can not be excluded from
the backup, 311

Restore can only be done to the same VM
or to local VMDK files, 312

Virtual Disks have to be smaller than 2TB,
311

VM configuration is not backed up, 311
Windows

Bareos Storage Daemon only support
backup to disk, not to tape, 323

The default installation of Bareos Webui is
only suitable for local access, 323

Windows Bareos Director does not support
MySQL database backend, 323

Listing Blocks with bls, 396
Listing Jobs with bls, 396

Magazines
Dealing with Multiple, 269

Maintenance
Catalog, 359

MariaDB, see MySQL
Messages

Resource, 168
type

alert, 189
all, 189
audit, 189
error, 188
fatal, 188
info, 188
mount, 188
notsaved, 188
restored, 188
security, 189
skipped, 188
terminate, 188
volmgmt, 189
warning, 188

Messages Resource, 134, 183, 185
Migration, 285

Important Migration Considerations, 286
Monitor, 7
Monitor Configuration, 199
Monitor Resource, 199
Mount and Unmount: use variables in directives,

166
MSSQL Backup, 427
Multi-drive Example Configuration File, 268
Multiple Devices, 267
MySQL, 370

Backup, 311, 437
Limitation

MySQL ≥ 5.7 not supported, 370
MySQL Server Has Gone Away, 371
MySQL Table is Full, 370

Nagios, see Icinga
NDMP

Copy jobs, 354
Environment variables, 347
Example, 343
File History, 85, 357
Level, 351
Limitation

64-bit system recommended, 357
File information are not available in the

Bareos backup stream, 357
No single file restore on merged backups,

357
Overview, 343

New Volume Algorithm, 252
nginx

bareos-webui, 24

One Tape Backup, 277

Package
bareos, 14, 382–384
bareos-bat, 382–384
bareos-bconsole, 5, 382–384
bareos-client, 382–384
bareos-common, 382–384
bareos-database-*, 14, 16, 359
bareos-database-common, 359, 382–384
bareos-database-mysql, 5, 13, 382–384
bareos-database-postgresql, 5, 13, 382–384
bareos-database-sqlite3, 5, 13, 382–384
bareos-database-tools, 382–384
bareos-dbg, 5, 459
bareos-debug, 459
bareos-debuginfo, 5
bareos-director, 5, 382–384, 462
bareos-director-python-plugin, 320, 321, 382–

384
bareos-filedaemon, 5, 38, 39, 309, 382–384,

461
bareos-filedaemon-ceph-plugin, 310, 382–384
bareos-filedaemon-glusterfs-plugin, 310, 382–

384
bareos-filedaemon-ldap-python-plugin, 310,

382–384

502

bareos-filedaemon-python-plugin, 382–384,
437

bareos-storage, 5, 315, 382–384, 461
bareos-storage-ceph, 159, 382–384
bareos-storage-fifo, 382–384
bareos-storage-glusterfs, 159, 382–384
bareos-storage-python-plugin, 382–384
bareos-storage-tape, 5, 265, 316, 320, 382–384
bareos-tools, 382–384
bareos-tray-monitor, 39
bareos-traymonitor, 5, 382–384, 461
bareos-vadp-dumper, 382–384
bareos-vmware-plugin, 312, 382–384
bareos-vmware-vix-disklib, 382, 383
bareos-vmware-vix-disklib5, 384
bareos-webui, 20, 22, 382–385, 391, 462
dbconfig-common, 16, 27, 359
libfastlz, 382–385
libjansson4, 383–385
libjansson4-32bit, 383
libjansson4-x86, 383
lzo, 382
php-ZendFramework2, 383
php5-zendframework2, 384, 385
python-py, 383
python-pyvmomi, 383
python-requests, 383
python-six, 383
univention-bareos, 384
winbareos, 323

Passwords, 57
Percona xtrabackup, 437
Performance

Database, 371
Periods

Setting Retention, 366
Platform

AIX, 381
Arch Linux, 381
CentOS, 14

5, 15, 382
6, 14, 382
7, 382

Debian, 15
6, 383
7, 383
8, 383, 390, 464
dbconfig-common, 359
Debian.org, 390

Fedora, 14
20, 382
21, 382, 464
22, 382
23, 382
24, 382

FreeBSD, 381
Gentoo, 381
HP-UX, 381
Linux, 381
Mac

OS X, 391
openSUSE, 15

13.1, 383
13.2, 383
42.1, 383

RHEL, 14
4, 382
5, 15, 382
6, 14, 382
7, 382

SLES, 15
10sp4, 383
11sp4, 383
12sp1, 383

Solaris, 381
Debug, 460

Ubuntu, 15
10.04, 384
12.04, 384
14.04, 384
16.04, 384
8.04, 384
dbconfig-common, 359
Debug, 459
Universe, 390

Univention
4.0, 383

Univention Corporate Server, 16, 385
Windows, 323

Plugin, 309
autoxflate-sd, 315
bpipe, 309
ceph

cephfs, 310
rados, 310

glusterfs, 310
ldap, 310
MSSQL backup, 427
MySQL Backup, 437, 438
PostgreSQL Backup, 437
Python

Director, 320
File Daemon, 310
Storage Daemon, 320

scsicrypto-sd, 316
scsitapealert-sd, 320
VMware, 311

Pool, 259
Differential, 260
Full, 260
Incremental, 260
Options to Limit the Volume Usage, 244
Overview, 41
Scratch, 131

Pool Resource, 123
Pools

Understanding, 29
PostgreSQL, 367

Backup, 436
Problem

503

Authorization Errors, 448
Autochanger, 451
Cannot Access a Client, 447
Connecting from the FD to the SD, 447
mtx-changer, 451
Repair Catalog, 454
Restore

pruned job, 453
slow, 454

Restoring Files, 453
Tape, 450

fixed mode, 453
variable mode, 453

Windows, 326
VSS, 330

Windows Backup, 330
Windows Ownership and Permissions, 331
Windows Restore, 330

Production
Critical Items to Implement Before, 43

Profile Resource, 137
Program

Quitting the Console, 38
Pruning

Automatic, 251
Example, 255

Directives, 251

quit, 220
Quitting the Console Program, 38

Rados (Ceph Object Store), 159, 160
Recommended Items, 44
Recovery

Disaster Recovery, 443
Recycle

Algorithm, 252
Automatic

Example, 255
Automatic Volume, 250
Manual, 257

Recycle Status, 253
Recycling

Restricting the Number of Volumes and Re-
cycling, 245

Regex, 453
Releases, 4
Repairing Your MySQL Database, 370
Repairing Your PostgreSQL Database, 369
Requirements

System, 379
Resource, 7

Catalog, 131
Client, 112, 173, 201
Console, 134, 193
Counter, 139
Director, 61, 180, 191, 200
Example Restore Job, 239
FileSet, 93
Job, 67

JobDefs, 89
Messages, 134, 168, 183, 185
Monitor, 199
Pool, 123
Profile, 137
Schedule, 89
Storage, 118, 201

Resource Types, 57
Restore, 7, 221, 231

Bareos Server, 445
by filename, 235
Catalog, 454
Files

Problem, 453
pruned job, 453
slow, 454

Restore Directories, 233
Restore Errors, 239
Restoring Directory Attributes, 238
Restoring on Windows, 239
Restoring Your Files, 36
Restricting the Number of Volumes and Recycling,

245
Restrictions

Current Implementation, 11
Design Limitations, 12

Retention, 291
File, 366
Job, 366

Retention Period, 7
Rotation

Daily Tape, 278
Running a Job, 33
Running Concurrent Jobs, 449
RunScript

Example, 436, 440

Scan, 8
Schedule, 7

Resource, 89
Technical Notes on Schedules, 92
Understanding Schedules, 29

Scratch Pool, 131
SCSI devices, 266
Security, 375

Tray Monitor, 202
Using Bareos to Improve Computer, 415

SELinux
bareos-webui, 22

Service, 7
Session, 7
Setting Retention Periods, 366
Simultaneous Jobs, 64
Size

Database, 373
Slots, 266
Specifying a Device Name For a File, 393
Specifying a Device Name For a Tape, 393
Specifying Slots When Labeling, 269
Specifying the Configuration File, 393

504

Specifying Volumes, 393
Spooling

Data, 283
SSL, 337
Starting the Daemons, 31
Statistics, 366
Storage Coordinates, 7
Storage Daemon, 7

Configuration, 145
Storage Resource, 118, 201
Strategy

Backup, 277
Support

Autochanger, 265
Barcode, 271
Operating Systems, 381

System Requirements, 379
Systems

Supported Operating Systems, 381

Tape, 160
Device Name, 393
Format, 421
Label

ANSI, 450
IBM, 450

LTFS, 450
Manually Changing, 277
speed, 272

TCP Wrappers, 375
Terminology, 6
Testing

Configuration Files, 30
Testing Your FileSet, 112
TLS, 337
TLS Configuration Files, 338
Tools

Volume Utility, 395
Traceback, 459

Test, 459
Trademark, 467
Transport Encryption, 337
Tray Monitor

Configuration, 203
Tray Monitor Security, 202
Tuning

blocksize, 272
Tape, 272

Tutorial, 31
Types

Director Resource, 61
Resource, 57

Upgrade from Bacula to Bareos, 422

Verify, 7
Details, 415
Differences, 417
Example, 418
File Integrity, 415
Running, 416

Version numbers, 4
VMware Plugin, 311

Limitation
Normal VM disks can not be excluded from

the backup, 311
Restore can only be done to the same VM

or to local VMDK files, 312
Virtual Disks have to be smaller than 2TB,

311
VM configuration is not backed up, 311

VMDK files, 313
Volume, 8

File Count, 402
Labeling

Automatic, 244
Management, 243

Key Concepts and Resource Records, 243
Recycle

Automatic, 250
Manual, 257

Volume Utility Tools, 395
Volumes

Specifying, 393
Understanding, 29
Using Pools to Manage, 259

VSS
Enable, 329

Webui, 19
Install, 19

Windows, 323
Backup Problems, 330
bextract, 399
Compatibility Considerations, 326
Configuration Files

UTF-8, 51
Dealing with Problems, 326
Debug, 222
File Daemon

Command Line Options, 332
Installation, 323

FileSet, 111
Example, 112

Firewall, 330
Limitation

Bareos Storage Daemon only support
backup to disk, not to tape, 323

The default installation of Bareos Webui is
only suitable for local access, 323

Windows Bareos Director does not support
MySQL database backend, 323

Ownership and Permissions Problems, 331
Problem

VSS, 330
Restore Problem, 330
Restoring on, 239
Run Script, 83
Volume Shadow Copy Service, 329
VSS, 329

Problem, 330

505

Wrappers
TCP, 375

xtrabackup, 437

Director Index

Accurate, 90
accurate, 99
aclsupport, 104
Admin, 87
always, 80

Backup, 87
basejob, 99

Catalog, 76
checkfilechanges, 103
Clone a Job, 81
Command Line Options, 394
compression, 98
Configuration Directive

Absolute Job Timeout, 62, 63
Accurate, 68, 69, 293, 294
Action On Purge, 124, 125
Add Prefix, 68, 69, 238
Add Suffix, 68, 69
Address, 112, 113, 118, 119, 131, 132, 333,

447
Allow Client Connect, 112, 113
Allow Compression, 98, 118, 119
Allow Duplicate Jobs, 68, 70, 71, 72
Allow Higher Duplicates, 68, 70
Allow Mixed Priority, 68, 70
Always Incremental, 68, 71, 293, 294
Always Incremental Job Retention, 68, 71,

293, 295–297, 299
Always Incremental Keep Number, 68, 71,

293, 296
Always Incremental Max Full Age, 68, 71,

293, 297, 299
Append, 185, 186
Audit Events, 62, 63
Auditing, 62, 63, 63, 189
Auth Type, 112, 113, 118, 119, 344
Auto Changer, 118, 119, 157, 269
Auto Prune, 112, 113, 114, 115, 124, 125,

245, 250–252
Autochanger, 267
AutoExclude, 98
Backend Directory, 62, 63
Backup Format, 68, 71, 348
Base, 68, 71
Bootstrap, 68, 71
Cache Status Interval, 118, 120
Cancel Lower Level Duplicates, 68, 70, 71
Cancel Queued Duplicates, 68, 70, 71, 72

Cancel Running Duplicates, 68, 70, 71, 72
Catalog, 68, 72, 112, 114, 124, 125, 139, 139,

185, 186
Catalog ACL, 135, 135, 138, 138
Catalog Files, 124, 125
Changer Device, 118, 120
Cleaning Prefix, 124, 125
Client, 68, 72
Client ACL, 135, 135, 138, 138
Client Run After Job, 68, 72, 83
Client Run Before Job, 68, 72, 83, 326
Collect Statistics, 65, 118, 120
Command ACL, 23, 53, 135, 135, 138, 138,

462
Connection From Client To Director, 113,

114, 333
Connection From Director To Client, 113,

114, 333
Console, 185, 186
DB Address, 131, 132, 132
DB Driver, 131, 132
DB Name, 131, 132
DB Password, 131, 132, 133
DB Port, 131, 132, 132
DB Socket, 131, 132, 132
DB User, 131, 132, 133
Description, 62, 63, 68, 72, 89, 89, 93, 93,

113, 114, 118, 120, 124, 126, 131, 132,
135, 135, 138, 138, 139, 139, 185, 186

Device, 118, 120
Differential Backup Pool, 68, 72
Differential Max Runtime, 68, 72, 72
Differential Max Wait Time, 68, 72
Dir Address, 62, 63, 63
Dir Addresses, 62, 63, 63
Dir Plugin Options, 68, 72
Dir Port, 62, 63, 63, 192
Dir Source Address, 62, 63
Director, 185, 186
Disable Batch Insert, 132, 132
Enable VSS, 93, 93, 326
Enabled, 68, 72, 89, 89, 113, 114, 119, 120
Exclude, 93, 93, 104
Exit On Fatal, 132, 133
FD Address, 113, 114
FD Connect Timeout, 62, 63
FD Password, 113, 114
FD Plugin Options, 68, 73
FD Port, 113, 114
File, 107, 185, 186

506

507

File History Size, 68, 73, 85, 357
File Retention, 113, 114, 124, 126, 126, 245
File Set, 68, 73
File Set ACL, 135, 135, 138, 138
Full Backup Pool, 68, 73
Full Max Runtime, 68, 73, 73
Full Max Wait Time, 68, 73
Hard Quota, 113, 114
Heartbeat Interval, 62, 63, 113, 115, 115,

119, 120, 333
Idle Timeout, 132, 133
Ignore File Set Changes, 80, 93, 93
Inc Connections, 132, 133
Include, 93, 93, 348, 436
Incremental Backup Pool, 68, 73
Incremental Max Runtime, 68, 73, 73
Incremental Max Wait Time, 68, 73
Job ACL, 135, 135, 138, 138
Job Defs, 68, 73
Job Retention, 113, 114, 115, 124, 126, 126,

245, 252
Job To Verify, 68, 74
Key Encryption Key, 62, 64, 319
Label Format, 55, 124, 126, 139, 161, 227,

245
Label Type, 124, 126, 161, 450
Level, 68, 74, 88, 302
Log Timestamp Format, 62, 64
Mail, 185, 186, 187
Mail Command, 185, 186, 186, 187, 407
Mail On Error, 186, 187, 187
Mail On Success, 186, 187, 187
Max Concurrent Copies, 68, 76
Max Connections, 132, 133
Max Diff Interval, 68, 76
Max Full Consolidations, 68, 76, 294, 299
Max Full Interval, 68, 77
Max Run Sched Time, 68, 77
Max Run Time, 68, 77
Max Start Delay, 68, 77
Max Virtual Full Interval, 68, 77
Max Wait Time, 68, 77
Maximum, 139, 139
Maximum Bandwidth, 68, 77
Maximum Bandwidth Per Job, 113, 115, 119,

120
Maximum Block Size, 124, 126, 273, 274
Maximum Concurrent Jobs, 62, 64, 68, 77,

113, 115, 119, 120, 147, 449
Maximum Concurrent Read Jobs, 119, 120
Maximum Connections, 62, 64
Maximum Console Connections, 62, 64
Maximum Volume Bytes, 124, 126, 162, 163,

244, 250
Maximum Volume Files, 124, 127
Maximum Volume Jobs, 124, 127, 130, 244,

250
Maximum Volumes, 124, 127, 245, 253
Media Type, 119, 121, 127, 246, 286
Messages, 62, 63, 64, 68, 77

Migration High Bytes, 86, 124, 127, 128, 287
Migration Low Bytes, 86, 124, 128, 287
Migration Time, 86, 124, 128, 287
Min Connections, 132, 133
Minimum, 139, 139
Minimum Block Size, 124, 128, 273, 274
Multiple Connections, 132, 133
Name, 62, 64, 68, 75, 78, 86, 89, 89, 93, 93,

113, 115, 119, 121, 124, 128, 132, 133,
134, 135, 136, 138, 138, 139, 140, 186,
187

NDMP Block Size, 113, 115
NDMP Log Level, 62, 64, 113, 115, 357
NDMP Snooping, 62, 64, 357
NDMP Use LMDB, 113, 115
Next Pool, 68, 75, 78, 78, 124, 128, 285–288,

354
Omit Defaults, 62, 64
Operator, 186, 187, 188
Operator Command, 186, 187, 407
Optimize For Size, 62, 64, 64, 65
Optimize For Speed, 62, 64, 64
Paired Storage, 119, 121
Passive, 113, 115, 334
Password, 62, 65, 113, 116, 119, 121, 132,

133, 135, 136, 192, 344
Pid Directory, 62, 65
Plugin Directory, 62, 65
Plugin Names, 62, 65
Plugin Options, 68, 78
Plugin Options ACL, 135, 136, 138, 138
Pool, 68, 72, 73, 78, 287
Pool ACL, 135, 136, 138, 139, 462
Pool Type, 124, 128
Port, 113, 116, 119, 121, 344
Prefer Mounted Volumes, 68, 78, 267
Prefix Links, 68, 79
Priority, 68, 79
Profile, 135, 136, 137
Protocol, 68, 79, 113, 116, 119, 122, 344, 348
Prune Files, 68, 80
Prune Jobs, 69, 80
Prune Volumes, 69, 80
Purge Migration Job, 69, 80, 287
Purge Oldest Volume, 124, 128, 245, 253
Query File, 62, 65
Quota Include Failed Jobs, 113, 116
Reconnect, 132, 133
Recycle, 124, 129, 245, 250, 252
Recycle Current Volume, 124, 129, 245, 253
Recycle Oldest Volume, 124, 128, 129, 245,

253
Recycle Pool, 125, 129, 250
Regex Where, 69, 80
Replace, 69, 80
Rerun Failed Levels, 69, 80
Reschedule Interval, 69, 81, 81
Reschedule On Error, 69, 81
Reschedule Times, 69, 81, 81
Run, 69, 81, 89, 89, 283

508

Run ACL, 135, 136
Run After Failed Job, 69, 81, 83
Run After Job, 69, 82, 83
Run Before Job, 69, 81, 82, 83, 156
Run Script, 69, 72, 81, 82, 82, 302, 436, 440
Save File History, 69, 73, 85
Schedule, 69, 85
Schedule ACL, 135, 136, 138, 139
Scratch Pool, 125, 129
Scripts Directory, 62, 65
SD Address, 119, 122
SD Connect Timeout, 62, 65
SD Password, 119, 122
SD Plugin Options, 69, 85
SD Port, 119, 122
Sdd Port, 119, 122
Secure Erase Command, 62, 65, 376
Selection Pattern, 69, 85, 85, 86, 286, 288
Selection Type, 69, 78, 85, 85, 127, 128, 285–

288
Soft Quota, 113, 116, 116
Soft Quota Grace Period, 113, 116, 116
Spool Attributes, 69, 86, 86
Spool Data, 69, 86, 86, 283
Spool Size, 69, 87, 283
Statistics Collect Interval, 62, 65, 120
Statistics Retention, 62, 66
Stderr, 186, 188
Stdout, 186, 188
Storage, 41, 69, 87, 125, 130, 287, 288
Storage ACL, 135, 136, 138, 139
Strict Quotas, 113, 117
Strip Prefix, 69, 87, 238
Sub Sys Directory, 62, 66
Subscriptions, 62, 66
Syslog, 186, 188
Tape Device, 119, 122
Timestamp Format, 186, 188
TLS Allowed CN, 62, 66, 113, 117, 119, 122,

135, 136
TLS Authenticate, 62, 66, 113, 117, 119,

122, 135, 136
TLS CA Certificate Dir, 62, 66, 113, 117,

119, 122, 135, 136
TLS CA Certificate File, 62, 66, 113, 117,

119, 122, 135, 136
TLS Certificate, 62, 66, 113, 117, 119, 122,

135, 136
TLS Certificate Revocation List, 62, 66, 113,

117, 119, 122, 135, 137
TLS Cipher List, 62, 66, 113, 117, 119, 123,

135, 137
TLS DH File, 62, 66, 113, 117, 119, 123, 135,

137
TLS Enable, 62, 67, 113, 117, 119, 123, 135,

137
TLS Key, 62, 67, 113, 118, 119, 123, 135,

137
TLS Require, 62, 67, 113, 118, 119, 123, 135,

137

TLS Verify Peer, 62, 67, 113, 118, 119, 123,
135, 137

Type, 69, 74, 87, 285, 286, 294, 299, 302
Use Catalog, 125, 130
Use Volume Once, 125, 130
User, 132, 133
Username, 113, 118, 119, 123, 344
Validate Timeout, 132, 133
Ver Id, 62, 67
Verify Job, 69, 88
Virtual Full Backup Pool, 69, 88
Volume Retention, 114, 115, 125, 130, 245,

250–252
Volume Use Duration, 125, 130, 244, 250
Where, 69, 88, 354
Where ACL, 135, 137, 138, 139
Working Directory, 62, 67
Wrap Counter, 139, 140, 140
Write Bootstrap, 43, 69, 88, 411
Write Part After Job, 69, 88
Write Verify List, 69, 89

Configuration File Example, 140
Console

Default Console, 134
Named Console, 134
Restricted Console, 134

days, 55
Differential, 74
DifferentialPool, 90
Directive

Accurate, 90
accurate, 99
aclsupport, 104
basejob, 99
checkfilechanges, 103
compression, 98
DifferentialPool, 90
DriveType, 105
Exclude Dir Containing, 97
File, 94
fstype, 105
FullPool, 90
hardlinks, 103
hfsplussupport, 105
honornodumpflag, 101
ignore case, 105
IncrementalPool, 90
keepatime, 102
Level, 90
Messages, 90
meta, 106
mtimeonly, 102
noatime, 102
onefs, 100
Options, 97
Plugin, 97
Pool, 90
portable, 101
readfifo, 102

509

recurse, 101
regex, 103
regexdir, 104
regexfile, 104
shadowing, 106
signature, 99
size, 106
sparse, 101
Spool Data, 90
Storage, 90
strippath, 106
TLS Allowed CN, 338
TLS CA Certificate Dir, 338
TLS CA Certificate File, 338
TLS Certificate, 337
TLS DH File, 338
TLS Enable, 337
TLS Key, 337
TLS Require, 337
TLS Verify Peer, 337
verify, 99
wild, 103
wilddir, 103
wildfile, 103
xattrsupport, 105

DiskToCatalog, 76
DriveType, 105

Enable VSS, 329
Exclude Dir Containing, 97
Exit Status, 83

File, 94
fstype, 105
Full, 74
FullPool, 90

hardlinks, 103
hfsplussupport, 105
honornodumpflag, 101
hours, 55

ifnewer, 80
ifolder, 80
ignore case, 105
Incremental, 74
IncrementalPool, 90
InitCatalog, 75

keepatime, 102

Level, 90

MD5, 99
Messages, 90

destination, 185
meta, 106
minutes, 55
months, 55
mtimeonly, 102

Named Console, 134

never, 80
noatime, 102

onefs, 100
Options, 97

Plugin, 97
Pool, 90
portable, 101

quarters, 55

readfifo, 102
recurse, 101
regex, 103
regexdir, 104
regexfile, 104
Resource Types, 61
Restore, 87

seconds, 55
SHA1, 99
shadowing, 106
signature, 99
size, 106
sparse, 101
SpoolData, 90
Storage, 90
strippath, 106

TLS Allowed CN, 338
TLS CA Certificate Dir, 338
TLS CA Certificate File, 338
TLS Certificate, 337
TLS DH File, 338
TLS Enable, 337
TLS Key, 337
TLS Require, 337
TLS Verify Peer, 337

Verify, 87
verify, 99
VirtualFull Backup, 75
VolumeToCatalog, 76

weeks, 55
wild, 103
wilddir, 103
wildfile, 103
Windows

Enable VSS, 93

xattrsupport, 105

years, 55

Storage Daemon Index

Autochanger Resource, 167

Backend
Fifo, 160
File, 160
GFAPI (GlusterFS), 159, 160
Rados (Ceph Object Store), 159, 160
Tape, 160

Changer Command, 267
Changer Device, 267
Command Line Options, 394
Configuration, 145
Configuration Directive

Absolute Job Timeout, 145, 146
Alert Command, 154, 155
Allow Bandwidth Bursting, 145, 146
Always Open, 154, 155, 156, 221
Archive Device, 154, 155, 160, 164, 243, 246,

248, 463
Auth Type, 153, 153
Auto Deflate, 154, 156, 316
Auto Deflate Algorithm, 154, 157, 316
Auto Deflate Level, 154, 157, 316
Auto Inflate, 154, 157, 316
Auto Select, 154, 157
Auto XFlate On Replication, 145, 146, 316
Autochanger, 120, 154, 157, 269
Automatic Mount, 154, 158
Backend Directory, 145, 146
Backward Space File, 154, 158
Backward Space Record, 154, 158
Block Checksum, 154, 158
Block Positioning, 154, 158
Bsf At Eom, 154, 158
Changer Command, 154, 158, 167, 167
Changer Device, 154, 157, 158, 167, 167
Check Labels, 154, 159, 161, 450
Client Connect Wait, 145, 147
Close On Poll, 154, 159
Collect Device Statistics, 145, 147
Collect Job Statistics, 145, 147
Collect Statistics, 154, 159
Compatible, 145, 147, 463
Description, 145, 147, 151, 151, 153, 153,

154, 159, 167, 167
Device, 167, 167
Device Options, 154, 156, 159, 160, 463
Device Reserve By Media Type, 145, 147
Device Type, 154–156, 159, 160

Diagnostic Device, 154, 160
Drive Crypto Enabled, 154, 160, 319
Drive Index, 154, 160
Drive Tape Alert Enabled, 154, 160
Fast Forward Space File, 154, 161
FD Connect Timeout, 145, 147
File Device Concurrent Read, 145, 147
Forward Space File, 154, 161
Forward Space Record, 154, 161
Free Space Command, 154, 161
Hardware End Of File, 154, 161
Hardware End Of Medium, 154, 161
Heartbeat Interval, 145, 147
Key Encryption Key, 151, 151, 319
Label Block Size, 154, 161, 274
Label Media, 154, 161, 245
Label Type, 126, 154, 161, 450
Log Level, 153, 153
Log Timestamp Format, 145, 147
Maximum Bandwidth Per Job, 145, 147,

151, 151
Maximum Block Size, 126, 154, 161, 272, 274
Maximum Changer Wait, 154, 162
Maximum Concurrent Jobs, 145, 147, 154,

162, 248, 449
Maximum Connections, 145, 148
Maximum File Size, 154, 162, 272
Maximum Job Spool Size, 154, 162, 283
Maximum Network Buffer Size, 146, 148, 154,

162
Maximum Open Volumes, 154, 163
Maximum Open Wait, 154, 156, 163
Maximum Part Size, 154, 163
Maximum Rewind Wait, 154, 163
Maximum Spool Size, 87, 154, 163, 283, 284
Maximum Volume Size, 154, 163
Media Type, 154, 163, 246
Messages, 146, 148
Minimum Block Size, 128, 154, 163
Monitor, 151, 151
Mount Command, 154, 164, 166
Mount Point, 154, 164, 166
Name, 146, 148, 151, 151, 153, 153, 154,

164, 167, 168
NDMP Address, 146, 148
NDMP Addresses, 146, 148
NDMP Enable, 146, 148, 345
NDMP Log Level, 146, 148, 357
NDMP Port, 146, 148
NDMP Snooping, 146, 148, 357

510

511

No Rewind On Close, 155, 164
Offline On Unmount, 155, 164
Password, 151, 151, 153, 153
Pid Directory, 146, 148
Plugin Directory, 146, 148, 148, 319
Plugin Names, 146, 148
Query Crypto Status, 155, 165, 319
Random Access, 155, 165
Removable Media, 155, 165
Requires Mount, 155, 165, 166
Scripts Directory, 146, 148
SD Address, 146, 149, 149
SD Addresses, 146, 149, 149
SD Connect Timeout, 146, 149
SD Port, 146, 149, 149
SD Source Address, 146, 149
Secure Erase Command, 146, 149, 376
Spool Directory, 155, 165, 283
Statistics Collect Interval, 146, 149
Sub Sys Directory, 146, 149
TLS Allowed CN, 146, 149, 151, 151
TLS Authenticate, 146, 149, 151, 152
TLS CA Certificate Dir, 146, 149, 151, 152
TLS CA Certificate File, 146, 149, 151, 152
TLS Certificate, 146, 149, 151, 152
TLS Certificate Revocation List, 146, 150,

151, 152
TLS Cipher List, 146, 150, 151, 152
TLS DH File, 146, 150, 151, 152
TLS Enable, 146, 150, 151, 152
TLS Key, 146, 150, 151, 152
TLS Require, 146, 150, 151, 152
TLS Verify Peer, 146, 150, 151, 152
Two Eof, 155, 165
Unmount Command, 155, 165, 166, 167
Use Mtiocget, 155, 166
Username, 153, 153
Ver Id, 146, 150
Volume Capacity, 155, 166
Volume Poll Interval, 155, 166
Working Directory, 146, 150
Write Part Command, 155, 166

Device
Resource, 154

Director
Resource, 151

Drive Index, 268

Maximum Changer Wait, 268
mtx-changer list, 451
mtx-changer listall, 451, 452
mtx-changer load, 452
mtx-changer loaded, 452
mtx-changer slots, 452
mtx-changer unload, 452

NDMP
Resource, 153

Platform

Linux
Privileges, 318

Solaris
Privileges, 318

Resource
Autochanger, 167
Device, 154
Director, 151
NDMP, 153
Storage, 145

Storage
Resource, 145

File Daemon Index

Command Line Options, 394
Configuration Directive

Absolute Job Timeout, 173, 174
Address, 180, 180, 333
Allow Bandwidth Bursting, 173, 174
Allowed Job Command, 173, 174, 180, 181,

181
Allowed Script Dir, 173, 175, 175, 180, 181,

181
Always Use LMDB, 173, 175
Compatible, 99, 173, 175, 177, 334, 463
Connection From Client To Director, 180,

181, 333
Connection From Director To Client, 180,

181, 333
Description, 173, 175, 180, 181
FD Address, 173, 175
FD Addresses, 173, 176
FD Port, 173, 176
FD Source Address, 173, 176
Heartbeat Interval, 173, 176
LMDB Threshold, 173, 176
Log Timestamp Format, 173, 176
Maximum Bandwidth Per Job, 173, 176, 180,

181
Maximum Concurrent Jobs, 173, 176, 449
Maximum Connections, 173, 177
Maximum Network Buffer Size, 173, 177
Messages, 173, 177
Monitor, 180, 181
Name, 173, 177, 180, 181
Password, 39, 180, 181
Pid Directory, 173, 177
Pki Cipher, 173, 177
Pki Encryption, 173, 178
Pki Key Pair, 173, 178
Pki Master Key, 174, 178
Pki Signatures, 174, 178
Pki Signer, 174, 178
Plugin Directory, 174, 178, 178
Plugin Names, 174, 178
Port, 180, 181
Scripts Directory, 174, 178
SD Connect Timeout, 174, 178
Secure Erase Command, 174, 178, 376
Sub Sys Directory, 174, 178
TLS Allowed CN, 174, 179, 180, 181
TLS Authenticate, 174, 179, 180, 181
TLS CA Certificate Dir, 174, 179, 180, 182
TLS CA Certificate File, 174, 179, 180, 182

TLS Certificate, 174, 179, 180, 182
TLS Certificate Revocation List, 174, 179,

180, 182
TLS Cipher List, 174, 179, 180, 182
TLS DH File, 174, 179, 180, 182
TLS Enable, 174, 179, 180, 182
TLS Key, 174, 179, 180, 182
TLS Require, 174, 179, 180, 182
TLS Verify Peer, 174, 180, 180, 182
Ver Id, 174, 180
Working Directory, 174, 180

Windows
Exclude Files from Backup, 328
Junction points, 326
Problem

VSS, 330
Symbolic links, 326
Volume Mount Points (VMP), 326

512

Console Index

Command Line Options, 207
Configuration Directive

Address, 191, 191, 200, 200, 201, 201, 202,
202

Description, 191, 191, 194, 194, 199, 199,
200, 200, 201, 201, 202, 202

Dir Connect Timeout, 199, 199
Dir Port, 191, 192, 200, 200
Director, 194, 194
Enable SSL, 200, 200, 201, 201, 202, 202
FD Connect Timeout, 199, 199
FD Port, 201, 201
Heartbeat Interval, 191, 192, 194, 194
History File, 194, 194
History Length, 194, 194
Name, 191, 192, 194, 194, 199, 199, 200,

200, 201, 201, 202, 202
Password, 65, 191, 192, 194, 194, 199, 200,

201, 201, 202, 202
Rc File, 194, 195
Refresh Interval, 199, 200
Require SSL, 199, 200
SD Address, 202, 202
SD Connect Timeout, 199, 200
SD Password, 202, 202
SD Port, 202, 202
TLS Allowed CN, 191, 192, 194, 195
TLS Authenticate, 191, 192, 194, 195
TLS CA Certificate Dir, 191, 192, 194, 195
TLS CA Certificate File, 191, 192, 194, 195
TLS Certificate, 191, 192, 194, 195
TLS Certificate Revocation List, 191, 192,

194, 195
TLS Cipher List, 191, 192, 194, 195
TLS DH File, 191, 192, 194, 195
TLS Enable, 191, 192, 194, 195
TLS Key, 191, 193, 194, 195
TLS Require, 191, 193, 194, 195
TLS Verify Peer, 191, 193, 194, 196

513

	I Introduction and Tutorial
	What is Bareos?
	History
	Who Needs Bareos?
	Bareos Components or Services
	Bareos Version Numbers and Releases
	Bareos Packages
	Quick Start
	Terminology
	What Bareos is Not
	Interactions Between the Bareos Services
	The Current State of Bareos
	What is Implemented
	Advantages Over Other Backup Programs
	Current Implementation Restrictions
	Design Limitations or Restrictions
	Items to Note

	Installing Bareos
	Decide about the Bareos release to use
	Decide about the Database Backend
	Install the Bareos Software Packages
	Install on RedHat based Linux Distributions
	Install on SUSE based Linux Distributions
	Install on Debian based Linux Distributions
	Install on Univention Corporate Server

	Prepare Bareos database
	Debian based Linux Distributions
	Other Platforms

	Start the daemons

	Installing Bareos Webui
	Features
	System Requirements
	Version < 16.2

	Installation
	Adding the Bareos Repository
	Install the bareos-webui package
	Minimal Configuration
	Configuration Details

	Upgrade from 15.2 to 16.2
	Console/Profile changes
	directors.ini
	configuration.ini

	Additional information
	NGINX

	Updating Bareos
	Updating the configuration files
	Updating the database scheme
	Debian based Linux Distributions
	Other Platforms

	Getting Started with Bareos
	Understanding Jobs and Schedules
	Understanding Pools, Volumes and Labels
	Setting Up Bareos Configuration Files
	Testing your Configuration Files

	Tutorial
	Starting the Database
	Installing Bareos
	Starting the Daemons
	Using the Director to Query and Start Jobs
	Running a Job
	Restoring Your Files
	Quitting the Console Program
	Adding a Client
	Patience When Starting Daemons or Mounting Blank Tapes
	Pools
	Other Useful Console Commands

	Critical Items to Implement Before Production
	Critical Items
	Recommended Items

	II Configuration
	Customizing the Configuration
	Configuration Path Layout
	What configuration will be used?
	Subdirectory Configuration Scheme

	Configuration File Format
	Character Sets
	Comments
	Semicolons
	Including other Configuration Files

	Resource
	Resource Directive
	Resource Directive Keyword
	Resource Directive Value
	Resource Types

	Names, Passwords and Authorization

	Director Configuration
	Director Resource
	Job Resource
	JobDefs Resource
	Schedule Resource
	Technical Notes on Schedules

	FileSet Resource
	FileSet Include Ressource
	FileSet Exclude Ressource
	FileSet Examples
	Windows FileSets
	Testing Your FileSet

	Client Resource
	Storage Resource
	Pool Resource
	Scratch Pool

	Catalog Resource
	Messages Resource
	Console Resource
	Profile Resource
	Counter Resource
	Example Director Configuration File

	Storage Daemon Configuration
	Storage Resource
	Director Resource
	NDMP Resource
	Device Resource
	Edit Codes for Mount and Unmount Directives
	Devices that require a mount (USB)

	Autochanger Resource
	Messages Resource
	Example Storage Daemon Configuration File

	Client/File Daemon Configuration
	Client Resource
	Director Resource
	Messages Resource
	Example Client Configuration File

	Messages Resource
	Message Types

	Console Configuration
	Director Resource
	Console Resource
	Example Console Configuration File
	Using Named Consoles

	Monitor Configuration
	Monitor Resource
	Director Resource
	Client Resource
	Storage Resource
	Tray Monitor

	III Tasks and Concepts
	Bareos Console
	Console Configuration
	Running the Console Program
	Exit the Console Program
	Running the Console from a Shell Script

	Console Keywords
	Console Commands
	Special dot (.) Commands
	Special At (@) Commands

	Adding Volumes to a Pool

	The Restore Command
	General
	The Restore Command
	Selecting Files by Filename
	Replace Options
	Command Line Arguments
	Using File Relocation
	Restoring Directory Attributes
	Restoring on Windows
	Restore Errors
	Example Restore Job Resource
	File Selection Commands

	Volume Management
	Key Concepts and Resource Records
	Pool Options to Limit the Volume Usage
	Automatic Volume Labeling
	Restricting the Number of Volumes and Recycling

	Concurrent Disk Jobs
	Example for two clients, separate devices and recycling
	Using Multiple Storage Devices

	Automatic Volume Recycling
	Automatic Pruning
	Pruning Directives
	Recycling Algorithm
	Recycle Status
	Daily, Weekly, Monthly Tape Usage Example
	Automatic Pruning and Recycling Example
	Manually Recycling Volumes

	Automated Disk Backup
	Overall Design
	Full Pool
	Differential Pool
	Incremental Pool

	Configuration Files

	Autochanger Support
	Knowing What SCSI Devices You Have
	Linux
	FreeBSD

	Slots
	Multiple Devices
	Device Configuration Records
	An Example Configuration File
	A Multi-drive Example Configuration File
	Specifying Slots When Labeling
	Changing Cartridges
	Dealing with Multiple Magazines
	Update Slots Command
	Using the Autochanger
	Barcode Support
	Use bconsole to display Autochanger content
	Bareos Autochanger Interface
	Tapespeed and blocksizes

	Using Tape Drives without Autochanger
	Simple One Tape Backup
	Advantages
	Disadvantages
	Practical Details

	Manually Changing Tapes
	Daily Tape Rotation
	Advantages
	Disadvantages
	Practical Details

	Data Spooling
	Data Spooling Directives
	Additional Notes

	Migration and Copy
	Important Migration Considerations
	Configure Copy or Migration Jobs
	Example Migration Jobs

	Always Incremental Backup Scheme
	Conventional Backup Scheme Drawbacks
	Always Incremental Concept
	How to configure in Bareos
	Always Incremental Backup Job
	Consolidate Job
	Storages and Pools

	How it works
	Enhancements for the Always Incremental Backup Scheme
	The basic always incremental scheme
	Always Incremental Max Full Age
	Max Full Consolidations

	Long Term Storage of Always Incremental Jobs
	Copy Jobs
	Virtual Full Jobs

	How to manually transfer data/volumes
	Import Data from a Remote Storage Daemon
	Import Data from a Independent Remote Full Bareos Installation

	File Deduplication using Base Jobs
	Plugins
	File Daemon Plugins
	bpipe Plugin
	PGSQL Plugin
	MySQL Plugin
	MSSQL Plugin
	LDAP Plugin
	Cephfs Plugin
	Rados Plugin
	GlusterFS Plugin
	python-fd Plugin
	VMware Plugin

	Storage Daemon Plugins
	autoxflate-sd
	scsicrypto-sd
	scsitapealert-sd
	python-sd Plugin

	Director Plugins
	python-dir Plugin

	The Windows Version of Bareos
	Windows Installation
	Graphical Installation
	Command Line (Silent) Installation

	Dealing with Windows Problems
	Antivirus Program
	Enable Debuggging

	Windows Compatibility Considerations
	Exclusively Opened Files
	Backing up the Windows Registry
	Windows Reparse Points
	Hard Links
	FilesNotToBackup Registry Key
	Windows dedup support
	Store all file attributes
	Support for Windows EFS filesystems

	Volume Shadow Copy Service (VSS)
	VSS Problems

	Windows Firewalls
	Network TCP Port

	Windows Restore Problems
	Windows Backup Problems
	Windows Ownership and Permissions Problems
	Advanced Windows Configuration
	Windows Service
	Windows Specific Command Line Options

	Network setup
	Client Initiated Connection
	Passive Clients
	Usage

	Transport Encryption
	TLS Configuration Directives
	Getting TLS Certificates
	Example TLS Configuration Files

	Data Encryption
	Encryption Technical Details
	Generating Private/Public Encryption Keys
	Example Data Encryption Configurations (bareos-fd.conf)
	Decrypting with a Master Key

	NDMP Backups with Bareos
	Example Setup for NDMP backup
	Enable NDMP on your storage appliance
	Bareos Director: Configure NDMP Client Resource
	Bareos Storage Daemon: Configure NDMP
	Bareos Director: Configure a Paired Storage
	Bareos Director: Configure NDMP Fileset
	Bareos Director: Configure NDMP Jobs

	Run NDMP Backup
	NDMP Backup Level

	Run NDMP Restore
	Full Restore
	Restore files to original path
	Restore files to different path

	NDMP Copy Jobs
	Restore to NDMP Primary Storage System

	NDMP Debugging
	Limitations
	NDMP Job limitations when scanning in volumes
	Single file restore on incremental backups
	Restore always transfers the full main backup file to the Primary Storage System
	Temporary memory mapped database

	Tested Environments

	Catalog Maintenance
	Catalog Database
	dbconfig-common (Debian)
	Manual Configuration

	Retention Periods
	PostgreSQL
	Compacting Your PostgreSQL Database
	Repairing Your PostgreSQL Database

	MySQL/MariaDB
	MySQL/MariaDB Support
	Compacting Your MySQL Database
	Repairing Your MySQL Database
	MySQL Table is Full
	MySQL Server Has Gone Away
	MySQL Temporary Tables

	Performance Issues Indexes
	PostgreSQL Indexes
	MySQL Indexes
	SQLite Indexes

	Backing Up Your Bareos Database
	Database Size

	Bareos Security Issues
	Configuring and Testing TCP Wrappers
	Secure Erase Command

	IV Appendix
	System Requirements
	Operating Systems
	
	Packages for the different Linux platforms
	Univention Corporate Server
	Debian.org / Ubuntu Universe
	Mac OS X

	Bareos Programs
	Parameter
	Specifying the Configuration File
	Specifying a Device Name For a Tape
	Specifying a Device Name For a File
	Specifying Volumes

	Bareos Daemons
	Daemon Command Line Options
	bareos-dir
	bareos-sd
	bareos-fd

	Interactive Programs
	bconsole
	bareos-webui
	bat

	Volume Utility Commands
	bls
	bextract
	bscan
	bcopy
	btape
	bscrypto

	Other Programs
	bsmtp
	bareos-dbcheck
	bregex
	bwild
	bpluginfo

	The Bootstrap File
	Bootstrap File Format
	Automatic Generation of Bootstrap Files
	Bootstrap for bscan
	Bootstrap Example

	Verify File Integrity with Bareos
	The Details
	Running the Verify
	What To Do When Differences Are Found
	A Verify Configuration Example

	Backward Compatibility
	Tape Formats
	Compatibility between Bareos and Bacula
	Upgrade from Bacula 5.2 to Bareos

	Catalog Tables
	Job
	JobStatus

	Howtos
	Use a dummy device to test the backup
	Backup Of Third Party Databases
	Backup of MSSQL Databases with Bareos Plugin
	Backup of a PostgreSQL Database
	Backup of a MySQL Database

	Disaster Recovery Using Bareos
	General
	Important Considerations

	Steps to Take Before Disaster Strikes
	Bare Metal Recovery of Bareos Clients
	Linux

	Restoring a Bareos Server

	Troubleshooting
	Debug Messages
	Client Access Problems
	Difficulties Connecting from the FD to the SD
	Authorization Errors

	Concurrent Jobs
	Tape Labels: ANSI or IBM
	Reading
	Writing

	Tape Drive
	Get Your Tape Drive Working

	Autochanger
	Testing Autochanger and Adapting mtx-changer script

	Restore
	Restore a pruned job using a pattern
	Problems Restoring Files
	Restoring Files Can Be Slow
	Restoring When Things Go Wrong

	Debugging
	Traceback
	Testing The Traceback
	Getting A Traceback On Other Systems

	Manually Running Bareos Under The Debugger

	Release Notes
	Bareos Copyright, Trademark, and Licenses
	Licenses Overview
	GNU Free Documentation License
	GNU Affero Gerneral Public License
	GNU Lesser Gerneral Public License

	V Index
	General
	Director
	Storage Daemon
	File Daemon
	Console

