GNU Compiler Collection Internals

Richard M. Stallman

Last updated 28 December 2002

for GCC 3.34

For GCC Version 3.3.4

Published by the Free Software Foundation
59 Temple Place—Suite 330

Boston, MA 02111-1307, USA

Last printed April, 1998.

Printed copies are available for $50 each.

Copyright (©) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with the Invariant Sections being “GNU General Public License”
and “Funding Free Software”, the Front-Cover texts being (a) (see below), and with the
Back-Cover Texts being (b) (see below). A copy of the license is included in the section
entitled “GNU Free Documentation License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

Introduction s v v v oo v v v ettt ittt iiii it nennns 1
1 Contributing to GCC Development « + o v v v v v v vveen... 3
2 GCCand Portability . . oo v v v e nnnn. 5)
3 Interfacing to GCC Output « o v v v v v v v e e v v i i ieeennnn. 7
4 Language Front Endsin GCC............c0vnn... 9
5 Source Tree Structure and Build System............... 11
6 Passes and Files of the Compiler 31
7 Trees: The intermediate representation used by the C and C++
frontends oo v et i i i i e 39
8 RTL Representation « .. eeeeeeeeeeeeeeeoosooossss 71
9 Machine Descriptions « o o v v oo v v v v oo et e e v vvennnnns 117
10 Target Description Macros and Functions 193
11 Host Configuration Headers. « v v v e v e v v e v v e vennnns 327
12 Makefile Fragments . . o v oo v vttt i it i, 331
13 ColleCt2 v v i i i i i eeeoeeesoooooeacanssssss 335
14 Standard Header File Directories . . o v v v v v v v v v ana. 337
15 Memory Management and Type Information 339
Funding Free Software, 345
The GNU Project and GNU/LINUX s o ¢ e oo v v vvevnennenns 347
GNU GENERAL PUBLICLICENSE v v e e e e e o e 349
GNU Free Documentation License « o« v v v v v v v v v e e e veenn.. 355
Contributors to GCC v v v vt v vttt ittt eenonnesns 363
Option Index . o v v v vt n ittt i iieennnnneannns 375

11

GNU Compiler Collection (GCC) Internals

Table of Contents

Introductiono i, 1
1 Contributing to GCC Development 3
2 GCC and Portability....................... 5
3 Interfacing to GCC Output................. 7
4 Language Front Ends in GCC 9
5 Source Tree Structure and Build System ... 11
5.1 Configure Terms and History............................ 11
5.2 Top Level Source Directory 11
5.3 The ‘gcc’ Subdirectory ... 12
5.3.1 Subdirectories of ‘gcc’” ...l 12
5.3.2 Configuration in the ‘gcc’ Directory............. 13
5.3.2.1 Scripts Used by ‘configure’........... 13
5.3.2.2 The ‘config.gcc’ File................. 14
5.3.2.3 Files Created by configure............ 14
5.3.3 Build System in the ‘gcc’ Directory 15
5.3.4 Makefile Targets. ..., 15
5.3.5 Library Source Files and Headers under the ‘gcc’
Directory. ... 16
5.3.6 Headers Installed by GCC...................... 16
5.3.7 Building Documentation 17
5.3.7.1 Texinfo Manuals 17
5.3.7.2 Man Page Generation 18
5.3.7.3 Miscellaneous Documentation 19
5.3.8 Anatomy of a Language Front End.............. 19

5.3.8.1 The Front End ‘Ianguage’ Directory ... 20
5.3.8.2 The Front End ‘config-lang.in’ File.. 22

5.3.9 Anatomy of a Target Back End 23
5.4 Test Suites ... 24
5.4.1 Idioms Used in Test Suite Code................. 24
5.4.2 C Language Test Suites........................ 25
5.4.3 The Java library test suites. 27
5.4.4 Support for testing gcov ... 28
5.4.5 Support for testing profile-directed optimizations
.. 28

5.4.6 Support for testing binary compatibility......... 29

iv GNU Compiler Collection (GCC) Internals

6 Passes and Files of the Compiler........... 31
7 'Trees: The intermediate representation used by
the C and C++ frontends 39
7.1 Deficiencies 39
7.2 OVEIVIEW . .ot e e 39
T.2.1 Trees . oo 40

7.2.2 Identifiers........... ... 40

7.2.3 Contalnerscouuiiiiiaianaaa... 41

8 T 1 o T PP 41
T SCOPES -ttt e 46
741 Namespacesvvreirmeineaeaenne.. 46

T.4.2 ClasSes ..o e 47

7.5 Declarationsc.iui 49
7.6 Functions............. ... 51
7.6.1 Function Basics, 92

7.6.2 Function Bodies............................... 55

7.6.2.1 Statements 55

7.7 Attributesin trees........... ... 60
7.8 EXPressions...........o.oiuiininin i 61
8 RTL Representation...................... 71
8.1 RTL Object Typescouuuviiiiii ... 71
8.2 RTL Classes and Formats............................... 72
8.3 AccesstoOperandsiiiiiiiinenaa... 74
8.4 Flags in an RTL Expression............................. 75
8.5 Machine Modesooiiiiei i 80
8.6 Constant Expression Types 84
8.7 Registers and Memory.......... 86
8.8 RTL Expressions for Arithmetic......................... 90
8.9 Comparison Operations.ooviiiineeenna... 93
8.10 Bit-Fields 94
8.11 Vector Operations..............coviiiiieiineinenn... 95
8.12 COMVEISIONS . « v vt ettt e e e e e e 96
813 Declarations 97
8.14 Side Effect Expressionsooiiii... 97
8.15 Embedded Side-Effects on Addresses 102
8.16 Assembler Instructions as Expressions 103
817 INSNS ..ot 104
8.18 RTL Representation of Function-Call Insns............. 113
8.19 Structure Sharing Assumptions........................ 113

820 Reading RTL.......... 0 ... 114

9 Machine Descriptions 117

9.1
9.2
9.3
9.4
9.5
9.6
9.7

9.8

9.9

9.10
9.11
9.12
9.13
9.14
9.15
9.16

9.17

9.18

9.19
9.20

Overview of How the Machine Description is Used 117
Everything about Instruction Patterns.................. 117
Example of define_insn.............................. 118
RTL Template 119
Output Templates and Operand Substitution............ 123
C Statements for Assembler Output 124
Operand Constraintsc.uiiiniiieineao... 126
9.7.1 Simple Constraints 126
9.7.2 Multiple Alternative Constraints............... 130
9.7.3 Register Class Preferences..................... 131
9.7.4 Constraint Modifier Characters................ 131
9.7.5 Constraints for Particular Machines............ 132
Standard Pattern Names For Generation................ 143
When the Order of Patterns Matters 158
Interdependence of Patterns 158
Defining Jump Instruction Patterns 160
Defining Looping Instruction Patterns 161
Canonicalization of Instructions....................... 163
Defining RTL Sequences for Code Generation 164
Defining How to Split Instructions..................... 167
Including Patterns in Machine Descriptions............. 170
9.16.1 RTL Generation Tool Options for Directory Search
... 171
Machine-Specific Peephole Optimizers 171
9.17.1 RTL to Text Peephole Optimizers 171
9.17.2 RTL to RTL Peephole Optimizers 173
Instruction Attributes............. 175
9.18.1 Defining Attributes and their Values.......... 175
9.18.2 Attribute Expressions........................ 176
9.18.3 Assigning Attribute Values to Insns........... 178
9.18.4 Example of Attribute Specifications........... 179
9.18.5 Computing the Length of an Insn............. 180
9.18.6 Constant Attributes 181
9.18.7 Delay Slot Scheduling........................ 182
9.18.8 Specifying processor pipeline description. 183
9.18.8.1 Specifying Function Units 184
9.18.8.2 Describing instruction pipeline

characteristics, 186

9.18.8.3 Drawbacks of the old pipeline description
.. 190
Conditional Execution................................ 190

Constant Definitionsco ... 191

vi GNU Compiler Collection (GCC) Internals

10 Target Description Macros and Functions

....................................... 193
10.1 The Global targetm Variable 193
10.2 Controlling the Compilation Driver, ‘gcc’.............. 193
10.3 Run-time Target Specification......................... 200
10.4 Defining data structures for per-function information. ... 204
10.5 Storage Layoutc i 204
10.6 Layout of Source Language Data Types................ 213
10.7 Target Character Escape Sequences.................... 217
10.8 Register Usage.........ccooviniiiiiiiiiii... 217
10.8.1 Basic Characteristics of Registers............. 218
10.8.2 Order of Allocation of Registers 220
10.8.3 How Values Fit in Registers.................. 220
10.8.4 Handling Leaf Functions 222
10.8.5 Registers That Form a Stack 223
10.9 Register Classes.oooiiiiiiii ., 223
10.10 Stack Layout and Calling Conventions................ 230
10.10.1 Basic Stack Layout 230
10.10.2 Exception Handling Support 233
10.10.3 Specifying How Stack Checking is Done 234
10.10.4 Registers That Address the Stack Frame 236

10.10.5 Eliminating Frame Pointer and Arg Pointer .. 238
10.10.6 Passing Function Arguments on the Stack.... 239

10.10.7 Passing Arguments in Registers.............. 241
10.10.8 How Scalar Function Values Are Returned. ... 245
10.10.9 How Large Values Are Returned............. 246
10.10.10 Caller-Saves Register Allocation 248
10.10.11 Function Entry and Exit................... 248
10.10.12 Generating Code for Profiling 252
10.10.13 Permitting tail calls 253
10.11 Implementing the Varargs Macros.................... 253
10.12 Trampolines for Nested Functions 256
10.13 Implicit Calls to Library Routines.................... 258
10.14 Addressing Modes. ... 260
10.15 Condition Code Status ..., 264
10.16 Describing Relative Costs of Operations 267
10.17 Adjusting the Instruction Scheduler 271
10.18 Dividing the Output into Sections (Texts, Data, ...) .. 275
10.19 Position Independent Code 278
10.20 Defining the Output Assembler Language 279
10.20.1 The Overall Framework of an Assembler File.. 279
10.20.2 Output of Data 281
10.20.3 Output of Uninitialized Variables............ 284
10.20.4 Output and Generation of Labels............ 285

10.20.5 How Initialization Functions Are Handled 292
10.20.6 Macros Controlling Initialization Routines. ... 293
10.20.7 Output of Assembler Instructions............ 296
10.20.8 Output of Dispatch Tables 299

10.20.9 Assembler Commands for Exception Regions.. 300

10.20.10 Assembler Commands for Alignment........ 301

10.21 Controlling Debugging Information Format 303
10.21.1 Macros Affecting All Debugging Formats. 303

10.21.2 Specific Options for DBX Output............ 304

10.21.3 Open-Ended Hooks for DBX Format......... 306

10.21.4 File Names in DBX Format 307

10.21.5 Macros for SDB and DWARF Output........ 308

10.21.6 Macros for VMS Debug Format.............. 310

10.22 Cross Compilation and Floating Point 310

10.23 Mode Switching Instructions......................... 311

10.24 Defining target-specific uses of __attribute__ 313

10.25 Defining coprocessor specifics for MIPS targets. 314

10.26 Miscellaneous Parameters............................ 314

11 Host Configuration Headers............. 327
12 Makefile Fragments..................... 331
12.1 Target Makefile Fragments............................ 331

12.2 Host Makefile Fragments.............................. 333

13 collect2 ..iiviiiiii it i i 335
14 Standard Header File Directories........ 337

15 Memory Management and Type Information

....................................... 339

15.1 The Inside of a GTY(QO)) ..o 339

15.2 Marking Roots for the Garbage Collector 342

15.3 Source Files Containing Type Information 342

Funding Free Software 345

The GNU Project and GNU/Linux 347

GNU GENERAL PUBLIC LICENSE......... 349

Preamble. 349
TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION 349

How to Apply These Terms to Your New Programs........... 354

GNU Free Documentation License........... 355

ADDENDUM: How to use this License for your documents. ... 361

vii

viii GNU Compiler Collection (GCC) Internals
Contributors to GCC

Introduction 1

Introduction

This manual documents the internals of the GNU compilers, including how to port them
to new targets and some information about how to write front ends for new languages.
It corresponds to GCC version 3.3.4. The use of the GNU compilers is documented in a
separate manual. See section “Introduction” in Using the GNU Compiler Collection (GCC).

This manual is mainly a reference manual rather than a tutorial. It discusses how to con-
tribute to GCC (see Chapter 1 [Contributing], page 3), the characteristics of the machines
supported by GCC as hosts and targets (see Chapter 2 [Portability], page 5), how GCC
relates to the ABIs on such systems (see Chapter 3 [Interface], page 7), and the character-
istics of the languages for which GCC front ends are written (see Chapter 4 [Languages],
page 9). It then describes the GCC source tree structure and build system, some of the
interfaces to GCC front ends, and how support for a target system is implemented in GCC.

Additional tutorial information is linked to from http://gcc.gnu.org/readings.html.

GNU Compiler Collection (GCC) Internals

Chapter 1: Contributing to GCC Development 3

1 Contributing to GCC Development

If you would like to help pretest GCC releases to assure they work well, our current de-

velopment sources are available by CVS (see http://gcc.gnu.org/cvs.html). Source and

binary snapshots are also available for FTP; see http://gcc.gnu.org/snapshots.html.
If you would like to work on improvements to GCC, please read the advice at these

URLs:

http://gcc.gnu.org/contribute.html
http://gcc.gnu.org/contributewhy.html

for information on how to make useful contributions and avoid duplication of effort. Sug-
gested projects are listed at http://gcc.gnu.org/projects/.

GNU Compiler Collection (GCC) Internals

Chapter 2: GCC and Portability 5

2 GCC and Portability

GCC itself aims to be portable to any machine where int is at least a 32-bit type. It aims
to target machines with a flat (non-segmented) byte addressed data address space (the code
address space can be separate). Target ABIs may have 8, 16, 32 or 64-bit int type. char
can be wider than 8 bits.

GCC gets most of the information about the target machine from a machine description
which gives an algebraic formula for each of the machine’s instructions. This is a very clean
way to describe the target. But when the compiler needs information that is difficult to
express in this fashion, I have not hesitated to define an ad-hoc parameter to the machine
description. The purpose of portability is to reduce the total work needed on the compiler;
it was not of interest for its own sake.

GCC does not contain machine dependent code, but it does contain code that depends on
machine parameters such as endianness (whether the most significant byte has the highest
or lowest address of the bytes in a word) and the availability of autoincrement addressing. In
the RTL-generation pass, it is often necessary to have multiple strategies for generating code
for a particular kind of syntax tree, strategies that are usable for different combinations of
parameters. Often I have not tried to address all possible cases, but only the common ones
or only the ones that I have encountered. As a result, a new target may require additional
strategies. You will know if this happens because the compiler will call abort. Fortunately,
the new strategies can be added in a machine-independent fashion, and will affect only the
target machines that need them.

GNU Compiler Collection (GCC) Internals

Chapter 3: Interfacing to GCC Output 7

3 Interfacing to GCC Output

GCC is normally configured to use the same function calling convention normally in use
on the target system. This is done with the machine-description macros described (see
Chapter 10 [Target Macros|, page 193).

However, returning of structure and union values is done differently on some target
machines. As a result, functions compiled with PCC returning such types cannot be called
from code compiled with GCC, and vice versa. This does not cause trouble often because
few Unix library routines return structures or unions.

GCC code returns structures and unions that are 1, 2, 4 or 8 bytes long in the same
registers used for int or double return values. (GCC typically allocates variables of such
types in registers also.) Structures and unions of other sizes are returned by storing them
into an address passed by the caller (usually in a register). The machine-description macros
STRUCT_VALUE and STRUCT_INCOMING_VALUE tell GCC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size
by copying the data into an area of static storage, and then returning the address of that
storage as if it were a pointer value. The caller must copy the data from that memory area
to the place where the value is wanted. This is slower than the method used by GCC, and
fails to be reentrant.

On some target machines, such as RISC machines and the 80386, the standard system
convention is to pass to the subroutine the address of where to return the value. On these
machines, GCC has been configured to be compatible with the standard compiler, when
this method is used. It may not be compatible for structures of 1, 2, 4 or 8 bytes.

GCC uses the system’s standard convention for passing arguments. On some machines,
the first few arguments are passed in registers; in others, all are passed on the stack. It
would be possible to use registers for argument passing on any machine, and this would
probably result in a significant speedup. But the result would be complete incompatibility
with code that follows the standard convention. So this change is practical only if you
are switching to GCC as the sole C compiler for the system. We may implement register
argument passing on certain machines once we have a complete GNU system so that we
can compile the libraries with GCC.

On some machines (particularly the SPARC), certain types of arguments are passed “by
invisible reference”. This means that the value is stored in memory, and the address of the
memory location is passed to the subroutine.

If you use longjmp, beware of automatic variables. ISO C says that automatic variables
that are not declared volatile have undefined values after a longjmp. And this is all GCC
promises to do, because it is very difficult to restore register variables correctly, and one of
GCC’s features is that it can put variables in registers without your asking it to.

If you want a variable to be unaltered by longjmp, and you don’t want to write volatile
because old C compilers don’t accept it, just take the address of the variable. If a variable’s
address is ever taken, even if just to compute it and ignore it, then the variable cannot go
in a register:

{
int careful;
&careful;

8 GNU Compiler Collection (GCC) Internals

¥

Code compiled with GCC may call certain library routines. Most of them handle arith-
metic for which there are no instructions. This includes multiply and divide on some
machines, and floating point operations on any machine for which floating point support
is disabled with ‘-msoft-float’. Some standard parts of the C library, such as bcopy or
memcpy, are also called automatically. The usual function call interface is used for calling
the library routines.

Some of these routines can be defined in mostly machine-independent C; they appear
in ‘libgcc2.c’. Others must be hand-written in assembly language for each processor.
Wherever they are defined, they are compiled into the support library, ‘libgcc.a’; which
is automatically searched when you link programs with GCC.

Chapter 4: Language Front Ends in GCC 9

4 Language Front Ends in GCC

The interface to front ends for languages in GCC, and in particular the tree structure (see
Chapter 7 [Trees], page 39), was initially designed for C, and many aspects of it are still
somewhat biased towards C and C-like languages. It is, however, reasonably well suited to
other procedural languages, and front ends for many such languages have been written for
GCC.

Writing a compiler as a front end for GCC, rather than compiling directly to assembler
or generating C code which is then compiled by GCC, has several advantages:

e GCC front ends benefit from the support for many different target machines already
present in GCC.

e GCC front ends benefit from all the optimizations in GCC. Some of these, such as
alias analysis, may work better when GCC is compiling directly from source code then
when it is compiling from generated C code.

e Better debugging information is generated when compiling directly from source code
than when going via intermediate generated C code.

Because of the advantages of writing a compiler as a GCC front end, GCC front ends
have also been created for languages very different from those for which GCC was designed,
such as the declarative logic/functional language Mercury. For these reasons, it may also
be useful to implement compilers created for specialized purposes (for example, as part of
a research project) as GCC front ends.

10

GNU Compiler Collection (GCC) Internals

Chapter 5: Source Tree Structure and Build System 11

5 Source Tree Structure and Build System

This chapter describes the structure of the GCC source tree, and how GCC is built.
The user documentation for building and installing GCC is in a separate manual
(http://gcc.gnu.org/install/), with which it is presumed that you are familiar.

5.1 Configure Terms and History

The configure and build process has a long and colorful history, and can be confusing
to anyone who doesn’t know why things are the way they are. While there are other
documents which describe the configuration process in detail, here are a few things that
everyone working on GCC should know.

There are three system names that the build knows about: the machine you are building
on (build), the machine that you are building for (host), and the machine that GCC will
produce code for (target). When you configure GCC, you specify these with ‘--build=’,
‘-=host=’, and ‘--target=".

Specifying the host without specifying the build should be avoided, as configure may
(and once did) assume that the host you specify is also the build, which may not be true.

If build, host, and target are all the same, this is called a native. If build and host are
the same but target is different, this is called a cross. If build, host, and target are all
different this is called a canadian (for obscure reasons dealing with Canada’s political party
and the background of the person working on the build at that time). If host and target
are the same, but build is different, you are using a cross-compiler to build a native for a
different system. Some people call this a host-x-host, crossed native, or cross-built native.
If build and target are the same, but host is different, you are using a cross compiler to
build a cross compiler that produces code for the machine you're building on. This is rare,
so there is no common way of describing it (although I propose calling it a crossback).

If build and host are the same, the GCC you are building will also be used to build the
target libraries (like libstdc++). If build and host are different, you must have already
build and installed a cross compiler that will be used to build the target libraries (if you
configured with ‘--target=foo-bar’, this compiler will be called foo-bar-gcc).

In the case of target libraries, the machine you’re building for is the machine you specified
with ‘--target’. So, build is the machine you’re building on (no change there), host is the
machine you’re building for (the target libraries are built for the target, so host is the target
you specified), and target doesn’t apply (because you're not building a compiler, you're
building libraries). The configure/make process will adjust these variables as needed. It
also sets $with_cross_host to the original ‘--host’ value in case you need it.

The 1libiberty support library is built up to three times: once for the host, once for
the target (even if they are the same), and once for the build if build and host are different.
This allows it to be used by all programs which are generated in the course of the build
process.

12 GNU Compiler Collection (GCC) Internals

5.2 Top Level Source Directory

The top level source directory in a GCC distribution contains several files and directories
that are shared with other software distributions such as that of GNU Binutils. It also
contains several subdirectories that contain parts of GCC and its runtime libraries:

‘boehm-gc’
The Boehm conservative garbage collector, used as part of the Java runtime
library.

‘contrib’ Contributed scripts that may be found useful in conjunction with GCC. One
of these, ‘contrib/texi2pod.pl’, is used to generate man pages from Texinfo
manuals as part of the GCC build process.

‘fastjar’ An implementation of the jar command, used with the Java front end.

3

gec’ The main sources of GCC itself (except for runtime libraries), including opti-
mizers, support for different target architectures, language front ends, and test
suites. See Section 5.3 [The ‘gcc’ Subdirectory], page 12, for details.

‘include’ Headers for the 1ibiberty library.
‘1libf2c¢’ The Fortran runtime library.
‘1ibffi’ The libffi library, used as part of the Java runtime library.
‘libiberty’
The 1ibiberty library, used for portability and for some generally useful data

structures and algorithms. See section “Introduction” in GNU libiberty, for
more information about this library.

‘libjava’ The Java runtime library.
‘libobjc’ The Objective-C runtime library.

‘libstdc++-v3’
The C++ runtime library.

‘maintainer-scripts’
Scripts used by the gccadmin account on gcc.gnu.org.

‘z1ib’ The z1lib compression library, used by the Java front end and as part of the
Java runtime library.

The build system in the top level directory, including how recursion into subdirectories
works and how building runtime libraries for multilibs is handled, is documented in a sepa-
rate manual, included with GNU Binutils. See section “GNU configure and build system”
in The GNU configure and build system, for details.

5.3 The ‘gcc’ Subdirectory

The ‘gcc’ directory contains many files that are part of the C sources of GCC, other files used
as part of the configuration and build process, and subdirectories including documentation
and a test suite. The files that are sources of GCC are documented in a separate chapter.
See Chapter 6 [Passes and Files of the Compiler], page 31.

Chapter 5: Source Tree Structure and Build System 13

5.3.1 Subdirectories of ‘gcc’

The ‘gcc’ directory contains the following subdirectories:

‘language’

‘config’

‘doc’

‘fixinc’

‘ginclude’

‘intl’

po

‘testsuite’

Subdirectories for wvarious languages. Directories containing a file
‘config-lang.in’ are language subdirectories. The contents of the
subdirectories ‘cp’ (for C++) and ‘objc’ (for Objective-C) are documented in
this manual (see Chapter 6 [Passes and Files of the Compiler], page 31); those
for other languages are not. See Section 5.3.8 [Anatomy of a Language Front
End], page 19, for details of the files in these directories.

Configuration files for supported architectures and operating systems. See Sec-
tion 5.3.9 [Anatomy of a Target Back End], page 23, for details of the files in
this directory.

Texinfo documentation for GCC, together with automatically generated man
pages and support for converting the installation manual to HTML. See Sec-
tion 5.3.7 [Documentation], page 17.

The support for fixing system headers to work with GCC. See ‘fixinc/README’
for more information. The headers fixed by this mechanism are installed in
‘libsubdir/include’. Along with those headers, ‘README-fixinc’ is also in-
stalled, as ‘1ibsubdir/include/README’.

System headers installed by GCC, mainly those required by the C standard of
freestanding implementations. See Section 5.3.6 [Headers Installed by GCC],
page 17, for details of when these and other headers are installed.

GNU 1libintl, from GNU gettext, for systems which do not include it in libe.
Properly, this directory should be at top level, parallel to the ‘gcc’ directory.

Message catalogs with translations of messages produced by GCC into various
languages, ‘language.po’. This directory also contains ‘gcc.pot’, the template
for these message catalogues, ‘exgettext’, a wrapper around gettext to ex-
tract the messages from the GCC sources and create ‘gcc.pot’, which is run
by ‘make gcc.pot’, and ‘EXCLUDES’, a list of files from which messages should
not be extracted.

The GCC test suites (except for those for runtime libraries). See Section 5.4
[Test Suites], page 24.

5.3.2 Configuration in the ‘gcc’ Directory

The ‘gec’ directory is configured with an Autoconf-generated script ‘configure’. The

‘configure’
‘configure

script is generated from ‘configure.in’ and ‘aclocal.m4’. From the files

.in’ and ‘acconfig.h’, Autoheader generates the file ‘config.in’. The file

‘cstamp-h.in’ is used as a timestamp.

14 GNU Compiler Collection (GCC) Internals

5.3.2.1 Scripts Used by ‘configure’

‘configure’ uses some other scripts to help in its work:

e The standard GNU ‘config.sub’ and ‘config.guess’ files, kept in the top level direc-
tory, are used. FIXME: when is the ‘config.guess’ file in the ‘gcc’ directory (that
just calls the top level one) used?

e The file ‘config.gcc’ is used to handle configuration specific to the particular build,
host or target machine. (In general, this should only be used for features that cannot
reasonably be tested in Autoconf feature tests.) See Section 5.3.2.2 [The ‘config.gcc’
File], page 14, for details of the contents of this file.

e Fach language subdirectory has a file ‘language/config-lang.in’ that is used for
front-end-specific configuration. See Section 5.3.8.2 [The Front End ‘config-lang.in’
File], page 22, for details of this file.

e A helper script ‘configure.frag’ is used as part of creating the output of ‘configure’.

5.3.2.2 The ‘config.gcc’ File

FIXME: document the contents of this file, and what variables should be set to control
build, host and target configuration.

5.3.2.3 Files Created by configure

Here we spell out what files will be set up by ‘configure’ in the ‘gcc’ directory. Some
other files are created as temporary files in the configuration process, and are not used in
the subsequent build; these are not documented.

e ‘Makefile’is constructed from ‘Makefile.in’, together with the host and target frag-
ments (see Chapter 12 [Makefile Fragments|, page 331) ‘t-target’ and ‘x-host’ from
‘config’, if any, and language Makefile fragments ‘language /Make-lang.in’.

e ‘auto-host.h’ contains information about the host machine determined by
‘configure’. If the host machine is different from the build machine, then
‘auto-build.h’ is also created, containing such information about the build machine.

e ‘config.status’is a script that may be run to recreate the current configuration.

e ‘configargs.h’is a header containing details of the arguments passed to ‘configure’
to configure GCC, and of the thread model used.

e ‘cstamp-h’is used as a timestamp.

e ‘fixinc/Makefile’ is constructed from ‘fixinc/Makefile.in’.

e ‘gccbug’, a script for reporting bugs in GCC, is constructed from ‘gccbug.in’.

e ‘intl/Makefile’ is constructed from ‘intl/Makefile.in’.

e ‘mklibgcc’, a shell script to create a Makefile to build libgce, is constructed from
‘mklibgcc.in’.

e If a language ‘config-lang.in’ file (see Section 5.3.8.2 [The Front End

‘config-lang.in’ File], page 22) sets outputs, then the files listed in outputs there
are also generated.

Chapter 5: Source Tree Structure and Build System 15

The following configuration headers are created from the Makefile, using ‘mkconfig.sh’,
rather than directly by ‘configure’. ‘config.h’, ‘hconfig.h’ and ‘tconfig.h’ all contain
the ‘xm-machine.h’ header, if any, appropriate to the host, build and target machines
respectively, the configuration headers for the target, and some definitions; for the host
and build machines, these include the autoconfigured headers generated by ‘configure’.
The other configuration headers are determined by ‘config.gcc’. They also contain the
typedefs for rtx, rtvec and tree.

e ‘config.h’ for use in programs that run on the host machine.
e ‘hconfig.h’, for use in programs that run on the build machine.
e ‘tconfig.h’, for use in programs and libraries for the target machine.

e ‘tm_p.h’, which includes the header ‘machine-protos.h’ that contains prototypes for
functions in the target ‘.c’ file. FIXME: why is such a separate header necessary?

5.3.3 Build System in the ‘gcc’ Directory

FIXME: describe the build system, including what is built in what stages. Also list the
various source files that are used in the build process but aren’t source files of GCC itself
and so aren’t documented below (see Chapter 6 [Passes], page 31).

5.3.4 Makefile Targets

all This is the default target. Depending on what your build/host/target configu-
ration is, it coordinates all the things that need to be built.

doc Produce info-formatted documentation. Also, ‘make dvi’ is available for DVI-
formatted documentation, and ‘make generated-manpages’ to generate man
pages.

mostlyclean

Delete the files made while building the compiler.
clean That, and all the other files built by ‘make all’.

distclean
That, and all the files created by configure.

extraclean
That, and any temporary or intermediate files, like emacs backup files.

maintainer-clean
Distclean plus any file that can be generated from other files. Note that addi-
tional tools may be required beyond what is normally needed to build gcc.

install Installs gcc.

uninstall
Deletes installed files.

check Run the testsuite. This creates a ‘testsuite’ subdirectory that has various
‘.sum’ and ‘. log’ files containing the results of the testing. You can run subsets
with, for example, ‘make check-gcc’. You can specify specific tests by setting

16 GNU Compiler Collection (GCC) Internals

RUNTESTFLAGS to be the name of the ‘.exp’ file, optionally followed by (for
some tests) an equals and a file wildcard, like:
make check-gcc RUNTESTFLAGS="execute.exp=19980413-%"

Note that running the testsuite may require additional tools be installed, such
as TCL or dejagnu.

bootstrap
Builds gcc three times—once with the native compiler, once with the native-
built compiler it just built, and once with the compiler it built the second time.
In theory, the last two should produce the same results, which ‘make compare’
can check. Each step of this process is called a “stage”, and the results of each
stage N (N = 1...3) are copied to a subdirectory ‘stageN/’.

bootstrap-lean
Like bootstrap, except that the various stages are removed once they’re no
longer needed. This saves disk space.

bubblestrap
Once bootstrapped, this incrementally rebuilds each of the three stages, one
at a time. It does this by “bubbling” the stages up from their subdirectories,
rebuilding them, and copying them back to their subdirectories. This will allow
you to, for example, quickly rebuild a bootstrapped compiler after changing the
sources, without having to do a full bootstrap.

quickstrap
Rebuilds the most recently built stage. Since each stage requires special in-
vocation, using this target means you don’t have to keep track of which stage
you're on or what invocation that stage needs.

cleanstrap
Removed everything (‘make clean’) and rebuilds (‘make bootstrap’).

stageN (N =1...4)
For each stage, moves the appropriate files to the ‘stageN’ subdirectory.

unstageN (N =1...4)
Undoes the corresponding stageN.

restageN (N =1...4)
Undoes the corresponding stageN and rebuilds it with the appropriate flags.

compare Compares the results of stages 2 and 3. This ensures that the compiler is
running properly, since it should produce the same object files regardless of
how it itself was compiled.

5.3.5 Library Source Files and Headers under the ‘gcc’ Directory

FIXME: list here, with explanation, all the C source files and headers under the ‘gcc’
directory that aren’t built into the GCC executable but rather are part of runtime libraries
and object files, such as ‘crtstuff.c’ and ‘unwind-dw2.c’. See Section 5.3.6 [Headers
Installed by GCC], page 17, for more information about the ‘ginclude’ directory.

Chapter 5: Source Tree Structure and Build System 17

5.3.6 Headers Installed by GCC

In general, GCC expects the system C library to provide most of the headers to be used
with it. However, GCC will fix those headers if necessary to make them work with GCC,
and will install some headers required of freestanding implementations. These headers are
installed in ‘libsubdir/include’. Headers for non-C runtime libraries are also installed
by GCC; these are not documented here. (FIXME: document them somewhere.)

Several of the headers GCC installs are in the ‘ginclude’ directory. These
headers, ‘iso646.h’, ‘stdarg.h’; ‘stdbool.h’; and ‘stddef.h’, are installed in
‘libsubdir/include’, unless the target Makefile fragment (see Section 12.1 [Target
Fragment|, page 331) overrides this by setting USER_H.

In addition to these headers and those generated by fixing system headers to work with
GCC, some other headers may also be installed in ‘libsubdir/include’. ‘config.gcc’
may set extra_headers; this specifies additional headers under ‘config’ to be installed on
some systems.

GCC installs its own version of <float.h>, from ‘ginclude/float.h’. This is done to
cope with command-line options that change the representation of floating point numbers.

GCC also installs its own version of <1imits.h>; this is generated from ‘glimits.h’, to-
gether with ‘1imitx.h’ and ‘limity.h’ if the system also has its own version of <limits.h>.
(GCC provides its own header because it is required of ISO C freestanding implementations,
but needs to include the system header from its own header as well because other stan-
dards such as POSIX specify additional values to be defined in <1imits.h>.) The system’s
<limits.h> header is used via ‘libsubdir/include/syslimits.h’, which is copied from
‘gsyslimits.h’if it does not need fixing to work with GCC; if it needs fixing, ‘syslimits.h’
is the fixed copy.

5.3.7 Building Documentation

The main GCC documentation is in the form of manuals in Texinfo format. These are
installed in Info format, and DVI versions may be generated by ‘make dvi’. In addition,
some man pages are generated from the Texinfo manuals, there are some other text files with
miscellaneous documentation, and runtime libraries have their own documentation outside
the ‘gcc’ directory. FIXME: document the documentation for runtime libraries somewhere.

5.3.7.1 Texinfo Manuals

The manuals for GCC as a whole, and the C and C++ front ends, are in files ‘doc/*.texi’.
Other front ends have their own manuals in files ‘language/*.texi’. Common files
‘doc/include/*.texi’ are provided which may be included in multiple manuals; the
following files are in ‘doc/include’:

‘fdl.texi’
The GNU Free Documentation License.

‘funding.texi’
The section “Funding Free Software”.

18 GNU Compiler Collection (GCC) Internals

‘gcc—common. texi’
Common definitions for manuals.

‘gpl.texi’
The GNU General Public License.

‘texinfo.tex’
A copy of ‘texinfo.tex’ known to work with the GCC manuals.

DVI formatted manuals are generated by ‘make dvi’, which uses texi2dvi (via the
Makefile macro $ (TEXI2DVI)). Info manuals are generated by ‘make info’ (which is run as
part of a bootstrap); this generates the manuals in the source directory, using makeinfo via
the Makefile macro $(MAKEINFO), and they are included in release distributions.

Manuals are also provided on the GCC web site, in both HTML and PostScript forms.
This is done via the script ‘maintainer-scripts/update_web_docs’. Each manual to be
provided online must be listed in the definition of MANUALS in that file; a file ‘name.texi’
must only appear once in the source tree, and the output manual must have the same
name as the source file. (However, other Texinfo files, included in manuals but not them-
selves the root files of manuals, may have names that appear more than once in the source
tree.) The manual file ‘name.texi’ should only include other files in its own directory or
in ‘doc/include’. HTML manuals will be generated by ‘makeinfo --html’ and PostScript
manuals by texi2dvi and dvips. All Texinfo files that are parts of manuals must be
checked into CVS, even if they are generated files, for the generation of online manuals to
work.

The installation manual, ‘doc/install.texi’, is also provided on the GCC web site.
The HTML version is generated by the script ‘doc/install.texi2html’.

5.3.7.2 Man Page Generation

Because of user demand, in addition to full Texinfo manuals, man pages are provided which
contain extracts from those manuals. These man pages are generated from the Texinfo
manuals using ‘contrib/texi2pod.pl’ and pod2man. (The man page for g++, ‘cp/g++.1’,
just contains a ‘.so’ reference to ‘gcc.1’, but all the other man pages are generated from
Texinfo manuals.)

Because many systems may not have the necessary tools installed to generate the man
pages, they are only generated if the ‘configure’ script detects that recent enough tools
are installed, and the Makefiles allow generating man pages to fail without aborting the
build. Man pages are also included in release distributions. They are generated in the
source directory.

Magic comments in Texinfo files starting ‘@c man’ control what parts of a Texinfo file
go into a man page. Only a subset of Texinfo is supported by ‘texi2pod.pl’, and it may
be necessary to add support for more Texinfo features to this script when generating new
man pages. To improve the man page output, some special Texinfo macros are provided in
‘doc/include/gcc-common. texi’ which ‘texi2pod.pl’ understands:

Q@gcctabopt
Use in the form ‘@table @gcctabopt’ for tables of options, where for printed
output the effect of ‘@code’ is better than that of ‘Goption’ but for man page
output a different effect is wanted.

Chapter 5: Source Tree Structure and Build System 19

O@gccoptlist
Use for summary lists of options in manuals.
Qgol Use at the end of each line inside ‘@gccoptlist’. This is necessary to avoid

problems with differences in how the ‘@gccoptlist’ macro is handled by dif-
ferent Texinfo formatters.

FIXME: describe the ‘texi2pod.pl’ input language and magic comments in more detail.

5.3.7.3 Miscellaneous Documentation

In addition to the formal documentation that is installed by GCC, there are several other
text files with miscellaneous documentation:

‘ABOUT-GCC-NLS’
Notes on GCC’s Native Language Support. FIXME: this should be part of this
manual rather than a separate file.

‘ABOUT-NLS’
Notes on the Free Translation Project.

‘COPYING’ The GNU General Public License.

‘COPYING.LIB’
The GNU Lesser General Public License.

‘*ChangeLog*’
‘*/ChangeLog*’
Change log files for various parts of GCC.

‘LANGUAGES’
Details of a few changes to the GCC front-end interface. FIXME: the infor-
mation in this file should be part of general documentation of the front-end
interface in this manual.

‘ONEWS’ Information about new features in old versions of GCC. (For recent versions,
the information is on the GCC web site.)

‘README.Portability’
Information about portability issues when writing code in GCC. FIXME: why
isn’t this part of this manual or of the GCC Coding Conventions?

‘SERVICE’ A pointer to the GNU Service Directory.

FIXME: document such files in subdirectories, at least ‘config’, ‘cp’, ‘objc’,

‘testsuite’.

5.3.8 Anatomy of a Language Front End

A front end for a language in GCC has the following parts:

e A directory ‘language’ under ‘gcc’ containing source files for that front end. See
Section 5.3.8.1 [The Front End ‘Ianguage’ Directory], page 21, for details.

e A mention of the language in the list of supported languages in ‘gcc/doc/install.texi’]

20 GNU Compiler Collection (GCC) Internals

e Details of contributors to that front end in ‘gcc/doc/contrib. texi’. If the details are
in that front end’s own manual then there should be a link to that manual’s list in
‘contrib.texi’.

e Information about support for that language in ‘gcc/doc/frontends.texi’.

e Information about standards for that language, and the front end’s support for them,
in ‘gcc/doc/standards.texi’. This may be a link to such information in the front
end’s own manual.

e Details of source file suffixes for that language and ‘-x lang’ options supported, in
‘gcc/doc/invoke . texi’.

e Entries in default_compilers in ‘gcc.c’ for source file suffixes for that language.

e Preferably test suites, which may be under ‘gcc/testsuite’ or runtime library direc-
tories. FIXME: document somewhere how to write test suite harnesses.

e Probably a runtime library for the language, outside the ‘gcc’ directory. FIXME:
document this further.

e Details of the directories of any runtime libraries in ‘gcc/doc/sourcebuild.texi’.

If the front end is added to the official GCC CVS repository, the following are also
necessary:

e At least one Bugzilla component for bugs in that front end and runtime libraries. This
category needs to be mentioned in ‘gcc/gccbug.in’, as well as being added to the
Bugzilla database.

e Normally, one or more maintainers of that front end listed in ‘MAINTAINERS’.

e Mentions on the GCC web site in ‘index.html’ and ‘frontends.html’, with any rele-
vant links on ‘readings.html’. (Front ends that are not an official part of GCC may
also be listed on ‘frontends.html’, with relevant links.)

e A news item on ‘index.html’, and possibly an announcement on the
gcc-announce@gcc . gnu.org mailing list.

e The front end’s manuals should be mentioned in ‘maintainer-scripts/update_web_docs’}]
(see Section 5.3.7.1 [Texinfo Manuals], page 17) and the online manuals should be
linked to from ‘onlinedocs/index.html’.

e Any old releases or CVS repositories of the front end, before its in-
clusion in GCC, should be made available on the GCC FTP site
ftp://gcc.gnu.org/pub/gecc/old-releases/.

e The release and snapshot script ‘maintainer-scripts/gcc_release’
should be wupdated to generate appropriate tarballs for this front
end. The associated ‘maintainer-scripts/snapshot-README’ and

‘maintainer-scripts/snapshot-index.html’ files should be updated to list
the tarballs and diffs for this front end.

e If this front end includes its own version files that include the current date,
‘maintainer-scripts/update_version’ should be updated accordingly.

e ‘CVSRO0T/modules’ in the GCC CVS repository should be updated.

Chapter 5: Source Tree Structure and Build System 21

5.3.8.1 The Front End ‘language’ Directory

A front end ‘language’ directory contains the source files of that front end (but not of any
runtime libraries, which should be outside the ‘gcc’ directory). This includes documenta-
tion, and possibly some subsidiary programs build alongside the front end. Certain files are
special and other parts of the compiler depend on their names:

‘config-lang.in’
This file is required in all language subdirectories. See Section 5.3.8.2 [The
Front End ‘config-lang.in’ File], page 22, for details of its contents

‘Make-lang.in’
This file is required in all language subdirectories. It contains targets
lang.hook (where lang is the setting of language in ‘config-lang.in’) for
the following values of hook, and any other Makefile rules required to build
those targets (which may if necessary use other Makefiles specified in outputs
in ‘config-lang.in’, although this is deprecated).

all.build
all.cross
start.encap
rest.encap
FIXME: exactly what goes in each of these targets?

info Build info documentation for the front end, in the source directory.
This target is only called by ‘make bootstrap’ if a suitable version
of makeinfo is available, so does not need to check for this, and
should fail if an error occurs.

dvi Build DVI documentation for the front end, in the build directory.
This should be done using $(TEXI2DVI), with appropriate ‘-I’ ar-
guments pointing to directories of included files.

generated-manpages
Build generated man pages for the front end from Texinfo man-
uals (see Section 5.3.7.2 [Man Page Generation], page 18), in the
source directory. This target is only called if the necessary tools
are available, but should ignore errors so as not to stop the build
if errors occur; man pages are optional and the tools involved may
be installed in a broken way.

install-normal
FIXME: what is this target for?

install-common
Install everything that is part of the front end, apart from the
compiler executables listed in compilers in ‘config-lang.in’ that
are installed in ‘1ibsubdir’ by the main ‘Makefile’.

install-info
Install info documentation for the front end, if it is present in the
source directory. (It may not be present if a suitable version of

22 GNU Compiler Collection (GCC) Internals

makeinfo was not installed.) This target should run the command
install-info to update the info directory, but should ignore errors
when running that command.

install-man
Install man pages for the front end. This target should ignore
€rTors.

uninstall
Uninstall files installed by installing the compiler. This is currently
documented not to be supported, so the hook need not do anything.

mostlyclean

clean

distclean

extraclean

maintainer-clean
Except for extraclean, the language parts of the standard GNU
‘xclean’ targets. See section “Standard Targets for Users” in GNU
Coding Standards, for details of the standard targets. extraclean
does distclean and also deletes anything likely to be found in the
source directory that shouldn’t be in the distribution. For GCC,
maintainer-clean should delete all generated files in the source
directory that are not checked into CVS, but should not delete
anything checked into CVS.

stagel

stage?2

stage3

stage4d Move to the stage directory files not included in stagestuff in
‘config-lang.in’ or otherwise moved by the main ‘Makefile’.

‘lang-options.h’
This file provides entries for documented_lang_options in ‘toplev.c’ describ-
ing command-line options the front end accepts for ‘-=help’ output.

‘lang-specs.h’
This file provides entries for default_compilers in ‘gcc.c’ which override the
default of giving an error that a compiler for that language is not installed.

‘language-tree.def’
This file, which need not exist, defines any language-specific tree codes.

5.3.8.2 The Front End ‘config-lang.in’ File

Fach language subdirectory contains a ‘config-lang.in’ file. In addition the main direc-
tory contains ‘c-config-lang.in’, which contains limited information for the C language.
This file is a shell script that may define some variables describing the language:

language This definition must be present, and gives the name of the language for some
purposes such as arguments to ‘--enable-languages’.

Chapter 5: Source Tree Structure and Build System 23

lang_requires
If defined, this variable lists (space-separated) language front ends other than
C that this front end requires to be enabled (with the names given being their
language settings). For example, the Java front end depends on the C++ front
end, so sets ‘lang_requires=c++’.

target_libs
If defined, this variable lists (space-separated) targets in the top level ‘Makefile’
to build the runtime libraries for this language, such as target-libobjc.

lang_dirs
If defined, this variable lists (space-separated) top level directories (parallel to
‘gec’), apart from the runtime libraries, that should not be configured if this
front end is not built.

build_by_default
If defined to ‘no’, this language front end is not built unless enabled in a
‘-—enable-languages’ argument. Otherwise, front ends are built by default,
subject to any special logic in ‘configure.in’ (as is present to disable the Ada
front end if the Ada compiler is not already installed).

boot_language
If defined to ‘yes’, this front end is built in stage 1 of the bootstrap. This is
only relevant to front ends written in their own languages.

compilers
If defined, a space-separated list of compiler executables that should be installed
in ‘1ibsubdir’. The names here will each end with ‘\$ (exeext)’.

stagestuff
If defined, a space-separated list of files that should be moved to the ‘stagen’
directories in each stage of bootstrap.

outputs If defined, a space-separated list of files that should be generated by ‘configure’
substituting values in them. This mechanism can be used to create a file ‘lan-
guage /Makefile’ from ‘language/Makefile.in’, but this is deprecated, build-
ing everything from the single ‘gcc/Makefile’ is preferred.

gtfiles If defined, a space-separated list of files that should be scanned by gengtype.c
to generate the garbage collection tables and routines for this language. This
excludes the files that are common to all front ends. See Chapter 15 [Type
Information], page 339.

5.3.9 Anatomy of a Target Back End

A back end for a target architecture in GCC has the following parts:

e A directory ‘machine’ under ‘gcc/config’, containing a machine description
‘machine.md’ file (see Chapter 9 [Machine Descriptions|, page 117), header files
‘machine.h’ and ‘machine-protos.h’ and a source file ‘machine.c’ (see Chapter 10
[Target Description Macros and Functions], page 193), possibly a target Makefile
fragment ‘t-machine’ (see Section 12.1 [The Target Makefile Fragment]|, page 331),

24

GNU Compiler Collection (GCC) Internals

and maybe some other files. The names of these files may be changed from the
defaults given by explicit specifications in ‘config.gcc’.

If necessary, a file ‘machine-modes.def’ in the ‘machine’ directory, containing addi-
tional machine modes to represent condition codes. See Section 10.15 [Condition Code],
page 264, for further details.

Entries in ‘config.gecc’ (see Section 5.3.2.2 [The ‘config.gcc’ File], page 14) for the
systems with this target architecture.

Documentation in ‘gcc/doc/invoke. texi’ for any command-line options supported by
this target (see Section 10.3 [Run-time Target Specification], page 200). This means
both entries in the summary table of options and details of the individual options.

Documentation in ‘gcc/doc/extend.texi’ for any target-specific attributes supported
(see Section 10.24 [Defining target-specific uses of __attribute__|, page 313), including
where the same attribute is already supported on some targets, which are enumerated
in the manual.

Documentation in ‘gcc/doc/extend.texi’ for any target-specific pragmas supported.

Documentation in ‘gcc/doc/extend.texi’ of any target-specific built-in functions sup-
ported.

Documentation in ‘gcc/doc/md.texi’ of any target-specific constraint letters (see Sec-
tion 9.7.5 [Constraints for Particular Machines|, page 132).

A note in ‘gcc/doc/contrib.texi’ under the person or people who contributed the
target support.

Entries in ‘gcc/doc/install.texi’ for all target triplets supported with this target
architecture, giving details of any special notes about installation for this target, or
saying that there are no special notes if there are none.

Possibly other support outside the ‘gcc’ directory for runtime libraries. FIXME: refer-
ence docs for this. The libstdc++ porting manual needs to be installed as info for this
to work, or to be a chapter of this manual.

If the back end is added to the official GCC CVS repository, the following are also

necessary:

e An entry for the target architecture in ‘readings.html’ on the GCC web site, with

any relevant links.

A news item about the contribution of support for that target architecture, in
‘index.html’ on the GCC web site.

Normally, one or more maintainers of that target listed in ‘MAINTAINERS’. Some existing
architectures may be unmaintained, but it would be unusual to add support for a target
that does not have a maintainer when support is added.

5.4 Test Suites

GCC contains several test suites to help maintain compiler quality. Most of the runtime
libraries and language front ends in GCC have test suites. Currently only the C language
test suites are documented here; FIXME: document the others.

Chapter 5: Source Tree Structure and Build System 25

5.4.1 Idioms Used in Test Suite Code

In the ‘gcc.c-torture’ test suites, test cases are commonly named after the date on which
they were added. This allows people to tell at a glance whether a test failure is because
of a recently found bug that has not yet been fixed, or whether it may be a regression. In
other test suites, more descriptive names are used. In general C test cases have a trailing
‘-n.c’, starting with ‘=1.c’, in case other test cases with similar names are added later.

Test cases should use abort () to indicate failure and exit (0) for success; on some
targets these may be redefined to indicate failure and success in other ways.

In the ‘gcc.dg’ test suite, it is often necessary to test that an error is indeed a hard error
and not just a warning—for example, where it is a constraint violation in the C standard,
which must become an error with ‘-pedantic-errors’. The following idiom, where the
first line shown is line line of the file and the line that generates the error, is used for this:

/* { dg-bogus "warning" "warning in place of error" } */
/* { dg-error "regexp" "message" { target *-*-* } line } */

It may be necessary to check that an expression is an integer constant expression and
has a certain value. To check that E has value V, an idiom similar to the following is used:

char x[((E) == (V) 7 1 : -1)];

In ‘gcc.dg’ tests, __typeof__ is sometimes used to make assertions about the types of
expressions. See, for example, ‘gcc.dg/c99-condexpr-1.c’. The more subtle uses depend
on the exact rules for the types of conditional expressions in the C standard; see, for example,
‘gcc.dg/c99-intconst-1.c’.

It is useful to be able to test that optimizations are being made properly. This cannot
be done in all cases, but it can be done where the optimization will lead to code being
optimized away (for example, where flow analysis or alias analysis should show that certain
code cannot be called) or to functions not being called because they have been expanded
as built-in functions. Such tests go in ‘gcc.c-torture/execute’. Where code should be
optimized away, a call to a nonexistent function such as 1link_failure () may be inserted;
a definition

#ifndef __OPTIMIZE__
void
link_failure (void)

{
abort ();

}
#endif

will also be needed so that linking still succeeds when the test is run without optimization.
When all calls to a built-in function should have been optimized and no calls to the non-
built-in version of the function should remain, that function may be defined as static to
call abort () (although redeclaring a function as static may not work on all targets).

All testcases must be portable. Target-specific testcases must have appropriate code to
avoid causing failures on unsupported systems; unfortunately, the mechanisms for this differ
by directory.

FIXME: discuss non-C test suites here.

26

GNU Compiler Collection (GCC) Internals

5.4.2 C Language Test Suites

GCC contains the following C language test suites, in the ‘gcc/testsuite’ directory:

‘gce.dg’

This contains tests of particular features of the C compiler, using the more
modern ‘dg’ harness. Correctness tests for various compiler features should go
here if possible.

Magic comments determine whether the file is preprocessed, compiled, linked
or run. In these tests, error and warning message texts are compared against
expected texts or regular expressions given in comments. These tests are run
with the options ‘~ansi -pedantic’ unless other options are given in the test.
Except as noted below they are not run with multiple optimization options.

gcc.dg/cpp’

This subdirectory contains tests of the preprocessor.

‘gcc.dg/debug’

This subdirectory contains tests for debug formats. Tests in this subdirectory
are run for each debug format that the compiler supports.

gcc.dg/format’

This subdirectory contains tests of the ‘-Wformat’ format checking. Tests in
this directory are run with and without ‘~-DWIDE’.

gcc.dg/noncompile’

This subdirectory contains tests of code that should not compile and does not
need any special compilation options. They are run with multiple optimization
options, since sometimes invalid code crashes the compiler with optimization.

gcc.dg/special’

FIXME: describe this.

gcc.c-torture’

This contains particular code fragments which have historically broken easily.
These tests are run with multiple optimization options, so tests for features
which only break at some optimization levels belong here. This also contains
tests to check that certain optimizations occur. It might be worthwhile to
separate the correctness tests cleanly from the code quality tests, but it hasn’t
been done yet.

gcc.c-torture/compat’

FIXME: describe this.
This directory should probably not be used for new tests.

gcc.c-torture/compile’

This test suite contains test cases that should compile, but do not need to link
or run. These test cases are compiled with several different combinations of
optimization options. All warnings are disabled for these test cases, so this
directory is not suitable if you wish to test for the presence or absence of
compiler warnings. While special options can be set, and tests disabled on
specific platforms, by the use of ‘.x’ files, mostly these test cases should not

Chapter 5: Source Tree Structure and Build System 27

contain platform dependencies. FIXME: discuss how defines such as NO_LABEL_
VALUES and STACK_SIZE are used.

gcc.c-torture/execute’
This test suite contains test cases that should compile, link and run; otherwise
the same comments as for ‘gcc.c-torture/compile’ apply.

gcc.c-torture/execute/ieee’
This contains tests which are specific to IEEE floating point.

gcc.c-torture/unsorted’
FIXME: describe this.

This directory should probably not be used for new tests.

gcc.c-torture/misc-tests’
This directory contains C tests that require special handling. Some of these
tests have individual expect files, and others share special-purpose expect files:

‘bprobx*.c’
Test ‘-fbranch-probabilities’ using ‘bprob.exp’, which in
turn uses the generic, language-independent framework (see
Section 5.4.5 [Support for testing profile-directed optimizations],
page 29).

‘dg-*.c’ Test the testsuite itself using ‘dg-test.exp’.

‘gcovx.c’ Test gcov output using ‘gcov.exp’, which in turn uses the
language-independent support (see Section 5.4.4 [Support for
testing gcov], page 28).

‘i386-pf-*.c’
Test i386-specific ~ support for data prefetch using
‘i386-prefetch.exp’.

FIXME: merge in ‘testsuite/README.gcc’ and discuss the format of test cases and
magic comments more.

5.4.3 The Java library test suites.

Runtime tests are executed via ‘make check’ in the ‘target/libjava/testsuite’ directory
in the build tree. Additional runtime tests can be checked into this testsuite.

Regression testing of the core packages in libgcj is also covered by the Mauve test suite.
The Mauve Project develops tests for the Java Class Libraries. These tests are run as
part of libgcj testing by placing the Mauve tree within the libjava testsuite sources at
‘libjava/testsuite/libjava.mauve/mauve’, or by specifying the location of that tree
when invoking ‘make’, as in ‘make MAUVEDIR="/mauve check’.

To detect regressions, a mechanism in ‘mauve.exp’ compares the failures for a test run
against the list of expected failures in ‘libjava/testsuite/libjava.mauve/xfails’ from
the source hierarchy. Update this file when adding new failing tests to Mauve, or when
fixing bugs in libgcj that had caused Mauve test failures.

28 GNU Compiler Collection (GCC) Internals

The Jacks project provides a test suite for Java compilers that can be used
to test changes that affect the GCJ front end. This test suite is run as part of
Java testing by placing the Jacks tree within the the libjava testsuite sources at
‘libjava/testsuite/libjava.jacks/jacks’.

We encourage developers to contribute test cases to Mauve and Jacks.

5.4.4 Support for testing gcov

Language-independent support for testing gcov, and for checking that branch profiling
produces expected values, is provided by the expect file ‘gcov.exp’. gcov tests also rely
on procedures in ‘gcc.dg.exp’ to compile and run the test program. A typical gcov test
contains the following DejaGNU commands within comments:

{ dg-options "-fprofile-arcs -ftest-coverage" }

{ dg-do run { target native } }

{ dg-final { run-gcov sourcefile } }

Checks of gcov output can include line counts, branch percentages, and call return
percentages. All of these checks are requested via commands that appear in comments in
the test’s source file. Commands to check line counts are processed by default. Commands
to check branch percentages and call return percentages are processed if there is a file with
the same basename as the source file and a suffix ‘. x’ that contains a line set gcov_verify_
branches 1 or set gcov_verify_calls 1, respectively.

A line count command appears within a comment on the source line that is expected to
get the specified count and has the form count (cnt). A test should only check line counts
for lines that will get the same count for any architecture.

Commands to check branch percentages (branch) and call return percentages (returns)
are very similar to each other. A beginning command appears on or before the first of a
range of lines that will report the percentage, and the ending command follows that range
of lines. The beginning command can include a list of percentages, all of which are expected
to be found within the range. A range is terminated by the next command of the same kind.
A command branch(end) or returns(end) marks the end of a range without starting a
new one. For example:

if (i > 10 && j > i & j < 20) /* branch(27 50 75) */
/* branch(end) */
foo (i, j);

For a call return percentage, the value specified is the percentage of calls reported to
return. For a branch percentage, the value is either the expected percentage or 100 mi-
nus that value, since the direction of a branch can differ depending on the target or the
optimization level.

Not all branches and calls need to be checked. A test should not check for branches that
might be optimized away or replaced with predicated instructions. Don’t check for calls
inserted by the compiler or ones that might be inlined or optimized away.

A single test can check for combinations of line counts, branch percentages, and call
return percentages. The command to check a line count must appear on the line that will
report that count, but commands to check branch percentages and call return percentages
can bracket the lines that report them.

Chapter 5: Source Tree Structure and Build System 29

5.4.5 Support for testing profile-directed optimizations

The file ‘profopt.exp’ provides language-independent support for checking correct execu-
tion of a test built with profile-directed optimization. This testing requires that a test
program be built and executed twice. The first time it is compiled to generate profile data,
and the second time it is compiled to use the data that was generated during the first
execution. The second execution is to verify that the test produces the expected results.

To check that the optimization actually generated better code, a test can be built and
run a third time with normal optimizations to verify that the performance is better with the
profile-directed optimizations. ‘profopt.exp’ has the beginnings of this kind of support.

‘profopt.exp’ provides generic support for profile-directed optimizations. Each set of
tests that uses it provides information about a specific optimization:

tool tool being tested, e.g., gcc

profile_option
options used to generate profile data

feedback_option
options used to optimize using that profile data

prof_ext suffix of profile data files

PROFOPT_OPTIONS
list of options with which to run each test, similar to the lists for torture tests

5.4.6 Support for testing binary compatibility

The file ‘compat.exp’ provides language-independent support for binary compatibility test-
ing. It supports testing interoperability of two compilers that follow the same ABI, or of
multiple sets of compiler options that should not affect binary compatibility. It is intended
to be used for test suites that complement ABI test suites.

A test supported by this framework has three parts, each in a separate source file: a
main program and two pieces that interact with each other to split up the functionality
being tested.

‘testname _main.suffix’
Contains the main program, which calls a function in file ‘testname _x.suffix’.

‘testname _x.suffix’
Contains at least one call to a function in ‘testname_y.suffix’.

‘testname_y.suffix’
Shares data with, or gets arguments from, ‘testname _x.suffix’.

Within each test, the main program and one functional piece are compiled by the GCC
under test. The other piece can be compiled by an alternate compiler. If no alternate
compiler is specified, then all three source files are all compiled by the GCC under test. It’s
also possible to specify a pair of lists of compiler options, one list for each compiler, so that
each test will be compiled with each pair of options.

‘compat .exp’ defines default pairs of compiler options. These can be overridden by
defining the environment variable COMPAT_OPTIONS as:

30 GNU Compiler Collection (GCC) Internals

COMPAT_OPTIONS="[list [list {tst1} {alt1}]
...[1ist {tstn} {altn}]]"
where tsti and alti are lists of options, with tsti used by the compiler under test and alti
used by the alternate compiler. For example, with [list [1ist {-g -00} {-03}] [list
{-fpic} {-£PIC -02}]1], the test is first built with -g -00 by the compiler under test and
with -03 by the alternate compiler. The test is built a second time using -fpic by the
compiler under test and -fPIC -02 by the alternate compiler.

An alternate compiler is specified by defining an environment variable; for C++ define
ALT_CXX_UNDER_TEST to be the full pathname of an installed compiler. That will be written
to the ‘site.exp’ file used by DejaGNU. The default is to build each test with the compiler
under test using the first of each pair of compiler options from COMPAT_QPTIONS. When
ALT_CXX_UNDER_TEST is same, each test is built using the compiler under test but with
combinations of the options from COMPAT_OPTIONS.

To run only the C++ compatibility suite using the compiler under test and another
version of GCC using specific compiler options, do the following from ‘objdir/gcc’:

rm site.exp

make -k \
ALT_CXX_UNDER_TEST=${alt_prefix}/bin/g++ \
COMPAT_OPTIONS="lists as shown above" \
check-c++ \
RUNTESTFLAGS="compat .exp"

A test that fails when the source files are compiled with different compilers, but passes
when the files are compiled with the same compiler, demonstrates incompatibility of the
generated code or runtime support. A test that fails for the alternate compiler but passes
for the compiler under test probably tests for a bug that was fixed in the compiler under
test but is present in the alternate compiler.

Chapter 6: Passes and Files of the Compiler 31

6 Passes and Files of the Compiler

The overall control structure of the compiler is in ‘toplev.c’. This file is responsible for
initialization, decoding arguments, opening and closing files, and sequencing the passes.

The parsing pass is invoked only once, to parse the entire input. A high level tree
representation is then generated from the input, one function at a time. This tree code
is then transformed into RTL intermediate code, and processed. The files involved in
transforming the trees into RTL are ‘expr.c’, ‘expmed.c’, and ‘stmt.c’. The order of trees
that are processed, is not necessarily the same order they are generated from the input, due
to deferred inlining, and other considerations.

Each time the parsing pass reads a complete function definition or top-level declara-
tion, it calls either the function rest_of_compilation, or the function rest_of_decl_
compilation in ‘toplev.c’, which are responsible for all further processing necessary, end-
ing with output of the assembler language. All other compiler passes run, in sequence,
within rest_of_compilation. When that function returns from compiling a function def-
inition, the storage used for that function definition’s compilation is entirely freed, unless
it is an inline function, or was deferred for some reason (this can occur in templates, for
example). (see section “An Inline Function is As Fast As a Macro” in Using the GNU
Compiler Collection (GCC)).

Here is a list of all the passes of the compiler and their source files. Also included is a
description of where debugging dumps can be requested with ‘-d’ options.

e Parsing. This pass reads the entire text of a function definition, constructing a high
level tree representation. (Because of the semantic analysis that takes place during this
pass, it does more than is formally considered to be parsing.)

The tree representation does not entirely follow C syntax, because it is intended to
support other languages as well.

Language-specific data type analysis is also done in this pass, and every tree node
that represents an expression has a data type attached. Variables are represented as
declaration nodes.

The language-independent source files for parsing are ‘tree.c’, ‘fold-const.c’, and
‘stor-layout.c’. There are also header files ‘tree.h’ and ‘tree.def’ which define the
format of the tree representation.

C preprocessing, for language front ends, that want or require it, is performed by cpplib,
which is covered in separate documentation. In particular, the internals are covered in
See section “Cpplib internals” in Cpplib Internals.

The source files to parse C are ‘c-convert.c’, ‘c-decl.c’, ‘c-errors.c’, ‘c-lang.c’,
‘c-objc-common.c’, ‘c-parse.in’, ‘c-aux-info.c’, and ‘c-typeck.c’, along with a
header file ‘c-tree.h’ and some files shared with Objective-C and C++.

The source files for parsing C++ are in ‘cp/’. They are ‘parse.y’, ‘class.c’, ‘cvt.c’,
‘decl.c’, ‘decl2.c’, ‘except.c’, ‘expr.c’, ‘init.c’, ‘lex.c’, ‘method.c’, ‘ptree.c’,
‘search.c’, ‘spew.c’, ‘semantics.c’, ‘tree.c’, ‘typeck2.c’, and ‘typeck.c’, along
with header files ‘cp-tree.def’, ‘cp-tree.h’, and ‘decl.h’.

The special source files for parsing Objective-C are in ‘objc/’. They are ‘objc-act.c’,
‘objc-tree.def’, and ‘objc-act.h’. Certain C-specific files are used for this as well.

32

GNU Compiler Collection (GCC) Internals

The files ‘c-common.c’, ‘c-common.def’, ‘c-format.c’, ‘c-opts.c’, ‘c-pragma.c’,
‘c-semantics.c’, and ‘c-lex.c’, along with header files ‘c-common.h’, ‘c-dump.h’,
and ‘c-pragma.h’, are also used for all of the above languages.

Tree optimization. This is the optimization of the tree representation, before converting
into RTL code.

Currently, the main optimization performed here is tree-based inlining. This is imple-
mented in ‘tree-inline.c’ and used by both C and C++. Note that tree based inlining
turns off rtx based inlining (since it’s more powerful, it would be a waste of time to do
rtx based inlining in addition).

Constant folding and some arithmetic simplifications are also done during this pass,
on the tree representation. The routines that perform these tasks are located in
‘fold-const.c’.

RTL generation. This is the conversion of syntax tree into RTL code.

This is where the bulk of target-parameter-dependent code is found, since often it is
necessary for strategies to apply only when certain standard kinds of instructions are
available. The purpose of named instruction patterns is to provide this information to
the RTL generation pass.

Optimization is done in this pass for if-conditions that are comparisons, boolean oper-
ations or conditional expressions. Tail recursion is detected at this time also. Decisions
are made about how best to arrange loops and how to output switch statements.

The source files for RTL generation include ‘stmt.c’, ‘calls.c’, ‘expr.c’, ‘explow.c’,
‘expmed.c’, ‘function.c’, ‘optabs.c’ and ‘emit-rtl.c’. Also, the file ‘insn-emit.c’,
generated from the machine description by the program genemit, is used in this pass.
The header file ‘expr.h’ is used for communication within this pass.

The header files ‘insn-flags.h’ and ‘insn-codes.h’, generated from the machine
description by the programs genflags and gencodes, tell this pass which standard
names are available for use and which patterns correspond to them.

Aside from debugging information output, none of the following passes refers to the
tree structure representation of the function (only part of which is saved).

The decision of whether the function can and should be expanded inline in its sub-
sequent callers is made at the end of rtl generation. The function must meet certain
criteria, currently related to the size of the function and the types and number of pa-
rameters it has. Note that this function may contain loops, recursive calls to itself
(tail-recursive functions can be inlined!), gotos, in short, all constructs supported by
GCC. The file ‘integrate.c’ contains the code to save a function’s rtl for later inlining
and to inline that rtl when the function is called. The header file ‘integrate.h’ is also
used for this purpose.

The option ‘-dr’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.rtl’ to the input file name.

Sibling call optimization. This pass performs tail recursion elimination, and tail and
sibling call optimizations. The purpose of these optimizations is to reduce the overhead
of function calls, whenever possible.

The source file of this pass is ‘sibcall.c’

Chapter 6: Passes and Files of the Compiler 33

The option ‘-di’ causes a debugging dump of the RTL code after this pass is run. This
dump file’s name is made by appending ‘.sibling’ to the input file name.

e Jump optimization. This pass simplifies jumps to the following instruction, jumps
across jumps, and jumps to jumps. It deletes unreferenced labels and unreachable code,
except that unreachable code that contains a loop is not recognized as unreachable in
this pass. (Such loops are deleted later in the basic block analysis.) It also converts
some code originally written with jumps into sequences of instructions that directly set
values from the results of comparisons, if the machine has such instructions.

Jump optimization is performed two or three times. The first time is immediately
following RTL generation. The second time is after CSE, but only if CSE says re-
peated jump optimization is needed. The last time is right before the final pass. That
time, cross-jumping and deletion of no-op move instructions are done together with the
optimizations described above.

The source file of this pass is ‘jump.c’.

The option ‘-dj’ causes a debugging dump of the RTL code after this pass is run for
the first time. This dump file’s name is made by appending ‘. jump’ to the input file
name.

e Register scan. This pass finds the first and last use of each register, as a guide for
common subexpression elimination. Its source is in ‘regclass.c’.

e Jump threading. This pass detects a condition jump that branches to an identical
or inverse test. Such jumps can be ‘threaded’ through the second conditional test.
The source code for this pass is in ‘jump.c’. This optimization is only performed if
‘~fthread-jumps’ is enabled.

e Static Single Assignment (SSA) based optimization passes. The SSA conversion passes
(to/from) are turned on by the ‘~fssa’ option (it is also done automatically if you
enable an SSA optimization pass). These passes utilize a form called Static Single
Assignment. In SSA form, each variable (pseudo register) is only set once, giving you
def-use and use-def chains for free, and enabling a lot more optimization passes to be
run in linear time. Conversion to and from SSA form is handled by functions in ‘ssa.c’.

The option ‘-de’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.ssa’ to the input file name.

e SSA Conditional Constant Propagation. Turned on by the ‘-fssa-ccp’ option.
This pass performs conditional constant propagation to simplify instructions in-
cluding conditional branches. This pass is more aggressive than the constant prop-
agation done by the CSE and GCSE passes, but operates in linear time.

The option ‘-dW’ causes a debugging dump of the RTL code after this pass. This
dump file’s name is made by appending ‘.ssaccp’ to the input file name.

e SSA Aggressive Dead Code Elimination. Turned on by the ‘-fssa-dce’ option.
This pass performs elimination of code considered unnecessary because it has no
externally visible effects on the program. It operates in linear time.

The option ‘-dX’ causes a debugging dump of the RTL code after this pass. This
dump file’s name is made by appending ‘.ssadce’ to the input file name.

e Common subexpression elimination. This pass also does constant propagation. Its
source files are ‘cse.c’, and ‘cselib.c’. If constant propagation causes conditional

34

GNU Compiler Collection (GCC) Internals

jumps to become unconditional or to become no-ops, jump optimization is run again

when CSE is finished.

The option ‘-ds’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.cse’ to the input file name.

Global common subexpression elimination. This pass performs two different types of
GCSE depending on whether you are optimizing for size or not (LCM based GCSE
tends to increase code size for a gain in speed, while Morel-Renvoise based GCSE
does not). When optimizing for size, GCSE is done using Morel-Renvoise Partial
Redundancy Elimination, with the exception that it does not try to move invariants
out of loops—that is left to the loop optimization pass. If MR PRE GCSE is done, code
hoisting (aka unification) is also done, as well as load motion. If you are optimizing
for speed, LCM (lazy code motion) based GCSE is done. LCM is based on the work
of Knoop, Ruthing, and Steffen. LCM based GCSE also does loop invariant code
motion. We also perform load and store motion when optimizing for speed. Regardless
of which type of GCSE is used, the GCSE pass also performs global constant and copy
propagation.

The source file for this pass is ‘gcse.c’, and the LCM routines are in ‘lcm.c’.

The option ‘-dG’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.gcse’ to the input file name.

Loop optimization. This pass moves constant expressions out of loops, and optionally
does strength-reduction and loop unrolling as well. Its source files are ‘loop.c’ and
‘unroll.c’, plus the header ‘loop.h’ used for communication between them. Loop
unrolling uses some functions in ‘integrate.c’ and the header ‘integrate.h’. Loop
dependency analysis routines are contained in ‘dependence.c’.

The option ‘-dL’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.loop’ to the input file name.

If ‘~frerun-cse-after-loop’ was enabled, a second common subexpression elimina-
tion pass is performed after the loop optimization pass. Jump threading is also done
again at this time if it was specified.

The option ‘-dt’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.cse2’ to the input file name.

Data flow analysis (‘flow.c’). This pass divides the program into basic blocks (and
in the process deletes unreachable loops); then it computes which pseudo-registers are
live at each point in the program, and makes the first instruction that uses a value
point at the instruction that computed the value.

This pass also deletes computations whose results are never used, and combines memory
references with add or subtract instructions to make autoincrement or autodecrement
addressing.

The option ‘-df’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.flow’ to the input file name. If stupid register
allocation is in use, this dump file reflects the full results of such allocation.

Instruction combination (‘combine.c’). This pass attempts to combine groups of two
or three instructions that are related by data flow into single instructions. It combines
the RTL expressions for the instructions by substitution, simplifies the result using
algebra, and then attempts to match the result against the machine description.

Chapter 6: Passes and Files of the Compiler 35

The option ‘-dc’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘. combine’ to the input file name.

e If-conversion is a transformation that transforms control dependencies into data de-
pendencies (IE it transforms conditional code into a single control stream). It is im-
plemented in the file ‘ifcvt.c’.

The option ‘-dE’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.ce’ to the input file name.

e Register movement (‘regmove.c’). This pass looks for cases where matching constraints
would force an instruction to need a reload, and this reload would be a register-to-
register move. It then attempts to change the registers used by the instruction to avoid
the move instruction.

The option ‘-dN’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.regmove’ to the input file name.

e Instruction scheduling (‘sched.c’). This pass looks for instructions whose output will
not be available by the time that it is used in subsequent instructions. (Memory loads
and floating point instructions often have this behavior on RISC machines). It re-orders
instructions within a basic block to try to separate the definition and use of items that
otherwise would cause pipeline stalls.

Instruction scheduling is performed twice. The first time is immediately after instruc-
tion combination and the second is immediately after reload.

The option ‘-dS’ causes a debugging dump of the RTL code after this pass is run for
the first time. The dump file’s name is made by appending ‘.sched’ to the input file
name.

e Register allocation. These passes make sure that all occurrences of pseudo registers are
eliminated, either by allocating them to a hard register, replacing them by an equivalent
expression (e.g. a constant) or by placing them on the stack. This is done in several
subpasses:

e Register class preferencing. The RTL code is scanned to find out which register
class is best for each pseudo register. The source file is ‘regclass.c’.

e Local register allocation (‘local-alloc.c’). This pass allocates hard registers to
pseudo registers that are used only within one basic block. Because the basic block
is linear, it can use fast and powerful techniques to do a very good job.

The option ‘-d1’ causes a debugging dump of the RTL code after this pass. This
dump file’s name is made by appending ‘.1lreg’ to the input file name.

e Global register allocation (‘global.c’). This pass allocates hard registers for the
remaining pseudo registers (those whose life spans are not contained in one basic
block).

e Graph coloring register allocator. The files ‘ra.c’, ‘ra-build.c’, ‘ra-colorize.c’,
‘ra-debug.c’, ‘ra-rewrite.c’ together with the header ‘ra.h’ contain another
register allocator, which is used when the option ‘~fnew-ra’ is given. In that case
it is run instead of the above mentioned local and global register allocation passes,
and the option ‘-d1’ causes a debugging dump of its work.

e Reloading. This pass renumbers pseudo registers with the hardware registers num-
bers they were allocated. Pseudo registers that did not get hard registers are re-

36

GNU Compiler Collection (GCC) Internals

placed with stack slots. Then it finds instructions that are invalid because a value
has failed to end up in a register, or has ended up in a register of the wrong kind.
It fixes up these instructions by reloading the problematical values temporarily
into registers. Additional instructions are generated to do the copying.

The reload pass also optionally eliminates the frame pointer and inserts instruc-
tions to save and restore call-clobbered registers around calls.

Source files are ‘reload.c’ and ‘reloadl.c’, plus the header ‘reload.h’ used for
communication between them.

The option ‘-dg’ causes a debugging dump of the RTL code after this pass. This
dump file’s name is made by appending ‘.greg’ to the input file name.

Instruction scheduling is repeated here to try to avoid pipeline stalls due to memory
loads generated for spilled pseudo registers.

The option ‘-dR’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.sched2’ to the input file name.

Basic block reordering. This pass implements profile guided code positioning. If profile
information is not available, various types of static analysis are performed to make
the predictions normally coming from the profile feedback (IE execution frequency,
branch probability, etc). It is implemented in the file ‘bb-reorder.c’, and the various
prediction routines are in ‘predict.c’.

The option ‘-dB’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.bbro’ to the input file name.

Delayed branch scheduling. This optional pass attempts to find instructions that can
go into the delay slots of other instructions, usually jumps and calls. The source file
name is ‘reorg.c’.

The option ‘-dd’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.dbr’ to the input file name.

Branch shortening. On many RISC machines, branch instructions have a limited range.
Thus, longer sequences of instructions must be used for long branches. In this pass, the
compiler figures out what how far each instruction will be from each other instruction,
and therefore whether the usual instructions, or the longer sequences, must be used for
each branch.

Conversion from usage of some hard registers to usage of a register stack may be done
at this point. Currently, this is supported only for the floating-point registers of the
Intel 80387 coprocessor. The source file name is ‘reg-stack.c’.

The options ‘-dk’ causes a debugging dump of the RTL code after this pass. This
dump file’s name is made by appending ‘. stack’ to the input file name.

Final. This pass outputs the assembler code for the function. It is also responsible
for identifying spurious test and compare instructions. Machine-specific peephole opti-
mizations are performed at the same time. The function entry and exit sequences are
generated directly as assembler code in this pass; they never exist as RTL.

The source files are ‘final.c’ plus ‘insn-output.c’; the latter is generated auto-
matically from the machine description by the tool ‘genoutput’. The header file
‘conditions.h’ is used for communication between these files.

Chapter 6: Passes and Files of the Compiler 37

e Debugging information output. This is run after final because it must output the
stack slot offsets for pseudo registers that did not get hard registers. Source files are
‘dbxout.c’ for DBX symbol table format, ‘sdbout.c’ for SDB symbol table format,
‘dwarfout.c’ for DWARF symbol table format, files ‘dwarf2out.c’ and ‘dwarf2asm.c’
for DWARF2 symbol table format, and ‘vmsdbgout.c’ for VMS debug symbol table
format.

Some additional files are used by all or many passes:
e Every pass uses ‘machmode.def’ and ‘machmode.h’ which define the machine modes.

e Several passes use ‘real.h’, which defines the default representation of floating point
constants and how to operate on them.

e All the passes that work with RTL use the header files ‘rtl.h’ and ‘rtl.def’, and
subroutines in file ‘rtl.c’. The tools gen* also use these files to read and work with
the machine description RTL.

e All the tools that read the machine description use support routines found in
‘gensupport.c’, ‘errors.c’, and ‘read-rtl.c’.

e Several passes refer to the header file ‘insn-config.h’ which contains a few parameters
(C macro definitions) generated automatically from the machine description RTL by
the tool genconfig.

e Several passes use the instruction recognizer, which consists of ‘recog.c’ and ‘recog.h’,
plus the files ‘insn-recog.c’ and ‘insn-extract.c’ that are generated automatically
from the machine description by the tools ‘genrecog’ and ‘genextract’.

e Several passes use the header files ‘regs.h’ which defines the information recorded
about pseudo register usage, and ‘basic-block.h’ which defines the information
recorded about basic blocks.

e ‘hard-reg-set.h’ defines the type HARD_REG_SET, a bit-vector with a bit for each hard
register, and some macros to manipulate it. This type is just int if the machine has few
enough hard registers; otherwise it is an array of int and some of the macros expand
into loops.

e Several passes use instruction attributes. A definition of the attributes defined for a
particular machine is in file ‘insn-attr.h’, which is generated from the machine de-
scription by the program ‘genattr’. The file ‘insn-attrtab.c’ contains subroutines
to obtain the attribute values for insns and information about processor pipeline char-
acteristics for the instruction scheduler. It is generated from the machine description
by the program ‘genattrtab’.

38

GNU Compiler Collection (GCC) Internals

Chapter 7: Trees: The intermediate representation used by the C and C++ front ends 39

7 Trees: The intermediate representation used by
the C and C++ front ends

This chapter documents the internal representation used by GCC to represent C and C++
source programs. When presented with a C or C++ source program, GCC parses the
program, performs semantic analysis (including the generation of error messages), and then
produces the internal representation described here. This representation contains a complete
representation for the entire translation unit provided as input to the front end. This
representation is then typically processed by a code-generator in order to produce machine
code, but could also be used in the creation of source browsers, intelligent editors, automatic
documentation generators, interpreters, and any other programs needing the ability to
process C or C++ code.

This chapter explains the internal representation. In particular, it documents the internal
representation for C and C++ source constructs, and the macros, functions, and variables
that can be used to access these constructs. The C++ representation is largely a superset
of the representation used in the C front end. There is only one construct used in C that
does not appear in the C++ front end and that is the GNU “nested function” extension.
Many of the macros documented here do not apply in C because the corresponding language
constructs do not appear in C.

If you are developing a “back end”, be it is a code-generator or some other tool, that
uses this representation, you may occasionally find that you need to ask questions not easily
answered by the functions and macros available here. If that situation occurs, it is quite
likely that GCC already supports the functionality you desire, but that the interface is
simply not documented here. In that case, you should ask the GCC maintainers (via mail
to gcclgee.gnu.org) about documenting the functionality you require. Similarly, if you
find yourself writing functions that do not deal directly with your back end, but instead
might be useful to other people using the GCC front end, you should submit your patches
for inclusion in GCC.

7.1 Deficiencies

There are many places in which this document is incomplet and incorrekt. It is, as of yet,
only preliminary documentation.

7.2 Overview

The central data structure used by the internal representation is the tree. These nodes,
while all of the C type tree, are of many varieties. A tree is a pointer type, but the object
to which it points may be of a variety of types. From this point forward, we will refer to
trees in ordinary type, rather than in this font, except when talking about the actual C
type tree.

You can tell what kind of node a particular tree is by using the TREE_CODE macro. Many,
many macros take trees as input and return trees as output. However, most macros require
a certain kind of tree node as input. In other words, there is a type-system for trees, but it
is not reflected in the C type-system.

40 GNU Compiler Collection (GCC) Internals

For safety, it is useful to configure GCC with ‘--enable-checking’. Although this
results in a significant performance penalty (since all tree types are checked at run-time), and
is therefore inappropriate in a release version, it is extremely helpful during the development
process.

Many macros behave as predicates. Many, although not all, of these predicates end in
‘_P’. Do not rely on the result type of these macros being of any particular type. You may,
however, rely on the fact that the type can be compared to 0, so that statements like

if (TEST_P (t) && !TEST_P (y))

x =1;

and

int i = (TEST_P (%) != 0);
are legal. Macros that return int values now may be changed to return tree values, or
other pointers in the future. Even those that continue to return int may return multiple
nonzero codes where previously they returned only zero and one. Therefore, you should not
write code like

if (TEST_P (t) == 1)
as this code is not guaranteed to work correctly in the future.

You should not take the address of values returned by the macros or functions described
here. In particular, no guarantee is given that the values are lvalues.

In general, the names of macros are all in uppercase, while the names of functions are
entirely in lower case. There are rare exceptions to this rule. You should assume that any
macro or function whose name is made up entirely of uppercase letters may evaluate its
arguments more than once. You may assume that a macro or function whose name is made
up entirely of lowercase letters will evaluate its arguments only once.

The error_mark_node is a special tree. Its tree code is ERROR_MARK, but since there is
only ever one node with that code, the usual practice is to compare the tree against error_
mark_node. (This test is just a test for pointer equality.) If an error has occurred during
front-end processing the flag errorcount will be set. If the front end has encountered code
it cannot handle, it will issue a message to the user and set sorrycount. When these
flags are set, any macro or function which normally returns a tree of a particular kind may
instead return the error_mark_node. Thus, if you intend to do any processing of erroneous
code, you must be prepared to deal with the error_mark_node.

Occasionally, a particular tree slot (like an operand to an expression, or a particular field
in a declaration) will be referred to as “reserved for the back end.” These slots are used to
store RTL when the tree is converted to RTL for use by the GCC back end. However, if
that process is not taking place (e.g., if the front end is being hooked up to an intelligent
editor), then those slots may be used by the back end presently in use.

If you encounter situations that do not match this documentation, such as tree nodes
of types not mentioned here, or macros documented to return entities of a particular kind
that instead return entities of some different kind, you have found a bug, either in the front
end or in the documentation. Please report these bugs as you would any other bug.

7.2.1 Trees

This section is not here yet.

Chapter 7: Trees: The intermediate representation used by the C and C++ front ends 41

7.2.2 Identifiers

An IDENTIFIER_NODE represents a slightly more general concept that the standard C or
C++ concept of identifier. In particular, an IDENTIFIER_NODE may contain a ‘$’, or other
extraordinary characters.

There are never two distinct IDENTIFIER_NODESs representing the same identifier. There-
fore, you may use pointer equality to compare IDENTIFIER_NODEs, rather than using a
routine like strcmp.

You can use the following macros to access identifiers:

IDENTIFIER_POINTER
The string represented by the identifier, represented as a charx. This string is
always NUL-terminated, and contains no embedded NUL characters.

IDENTIFIER_LENGTH
The length of the string returned by IDENTIFIER_POINTER, not including the
trailing NUL. This value of IDENTIFIER_LENGTH (x) is always the same as
strlen (IDENTIFIER_POINTER (x)).

IDENTIFIER_OPNAME_P
This predicate holds if the identifier represents the name of an overloaded
operator. In this case, you should not depend on the contents of either the
IDENTIFIER_POINTER or the IDENTIFIER_LENGTH.

IDENTIFIER_TYPENAME_P
This predicate holds if the identifier represents the name of a user-defined con-
version operator. In this case, the TREE_TYPE of the IDENTIFIER_NODE holds
the type to which the conversion operator converts.

7.2.3 Containers

Two common container data structures can be represented directly with tree nodes. A
TREE_LIST is a singly linked list containing two trees per node. These are the TREE_
PURPOSE and TREE_VALUE of each node. (Often, the TREE_PURPOSE contains some kind of
tag, or additional information, while the TREE_VALUE contains the majority of the payload.
In other cases, the TREE_PURPOSE is simply NULL_TREE, while in still others both the TREE_
PURPOSE and TREE_VALUE are of equal stature.) Given one TREE_LIST node, the next node
is found by following the TREE_CHAIN. If the TREE_CHAIN is NULL_TREE, then you have
reached the end of the list.

A TREE_VEC is a simple vector. The TREE_VEC_LENGTH is an integer (not a tree) giving
the number of nodes in the vector. The nodes themselves are accessed using the TREE_VEC_
ELT macro, which takes two arguments. The first is the TREE_VEC in question; the second
is an integer indicating which element in the vector is desired. The elements are indexed
from zero.

42 GNU Compiler Collection (GCC) Internals

7.3 Types

All types have corresponding tree nodes. However, you should not assume that there is
exactly one tree node corresponding to each type. There are often several nodes each of
which correspond to the same type.

For the most part, different kinds of types have different tree codes. (For example,
pointer types use a POINTER_TYPE code while arrays use an ARRAY_TYPE code.) However,
pointers to member functions use the RECORD_TYPE code. Therefore, when writing a switch
statement that depends on the code associated with a particular type, you should take care
to handle pointers to member functions under the RECORD_TYPE case label.

In C++, an array type is not qualified; rather the type of the array elements is qualified.
This situation is reflected in the intermediate representation. The macros described here
will always examine the qualification of the underlying element type when applied to an
array type. (If the element type is itself an array, then the recursion continues until a
non-array type is found, and the qualification of this type is examined.) So, for example,
CP_TYPE_CONST_P will hold of the type const int () [7], denoting an array of seven ints.

The following functions and macros deal with cv-qualification of types:

CP_TYPE_QUALS
This macro returns the set of type qualifiers applied to this type. This value is
TYPE_UNQUALIFIED if no qualifiers have been applied. The TYPE_QUAL_CONST
bit is set if the type is const-qualified. The TYPE_QUAL_VOLATILE bit is set if
the type is volatile-qualified. The TYPE_QUAL_RESTRICT bit is set if the type
is restrict-qualified.

CP_TYPE_CONST_P
This macro holds if the type is const-qualified.

CP_TYPE_VOLATILE_P
This macro holds if the type is volatile-qualified.

CP_TYPE_RESTRICT_P
This macro holds if the type is restrict-qualified.

CP_TYPE_CONST_NON_VOLATILE_P
This predicate holds for a type that is const-qualified, but not volatile-
qualified; other cv-qualifiers are ignored as well: only the const-ness is tested.

TYPE_MAIN_VARIANT
This macro returns the unqualified version of a type. It may be applied to an
unqualified type, but it is not always the identity function in that case.

A few other macros and functions are usable with all types:

TYPE_SIZE
The number of bits required to represent the type, represented as an INTEGER_
CST. For an incomplete type, TYPE_SIZE will be NULL_TREE.

TYPE_ALIGN
The alignment of the type, in bits, represented as an int.

Chapter 7: Trees: The intermediate representation used by the C and C++ front ends 43

TYPE_NAME
This macro returns a declaration (in the form of a TYPE_DECL) for the type.
(Note this macro does not return a IDENTIFIER_NODE, as you might expect,
given its name!) You can look at the DECL_NAME of the TYPE_DECL to obtain
the actual name of the type. The TYPE_NAME will be NULL_TREE for a type that
is not a built-in type, the result of a typedef, or a named class type.

CP_INTEGRAL_TYPE
This predicate holds if the type is an integral type. Notice that in C++, enu-
merations are not integral types.

ARITHMETIC_TYPE_P
This predicate holds if the type is an integral type (in the C++ sense) or a
floating point type.

CLASS_TYPE_P
This predicate holds for a class-type.

TYPE_BUILT_IN
This predicate holds for a built-in type.

TYPE_PTRMEM_P
This predicate holds if the type is a pointer to data member.

TYPE_PTR_P
This predicate holds if the type is a pointer type, and the pointee is not a data
member.

TYPE_PTRFN_P
This predicate holds for a pointer to function type.

TYPE_PTROB_P
This predicate holds for a pointer to object type. Note however that it does not
hold for the generic pointer to object type void *. You may use TYPE_PTROBV_P
to test for a pointer to object type as well as void *.

same_type_p

This predicate takes two types as input, and holds if they are the same type.
For example, if one type is a typedef for the other, or both are typedefs
for the same type. This predicate also holds if the two trees given as input
are simply copies of one another; i.e., there is no difference between them at
the source level, but, for whatever reason, a duplicate has been made in the
representation. You should never use == (pointer equality) to compare types;
always use same_type_p instead.

Detailed below are the various kinds of types, and the macros that can be used to access
them. Although other kinds of types are used elsewhere in G++, the types described here
are the only ones that you will encounter while examining the intermediate representation.

VOID_TYPE
Used to represent the void type.

INTEGER_TYPE
Used to represent the various integral types, including char, short, int, long,
and long long. This code is not used for enumeration types, nor for the bool

44

REAL_TYPE

GNU Compiler Collection (GCC) Internals

type. Note that GCC’s CHAR_TYPE node is not used to represent char. The
TYPE_PRECISION is the number of bits used in the representation, represented
as an unsigned int. (Note that in the general case this is not the same value as
TYPE_SIZE; suppose that there were a 24-bit integer type, but that alignment
requirements for the ABI required 32-bit alignment. Then, TYPE_SIZE would
be an INTEGER_CST for 32, while TYPE_PRECISION would be 24.) The integer
type is unsigned if TREE_UNSIGNED holds; otherwise, it is signed.

The TYPE_MIN_VALUE is an INTEGER_CST for the smallest integer that may be
represented by this type. Similarly, the TYPE_MAX_VALUE is an INTEGER_CST for
the largest integer that may be represented by this type.

Used to represent the float, double, and long double types. The number of
bits in the floating-point representation is given by TYPE_PRECISION, as in the
INTEGER_TYPE case.

COMPLEX_TYPE

Used to represent GCC built-in __complex__ data types. The TREE_TYPE is
the type of the real and imaginary parts.

ENUMERAL_TYPE

Used to represent an enumeration type. The TYPE_PRECISION gives (as an
int), the number of bits used to represent the type. If there are no negative
enumeration constants, TREE_UNSIGNED will hold. The minimum and maximum
enumeration constants may be obtained with TYPE_MIN_VALUE and TYPE_MAX_
VALUE, respectively; each of these macros returns an INTEGER_CST.

The actual enumeration constants themselves may be obtained by looking at
the TYPE_VALUES. This macro will return a TREE_LIST, containing the con-
stants. The TREE_PURPOSE of each node will be an IDENTIFIER_NODE giving
the name of the constant; the TREE_VALUE will be an INTEGER_CST giving the
value assigned to that constant. These constants will appear in the order in
which they were declared. The TREE_TYPE of each of these constants will be
the type of enumeration type itself.

BOOLEAN_TYPE

Used to represent the bool type.

POINTER_TYPE

REFERENCE_

Used to represent pointer types, and pointer to data member types. The TREE_
TYPE gives the type to which this type points. If the type is a pointer to data
member type, then TYPE_PTRMEM_P will hold. For a pointer to data member
type of the form ‘T X::*’, TYPE_PTRMEM_CLASS_TYPE will be the type X, while
TYPE_PTRMEM_POINTED_TO_TYPE will be the type T.

TYPE
Used to represent reference types. The TREE_TYPE gives the type to which this
type refers.

FUNCTION_TYPE

Used to represent the type of non-member functions and of static member
functions. The TREE_TYPE gives the return type of the function. The TYPE_

Chapter 7: Trees: The intermediate representation used by the C and C++ front ends 45

ARG_TYPES are a TREE_LIST of the argument types. The TREE_VALUE of each
node in this list is the type of the corresponding argument; the TREE_PURPOSE is
an expression for the default argument value, if any. If the last node in the list
is void_list_node (a TREE_LIST node whose TREE_VALUE is the void_type_
node), then functions of this type do not take variable arguments. Otherwise,
they do take a variable number of arguments.

Note that in C (but not in C++) a function declared like void £ () is an unpro-
totyped function taking a variable number of arguments; the TYPE_ARG_TYPES
of such a function will be NULL.

METHOD_TYPE
Used to represent the type of a non-static member function. Like a FUNCTION_
TYPE, the return type is given by the TREE_TYPE. The type of *this, i.e., the
class of which functions of this type are a member, is given by the TYPE_METHOD_
BASETYPE. The TYPE_ARG_TYPES is the parameter list, as for a FUNCTION_TYPE,
and includes the this argument.

ARRAY_TYPE

Used to represent array types. The TREE_TYPE gives the type of the elements
in the array. If the array-bound is present in the type, the TYPE_DOMAIN is an
INTEGER_TYPE whose TYPE_MIN_VALUE and TYPE_MAX_VALUE will be the lower
and upper bounds of the array, respectively. The TYPE_MIN_VALUE will always
be an INTEGER_CST for zero, while the TYPE_MAX_VALUE will be one less than
the number of elements in the array, i.e., the highest value which may be used
to index an element in the array.

RECORD_TYPE

Used to represent struct and class types, as well as pointers to member
functions and similar constructs in other languages. TYPE_FIELDS contains the
items contained in this type, each of which can be a FIELD_DECL, VAR_DECL,
CONST_DECL, or TYPE_DECL. You may not make any assumptions about the
ordering of the fields in the type or whether one or more of them overlap. If
TYPE_PTRMEMFUNC_P holds, then this type is a pointer-to-member type. In that
case, the TYPE_PTRMEMFUNC_FN_TYPE is a POINTER_TYPE pointing to a METHOD_
TYPE. The METHOD_TYPE is the type of a function pointed to by the pointer-
to-member function. If TYPE_PTRMEMFUNC_P does not hold, this type is a class
type. For more information, see see Section 7.4.2 [Classes|, page 48.

UNION_TYPE
Used to represent union types. Similar to RECORD_TYPE except that all FIELD_
DECL nodes in TYPE_FIELD start at bit position zero.

QUAL_UNION_TYPE
Used to represent part of a variant record in Ada. Similar to UNION_TYPE except
that each FIELD_DECL has a DECL_QUALIFIER field, which contains a boolean
expression that indicates whether the field is present in the object. The type
will only have one field, so each field’s DECL_QUALIFIER is only evaluated if none
of the expressions in the previous fields in TYPE_FIELDS are nonzero. Normally
these expressions will reference a field in the outer object using a PLACEHOLDER_
EXPR.

46 GNU Compiler Collection (GCC) Internals

UNKNOWN_TYPE
This node is used to represent a type the knowledge of which is insufficient for
a sound processing.

OFFSET_TYPE
This node is used to represent a data member; for example a pointer-to-data-
member is represented by a POINTER_TYPE whose TREE_TYPE is an OFFSET_
TYPE. For a data member X: :m the TYPE_OFFSET_BASETYPE is X and the TREE_
TYPE is the type of m.

TYPENAME_TYPE
Used to represent a construct of the form typename T::A. The TYPE_CONTEXT
is T; the TYPE_NAME is an IDENTIFIER_NODE for A. If the type is specified via a
template-id, then TYPENAME_TYPE_FULLNAME yields a TEMPLATE_ID_EXPR. The
TREE_TYPE is non-NULL if the node is implicitly generated in support for the
implicit typename extension; in which case the TREE_TYPE is a type node for
the base-class.

TYPEOF_TYPE
Used to represent the __typeof__ extension. The TYPE_FIELDS is the expres-
sion the type of which is being represented.

There are variables whose values represent some of the basic types. These include:

void_type_node
A node for void.

integer_type_node
A node for int.

unsigned_type_node.
A node for unsigned int.

char_type_node.
A node for char.

It may sometimes be useful to compare one of these variables with a type in hand, using
same_type_p.

7.4 Scopes

The root of the entire intermediate representation is the variable global_namespace. This is
the namespace specified with : : in C++ source code. All other namespaces, types, variables,
functions, and so forth can be found starting with this namespace.

Besides namespaces, the other high-level scoping construct in C++ is the class. (Through-
out this manual the term class is used to mean the types referred to in the ANSI/ISO C++
Standard as classes; these include types defined with the class, struct, and union key-
words.)

Chapter 7: Trees: The intermediate representation used by the C and C++ front ends 47

7.4.1 Namespaces

A namespace is represented by a NAMESPACE_DECL node.

However, except for the fact that it is distinguished as the root of the representation,
the global namespace is no different from any other namespace. Thus, in what follows, we
describe namespaces generally, rather than the global namespace in particular.

The following macros and functions can be used on a NAMESPACE_DECL:

DECL_NAME

This macro is used to obtain the IDENTIFIER_NODE corresponding to the unqual-
ified name of the name of the namespace (see Section 7.2.2 [Identifiers|, page 41).
The name of the global namespace is ‘::’, even though in C++ the global
namespace is unnamed. However, you should use comparison with global_
namespace, rather than DECL_NAME to determine whether or not a namespace
is the global one. An unnamed namespace will have a DECL_NAME equal to
anonymous_namespace_name. Within a single translation unit, all unnamed
namespaces will have the same name.

DECL_CONTEXT
This macro returns the enclosing namespace. The DECL_CONTEXT for the
global_namespace is NULL_TREE.

DECL_NAMESPACE_ALTAS
If this declaration is for a namespace alias, then DECL_NAMESPACE_ALIAS is the
namespace for which this one is an alias.

Do not attempt to use cp_namespace_decls for a namespace which is an alias.
Instead, follow DECL_NAMESPACE_ALTAS links until you reach an ordinary, non-
alias, namespace, and call cp_namespace_decls there.

DECL_NAMESPACE_STD_P
This predicate holds if the namespace is the special : :std namespace.

cp_namespace_decls
This function will return the declarations contained in the namespace, including
types, overloaded functions, other namespaces, and so forth. If there are no dec-
larations, this function will return NULL_TREE. The declarations are connected
through their TREE_CHAIN fields.

Although most entries on this list will be declarations, TREE_LIST nodes may
also appear. In this case, the TREE_VALUE will be an OVERLOAD. The value of the
TREE_PURPOSE is unspecified; back ends should ignore this value. As with the
other kinds of declarations returned by cp_namespace_decls, the TREE_CHAIN
will point to the next declaration in this list.

For more information on the kinds of declarations that can occur on this list,
See Section 7.5 [Declarations], page 49. Some declarations will not appear on
this list. In particular, no FIELD_DECL, LABEL_DECL, or PARM_DECL nodes will
appear here.

This function cannot be used with namespaces that have DECL_NAMESPACE_
ALTAS set.

48 GNU Compiler Collection (GCC) Internals

7.4.2 Classes

A class type is represented by either a RECORD_TYPE or a UNION_TYPE. A class declared
with the union tag is represented by a UNION_TYPE, while classes declared with either the
struct or the class tag are represented by RECORD_TYPEs. You can use the CLASSTYPE_
DECLARED_CLASS macro to discern whether or not a particular type is a class as opposed
to a struct. This macro will be true only for classes declared with the class tag.

Almost all non-function members are available on the TYPE_FIELDS list. Given one
member, the next can be found by following the TREE_CHAIN. You should not depend in
any way on the order in which fields appear on this list. All nodes on this list will be ‘DECL’
nodes. A FIELD_DECL is used to represent a non-static data member, a VAR_DECL is used to
represent a static data member, and a TYPE_DECL is used to represent a type. Note that the
CONST_DECL for an enumeration constant will appear on this list, if the enumeration type
was declared in the class. (Of course, the TYPE_DECL for the enumeration type will appear
here as well.) There are no entries for base classes on this list. In particular, there is no
FIELD_DECL for the “base-class portion” of an object.

The TYPE_VFIELD is a compiler-generated field used to point to virtual function tables.
It may or may not appear on the TYPE_FIELDS list. However, back ends should handle the
TYPE_VFIELD just like all the entries on the TYPE_FIELDS list.

The function members are available on the TYPE_METHODS list. Again, subsequent mem-
bers are found by following the TREE_CHAIN field. If a function is overloaded, each of the
overloaded functions appears; no OVERLOAD nodes appear on the TYPE_METHODS list. Im-
plicitly declared functions (including default constructors, copy constructors, assignment
operators, and destructors) will appear on this list as well.

Every class has an associated binfo, which can be obtained with TYPE_BINFO. Binfos
are used to represent base-classes. The binfo given by TYPE_BINFO is the degenerate case,
whereby every class is considered to be its own base-class. The base classes for a particular
binfo can be obtained with BINFO_BASETYPES. These base-classes are themselves binfos.
The class type associated with a binfo is given by BINFO_TYPE. It is always the case that
BINFO_TYPE (TYPE_BINFO (x)) is the same type as x, up to qualifiers. However, it is not
always the case that TYPE_BINFO (BINFO_TYPE (y)) is always the same binfo as y. The
reason is that if y is a binfo representing a base-class B of a derived class D, then BINFO_TYPE
(y) will be B, and TYPE_BINFO (BINFO_TYPE (y)) will be B as its own base-class, rather
than as a base-class of D.

The BINFO_BASETYPES is a TREE_VEC (see Section 7.2.3 [Containers|, page 41).
Base types appear in left-to-right order in this vector. You can tell whether or
public, protected, or private inheritance was used by using the TREE_VIA_PUBLIC,
TREE_VIA_PROTECTED, and TREE_VIA_PRIVATE macros. Each of these macros takes a BINFO
and is true if and only if the indicated kind of inheritance was used. If TREE_VIA_VIRTUAL
holds of a binfo, then its BINFO_TYPE was inherited from virtually.

The following macros can be used on a tree node representing a class-type.
LOCAL_CLASS_P

This predicate holds if the class is local class i.e. declared inside a function

body.

Chapter 7: Trees: The intermediate representation used by the C and C++ front ends 49

TYPE_POLYMORPHIC_P
This predicate holds if the class has at least one virtual function (declared or
inherited).

TYPE_HAS_DEFAULT_CONSTRUCTOR
This predicate holds whenever its argument represents a class-type with default
constructor.

CLASSTYPE_HAS_MUTABLE
TYPE_HAS_MUTABLE_P
These predicates hold for a class-type having a mutable data member.

CLASSTYPE_NON_POD_P
This predicate holds only for class-types that are not PODs.

TYPE_HAS_NEW_OPERATOR
This predicate holds for a class-type that defines operator new.

TYPE_HAS_ARRAY_NEW_OPERATOR
This predicate holds for a class-type for which operator new[] is defined.

TYPE_OVERLOADS_CALL_EXPR
This predicate holds for class-type for which the function call operator() is
overloaded.

TYPE_OVERLOADS_ARRAY_REF
This predicate holds for a class-type that overloads operator[]

TYPE_OVERLOADS_ARROW
This predicate holds for a class-type for which operator-> is overloaded.

7.5 Declarations

This section covers the various kinds of declarations that appear in the internal represen-
tation, except for declarations of functions (represented by FUNCTION_DECL nodes), which
are described in Section 7.6 [Functions], page 52.

Some macros can be used with any kind of declaration. These include:

DECL_NAME
This macro returns an IDENTIFIER_NODE giving the name of the entity.

TREE_TYPE
This macro returns the type of the entity declared.

DECL_SOURCE_FILE
This macro returns the name of the file in which the entity was declared, as
a char*. For an entity declared implicitly by the compiler (like __builtin_
memcpy), this will be the string "<internal>".

DECL_SOURCE_LINE
This macro returns the line number at which the entity was declared, as an
int.

50 GNU Compiler Collection (GCC) Internals

DECL_ARTIFICIAL
This predicate holds if the declaration was implicitly generated by the compiler.
For example, this predicate will hold of an implicitly declared member function,
or of the TYPE_DECL implicitly generated for a class type. Recall that in C++
code like:

struct S {};
is roughly equivalent to C code like:

struct S {};
typedef struct S S;

The implicitly generated typedef declaration is represented by a TYPE_DECL
for which DECL_ARTIFICIAL holds.

DECL_NAMESPACE_SCOPE_P
This predicate holds if the entity was declared at a namespace scope.

DECL_CLASS_SCOPE_P
This predicate holds if the entity was declared at a class scope.

DECL_FUNCTION_SCOPE_P
This predicate holds if the entity was declared inside a function body.

The various kinds of declarations include:

LABEL_DECL
These nodes are used to represent labels in function bodies. For more infor-
mation, see Section 7.6 [Functions], page 52. These nodes only appear in block
scopes.

CONST_DECL
These nodes are used to represent enumeration constants. The value of the
constant is given by DECL_INITIAL which will be an INTEGER_CST with the
same type as the TREE_TYPE of the CONST_DECL, i.e., an ENUMERAL_TYPE.

RESULT_DECL
These nodes represent the value returned by a function. When a value is as-
signed to a RESULT_DECL, that indicates that the value should be returned, via
bitwise copy, by the function. You can use DECL_SIZE and DECL_ALIGN on a
RESULT_DECL, just as with a VAR_DECL.

TYPE_DECL
These nodes represent typedef declarations. The TREE_TYPE is the type de-
clared to have the name given by DECL_NAME. In some cases, there is no asso-
ciated name.

VAR_DECL These nodes represent variables with namespace or block scope, as well as static
data members. The DECL_SIZE and DECL_ALIGN are analogous to TYPE_SIZE
and TYPE_ALIGN. For a declaration, you should always use the DECL_SIZE and
DECL_ALIGN rather than the TYPE_SIZE and TYPE_ALIGN given by the TREE_
TYPE, since special attributes may have been applied to the variable to give it a
particular size and alignment. You may use the predicates DECL_THIS_STATIC

Chapter 7: Trees: The intermediate representation used by the C and C++ front ends 51

PARM_DECL

FIELD_DECL

NAMESPACE_

TEMPLATE_D

USING_DECL

or DECL_THIS_EXTERN to test whether the storage class specifiers static or
extern were used to declare a variable.

If this variable is initialized (but does not require a constructor), the DECL_
INITIAL will be an expression for the initializer. The initializer should be
evaluated, and a bitwise copy into the variable performed. If the DECL_INITIAL
is the error_mark_node, there is an initializer, but it is given by an explicit
statement later in the code; no bitwise copy is required.

GCC provides an extension that allows either automatic variables, or global
variables, to be placed in particular registers. This extension is being used for
a particular VAR_DECL if DECL_REGISTER holds for the VAR_DECL, and if DECL_
ASSEMBLER_NAME is not equal to DECL_NAME. In that case, DECL_ASSEMBLER_
NAME is the name of the register into which the variable will be placed.

Used to represent a parameter to a function. Treat these nodes similarly to VAR_
DECL nodes. These nodes only appear in the DECL_ARGUMENTS for a FUNCTION_
DECL.

The DECL_ARG_TYPE for a PARM_DECL is the type that will actually be used when
a value is passed to this function. It may be a wider type than the TREE_TYPE
of the parameter; for example, the ordinary type might be short while the
DECL_ARG_TYPE is int.

These nodes represent non-static data members. The DECL_SIZE and DECL_
ALIGN behave as for VAR_DECL nodes. The DECL_FIELD_BITPOS gives the first
bit used for this field, as an INTEGER_CST. These values are indexed from zero,
where zero indicates the first bit in the object.

If DECL_C_BIT_FIELD holds, this field is a bit-field.

DECL
See Section 7.4.1 [Namespaces|, page 47.

ECL

These nodes are used to represent class, function, and variable (static data
member) templates. The DECL_TEMPLATE_SPECIALIZATIONS are a TREE_LIST.
The TREE_VALUE of each node in the list is a TEMPLATE_DECLs or FUNCTION_
DECLs representing specializations (including instantiations) of this template.
Back ends can safely ignore TEMPLATE_DECLs, but should examine FUNCTION_
DECL nodes on the specializations list just as they would ordinary FUNCTION_
DECL nodes.

For a class template, the DECL_TEMPLATE_INSTANTIATIONS list contains the
instantiations. The TREE_VALUE of each node is an instantiation of the class.
The DECL_TEMPLATE_SPECIALIZATIONS contains partial specializations of the
class.

Back ends can safely ignore these nodes.

52 GNU Compiler Collection (GCC) Internals

7.6 Functions

A function is represented by a FUNCTION_DECL node. A set of overloaded functions is
sometimes represented by a OVERLOAD node.

An OVERLOAD node is not a declaration, so none of the ‘DECL_’ macros should be used on
an OVERLOAD. An OVERLOAD node is similar to a TREE_LIST. Use OVL_CURRENT to get the
function associated with an OVERLOAD node; use OVL_NEXT to get the next OVERLOAD node
in the list of overloaded functions. The macros OVL_CURRENT and OVL_NEXT are actually
polymorphic; you can use them to work with FUNCTION_DECL nodes as well as with overloads.
In the case of a FUNCTION_DECL, OVL_CURRENT will always return the function itself, and
OVL_NEXT will always be NULL_TREE.

To determine the scope of a function, you can use the DECL_REAL_CONTEXT macro.
This macro will return the class (either a RECORD_TYPE or a UNION_TYPE) or namespace
(a NAMESPACE_DECL) of which the function is a member. For a virtual function, this macro
returns the class in which the function was actually defined, not the base class in which
the virtual declaration occurred. If a friend function is defined in a class scope, the DECL_
CLASS_CONTEXT macro can be used to determine the class in which it was defined. For
example, in

class C { friend void £() {} };

the DECL_REAL_CONTEXT for f will be the global_namespace, but the DECL_CLASS_
CONTEXT will be the RECORD_TYPE for C.

The DECL_REAL_CONTEXT and DECL_CLASS_CONTEXT are not available in C; instead you
should simply use DECL_CONTEXT. In C, the DECL_CONTEXT for a function maybe another
function. This representation indicates that the GNU nested function extension is in use.
For details on the semantics of nested functions, see the GCC Manual. The nested function
can refer to local variables in its containing function. Such references are not explicitly
marked in the tree structure; back ends must look at the DECL_CONTEXT for the referenced
VAR_DECL. If the DECL_CONTEXT for the referenced VAR_DECL is not the same as the func-
tion currently being processed, and neither DECL_EXTERNAL nor DECL_STATIC hold, then
the reference is to a local variable in a containing function, and the back end must take
appropriate action.

7.6.1 Function Basics

The following macros and functions can be used on a FUNCTION_DECL:

DECL_MAIN_P
This predicate holds for a function that is the program entry point : :code.

DECL_NAME
This macro returns the unqualified name of the function, as an IDENTIFIER_
NODE. For an instantiation of a function template, the DECL_NAME is the unqual-
ified name of the template, not something like f<int>. The value of DECL_NAME
is undefined when used on a constructor, destructor, overloaded operator, or
type-conversion operator, or any function that is implicitly generated by the
compiler. See below for macros that can be used to distinguish these cases.

Chapter 7: Trees: The intermediate representation used by the C and C++ front ends 53

DECL_ASSEMBLER_NAME

This macro returns the mangled name of the function, also an IDENTIFIER_
NODE. This name does not contain leading underscores on systems that prefix
all identifiers with underscores. The mangled name is computed in the same
way on all platforms; if special processing is required to deal with the object
file format used on a particular platform, it is the responsibility of the back end
to perform those modifications. (Of course, the back end should not modify
DECL_ASSEMBLER_NAME ESGHJ

DECL_EXTERNAL
This predicate holds if the function is undefined.

TREE_PUBLIC
This predicate holds if the function has external linkage.

DECL_LOCAL_FUNCTION_P
This predicate holds if the function was declared at block scope, even though
it has a global scope.

DECL_ANTICIPATED
This predicate holds if the function is a built-in function but its prototype is
not yet explicitly declared.

DECL_EXTERN_C_FUNCTION_P
This predicate holds if the function is declared as an ‘extern "C"’ function.

DECL_LINKONCE_P
This macro holds if multiple copies of this function may be emitted in various
translation units. It is the responsibility of the linker to merge the various
copies. Template instantiations are the most common example of functions
for which DECL_LINKONCE_P holds; G++ instantiates needed templates in all
translation units which require them, and then relies on the linker to remove
duplicate instantiations.

FIXME: This macro is not yet implemented.
DECL_FUNCTION_MEMBER_P

This macro holds if the function is a member of a class, rather than a member
of a namespace.

DECL_STATIC_FUNCTION_P
This predicate holds if the function a static member function.

DECL_NONSTATIC_MEMBER_FUNCTION_P
This macro holds for a non-static member function.

DECL_CONST_MEMFUNC_P
This predicate holds for a const-member function.

DECL_VOLATILE_MEMFUNC_P
This predicate holds for a volatile-member function.

DECL_CONSTRUCTOR_P
This macro holds if the function is a constructor.

54 GNU Compiler Collection (GCC) Internals

DECL_NONCONVERTING_P
This predicate holds if the constructor is a non-converting constructor.

DECL_COMPLETE_CONSTRUCTOR_P
This predicate holds for a function which is a constructor for an object of a
complete type.

DECL_BASE_CONSTRUCTOR_P
This predicate holds for a function which is a constructor for a base class sub-
object.

DECL_COPY_CONSTRUCTOR_P
This predicate holds for a function which is a copy-constructor.

DECL_DESTRUCTOR_P
This macro holds if the function is a destructor.

DECL_COMPLETE_DESTRUCTOR_P
This predicate holds if the function is the destructor for an object a complete

type.

DECL_QOVERLOADED_OPERATOR_P
This macro holds if the function is an overloaded operator.

DECL_CONV_FN_P
This macro holds if the function is a type-conversion operator.

DECL_GLOBAL_CTOR_P
This predicate holds if the function is a file-scope initialization function.

DECL_GLOBAL_DTOR_P
This predicate holds if the function is a file-scope finalization function.

DECL_THUNK_P
This predicate holds if the function is a thunk.

These functions represent stub code that adjusts the this pointer and then
jumps to another function. When the jumped-to function returns, control is
transferred directly to the caller, without returning to the thunk. The first
parameter to the thunk is always the this pointer; the thunk should add THUNK_
DELTA to this value. (The THUNK_DELTA is an int, not an INTEGER_CST.)

Then, if THUNK_VCALL_OFFSET (an INTEGER_CST) is nonzero the adjusted this
pointer must be adjusted again. The complete calculation is given by the fol-
lowing pseudo-code:

this += THUNK_DELTA
if (THUNK_VCALL_OFFSET)
this += (x((ptrdiff_t #*) this)) [THUNK_VCALL_OFFSET]

Finally, the thunk should jump to the location given by DECL_INITIAL; this
will always be an expression for the address of a function.

DECL_NON_THUNK_FUNCTION_P
This predicate holds if the function is not a thunk function.

Chapter 7: Trees: The intermediate representation used by the C and C++ front ends 55

GLOBAL_INIT_PRIORITY
If either DECL_GLOBAL_CTOR_P or DECL_GLOBAL_DTOR_P holds, then this gives
the initialization priority for the function. The linker will arrange that all
functions for which DECL_GLOBAL_CTOR_P holds are run in increasing order of
priority before main is called. When the program exits, all functions for which
DECL_GLOBAL_DTOR_P holds are run in the reverse order.

DECL_ARTIFICIAL
This macro holds if the function was implicitly generated by the compiler,
rather than explicitly declared. In addition to implicitly generated class member
functions, this macro holds for the special functions created to implement static
initialization and destruction, to compute run-time type information, and so

forth.

DECL_ARGUMENTS
This macro returns the PARM_DECL for the first argument to the function. Sub-
sequent PARM_DECL nodes can be obtained by following the TREE_CHAIN links.

DECL_RESULT
This macro returns the RESULT_DECL for the function.

TREE_TYPE
This macro returns the FUNCTION_TYPE or METHOD_TYPE for the function.

TYPE_RAISES_EXCEPTIONS
This macro returns the list of exceptions that a (member-)function can raise.
The returned list, if non NULL, is comprised of nodes whose TREE_VALUE repre-
sents a type.

TYPE_NOTHROW_P
This predicate holds when the exception-specification of its arguments if of the
form ‘Q)’.

DECL_ARRAY_DELETE_OPERATOR_P
This predicate holds if the function an overloaded operator deletel[].

7.6.2 Function Bodies

A function that has a definition in the current translation unit will have a non-NULL DECL_
INITIAL. However, back ends should not make use of the particular value given by DECL_
INITIAL.

The DECL_SAVED_TREE macro will give the complete body of the function. This node
will usually be a COMPOUND_STMT representing the outermost block of the function, but it
may also be a TRY_BLOCK, a RETURN_INIT, or any other valid statement.

7.6.2.1 Statements

There are tree nodes corresponding to all of the source-level statement constructs. These
are enumerated here, together with a list of the various macros that can be used to obtain
information about them. There are a few macros that can be used with all statements:

56 GNU Compiler Collection (GCC) Internals

STMT_LINENO
This macro returns the line number for the statement. If the statement spans
multiple lines, this value will be the number of the first line on which the
statement occurs. Although we mention CASE_LABEL below as if it were a
statement, they do not allow the use of STMT_LINENO. There is no way to
obtain the line number for a CASE_LABEL.

Statements do not contain information about the file from which they came;
that information is implicit in the FUNCTION_DECL from which the statements
originate.

STMT_IS_FULL_EXPR_P
In C++, statements normally constitute “full expressions”; temporaries created
during a statement are destroyed when the statement is complete. However,
G++ sometimes represents expressions by statements; these statements will not
have STMT_IS_FULL_EXPR_P set. Temporaries created during such statements
should be destroyed when the innermost enclosing statement with STMT_IS_
FULL_EXPR_P set is exited.

Here is the list of the various statement nodes, and the macros used to access them.
This documentation describes the use of these nodes in non-template functions (including
instantiations of template functions). In template functions, the same nodes are used, but
sometimes in slightly different ways.

Many of the statements have substatements. For example, a while loop will have a body,
which is itself a statement. If the substatement is NULL_TREE, it is considered equivalent to
a statement consisting of a single ;, i.e., an expression statement in which the expression has
been omitted. A substatement may in fact be a list of statements, connected via their TREE_
CHAINs. So, you should always process the statement tree by looping over substatements,
like this:

void process_stmt (stmt)
tree stmt;
{
while (stmt)
{
switch (TREE_CODE (stmt))
{
case IF_STMT:
process_stmt (THEN_CLAUSE (stmt));
/* More processing here. */
break;

}

stmt = TREE_CHAIN (stmt);

Chapter 7: Trees: The intermediate representation used by the C and C++ front ends 57

In other words, while the then clause of an if statement in C++ can be only one statement
(although that one statement may be a compound statement), the intermediate represen-
tation will sometimes use several statements chained together.

ASM_STMT

BREAK_STMT

CASE_LABEL

Used to represent an inline assembly statement. For an inline assembly state-
ment like:

asm ("mov x, y");

The ASM_STRING macro will return a STRING_CST node for "mov x, y". If
the original statement made use of the extended-assembly syntax, then ASM_
OUTPUTS, ASM_INPUTS, and ASM_CLOBBERS will be the outputs, inputs, and
clobbers for the statement, represented as STRING_CST nodes. The extended-
assembly syntax looks like:

asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

The first string is the ASM_STRING, containing the instruction template. The
next two strings are the output and inputs, respectively; this statement has no
clobbers. As this example indicates, “plain” assembly statements are merely
a special case of extended assembly statements; they have no cv-qualifiers,
outputs, inputs, or clobbers. All of the strings will be NUL-terminated, and will
contain no embedded NUL-characters.

If the assembly statement is declared volatile, or if the statement was not
an extended assembly statement, and is therefore implicitly volatile, then the
predicate ASM_VOLATILE_P will hold of the ASM_STMT.

Used to represent a break statement. There are no additional fields.

Use to represent a case label, range of case labels, or a default label. If
CASE_LOW is NULL_TREE, then this is a default label. Otherwise, if CASE_HIGH
is NULL_TREE, then this is an ordinary case label. In this case, CASE_LOW is
an expression giving the value of the label. Both CASE_LOW and CASE_HIGH
are INTEGER_CST nodes. These values will have the same type as the condition
expression in the switch statement.

Otherwise, if both CASE_LOW and CASE_HIGH are defined, the statement is a
range of case labels. Such statements originate with the extension that allows
users to write things of the form:

case 2 ... b:
The first value will be CASE_LOW, while the second will be CASE_HIGH.

CLEANUP_STMT

Used to represent an action that should take place upon exit from the enclos-
ing scope. Typically, these actions are calls to destructors for local objects,
but back ends cannot rely on this fact. If these nodes are in fact representing
such destructors, CLEANUP_DECL will be the VAR_DECL destroyed. Otherwise,
CLEANUP_DECL will be NULL_TREE. In any case, the CLEANUP_EXPR is the ex-
pression to execute. The cleanups executed on exit from a scope should be run

58 GNU Compiler Collection (GCC) Internals

in the reverse order of the order in which the associated CLEANUP_STMTs were
encountered.

COMPOUND_STMT
Used to represent a brace-enclosed block. The first substatement is given by
COMPOUND_BODY. Subsequent substatements are found by following the TREE_
CHAIN link from one substatement to the next. The COMPOUND_BODY will be
NULL_TREE if there are no substatements.

CONTINUE_STMT
Used to represent a continue statement. There are no additional fields.

CTOR_STMT
Used to mark the beginning (if CTOR_BEGIN_P holds) or end (if CTOR_END_P
holds of the main body of a constructor. See also SUBOBJECT for more informa-
tion on how to use these nodes.

DECL_STMT
Used to represent a local declaration. The DECL_STMT_DECL macro can be
used to obtain the entity declared. This declaration may be a LABEL_DECL,
indicating that the label declared is a local label. (As an extension, GCC
allows the declaration of labels with scope.) In C, this declaration may be a
FUNCTION_DECL, indicating the use of the GCC nested function extension. For
more information, see Section 7.6 [Functions|, page 52.

DO_STMT

Used to represent a do loop. The body of the loop is given by DO_BODY while
the termination condition for the loop is given by DO_COND. The condition for
a do-statement is always an expression.

EMPTY_CLASS_EXPR
Used to represent a temporary object of a class with no data whose address is
never taken. (All such objects are interchangeable.) The TREE_TYPE represents
the type of the object.

EXPR_STMT
Used to represent an expression statement. Use EXPR_STMT_EXPR to obtain the
expression.

FILE_STMT
Used to record a change in filename within the body of a function. Use FILE_
STMT_FILENAME to obtain the new filename.

FOR_STMT

Used to represent a for statement. The FOR_INIT_STMT is the initialization
statement for the loop. The FOR_COND is the termination condition. The FOR_
EXPR is the expression executed right before the FOR_COND on each loop iteration;
often, this expression increments a counter. The body of the loop is given by
FOR_BODY. Note that FOR_INIT_STMT and FOR_BODY return statements, while
FOR_COND and FOR_EXPR return expressions.

Chapter 7: Trees: The intermediate representation used by the C and C++ front ends 59

GOTO_STMT

HANDLER

IF_STMT

LABEL_STMT

Used to represent a goto statement. The GOTO_DESTINATION will usually be
a LABEL_DECL. However, if the “computed goto” extension has been used, the
GOTO_DESTINATION will be an arbitrary expression indicating the destination.
This expression will always have pointer type. Additionally the GOTO_FAKE_P
flag is set whenever the goto statement does not come from source code, but it
is generated implicitly by the compiler. This is used for branch prediction.

Used to represent a C++ catch block. The HANDLER_TYPE is the type of ex-
ception that will be caught by this handler; it is equal (by pointer equality) to
NULL if this handler is for all types. HANDLER_PARMS is the DECL_STMT for the
catch parameter, and HANDLER_BODY is the COMPOUND_STMT for the block itself.

Used to represent an if statement. The IF_COND is the expression.

If the condition is a TREE_LIST, then the TREE_PURPOSE is a statement (usually
a DECL_STMT). Each time the condition is evaluated, the statement should be
executed. Then, the TREE_VALUE should be used as the conditional expression
itself. This representation is used to handle C++ code like this:

if (int i = 7)
where there is a new local variable (or variables) declared within the condition.

The THEN_CLAUSE represents the statement given by the then condition, while
the ELSE_CLAUSE represents the statement given by the else condition.

Used to represent a label. The LABEL_DECL declared by this statement can be
obtained with the LABEL_STMT_LABEL macro. The IDENTIFIER_NODE giving the
name of the label can be obtained from the LABEL_DECL with DECL_NAME.

RETURN_INIT

If the function uses the G++ “named return value” extension, meaning that the
function has been defined like:

S f(int) return s {...}

then there will be a RETURN_INIT. There is never a named returned value for a
constructor. The first argument to the RETURN_INIT is the name of the object
returned; the second argument is the initializer for the object. The object is
initialized when the RETURN_INIT is encountered. The object referred to is the
actual object returned; this extension is a manual way of doing the “return-
value optimization.” Therefore, the object must actually be constructed in the
place where the object will be returned.

RETURN_STMT

Used to represent a return statement. The RETURN_EXPR is the expression
returned; it will be NULL_TREE if the statement was just

return;

60 GNU Compiler Collection (GCC) Internals

SCOPE_STMT

A scope-statement represents the beginning or end of a scope. If SCOPE_BEGIN_
P holds, this statement represents the beginning of a scope; if SCOPE_END_P
holds this statement represents the end of a scope. On exit from a scope, all
cleanups from CLEANUP_STMTs occurring in the scope must be run, in reverse
order to the order in which they were encountered. If SCOPE_NULLIFIED_P or
SCOPE_NO_CLEANUPS_P holds of the scope, back ends should behave as if the
SCOPE_STMT were not present at all.

SUBOBJECT
In a constructor, these nodes are used to mark the point at which a subobject
of this is fully constructed. If, after this point, an exception is thrown before a
CTOR_STMT with CTOR_END_P set is encountered, the SUBOBJECT_CLEANUP must
be executed. The cleanups must be executed in the reverse order in which they
appear.

SWITCH_STMT
Used to represent a switch statement. The SWITCH_COND is the expression on
which the switch is occurring. See the documentation for an IF_STMT for more
information on the representation used for the condition. The SWITCH_BODY
is the body of the switch statement. The SWITCH_TYPE is the original type of
switch expression as given in the source, before any compiler conversions.

TRY_BLOCK
Used to represent a try block. The body of the try block is given by TRY_
STMTS. Each of the catch blocks is a HANDLER node. The first handler is given
by TRY_HANDLERS. Subsequent handlers are obtained by following the TREE_
CHAIN link from one handler to the next. The body of the handler is given by
HANDLER_BODY.

If CLEANUP_P holds of the TRY_BLOCK, then the TRY_HANDLERS will not be a
HANDLER node. Instead, it will be an expression that should be executed if
an exception is thrown in the try block. It must rethrow the exception after
executing that code. And, if an exception is thrown while the expression is
executing, terminate must be called.

USING_STMT
Used to represent a using directive. The namespace is given by USING_STMT_
NAMESPACE, which will be a NAMESPACE_DECL. This node is needed inside

template functions, to implement using directives during instantiation.

WHILE_STMT
Used to represent a while loop. The WHILE_COND is the termination condition
for the loop. See the documentation for an IF_STMT for more information on
the representation used for the condition.

The WHILE_BODY is the body of the loop.

Chapter 7: Trees: The intermediate representation used by the C and C++ front ends 61

7.7 Attributes in trees

Attributes, as specified using the __attribute__ keyword, are represented internally as a
TREE_LIST. The TREE_PURPOSE is the name of the attribute, as an IDENTIFIER_NODE. The
TREE_VALUE is a TREE_LIST of the arguments of the attribute, if any, or NULL_TREE if there
are no arguments; the arguments are stored as the TREE_VALUE of successive entries in the
list, and may be identifiers or expressions. The TREE_CHAIN of the attribute is the next
attribute in a list of attributes applying to the same declaration or type, or NULL_TREE if
there are no further attributes in the list.

Attributes may be attached to declarations and to types; these attributes may be ac-
cessed with the following macros. All attributes are stored in this way, and many also cause
other changes to the declaration or type or to other internal compiler data structures.

tree DECL_ATTRIBUTES (tree decl) [Tree Macro]
This macro returns the attributes on the declaration decl.

tree TYPE_ATTRIBUTES (tree type) [Tree Macro]
This macro returns the attributes on the type type.

7.8 Expressions

The internal representation for expressions is for the most part quite straightforward. How-
ever, there are a few facts that one must bear in mind. In particular, the expression “tree”
is actually a directed acyclic graph. (For example there may be many references to the
integer constant zero throughout the source program; many of these will be represented by
the same expression node.) You should not rely on certain kinds of node being shared, nor
should rely on certain kinds of nodes being unshared.

The following macros can be used with all expression nodes:

TREE_TYPE
Returns the type of the expression. This value may not be precisely the same
type that would be given the expression in the original program.

In what follows, some nodes that one might expect to always have type bool are doc-
umented to have either integral or boolean type. At some point in the future, the C front
end may also make use of this same intermediate representation, and at this point these
nodes will certainly have integral type. The previous sentence is not meant to imply that
the C++ front end does not or will not give these nodes integral type.

Below, we list the various kinds of expression nodes. Except where noted otherwise, the
operands to an expression are accessed using the TREE_OPERAND macro. For example, to
access the first operand to a binary plus expression expr, use:

TREE_OPERAND (expr, 0)
As this example indicates, the operands are zero-indexed.

The table below begins with constants, moves on to unary expressions, then proceeds to
binary expressions, and concludes with various other kinds of expressions:

62 GNU Compiler Collection (GCC) Internals

INTEGER_CST
These nodes represent integer constants. Note that the type of these constants
is obtained with TREE_TYPE; they are not always of type int. In particular,
char constants are represented with INTEGER_CST nodes. The value of the
integer constant e is given by

((TREE_INT_CST_HIGH (e) << HOST_BITS_PER_WIDE_INT)
+ TREE_INST_CST_LOW (e))

HOST_BITS_PER_WIDE_INT is at least thirty-two on all platforms. Both
TREE_INT_CST_HIGH and TREE_INT_CST_LOW return a HOST_WIDE_INT. The
value of an INTEGER_CST is interpreted as a signed or unsigned quantity de-
pending on the type of the constant. In general, the expression given above will
overflow, so it should not be used to calculate the value of the constant.

The variable integer_zero_node is an integer constant with value zero. Sim-
ilarly, integer_one_node is an integer constant with value one. The size_
zero_node and size_one_node variables are analogous, but have type size_t
rather than int.

The function tree_int_cst_1t is a predicate which holds if its first argument
is less than its second. Both constants are assumed to have the same signed-
ness (i.e., either both should be signed or both should be unsigned.) The full
width of the constant is used when doing the comparison; the usual rules about
promotions and conversions are ignored. Similarly, tree_int_cst_equal holds
if the two constants are equal. The tree_int_cst_sgn function returns the
sign of a constant. The value is 1, 0, or -1 according on whether the constant
is greater than, equal to, or less than zero. Again, the signedness of the con-
stant’s type is taken into account; an unsigned constant is never less than zero,
no matter what its bit-pattern.

REAL_CST

FIXME: Talk about how to obtain representations of this constant, do compar-
isons, and so forth.

COMPLEX_CST
These nodes are used to represent complex number constants, that is a __
complex__ whose parts are constant nodes. The TREE_REALPART and TREE_
IMAGPART return the real and the imaginary parts respectively.

VECTOR_CST
These nodes are used to represent vector constants, whose parts are constant
nodes. Each individual constant node is either an integer or a double constant
node. The first operand is a TREE_LIST of the constant nodes and is accessed
through TREE_VECTOR_CST_ELTS.

STRING_CST
These nodes represent string-constants. The TREE_STRING_LENGTH returns the
length of the string, as an int. The TREE_STRING_POINTER is a char* contain-
ing the string itself. The string may not be NUL-terminated, and it may contain
embedded NUL characters. Therefore, the TREE_STRING_LENGTH includes the
trailing NUL if it is present.

Chapter 7: Trees: The intermediate representation used by the C and C++ front ends 63

For wide string constants, the TREE_STRING_LENGTH is the number of bytes in
the string, and the TREE_STRING_POINTER points to an array of the bytes of
the string, as represented on the target system (that is, as integers in the target
endianness). Wide and non-wide string constants are distinguished only by the
TREE_TYPE of the STRING_CST.

FIXME: The formats of string constants are not well-defined when the target
system bytes are not the same width as host system bytes.

PTRMEM_CST
These nodes are used to represent pointer-to-member constants. The PTRMEM_
CST_CLASS is the class type (either a RECORD_TYPE or UNION_TYPE within which
the pointer points), and the PTRMEM_CST_MEMBER is the declaration for the
pointed to object. Note that the DECL_CONTEXT for the PTRMEM_CST_MEMBER
is in general different from the PTRMEM_CST_CLASS. For example, given:

struct B { int i; };

struct D : public B {};

int D::*dp = &D::i;
The PTRMEM_CST_CLASS for &D: :1 is D, even though the DECL_CONTEXT for the
PTRMEM_CST_MEMBER is B, since B: :1i is a member of B, not D.

VAR_DECL

These nodes represent variables, including static data members. For more in-
formation, see Section 7.5 [Declarations|, page 49.

NEGATE_EXPR
These nodes represent unary negation of the single operand, for both integer
and floating-point types. The type of negation can be determined by looking
at the type of the expression.

BIT_NOT_EXPR
These nodes represent bitwise complement, and will always have integral type.
The only operand is the value to be complemented.

TRUTH_NOT_EXPR
These nodes represent logical negation, and will always have integral (or
boolean) type. The operand is the value being negated.

PREDECREMENT _EXPR

PREINCREMENT_EXPR

POSTDECREMENT_EXPR

POSTINCREMENT_EXPR
These nodes represent increment and decrement expressions. The value of the
single operand is computed, and the operand incremented or decremented. In
the case of PREDECREMENT_EXPR and PREINCREMENT_EXPR, the value of the ex-
pression is the value resulting after the increment or decrement; in the case of
POSTDECREMENT_EXPR and POSTINCREMENT_EXPR is the value before the incre-
ment or decrement occurs. The type of the operand, like that of the result, will
be either integral, boolean, or floating-point.

64 GNU Compiler Collection (GCC) Internals

ADDR_EXPR
These nodes are used to represent the address of an object. (These expres-
sions will always have pointer or reference type.) The operand may be another
expression, or it may be a declaration.

As an extension, GCC allows users to take the address of a label. In this case,
the operand of the ADDR_EXPR will be a LABEL_DECL. The type of such an
expression is voidx.

If the object addressed is not an Ivalue, a temporary is created, and the address
of the temporary is used.

INDIRECT_REF
These nodes are used to represent the object pointed to by a pointer. The
operand is the pointer being dereferenced; it will always have pointer or refer-
ence type.

FIX_TRUNC_EXPR
These nodes represent conversion of a floating-point value to an integer. The
single operand will have a floating-point type, while the the complete expression
will have an integral (or boolean) type. The operand is rounded towards zero.

FLOAT_EXPR
These nodes represent conversion of an integral (or boolean) value to a floating-
point value. The single operand will have integral type, while the complete
expression will have a floating-point type.

FIXME: How is the operand supposed to be rounded? Is this dependent on
‘-mieee’?

COMPLEX_EXPR
These nodes are used to represent complex numbers constructed from two ex-
pressions of the same (integer or real) type. The first operand is the real part
and the second operand is the imaginary part.

CONJ_EXPR
These nodes represent the conjugate of their operand.

REALPART_EXPR

IMAGPART_EXPR
These nodes represent respectively the real and the imaginary parts of complex
numbers (their sole argument).

NON_LVALUE_EXPR
These nodes indicate that their one and only operand is not an lvalue. A back
end can treat these identically to the single operand.

NOP_EXPR These nodes are used to represent conversions that do not require any code-
generation. For example, conversion of a char* to an int* does not require any
code be generated; such a conversion is represented by a NOP_EXPR. The single
operand is the expression to be converted. The conversion from a pointer to a
reference is also represented with a NOP_EXPR.

Chapter 7: Trees: The intermediate representation used by the C and C++ front ends 65

CONVERT_EXPR

These nodes are similar to NOP_EXPRs, but are used in those situations where
code may need to be generated. For example, if an int* is converted to an
int code may need to be generated on some platforms. These nodes are never
used for C++-specific conversions, like conversions between pointers to different
classes in an inheritance hierarchy. Any adjustments that need to be made in
such cases are always indicated explicitly. Similarly, a user-defined conversion
is never represented by a CONVERT_EXPR, instead, the function calls are made
explicit.

THROW_EXPR

These nodes represent throw expressions. The single operand is an expression
for the code that should be executed to throw the exception. However, there
is one implicit action not represented in that expression; namely the call to
__throw. This function takes no arguments. If setjmp/longjmp exceptions are
used, the function __sjthrow is called instead. The normal GCC back end uses
the function emit_throw to generate this code; you can examine this function
to see what needs to be done.

LSHIFT_EXPR

RSHIFT_EXPR
These nodes represent left and right shifts, respectively. The first operand is
the value to shift; it will always be of integral type. The second operand is
an expression for the number of bits by which to shift. Right shift should be
treated as arithmetic, i.e., the high-order bits should be zero-filled when the
expression has unsigned type and filled with the sign bit when the expression
has signed type. Note that the result is undefined if the second operand is larger
than the first operand’s type size.

BIT_IOR_EXPR

BIT_XOR_EXPR

BIT_AND_EXPR
These nodes represent bitwise inclusive or, bitwise exclusive or, and bitwise
and, respectively. Both operands will always have integral type.

TRUTH_ANDIF_EXPR

TRUTH_ORIF_EXPR
These nodes represent logical and and logical or, respectively. These operators
are not strict; i.e., the second operand is evaluated only if the value of the
expression is not determined by evaluation of the first operand. The type of
the operands, and the result type, is always of boolean or integral type.

TRUTH_AND_EXPR

TRUTH_OR_EXPR

TRUTH_XOR_EXPR
These nodes represent logical and, logical or, and logical exclusive or. They are
strict; both arguments are always evaluated. There are no corresponding oper-

66 GNU Compiler Collection (GCC) Internals

ators in C or C++, but the front end will sometimes generate these expressions
anyhow, if it can tell that strictness does not matter.

PLUS_EXPR

MINUS_EXPR

MULT_EXPR

TRUNC_DIV_EXPR

TRUNC_MOD_EXPR

RDIV_EXPR
These nodes represent various binary arithmetic operations. Respectively, these
operations are addition, subtraction (of the second operand from the first),
multiplication, integer division, integer remainder, and floating-point division.
The operands to the first three of these may have either integral or floating
type, but there will never be case in which one operand is of floating type and
the other is of integral type.

The result of a TRUNC_DIV_EXPR is always rounded towards zero. The TRUNC_
MOD_EXPR of two operands a and b is always a - (a/b)*b where the division is
as if computed by a TRUNC_DIV_EXPR.

ARRAY_REF
These nodes represent array accesses. The first operand is the array; the second
is the index. To calculate the address of the memory accessed, you must scale
the index by the size of the type of the array elements. The type of these
expressions must be the type of a component of the array.

ARRAY_RANGE_REF
These nodes represent access to a range (or “slice”) of an array. The operands
are the same as that for ARRAY_REF and have the same meanings. The type of
these expressions must be an array whose component type is the same as that
of the first operand. The range of that array type determines the amount of
data these expressions access.

EXACT_DIV_EXPR
Document.

LT_EXPR
LE_EXPR
GT_EXPR
GE_EXPR
EQ_EXPR
NE_EXPR

These nodes represent the less than, less than or equal to, greater than, greater
than or equal to, equal, and not equal comparison operators. The first and
second operand with either be both of integral type or both of floating type.
The result type of these expressions will always be of integral or boolean type.

MODIFY_EXPR
These nodes represent assignment. The left-hand side is the first operand; the
right-hand side is the second operand. The left-hand side will be a VAR_DECL,
INDIRECT_REF, COMPONENT_REF, or other lvalue.

Chapter 7: Trees: The intermediate representation used by the C and C++ front ends 67

INIT_EXPR

COMPONENT_

These nodes are used to represent not only assignment with ‘=’ but also com-
pound assignments (like ‘+="), by reduction to ‘=" assignment. In other words,
the representation for ‘i += 3’ looks just like that for ‘4 = i + 3’.

These nodes are just like MODIFY_EXPR, but are used only when a variable is
initialized, rather than assigned to subsequently.

REF

These nodes represent non-static data member accesses. The first operand is
the object (rather than a pointer to it); the second operand is the FIELD_DECL
for the data member.

COMPOUND_EXPR

COND_EXPR

CALL_EXPR

STMT_EXPR

These nodes represent comma-expressions. The first operand is an expression
whose value is computed and thrown away prior to the evaluation of the second
operand. The value of the entire expression is the value of the second operand.

These nodes represent 7: expressions. The first operand is of boolean or integral
type. If it evaluates to a nonzero value, the second operand should be evaluated,
and returned as the value of the expression. Otherwise, the third operand is
evaluated, and returned as the value of the expression.

The second operand must have the same type as the entire expression, unless
it unconditionally throws an exception or calls a noreturn function, in which
case it should have void type. The same constraints apply to the third operand.
This allows array bounds checks to be represented conveniently as (i >= 0 &&
i<10) ?71i: abort().

As a GNU extension, the C language front-ends allow the second operand of the
?: operator may be omitted in the source. For example, x 7 : 3 is equivalent
to x 7 x : 3, assuming that x is an expression without side-effects. In the
tree representation, however, the second operand is always present, possibly
protected by SAVE_EXPR if the first argument does cause side-effects.

These nodes are used to represent calls to functions, including non-static mem-
ber functions. The first operand is a pointer to the function to call; it is always
an expression whose type is a POINTER_TYPE. The second argument is a TREE_
LIST. The arguments to the call appear left-to-right in the list. The TREE_VALUE
of each list node contains the expression corresponding to that argument. (The
value of TREE_PURPOSE for these nodes is unspecified, and should be ignored.)
For non-static member functions, there will be an operand corresponding to
the this pointer. There will always be expressions corresponding to all of the
arguments, even if the function is declared with default arguments and some
arguments are not explicitly provided at the call sites.

These nodes are used to represent GCC’s statement-expression extension. The
statement-expression extension allows code like this:

68

BIND_EXPR

LOOP_EXPR

EXIT_EXPR

GNU Compiler Collection (GCC) Internals

int £() { return ({ int j; j =3; j +7; });

In other words, an sequence of statements may occur where a single expression
would normally appear. The STMT_EXPR node represents such an expression.
The STMT_EXPR_STMT gives the statement contained in the expression; this is
always a COMPOUND_STMT. The value of the expression is the value of the last
sub-statement in the COMPOUND_STMT. More precisely, the value is the value
computed by the last EXPR_STMT in the outermost scope of the COMPOUND_STMT.
For example, in:

q{3 B
the value is 3 while in:
Hift & {3; D

(represented by a nested COMPOUND_STMT), there is no value. If the STMT_EXPR
does not yield a value, it’s type will be void.

These nodes represent local blocks. The first operand is a list of temporary vari-
ables, connected via their TREE_CHAIN field. These will never require cleanups.
The scope of these variables is just the body of the BIND_EXPR. The body of
the BIND_EXPR is the second operand.

These nodes represent “infinite” loops. The LOOP_EXPR_BODY represents the
body of the loop. It should be executed forever, unless an EXIT_EXPR is en-
countered.

These nodes represent conditional exits from the nearest enclosing LOOP_EXPR.
The single operand is the condition; if it is nonzero, then the loop should be
exited. An EXIT_EXPR will only appear within a LOOP_EXPR.

CLEANUP_POINT_EXPR

These nodes represent full-expressions. The single operand is an expression
to evaluate. Any destructor calls engendered by the creation of temporaries
during the evaluation of that expression should be performed immediately after
the expression is evaluated.

CONSTRUCTOR

These nodes represent the brace-enclosed initializers for a structure or array.
The first operand is reserved for use by the back end. The second operand is a
TREE_LIST. If the TREE_TYPE of the CONSTRUCTOR is a RECORD_TYPE or UNION_
TYPE, then the TREE_PURPOSE of each node in the TREE_LIST will be a FIELD_
DECL and the TREE_VALUE of each node will be the expression used to initialize
that field. You should not depend on the fields appearing in any particular
order, nor should you assume that all fields will be represented. Unrepresented
fields may be assigned any value.

If the TREE_TYPE of the CONSTRUCTOR is an ARRAY_TYPE, then the TREE_PURPOSE
of each element in the TREE_LIST will be an INTEGER_CST. This constant
indicates which element of the array (indexed from zero) is being assigned to;

Chapter 7: Trees: The intermediate representation used by the C and C++ front ends 69

again, the TREE_VALUE is the corresponding initializer. If the TREE_PURPOSE is
NULL_TREE, then the initializer is for the next available array element.

Conceptually, before any initialization is done, the entire area of storage is
initialized to zero.

COMPOUND_LITERAL_EXPR
These nodes represent ISO C99 compound literals. The COMPOUND_LITERAL_
EXPR_DECL_STMT is a DECL_STMT containing an anonymous VAR_DECL for the
unnamed object represented by the compound literal; the DECL_INITIAL of that
VAR_DECL is a CONSTRUCTOR representing the brace-enclosed list of initializers in
the compound literal. That anonymous VAR_DECL can also be accessed directly
by the COMPOUND_LITERAL_EXPR_DECL macro.

SAVE_EXPR
A SAVE_EXPR represents an expression (possibly involving side-effects) that is
used more than once. The side-effects should occur only the first time the
expression is evaluated. Subsequent uses should just reuse the computed value.
The first operand to the SAVE_EXPR is the expression to evaluate. The side-
effects should be executed where the SAVE_EXPR is first encountered in a depth-
first preorder traversal of the expression tree.

TARGET_EXPR
A TARGET_EXPR represents a temporary object. The first operand is a VAR_
DECL for the temporary variable. The second operand is the initializer for the
temporary. The initializer is evaluated, and copied (bitwise) into the temporary.

Often, a TARGET_EXPR occurs on the right-hand side of an assignment, or as
the second operand to a comma-expression which is itself the right-hand side
of an assignment, etc. In this case, we say that the TARGET_EXPR is “normal”;
otherwise, we say it is “orphaned”. For a normal TARGET_EXPR the temporary
variable should be treated as an alias for the left-hand side of the assignment,
rather than as a new temporary variable.

The third operand to the TARGET_EXPR, if present, is a cleanup-expression (i.e.,
destructor call) for the temporary. If this expression is orphaned, then this
expression must be executed when the statement containing this expression is
complete. These cleanups must always be executed in the order opposite to
that in which they were encountered. Note that if a temporary is created on
one branch of a conditional operator (i.e., in the second or third operand to a
COND_EXPR), the cleanup must be run only if that branch is actually executed.

See STMT_IS_FULL_EXPR_P for more information about running these cleanups.

AGGR_INIT_EXPR

An AGGR_INIT_EXPR represents the initialization as the return value of a func-
tion call, or as the result of a constructor. An AGGR_INIT_EXPR will only appear
as the second operand of a TARGET_EXPR. The first operand to the AGGR_INIT_
EXPR is the address of a function to call, just as in a CALL_EXPR. The second
operand are the arguments to pass that function, as a TREE_LIST, again in a
manner similar to that of a CALL_EXPR. The value of the expression is that
returned by the function.

70

VTABLE_REF

GNU Compiler Collection (GCC) Internals

If AGGR_INIT_VIA_CTOR_P holds of the AGGR_INIT_EXPR, then the initialization
is via a constructor call. The address of the third operand of the AGGR_INIT_
EXPR, which is always a VAR_DECL, is taken, and this value replaces the first
argument in the argument list. In this case, the value of the expression is the
VAR_DECL given by the third operand to the AGGR_INIT_EXPR; constructors do
not return a value.

A VTABLE_REF indicates that the interior expression computes a value that is
a vtable entry. It is used with ‘~fvtable-gc’ to track the reference through to
front end to the middle end, at which point we transform this to a REG_VTABLE_
REF note, which survives the balance of code generation.

The first operand is the expression that computes the vtable reference. The
second operand is the VAR_DECL of the vtable. The third operand is an INTEGER _
CST of the byte offset into the vtable.

VA_ARG_EXPR

This node is used to implement support for the C/C++ variable argument-
list mechanism. It represents expressions like va_arg (ap, type). Its TREE_
TYPE yields the tree representation for type and its sole argument yields the
representation for ap.

Chapter 8: RTL Representation 71

8 RTL Representation

Most of the work of the compiler is done on an intermediate representation called register
transfer language. In this language, the instructions to be output are described, pretty
much one by one, in an algebraic form that describes what the instruction does.

RTL is inspired by Lisp lists. It has both an internal form, made up of structures that
point at other structures, and a textual form that is used in the machine description and
in printed debugging dumps. The textual form uses nested parentheses to indicate the
pointers in the internal form.

8.1 RTL Object Types

RTL uses five kinds of objects: expressions, integers, wide integers, strings and vectors.
Expressions are the most important ones. An RTL expression (“RTX”, for short) is a C
structure, but it is usually referred to with a pointer; a type that is given the typedef name
rtx.

An integer is simply an int; their written form uses decimal digits. A wide integer is an
integral object whose type is HOST_WIDE_INT; their written form uses decimal digits.

A string is a sequence of characters. In core it is represented as a char * in usual C
fashion, and it is written in C syntax as well. However, strings in RTL may never be null.
If you write an empty string in a machine description, it is represented in core as a null
pointer rather than as a pointer to a null character. In certain contexts, these null pointers
instead of strings are valid. Within RTL code, strings are most commonly found inside
symbol_ref expressions, but they appear in other contexts in the RTL expressions that
make up machine descriptions.

In a machine description, strings are normally written with double quotes, as you would
in C. However, strings in machine descriptions may extend over many lines, which is invalid
C, and adjacent string constants are not concatenated as they are in C. Any string constant
may be surrounded with a single set of parentheses. Sometimes this makes the machine
description easier to read.

There is also a special syntax for strings, which can be useful when C code is embedded
in a machine description. Wherever a string can appear, it is also valid to write a C-style
brace block. The entire brace block, including the outermost pair of braces, is considered to
be the string constant. Double quote characters inside the braces are not special. Therefore,
if you write string constants in the C code, you need not escape each quote character with

a backslash.

A vector contains an arbitrary number of pointers to expressions. The number of ele-
ments in the vector is explicitly present in the vector. The written form of a vector consists
of square brackets (‘[...]") surrounding the elements, in sequence and with whitespace
separating them. Vectors of length zero are not created; null pointers are used instead.

Expressions are classified by expression codes (also called RTX codes). The expression
code is a name defined in ‘rtl.def’, which is also (in upper case) a C enumeration constant.
The possible expression codes and their meanings are machine-independent. The code of
an RTX can be extracted with the macro GET_CODE (x) and altered with PUT_CODE (x,
newcode).

72 GNU Compiler Collection (GCC) Internals

The expression code determines how many operands the expression contains, and what
kinds of objects they are. In RTL, unlike Lisp, you cannot tell by looking at an operand what
kind of object it is. Instead, you must know from its context—from the expression code of
the containing expression. For example, in an expression of code subreg, the first operand
is to be regarded as an expression and the second operand as an integer. In an expression
of code plus, there are two operands, both of which are to be regarded as expressions. In
a symbol_ref expression, there is one operand, which is to be regarded as a string.

Expressions are written as parentheses containing the name of the expression type, its
flags and machine mode if any, and then the operands of the expression (separated by
spaces).

Expression code names in the ‘md’ file are written in lower case, but when they appear
in C code they are written in upper case. In this manual, they are shown as follows:
const_int.

In a few contexts a null pointer is valid where an expression is normally wanted. The
written form of this is (nil).

8.2 RTL Classes and Formats

The various expression codes are divided into several classes, which are represented by single
characters. You can determine the class of an RTX code with the macro GET_RTX_CLASS
(code). Currently, ‘rtx.def’ defines these classes:

o An RTX code that represents an actual object, such as a register (REG) or
a memory location (MEM, SYMBOL_REF). Constants and basic transforms on
objects (ADDRESSOF, HIGH, LO_SUM) are also included. Note that SUBREG and
STRICT_LOW_PART are not in this class, but in class x.

< An RTX code for a comparison, such as NE or LT.

1 An RTX code for a unary arithmetic operation, such as NEG, NOT, or ABS. This
category also includes value extension (sign or zero) and conversions between
integer and floating point.

c An RTX code for a commutative binary operation, such as PLUS or AND. NE
and EQ are comparisons, so they have class <.

2 An RTX code for a non-commutative binary operation, such as MINUS, DIV, or
ASHIFTRT.

b An RTX code for a bit-field operation. Currently only ZERO_EXTRACT and

SIGN_EXTRACT. These have three inputs and are lvalues (so they can be used
for insertion as well). See Section 8.10 [Bit-Fields], page 95.

3 An RTX code for other three input operations. Currently only IF_THEN_ELSE.

i An RTX code for an entire instruction: INSN, JUMP_INSN, and CALL_INSN. See
Section 8.17 [Insns], page 104.

m An RTX code for something that matches in insns, such as MATCH_DUP. These
only occur in machine descriptions.

Chapter 8: RTL Representation 73

a An RTX code for an auto-increment addressing mode, such as POST_INC.

X All other RTX codes. This category includes the remaining codes used only in
machine descriptions (DEFINE_x*, etc.). It also includes all the codes describing
side effects (SET, USE, CLOBBER, etc.) and the non-insns that may appear on an
insn chain, such as NOTE, BARRIER, and CODE_LABEL.

For each expression code, ‘rtl.def’ specifies the number of contained objects and their
kinds using a sequence of characters called the format of the expression code. For example,
the format of subreg is ‘ei’.

These are the most commonly used format characters:

e An expression (actually a pointer to an expression).
i An integer.

W A wide integer.

s A string.

E A vector of expressions.

A few other format characters are used occasionally:

u ‘u’ is equivalent to ‘e’ except that it is printed differently in debugging dumps.
It is used for pointers to insns.

n ‘n’ is equivalent to ‘i’ except that it is printed differently in debugging dumps.
It is used for the line number or code number of a note insn.

S ‘S’ indicates a string which is optional. In the RTL objects in core, ‘S’ is
equivalent to ‘s’, but when the object is read, from an ‘md’ file, the string value
of this operand may be omitted. An omitted string is taken to be the null
string.

v ‘V’ indicates a vector which is optional. In the RTL objects in core, ‘V’ is
equivalent to ‘E’, but when the object is read from an ‘md’ file, the vector value
of this operand may be omitted. An omitted vector is effectively the same as a
vector of no elements.

B ‘B’ indicates a pointer to basic block structure.

0 ‘0’ means a slot whose contents do not fit any normal category. ‘0’ slots are
not printed at all in dumps, and are often used in special ways by small parts
of the compiler.

There are macros to get the number of operands and the format of an expression code:
GET_RTX_LENGTH (code)
Number of operands of an RTX of code code.

GET_RTX_FORMAT (code)
The format of an RTX of code code, as a C string.

Some classes of RTX codes always have the same format. For example, it is safe to
assume that all comparison operations have format ee.

74 GNU Compiler Collection (GCC) Internals

1 All codes of this class have format e.

<

c

2 All codes of these classes have format ee.

b

3 All codes of these classes have format eee.

i All codes of this class have formats that begin with iuueiee. See Section 8.17
[Insns], page 104. Note that not all RTL objects linked onto an insn chain are
of class i.

)

m

X You can make no assumptions about the format of these codes.

8.3 Access to Operands

Operands of expressions are accessed using the macros XEXP, XINT, XWINT and XSTR. Each
of these macros takes two arguments: an expression-pointer (RTX) and an operand number
(counting from zero). Thus,

XEXP (x, 2)
accesses operand 2 of expression x, as an expression.

XINT (x, 2)
accesses the same operand as an integer. XSTR, used in the same fashion, would access it as
a string.

Any operand can be accessed as an integer, as an expression or as a string. You must

choose the correct method of access for the kind of value actually stored in the operand.

You would do this based on the expression code of the containing expression. That is also
how you would know how many operands there are.

For example, if x is a subreg expression, you know that it has two operands which can
be correctly accessed as XEXP (x, 0) and XINT (x, 1). If you did XINT (x, 0), you would
get the address of the expression operand but cast as an integer; that might occasionally
be useful, but it would be cleaner to write (int) XEXP (x, 0). XEXP (x, 1) would also
compile without error, and would return the second, integer operand cast as an expression
pointer, which would probably result in a crash when accessed. Nothing stops you from
writing XEXP (x, 28) either, but this will access memory past the end of the expression
with unpredictable results.

Access to operands which are vectors is more complicated. You can use the macro XVEC
to get the vector-pointer itself, or the macros XVECEXP and XVECLEN to access the elements
and length of a vector.

XVEC (exp, idx)
Access the vector-pointer which is operand number idx in exp.

XVECLEN (exp, idx)
Access the length (number of elements) in the vector which is in operand number
idx in exp. This value is an int.

Chapter 8: RTL Representation 75

XVECEXP (exp, idx, eltnum)
Access element number eltnum in the vector which is in operand number idx
in exp. This value is an RTX.

It is up to you to make sure that eltnum is not negative and is less than XVECLEN
(exp, idx).

All the macros defined in this section expand into lvalues and therefore can be used to
assign the operands, lengths and vector elements as well as to access them.

8.4 Flags in an RTL Expression

RTL expressions contain several flags (one-bit bit-fields) that are used in certain types of
expression. Most often they are accessed with the following macros, which expand into
lvalues.

CONSTANT_POOL_ADDRESS_P (x)
Nonzero in a symbol_ref if it refers to part of the current function’s constant
pool. For most targets these addresses are in a .rodata section entirely separate
from the function, but for some targets the addresses are close to the beginning
of the function. In either case GCC assumes these addresses can be addressed
directly, perhaps with the help of base registers. Stored in the unchanging field
and printed as ‘/u’.

CONST_OR_PURE_CALL_P (x)
In a call_insn, note, or an expr_list for notes, indicates that the insn rep-
resents a call to a const or pure function. Stored in the unchanging field and
printed as ‘/u’.

INSN_ANNULLED_BRANCH_P (x)
In a jump_insn, call_insn, or insn indicates that the branch is an annulling
one. See the discussion under sequence below. Stored in the unchanging field
and printed as ‘/u’.

INSN_DEAD_CODE_P (x)
In an insn during the dead-code elimination pass, nonzero if the insn is dead.
Stored in the in_struct field and printed as ‘/s’.

INSN_DELETED_P (x)
In an insn, call_insn, jump_insn, code_label, barrier, or note, nonzero if
the insn has been deleted. Stored in the volatil field and printed as ‘/v’.

INSN_FROM_TARGET_P (x)
In an insn or jump_insn or call_insn in a delay slot of a branch, indicates that
the insn is from the target of the branch. If the branch insn has INSN_ANNULLED_
BRANCH_P set, this insn will only be executed if the branch is taken. For annulled
branches with INSN_FROM_TARGET_P clear, the insn will be executed only if the
branch is not taken. When INSN_ANNULLED_BRANCH_P is not set, this insn will
always be executed. Stored in the in_struct field and printed as ‘/s’.

76 GNU Compiler Collection (GCC) Internals

LABEL_QUTSIDE_LOOP_P (x)
In label_ref expressions, nonzero if this is a reference to a label that is outside
the innermost loop containing the reference to the label. Stored in the in_
struct field and printed as ‘/s’.

LABEL_PRESERVE_P (x)
In a code_label or note, indicates that the label is referenced by code or data
not visible to the RTL of a given function. Labels referenced by a non-local
goto will have this bit set. Stored in the in_struct field and printed as /s’.

LABEL_REF_NONLOCAL_P (x)
In label_ref and reg_label expressions, nonzero if this is a reference to a
non-local label. Stored in the volatil field and printed as ‘/v’.

MEM_IN_STRUCT_P (x)
In mem expressions, nonzero for reference to an entire structure, union or array,
or to a component of one. Zero for references to a scalar variable or through
a pointer to a scalar. If both this flag and MEM_SCALAR_P are clear, then we
don’t know whether this mem is in a structure or not. Both flags should never
be simultaneously set. Stored in the in_struct field and printed as ‘/s’.

MEM_KEEP_ALIAS_SET_P (x)
In mem expressions, 1 if we should keep the alias set for this mem unchanged
when we access a component. Set to 1, for example, when we are already in
a non-addressable component of an aggregate. Stored in the jump field and
printed as ‘/j’.

MEM_SCALAR_P (x)
In mem expressions, nonzero for reference to a scalar known not to be a member
of a structure, union, or array. Zero for such references and for indirections
through pointers, even pointers pointing to scalar types. If both this flag and
MEM_IN_STRUCT_P are clear, then we don’t know whether this mem is in a struc-
ture or not. Both flags should never be simultaneously set. Stored in the
frame_related field and printed as ‘/f’.

MEM_VOLATILE_P (x)
In mem, asm_operands, and asm_input expressions, nonzero for volatile memory
references. Stored in the volatil field and printed as ‘/v’.

REG_FUNCTION_VALUE_P (x)
Nonzero in a reg if it is the place in which this function’s value is going to be
returned. (This happens only in a hard register.) Stored in the integrated
field and printed as ‘/1i’.

REG_LOOP_TEST_P (x)
In reg expressions, nonzero if this register’s entire life is contained in the exit
test code for some loop. Stored in the in_struct field and printed as ‘/s’.

REG_POINTER (x)
Nongzero in a reg if the register holds a pointer. Stored in the frame_related
field and printed as ‘/f’.

Chapter 8: RTL Representation 7

REG_USERVAR_P (x)
In a reg, nonzero if it corresponds to a variable present in the user’s source
code. Zero for temporaries generated internally by the compiler. Stored in the
volatil field and printed as ‘/v’.

The same hard register may be used also for collecting the values of functions
called by this one, but REG_FUNCTION_VALUE_P is zero in this kind of use.

RTX_FRAME_RELATED_P (x)
Nongzero in an insn, call_insn, jump_insn, barrier, or set which is part of a
function prologue and sets the stack pointer, sets the frame pointer, or saves a
register. This flag should also be set on an instruction that sets up a temporary
register to use in place of the frame pointer. Stored in the frame_related field
and printed as ‘/f’.

In particular, on RISC targets where there are limits on the sizes of immediate
constants, it is sometimes impossible to reach the register save area directly from
the stack pointer. In that case, a temporary register is used that is near enough
to the register save area, and the Canonical Frame Address, i.e., DWARF2’s
logical frame pointer, register must (temporarily) be changed to be this tem-
porary register. So, the instruction that sets this temporary register must be
marked as RTX_FRAME_RELATED_P.

If the marked instruction is overly complex (defined in terms of what
dwarf2out_frame_debug_expr can handle), you will also have to create a
REG_FRAME_RELATED_EXPR note and attach it to the instruction. This note
should contain a simple expression of the computation performed by this
instruction, i.e., one that dwarf2out_frame_debug_expr can handle.

This flag is required for exception handling support on targets with RTL pro-
logues.

RTX_INTEGRATED_P (x)
Nonzero in an insn, call_insn, jump_insn, barrier, code_label, insn_
list, const, or note if it resulted from an in-line function call. Stored in
the integrated field and printed as ‘/i’.

RTX_UNCHANGING_P (x)
Nonzero in a reg, mem, or concat if the register or memory is set at most once,
anywhere. This does not mean that it is function invariant.

GCC uses this flag to determine whether two references conflict. As imple-
mented by true_dependence in ‘alias.c’ for memory references, unchanging
memory can’t conflict with non-unchanging memory; a non-unchanging read
can conflict with a non-unchanging write; an unchanging read can conflict with
an unchanging write (since there may be a single store to this address to ini-
tialize it); and an unchanging store can conflict with a non-unchanging read.
This means we must make conservative assumptions when choosing the value
of this flag for a memory reference to an object containing both unchanging
and non-unchanging fields: we must set the flag when writing to the object and
clear it when reading from the object.

Stored in the unchanging field and printed as ‘/u’.

78 GNU Compiler Collection (GCC) Internals

SCHED_GROUP_P (x)
During instruction scheduling, in an insn, call_insn or jump_insn, indicates
that the previous insn must be scheduled together with this insn. This is
used to ensure that certain groups of instructions will not be split up by the
instruction scheduling pass, for example, use insns before a call_insn may not
be separated from the call_insn. Stored in the in_struct field and printed
as ‘/s’.

SET_IS_RETURN_P (x)
For a set, nonzero if it is for a return. Stored in the jump field and printed as
‘/J 7'

SIBLING_CALL_P (x)

For a call_insn, nonzero if the insn is a sibling call. Stored in the jump field
and printed as ‘/j’.

STRING_POOL_ADDRESS_P (x)
For a symbol_ref expression, nonzero if it addresses this function’s string con-
stant pool. Stored in the frame_related field and printed as ‘/f’.

SUBREG_PROMOTED_UNSIGNED_P (x)

Returns a value greater then zero for a subreg that has SUBREG_PROMOTED_
VAR_P nonzero if the object being referenced is kept zero-extended, zero if it
is kept sign-extended, and less then zero if it is extended some other way via
the ptr_extend instruction. Stored in the unchanging field and volatil field,
printed as ‘/u’ and ‘/v’. This macro may only be used to get the value it
may not be used to change the value. Use SUBREG_PROMOTED_UNSIGNED_SET to
change the value.

SUBREG_PROMOTED_UNSIGNED_SET (x)
Set the unchanging and volatil fields in a subreg to reflect zero, sign, or
other extension. If volatil is zero, then unchanging as nonzero means zero
extension and as zero means sign extension. If volatil is nonzero then some
other type of extension was done via the ptr_extend instruction.

SUBREG_PROMOTED_VAR_P (x)

Nonzero in a subreg if it was made when accessing an object that was promoted
to a wider mode in accord with the PROMOTED_MODE machine description macro
(see Section 10.5 [Storage Layout], page 205). In this case, the mode of the
subreg is the declared mode of the object and the mode of SUBREG_REG is the
mode of the register that holds the object. Promoted variables are always either
sign- or zero-extended to the wider mode on every assignment. Stored in the
in_struct field and printed as ‘/s’.

SYMBOL_REF_USED (x)
In a symbol_ref, indicates that x has been used. This is normally only used
to ensure that x is only declared external once. Stored in the used field.

SYMBOL_REF_WEAK (x)
In a symbol_ref, indicates that x has been declared weak. Stored in the
integrated field and printed as ‘/i’.

Chapter 8: RTL Representation 79

SYMBOL_REF_FLAG (x)

In a symbol_ref, this is used as a flag for machine-specific purposes. Stored in
the volatil field and printed as ‘/v’.
Most uses of SYMBOL_REF_FLAG are historic and may be subsumed by SYMBOL_
REF_FLAGS. Certainly use of SYMBOL_REF_FLAGS is mandatory if the target
requires more than one bit of storage.

These are the fields to which the above macros refer:

call

This flag is currently unused.

In an RTL dump, this flag is represented as ‘/c’.

frame_related

in_struct

integrated

In an insn or set expression, 1 means that it is part of a function prologue
and sets the stack pointer, sets the frame pointer, saves a register, or sets up a
temporary register to use in place of the frame pointer.

In reg expressions, 1 means that the register holds a pointer.

In symbol_ref expressions, 1 means that the reference addresses this function’s
string constant pool.

In mem expressions, 1 means that the reference is to a scalar.

In an RTL dump, this flag is represented as ‘/f’.

In mem expressions, it is 1 if the memory datum referred to is all or part of a
structure or array; 0 if it is (or might be) a scalar variable. A reference through
a C pointer has 0 because the pointer might point to a scalar variable. This
information allows the compiler to determine something about possible cases of
aliasing.

In reg expressions, it is 1 if the register has its entire life contained within the
test expression of some loop.

In subreg expressions, 1 means that the subreg is accessing an object that has
had its mode promoted from a wider mode.

In label_ref expressions, 1 means that the referenced label is outside the
innermost loop containing the insn in which the label_ref was found.

In code_label expressions, it is 1 if the label may never be deleted. This is
used for labels which are the target of non-local gotos. Such a label that would
have been deleted is replaced with a note of type NOTE_INSN_DELETED_LABEL.

In an insn during dead-code elimination, 1 means that the insn is dead code.

In an insn or jump_insn during reorg for an insn in the delay slot of a branch,
1 means that this insn is from the target of the branch.

In an insn during instruction scheduling, 1 means that this insn must be sched-
uled as part of a group together with the previous insn.

In an RTL dump, this flag is represented as ‘/s’.

In an insn, insn_list, or const, 1 means the RTL was produced by procedure
integration.

80

jump

unchanging

used

volatil

GNU Compiler Collection (GCC) Internals

In reg expressions, 1 means the register contains the value to be returned by
the current function. On machines that pass parameters in registers, the same
register number may be used for parameters as well, but this flag is not set on
such uses.

In symbol_ref expressions, 1 means the referenced symbol is weak.

In an RTL dump, this flag is represented as ‘/i’.

In a mem expression, 1 means we should keep the alias set for this mem un-
changed when we access a component.

In a set, 1 means it is for a return.

In a call_insn, 1 means it is a sibling call.

In an RTL dump, this flag is represented as ‘/j’.

In reg and mem expressions, 1 means that the value of the expression never
changes.

In subreg expressions, it is 1 if the subreg references an unsigned object whose
mode has been promoted to a wider mode.

In an insn or jump_insn in the delay slot of a branch instruction, 1 means an
annulling branch should be used.

In a symbol_ref expression, 1 means that this symbol addresses something in
the per-function constant pool.

In a call_insn, note, or an expr_list of notes, 1 means that this instruction
is a call to a const or pure function.

In an RTL dump, this flag is represented as ‘/u’.
This flag is used directly (without an access macro) at the end of RTL generation
for a function, to count the number of times an expression appears in insns.

Expressions that appear more than once are copied, according to the rules for
shared structure (see Section 8.19 [Sharing], page 114).

For a reg, it is used directly (without an access macro) by the leaf register
renumbering code to ensure that each register is only renumbered once.

In a symbol_ref, it indicates that an external declaration for the symbol has
already been written.

In a mem, asm_operands, or asm_input expression, it is 1 if the memory refer-
ence is volatile. Volatile memory references may not be deleted, reordered or
combined.

In a symbol_ref expression, it is used for machine-specific purposes.

In a reg expression, it is 1 if the value is a user-level variable. 0 indicates an
internal compiler temporary.

In an insn, 1 means the insn has been deleted.

In label_ref and reg_label expressions, 1 means a reference to a non-local
label.

In an RTL dump, this flag is represented as ‘/v’.

Chapter 8: RTL Representation 81

8.5 Machine Modes

A machine mode describes a size of data object and the representation used for it. In the C
code, machine modes are represented by an enumeration type, enum machine_mode, defined
in ‘machmode.def’. Each RTL expression has room for a machine mode and so do certain
kinds of tree expressions (declarations and types, to be precise).

In debugging dumps and machine descriptions, the machine mode of an RTL expression
is written after the expression code with a colon to separate them. The letters ‘mode’ which
appear at the end of each machine mode name are omitted. For example, (reg:SI 38) is
a reg expression with machine mode SImode. If the mode is VOIDmode, it is not written at
all.

Here is a table of machine modes. The term “byte” below refers to an object of BITS_
PER_UNIT bits (see Section 10.5 [Storage Layout]|, page 205).

BImode “Bit” mode represents a single bit, for predicate registers.

QImode “Quarter-Integer” mode represents a single byte treated as an integer.

HImode “Half-Integer” mode represents a two-byte integer.

PSImode “Partial Single Integer” mode represents an integer which occupies four bytes

but which doesn’t really use all four. On some machines, this is the right mode
to use for pointers.

SImode “Single Integer” mode represents a four-byte integer.

PDImode “Partial Double Integer” mode represents an integer which occupies eight bytes
but which doesn’t really use all eight. On some machines, this is the right mode
to use for certain pointers.

DImode “Double Integer” mode represents an eight-byte integer.

TImode “Tetra Integer” (7) mode represents a sixteen-byte integer.

O0Imode “Octa Integer” (?7) mode represents a thirty-two-byte integer.

QFmode “Quarter-Floating” mode represents a quarter-precision (single byte) floating
point number.

HFmode “Half-Floating” mode represents a half-precision (two byte) floating point num-
ber.

TQFmode “Three-Quarter-Floating” (?7) mode represents a three-quarter-precision (three

byte) floating point number.

SFmode “Single Floating” mode represents a four byte floating point number. In the
common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a
single-precision IEEE floating point number; it can also be used for double-
precision (on processors with 16-bit bytes) and single-precision VAX and IBM

types.
DFmode “Double Floating” mode represents an eight byte floating point number. In the

common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a
double-precision IEEE floating point number.

82 GNU Compiler Collection (GCC) Internals

XFmode “Extended Floating” mode represents a twelve byte floating point number. This
mode is used for IEEE extended floating point. On some systems not all bits
within these bytes will actually be used.

TFmode “Tetra Floating” mode represents a sixteen byte floating point number. This
gets used for both the 96-bit extended IEEE floating-point types padded to 128
bits, and true 128-bit extended IEEE floating-point types.

CCmode “Condition Code” mode represents the value of a condition code, which is a
machine-specific set of bits used to represent the result of a comparison oper-
ation. Other machine-specific modes may also be used for the condition code.
These modes are not used on machines that use ccO (see see Section 10.15
[Condition Code], page 264).

BLKmode “Block” mode represents values that are aggregates to which none of the other
modes apply. In RTL, only memory references can have this mode, and only if
they appear in string-move or vector instructions. On machines which have no
such instructions, BLKmode will not appear in RTL.

V0IDmode Void mode means the absence of a mode or an unspecified mode. For example,
RTL expressions of code const_int have mode VOIDmode because they can be
taken to have whatever mode the context requires. In debugging dumps of
RTL, VOIDmode is expressed by the absence of any mode.

QCmode, HCmode, SCmode, DCmode, XCmode, TCmode
These modes stand for a complex number represented as a pair of floating
point values. The floating point values are in QFmode, HFmode, SFmode, DFmode,
XFmode, and TFmode, respectively.

CQImode, CHImode, CSImode, CDImode, CTImode, COImode
These modes stand for a complex number represented as a pair of integer values.
The integer values are in QImode, HImode, SImode, DImode, TImode, and 0Imode,
respectively.

The machine description defines Pmode as a C macro which expands into the machine
mode used for addresses. Normally this is the mode whose size is BITS_PER_WORD, SImode
on 32-bit machines.

The only modes which a machine description must support are QImode, and the modes
corresponding to BITS_PER_WORD, FLOAT_TYPE_SIZE and DOUBLE_TYPE_SIZE. The compiler
will attempt to use DImode for 8-byte structures and unions, but this can be prevented by
overriding the definition of MAX_FIXED_MODE_SIZE. Alternatively, you can have the compiler
use TImode for 16-byte structures and unions. Likewise, you can arrange for the C type
short int to avoid using HImode.

Very few explicit references to machine modes remain in the compiler and these few
references will soon be removed. Instead, the machine modes are divided into mode classes.
These are represented by the enumeration type enum mode_class defined in ‘machmode.h’.
The possible mode classes are:

MODE_INT Integer modes. By default these are BImode, QImode, HImode, SImode, DImode,
TImode, and OImode.

Chapter 8: RTL Representation 83

MODE_PARTIAL_INT
The “partial integer” modes, PQImode, PHImode, PSImode and PDImode.

MODE_FLOAT
Floating point modes. By default these are QFmode, HFmode, TQFmode, SFmode,
DFmode, XFmode and TFmode.

MODE_COMPLEX_INT
Complex integer modes. (These are not currently implemented).

MODE_COMPLEX_FLOAT
Complex floating point modes. By default these are QCmode, HCmode, SCmode,
DCmode, XCmode, and TCmode.

MODE_FUNCTION
Algol or Pascal function variables including a static chain. (These are not
currently implemented).

MODE_CC Modes representing condition code values. These are CCmode plus any modes
listed in the EXTRA_CC_MODES macro. See Section 9.11 [Jump Patterns],
page 160, also see Section 10.15 [Condition Code], page 264.

MODE_RANDOM
This is a catchall mode class for modes which don’t fit into the above classes.
Currently VOIDmode and BLKmode are in MODE_RANDOM.

Here are some C macros that relate to machine modes:

GET_MODE (x)
Returns the machine mode of the RTX x.

PUT_MODE (x, newmode)
Alters the machine mode of the RTX x to be newmode.

NUM_MACHINE_MODES
Stands for the number of machine modes available on the target machine. This
is one greater than the largest numeric value of any machine mode.

GET_MODE_NAME (m)
Returns the name of mode m as a string.

GET_MODE_CLASS (m)
Returns the mode class of mode m.

GET_MODE_WIDER_MODE (m)
Returns the next wider natural mode. For example, the expression GET_MODE_
WIDER_MODE (QImode) returns HImode.

GET_MODE_SIZE (m)
Returns the size in bytes of a datum of mode m.

GET_MODE_BITSIZE (m)
Returns the size in bits of a datum of mode m.

84 GNU Compiler Collection (GCC) Internals

GET_MODE_MASK (m)
Returns a bitmask containing 1 for all bits in a word that fit within mode m.
This macro can only be used for modes whose bitsize is less than or equal to
HOST_BITS_PER_INT.

GET_MODE_ALIGNMENT (m)
Return the required alignment, in bits, for an object of mode m.

GET_MODE_UNIT_SIZE (m)
Returns the size in bytes of the subunits of a datum of mode m. This is the
same as GET_MODE_SIZE except in the case of complex modes. For them, the
unit size is the size of the real or imaginary part.

GET_MODE_NUNITS (m)
Returns the number of units contained in a mode, i.e., GET_MODE_SIZE divided
by GET_MODE_UNIT_SIZE.

GET_CLASS_NARROWEST_MODE (c)
Returns the narrowest mode in mode class c.

The global variables byte_mode and word_mode contain modes whose classes are MODE_
INT and whose bitsizes are either BITS_PER_UNIT or BITS_PER_WORD, respectively. On 32-bit
machines, these are QImode and SImode, respectively.

8.6 Constant Expression Types

The simplest RTL expressions are those that represent constant values.

(const_int i)
This type of expression represents the integer value i. i is customarily accessed
with the macro INTVAL as in INTVAL (exp), which is equivalent to XWINT (exp,
0).

There is only one expression object for the integer value zero; it is the value
of the variable constO_rtx. Likewise, the only expression for integer value one
is found in consti_rtx, the only expression for integer value two is found in
const2_rtx, and the only expression for integer value negative one is found
in constml_rtx. Any attempt to create an expression of code const_int
and value zero, one, two or negative one will return constO_rtx, constl_rtx,
const2_rtx or constml_rtx as appropriate.

Similarly, there is only one object for the integer whose value is STORE_FLAG_
VALUE. It is found in const_true_rtx. If STORE_FLAG_VALUE is one, const_
true_rtx and constl_rtx will point to the same object. If STORE_FLAG_VALUE
is —1, const_true_rtx and constml_rtx will point to the same object.

(const_double:m addr i0 il ...)
Represents either a floating-point constant of mode m or an integer constant too
large to fit into HOST_BITS_PER_WIDE_INT bits but small enough to fit within
twice that number of bits (GCC does not provide a mechanism to represent
even larger constants). In the latter case, m will be VOIDmode.

Chapter 8: RTL Representation 85

(const_vector:m [x0 x1 ...])
Represents a vector constant. The square brackets stand for the vector contain-
ing the constant elements. x0, x1 and so on are the const_int or const_double
elements.

The number of units in a const_vector is obtained with the macro CONST_
VECTOR_NUNITS as in CONST_VECTOR_NUNITS (v).

Individual elements in a vector constant are accessed with the macro CONST_
VECTOR_ELT as in CONST_VECTOR_ELT (v, n) where v is the vector constant
and n is the element desired.

addr is used to contain the mem expression that corresponds to the location in
memory that at which the constant can be found. If it has not been allocated
a memory location, but is on the chain of all const_double expressions in this
compilation (maintained using an undisplayed field), addr contains const0_
rtx. If it is not on the chain, addr contains ccO_rtx. addr is customarily
accessed with the macro CONST_DOUBLE_MEM and the chain field via CONST_
DOUBLE_CHAIN.

If m is VOIDmode, the bits of the value are stored in i0 and il. i0 is customarily
accessed with the macro CONST_DOUBLE_LOW and il with CONST_DOUBLE_HIGH.

If the constant is floating point (regardless of its precision), then the number
of integers used to store the value depends on the size of REAL_VALUE_TYPE
(see Section 10.22 [Floating Point], page 310). The integers represent a float-
ing point number, but not precisely in the target machine’s or host machine’s
floating point format. To convert them to the precise bit pattern used by the
target machine, use the macro REAL_VALUE_TO_TARGET_DOUBLE and friends (see
Section 10.20.2 [Data Output], page 281).

The macro CONSTO_RTX (mode) refers to an expression with value 0 in mode
mode. If mode mode is of mode class MODE_INT, it returns constO_rtx. If
mode mode is of mode class MODE_FLOAT, it returns a CONST_DOUBLE expression
in mode mode. Otherwise, it returns a CONST_VECTOR expression in mode mode.
Similarly, the macro CONST1_RTX (mode) refers to an expression with value 1 in
mode mode and similarly for CONST2_RTX. The CONST1_RTX and CONST2_RTX
macros are undefined for vector modes.

(const_string str)
Represents a constant string with value str. Currently this is used only for insn
attributes (see Section 9.18 [Insn Attributes|, page 175) since constant strings
in C are placed in memory.

(symbol_ref:mode symbol)
Represents the value of an assembler label for data. symbol is a string that
describes the name of the assembler label. If it starts with a ‘*’, the label is
the rest of symbol not including the ‘*’. Otherwise, the label is symbol, usually
prefixed with ¢_’.

The symbol_ref contains a mode, which is usually Pmode. Usually that is the
only mode for which a symbol is directly valid.

86

GNU Compiler Collection (GCC) Internals

(label_ref label)

Represents the value of an assembler label for code. It contains one operand,
an expression, which must be a code_label or a note of type NOTE_INSN_
DELETED_LABEL that appears in the instruction sequence to identify the place
where the label should go.

The reason for using a distinct expression type for code label references is so
that jump optimization can distinguish them.

(const:m exp)

Represents a constant that is the result of an assembly-time arithmetic com-
putation. The operand, exp, is an expression that contains only constants
(const_int, symbol_ref and label_ref expressions) combined with plus and
minus. However, not all combinations are valid, since the assembler cannot do
arbitrary arithmetic on relocatable symbols.

m should be Pmode.

(high:m exp)

Represents the high-order bits of exp, usually a symbol_ref. The number of
bits is machine-dependent and is normally the number of bits specified in an
instruction that initializes the high order bits of a register. It is used with lo_
sum to represent the typical two-instruction sequence used in RISC machines
to reference a global memory location.

m should be Pmode.

8.7 Registers and Memory

Here are the RTL expression types for describing access to machine registers and to main

memory.

(reg:m n)

For small values of the integer n (those that are less than FIRST_PSEUDO_
REGISTER), this stands for a reference to machine register number n: a hard
register. For larger values of n, it stands for a temporary value or pseudo
register. The compiler’s strategy is to generate code assuming an unlimited
number of such pseudo registers, and later convert them into hard registers or
into memory references.

m is the machine mode of the reference. It is necessary because machines can
generally refer to each register in more than one mode. For example, a register
may contain a full word but there may be instructions to refer to it as a half
word or as a single byte, as well as instructions to refer to it as a floating point
number of various precisions.

Even for a register that the machine can access in only one mode, the mode
must always be specified.

The symbol FIRST_PSEUDO_REGISTER is defined by the machine description,
since the number of hard registers on the machine is an invariant characteristic
of the machine. Note, however, that not all of the machine registers must be

Chapter 8: RTL Representation 87

general registers. All the machine registers that can be used for storage of data
are given hard register numbers, even those that can be used only in certain
instructions or can hold only certain types of data.

A hard register may be accessed in various modes throughout one function,
but each pseudo register is given a natural mode and is accessed only in that
mode. When it is necessary to describe an access to a pseudo register using a
nonnatural mode, a subreg expression is used.

A reg expression with a machine mode that specifies more than one word
of data may actually stand for several consecutive registers. If in addition the
register number specifies a hardware register, then it actually represents several
consecutive hardware registers starting with the specified one.

Each pseudo register number used in a function’s RTL code is represented by
a unique reg expression.

Some pseudo register numbers, those within the range of FIRST_VIRTUAL_
REGISTER to LAST_VIRTUAL_REGISTER only appear during the RTL generation
phase and are eliminated before the optimization phases. These represent lo-
cations in the stack frame that cannot be determined until RTL generation for
the function has been completed. The following virtual register numbers are
defined:

VIRTUAL_INCOMING_ARGS_REGNUM
This points to the first word of the incoming arguments passed
on the stack. Normally these arguments are placed there by the
caller, but the callee may have pushed some arguments that were
previously passed in registers.

When RTL generation is complete, this virtual register is replaced
by the sum of the register given by ARG_POINTER_REGNUM and the
value of FIRST_PARM_OFFSET.

VIRTUAL_STACK_VARS_REGNUM
If FRAME_GROWS_DOWNWARD is defined, this points to immediately
above the first variable on the stack. Otherwise, it points to the
first variable on the stack.

VIRTUAL_STACK_VARS_REGNUM is replaced with the sum of the reg-
ister given by FRAME_POINTER_REGNUM and the value STARTING_
FRAME_OFFSET.

VIRTUAL_STACK_DYNAMIC_REGNUM
This points to the location of dynamically allocated memory on the
stack immediately after the stack pointer has been adjusted by the
amount of memory desired.

This virtual register is replaced by the sum of the register given by
STACK_POINTER_REGNUM and the value STACK_DYNAMIC_OFFSET.

VIRTUAL_OUTGOING_ARGS_REGNUM
This points to the location in the stack at which outgoing arguments
should be written when the stack is pre-pushed (arguments pushed
using push insns should always use STACK_POINTER_REGNUM).

88

GNU Compiler Collection (GCC) Internals

This virtual register is replaced by the sum of the register given by
STACK_POINTER_REGNUM and the value STACK_POINTER_OFFSET.

(subreg:m reg bytenum)

subreg expressions are used to refer to a register in a machine mode other than
its natural one, or to refer to one register of a multi-part reg that actually refers
to several registers.

Each pseudo-register has a natural mode. If it is necessary to operate on it
in a different mode—for example, to perform a fullword move instruction on
a pseudo-register that contains a single byte—the pseudo-register must be en-
closed in a subreg. In such a case, bytenum is zero.

Usually m is at least as narrow as the mode of reg, in which case it is restricting
consideration to only the bits of reg that are in m.

Sometimes m is wider than the mode of reg. These subreg expressions are
often called paradoxical. They are used in cases where we want to refer to an
object in a wider mode but do not care what value the additional bits have. The
reload pass ensures that paradoxical references are only made to hard registers.

The other use of subreg is to extract the individual registers of a multi-register
value. Machine modes such as DImode and TImode can indicate values longer
than a word, values which usually require two or more consecutive registers.
To access one of the registers, use a subreg with mode SImode and a bytenum
offset that says which register.

Storing in a non-paradoxical subreg has undefined results for bits belonging to
the same word as the subreg. This laxity makes it easier to generate efficient
code for such instructions. To represent an instruction that preserves all the
bits outside of those in the subreg, use strict_low_part around the subreg.

The compilation parameter WORDS_BIG_ENDIAN, if set to 1, says that byte num-
ber zero is part of the most significant word; otherwise, it is part of the least
significant word.

The compilation parameter BYTES_BIG_ENDIAN, if set to 1, says that byte num-
ber zero is the most significant byte within a word; otherwise, it is the least
significant byte within a word.

On a few targets, FLOAT_WORDS_BIG_ENDIAN disagrees with WORDS_BIG_ENDIAN.
However, most parts of the compiler treat floating point values as if they had
the same endianness as integer values. This works because they handle them
solely as a collection of integer values, with no particular numerical value. Only
real.c and the runtime libraries care about FLOAT_WORDS_BIG_ENDIAN.

Between the combiner pass and the reload pass, it is possible to have a paradox-
ical subreg which contains a mem instead of a reg as its first operand. After the
reload pass, it is also possible to have a non-paradoxical subreg which contains
a mem; this usually occurs when the mem is a stack slot which replaced a pseudo
register.

Note that it is not valid to access a DFmode value in SFmode using a subreg.
On some machines the most significant part of a DFmode value does not have
the same format as a single-precision floating value.

Chapter 8: RTL Representation 89

It is also not valid to access a single word of a multi-word value in a hard register
when less registers can hold the value than would be expected from its size. For
example, some 32-bit machines have floating-point registers that can hold an
entire DFmode value. If register 10 were such a register (subreg:SI (reg:DF
10) 1) would be invalid because there is no way to convert that reference to a
single machine register. The reload pass prevents subreg expressions such as
these from being formed.

The first operand of a subreg expression is customarily accessed with the
SUBREG_REG macro and the second operand is customarily accessed with the
SUBREG_BYTE macro.

(scratch:m)

(cc0)

This represents a scratch register that will be required for the execution of a
single instruction and not used subsequently. It is converted into a reg by either
the local register allocator or the reload pass.

scratch is usually present inside a clobber operation (see Section 8.14 [Side
Effects], page 97).

This refers to the machine’s condition code register. It has no operands and
may not have a machine mode. There are two ways to use it:

e To stand for a complete set of condition code flags. This is best on most
machines, where each comparison sets the entire series of flags.

With this technique, (cc0) may be validly used in only two contexts: as
the destination of an assignment (in test and compare instructions) and in
comparison operators comparing against zero (const_int with value zero;
that is to say, constO_rtx).

e To stand for a single flag that is the result of a single condition. This is
useful on machines that have only a single flag bit, and in which comparison
instructions must specify the condition to test.

With this technique, (cc0) may be validly used in only two contexts: as the
destination of an assignment (in test and compare instructions) where the
source is a comparison operator, and as the first operand of if_then_else
(in a conditional branch).

There is only one expression object of code ccO; it is the value of the variable
ccO_rtx. Any attempt to create an expression of code ccO will return ccO_rtx.

Instructions can set the condition code implicitly. On many machines, nearly
all instructions set the condition code based on the value that they compute or
store. It is not necessary to record these actions explicitly in the RTL because
the machine description includes a prescription for recognizing the instructions
that do so (by means of the macro NOTICE_UPDATE_CC). See Section 10.15
[Condition Code], page 264. Only instructions whose sole purpose is to set
the condition code, and instructions that use the condition code, need mention
(cc0).

On some machines, the condition code register is given a register number and

a reg is used instead of (cc0). This is usually the preferable approach if only
a small subset of instructions modify the condition code. Other machines store

90 GNU Compiler Collection (GCC) Internals

condition codes in general registers; in such cases a pseudo register should be
used.

Some machines, such as the SPARC and RS/6000, have two sets of arithmetic
instructions, one that sets and one that does not set the condition code. This
is best handled by normally generating the instruction that does not set the
condition code, and making a pattern that both performs the arithmetic and
sets the condition code register (which would not be (cc0) in this case). For
examples, search for ‘addcc’ and ‘andcc’ in ‘sparc.md’.

(pc) This represents the machine’s program counter. It has no operands and may
not have a machine mode. (pc) may be validly used only in certain specific
contexts in jump instructions.

There is only one expression object of code pc; it is the value of the variable
pc_rtx. Any attempt to create an expression of code pc will return pc_rtx.

All instructions that do not jump alter the program counter implicitly by in-
crementing it, but there is no need to mention this in the RTL.

(mem:m addr alias)
This RTX represents a reference to main memory at an address represented by
the expression addr. m specifies how large a unit of memory is accessed. alias
specifies an alias set for the reference. In general two items are in different alias
sets if they cannot reference the same memory address.

The construct (mem:BLK (scratch)) is considered to alias all other memories.
Thus it may be used as a memory barrier in epilogue stack deallocation patterns.

(addressof:m reg)
This RTX represents a request for the address of register reg. Its mode is always
Pmode. If there are any addressof expressions left in the function after CSE,
reg is forced into the stack and the addressof expression is replaced with a
plus expression for the address of its stack slot.

8.8 RTL Expressions for Arithmetic

Unless otherwise specified, all the operands of arithmetic expressions must be valid for
mode m. An operand is valid for mode m if it has mode m, or if it is a const_int or
const_double and m is a mode of class MODE_INT.

For commutative binary operations, constants should be placed in the second operand.

(plus:m x y)
Represents the sum of the values represented by x and y carried out in machine
mode m.

(lo_sum:m x y)
Like plus, except that it represents that sum of x and the low-order bits of
y. The number of low order bits is machine-dependent but is normally the
number of bits in a Pmode item minus the number of bits set by the high code
(see Section 8.6 [Constants|, page 84).

m should be Pmode.

Chapter 8: RTL Representation 91

(minus:m x y)

Like plus but represents subtraction.

(ss_plus:m x y)

Like plus, but using signed saturation in case of an overflow.

(us_plus:m x y)

Like plus, but using unsigned saturation in case of an overflow.

(ss_minus:m x y)

Like minus, but using signed saturation in case of an overflow.

(us_minus:m x y)

Like minus, but using unsigned saturation in case of an overflow.

(compare:m x y)

(neg:m x)

Represents the result of subtracting y from x for purposes of comparison. The
result is computed without overflow, as if with infinite precision.

Of course, machines can’t really subtract with infinite precision. However, they
can pretend to do so when only the sign of the result will be used, which is
the case when the result is stored in the condition code. And that is the only
way this kind of expression may validly be used: as a value to be stored in
the condition codes, either (ccO) or a register. See Section 8.9 [Comparisons],
page 93.

The mode m is not related to the modes of x and y, but instead is the mode
of the condition code value. If (cc0) is used, it is VOIDmode. Otherwise it
is some mode in class MODE_CC, often CCmode. See Section 10.15 [Condition
Code], page 264. If m is VOIDmode or CCmode, the operation returns sufficient
information (in an unspecified format) so that any comparison operator can
be applied to the result of the COMPARE operation. For other modes in class
MODE_CC, the operation only returns a subset of this information.

Normally, x and y must have the same mode. Otherwise, compare is valid only
if the mode of x is in class MODE_INT and y is a const_int or const_double
with mode VOIDmode. The mode of x determines what mode the comparison is
to be done in; thus it must not be VOIDmode.

If one of the operands is a constant, it should be placed in the second operand
and the comparison code adjusted as appropriate.

A compare specifying two VOIDmode constants is not valid since there is no way
to know in what mode the comparison is to be performed; the comparison must
either be folded during the compilation or the first operand must be loaded into
a register while its mode is still known.

Represents the negation (subtraction from zero) of the value represented by x,
carried out in mode m.

(mult:m x y)

Represents the signed product of the values represented by x and y carried out
in machine mode m.

92 GNU Compiler Collection (GCC) Internals

Some machines support a multiplication that generates a product wider than
the operands. Write the pattern for this as

(mult:m (sign_extend:m x) (sign_extend:m y))
where m is wider than the modes of x and y, which need not be the same.

For unsigned widening multiplication, use the same idiom, but with zero_
extend instead of sign_extend.

(div:m x y)
Represents the quotient in signed division of x by y, carried out in machine mode
m. If m is a floating point mode, it represents the exact quotient; otherwise,
the integerized quotient.

Some machines have division instructions in which the operands and quo-
tient widths are not all the same; you should represent such instructions using
truncate and sign_extend as in,

(truncate:m1 (div:m2 x (sign_extend:m2 y)))

(udiv:m x y)
Like div but represents unsigned division.

(mod:m x y)
(umod:m x y)
Like div and udiv but represent the remainder instead of the quotient.

(smin:m x y)

(smax:m x y)
Represents the smaller (for smin) or larger (for smax) of x and y, interpreted
as signed integers in mode m.

(umin:m x y)
(umax:m x y)
Like smin and smax, but the values are interpreted as unsigned integers.

(not:m x)
Represents the bitwise complement of the value represented by x, carried out
in mode m, which must be a fixed-point machine mode.

(and:m x y)

Represents the bitwise logical-and of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point machine mode.

(ior:m x y)
Represents the bitwise inclusive-or of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point mode.

(xor:m x y)
Represents the bitwise exclusive-or of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point mode.

(ashift:m x c)
Represents the result of arithmetically shifting x left by ¢ places. x have mode
m, a fixed-point machine mode. c¢ be a fixed-point mode or be a constant

Chapter 8: RTL Representation 93

with mode VOIDmode; which mode is determined by the mode called for in the
machine description entry for the left-shift instruction. For example, on the
VAX, the mode of ¢ is QImode regardless of m.

(1shiftrt:m x c)

(ashiftrt:m x ¢)
Like ashift but for right shift. Unlike the case for left shift, these two opera-
tions are distinct.

(rotate:m x ¢)
(rotatert:m x c)
Similar but represent left and right rotate. If ¢ is a constant, use rotate.

(abs:m x)
Represents the absolute value of x, computed in mode m.

(sqrt:m x)
Represents the square root of x, computed in mode m. Most often m will be a
floating point mode.

(ffs:m x)
Represents one plus the index of the least significant 1-bit in x, represented as
an integer of mode m. (The value is zero if x is zero.) The mode of x need
not be m; depending on the target machine, various mode combinations may

be valid.
8.9 Comparison Operations

Comparison operators test a relation on two operands and are considered to represent a
machine-dependent nonzero value described by, but not necessarily equal to, STORE_FLAG_
VALUE (see Section 10.26 [Misc|, page 314) if the relation holds, or zero if it does not, for
comparison operators whose results have a ‘MODE_INT’ mode, and FLOAT_STORE_FLAG_
VALUE (see Section 10.26 [Misc|, page 314) if the relation holds, or zero if it does not,
for comparison operators that return floating-point values. The mode of the comparison
operation is independent of the mode of the data being compared. If the comparison
operation is being tested (e.g., the first operand of an if_then_else), the mode must be
VOIDmode.

There are two ways that comparison operations may be used. The comparison operators
may be used to compare the condition codes (cc0) against zero, as in (eq (cc0) (const_
int 0)). Such a construct actually refers to the result of the preceding instruction in which
the condition codes were set. The instruction setting the condition code must be adjacent
to the instruction using the condition code; only note insns may separate them.

Alternatively, a comparison operation may directly compare two data objects. The mode
of the comparison is determined by the operands; they must both be valid for a common
machine mode. A comparison with both operands constant would be invalid as the machine
mode could not be deduced from it, but such a comparison should never exist in RTL due
to constant folding.

In the example above, if (cc0) were last set to (compare x y), the comparison operation
is identical to (eq x y). Usually only one style of comparisons is supported on a particular

94 GNU Compiler Collection (GCC) Internals

machine, but the combine pass will try to merge the operations to produce the eq shown
in case it exists in the context of the particular insn involved.

Inequality comparisons come in two flavors, signed and unsigned. Thus, there are distinct
expression codes gt and gtu for signed and unsigned greater-than. These can produce differ-
ent results for the same pair of integer values: for example, 1 is signed greater-than —1 but
not unsigned greater-than, because —1 when regarded as unsigned is actually Oxffffffff
which is greater than 1.

The signed comparisons are also used for floating point values. Floating point compar-
isons are distinguished by the machine modes of the operands.

(eq:m x y)
STORE_FLAG_VALUE if the values represented by x and y are equal, otherwise 0.

(ne:m x y)
STORE_FLAG_VALUE if the values represented by x and y are not equal, otherwise
0.

(gt:m x y)
STORE_FLAG_VALUE if the x is greater than y. If they are fixed-point, the com-
parison is done in a signed sense.

(gtu:m x y)
Like gt but does unsigned comparison, on fixed-point numbers only.

(1t:mx y)
(1tu:m x y)
Like gt and gtu but test for “less than”.

(ge:m x y)
(geu:m x y)
Like gt and gtu but test for “greater than or equal”.

(le:m x y)
(leu:m x y)
Like gt and gtu but test for “less than or equal”.

(if _then_else cond then else)
This is not a comparison operation but is listed here because it is always used in
conjunction with a comparison operation. To be precise, cond is a comparison
expression. This expression represents a choice, according to cond, between the
value represented by then and the one represented by else.

On most machines, if_then_else expressions are valid only to express condi-
tional jumps.

(cond [testl valuel test2 value2 ...] default)
Similar to if_then_else, but more general. Each of testl, test2, ... is per-
formed in turn. The result of this expression is the value corresponding to the
first nonzero test, or default if none of the tests are nonzero expressions.

This is currently not valid for instruction patterns and is supported only for
insn attributes. See Section 9.18 [Insn Attributes|, page 175.

Chapter 8: RTL Representation 95

8.10 Bit-Fields

Special expression codes exist to represent bit-field instructions. These types of expressions
are lvalues in RTL; they may appear on the left side of an assignment, indicating insertion
of a value into the specified bit-field.

(sign_extract:m loc size pos)
This represents a reference to a sign-extended bit-field contained or starting in
loc (a memory or register reference). The bit-field is size bits wide and starts
at bit pos. The compilation option BITS_BIG_ENDIAN says which end of the
memory unit pos counts from.

If Ioc is in memory, its mode must be a single-byte integer mode. If loc is in a
register, the mode to use is specified by the operand of the insv or extv pattern
(see Section 9.8 [Standard Names|, page 144) and is usually a full-word integer
mode, which is the default if none is specified.

The mode of pos is machine-specific and is also specified in the insv or extv
pattern.

The mode m is the same as the mode that would be used for loc if it were a
register.

(zero_extract:m loc size pos)
Like sign_extract but refers to an unsigned or zero-extended bit-field. The
same sequence of bits are extracted, but they are filled to an entire word with
zeros instead of by sign-extension.

8.11 Vector Operations

All normal RTL expressions can be used with vector modes; they are interpreted as operat-
ing on each part of the vector independently. Additionally, there are a few new expressions
to describe specific vector operations.

(vec_merge:m vecl vec2 items)
This describes a merge operation between two vectors. The result is a vector of
mode m; its elements are selected from either vecl or vec2. Which elements are
selected is described by items, which is a bit mask represented by a const_int;
a zero bit indicates the corresponding element in the result vector is taken from
vec2 while a set bit indicates it is taken from vecl.

(vec_select:m vecl selection)
This describes an operation that selects parts of a vector. vecl is the source
vector, selection is a parallel that contains a const_int for each of the sub-
parts of the result vector, giving the number of the source subpart that should
be stored into it.

(vec_concat:m vecl vec2)
Describes a vector concat operation. The result is a concatenation of the vectors
vecl and vec2; its length is the sum of the lengths of the two inputs.

96 GNU Compiler Collection (GCC) Internals

(vec_const:m subparts)
This describes a constant vector. subparts is a parallel that contains a con-
stant for each of the subparts of the vector.

(vec_duplicate:m vec)
This operation converts a small vector into a larger one by duplicating the input
values. The output vector mode must have the same submodes as the input
vector mode, and the number of output parts must be an integer multiple of
the number of input parts.

8.12 Conversions

All conversions between machine modes must be represented by explicit conversion oper-
ations. For example, an expression which is the sum of a byte and a full word cannot be
written as (plus:SI (reg:QI 34) (reg:SI 80)) because the plus operation requires two
operands of the same machine mode. Therefore, the byte-sized operand is enclosed in a
conversion operation, as in

(plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80))

The conversion operation is not a mere placeholder, because there may be more than
one way of converting from a given starting mode to the desired final mode. The conversion
operation code says how to do it.

For all conversion operations, x must not be VOIDmode because the mode in which to do
the conversion would not be known. The conversion must either be done at compile-time
or x must be placed into a register.

(sign_extend:m x)
Represents the result of sign-extending the value x to machine mode m. m
must be a fixed-point mode and x a fixed-point value of a mode narrower than
m.

(zero_extend:m x)
Represents the result of zero-extending the value x to machine mode m. m
must be a fixed-point mode and x a fixed-point value of a mode narrower than
m.

(float_extend:m x)
Represents the result of extending the value x to machine mode m. m must be
a floating point mode and x a floating point value of a mode narrower than m.

(truncate:m x)
Represents the result of truncating the value x to machine mode m. m must
be a fixed-point mode and x a fixed-point value of a mode wider than m.

(ss_truncate:m x)
Represents the result of truncating the value x to machine mode m, using
signed saturation in the case of overflow. Both m and the mode of x must be
fixed-point modes.

Chapter 8: RTL Representation 97

(us_truncate:m x)
Represents the result of truncating the value x to machine mode m, using
unsigned saturation in the case of overflow. Both m and the mode of x must
be fixed-point modes.

(float_truncate:m x)
Represents the result of truncating the value x to machine mode m. m must
be a floating point mode and x a floating point value of a mode wider than m.

(float:m x)
Represents the result of converting fixed point value x, regarded as signed, to
floating point mode m.

(unsigned_float:m x)
Represents the result of converting fixed point value x, regarded as unsigned,
to floating point mode m.

(fix:m x)
When m is a fixed point mode, represents the result of converting floating point
value x to mode m, regarded as signed. How rounding is done is not specified, so
this operation may be used validly in compiling C code only for integer-valued
operands.

(unsigned_fix:m x)
Represents the result of converting floating point value x to fixed point mode
m, regarded as unsigned. How rounding is done is not specified.

(fix:m x)
When m is a floating point mode, represents the result of converting floating
point value x (valid for mode m) to an integer, still represented in floating point
mode m, by rounding towards zero.

8.13 Declarations

Declaration expression codes do not represent arithmetic operations but rather state asser-
tions about their operands.

(strict_low_part (subreg:m (reg:n r) 0))
This expression code is used in only one context: as the destination operand
of a set expression. In addition, the operand of this expression must be a
non-paradoxical subreg expression.
The presence of strict_low_part says that the part of the register which is
meaningful in mode n, but is not part of mode m, is not to be altered. Normally,
an assignment to such a subreg is allowed to have undefined effects on the rest
of the register when m is less than a word.

8.14 Side Effect Expressions

The expression codes described so far represent values, not actions. But machine instruc-
tions never produce values; they are meaningful only for their side effects on the state of
the machine. Special expression codes are used to represent side effects.

98

GNU Compiler Collection (GCC) Internals

The body of an instruction is always one of these side effect codes; the codes described
above, which represent values, appear only as the operands of these.

(set 1val x)

(return)

Represents the action of storing the value of x into the place represented by
Ival. Ival must be an expression representing a place that can be stored in: reg
(or subreg, strict_low_part or zero_extract), mem, pc, parallel, or ccO.

If Ival is a reg, subreg or mem, it has a machine mode; then x must be valid
for that mode.

If Ival is a reg whose machine mode is less than the full width of the register,
then it means that the part of the register specified by the machine mode is
given the specified value and the rest of the register receives an undefined value.
Likewise, if Ival is a subreg whose machine mode is narrower than the mode of
the register, the rest of the register can be changed in an undefined way.

If Ival is a strict_low_part or zero_extract of a subreg, then the part of
the register specified by the machine mode of the subreg is given the value x
and the rest of the register is not changed.

If Ival is (cc0), it has no machine mode, and x may be either a compare
expression or a value that may have any mode. The latter case represents
a “test” instruction. The expression (set (cc0) (reg:m n)) is equivalent to
(set (cc0) (compare (reg:m n) (const_int 0))). Use the former expres-
sion to save space during the compilation.

If Ival is a parallel, it is used to represent the case of a function returning a
structure in multiple registers. Each element of the parallel is an expr_list
whose first operand is a reg and whose second operand is a const_int repre-
senting the offset (in bytes) into the structure at which the data in that register
corresponds. The first element may be null to indicate that the structure is also
passed partly in memory.

If Ival is (pc), we have a jump instruction, and the possibilities for x are very
limited. It may be a label_ref expression (unconditional jump). It may be an
if_then_else (conditional jump), in which case either the second or the third
operand must be (pc) (for the case which does not jump) and the other of the
two must be a label_ref (for the case which does jump). x may also be a mem
or (plus:SI (pc) y), where y may be a reg or a mem; these unusual patterns
are used to represent jumps through branch tables.

If Ival is neither (cc0) nor (pc), the mode of Ival must not be VOIDmode and
the mode of x must be valid for the mode of Ival.

Ival is customarily accessed with the SET_DEST macro and x with the SET_SRC
macro.

As the sole expression in a pattern, represents a return from the current func-
tion, on machines where this can be done with one instruction, such as VAXen.
On machines where a multi-instruction “epilogue” must be executed in order
to return from the function, returning is done by jumping to a label which
precedes the epilogue, and the return expression code is never used.

Chapter 8: RTL Representation 99

Inside an if_then_else expression, represents the value to be placed in pc to
return to the caller.

Note that an insn pattern of (return) is logically equivalent to (set (pc)
(return)), but the latter form is never used.

(call function nargs)
Represents a function call. function is a mem expression whose address is the
address of the function to be called. nargs is an expression which can be used
for two purposes: on some machines it represents the number of bytes of stack
argument; on others, it represents the number of argument registers.

FEach machine has a standard machine mode which function must have. The
machine description defines macro FUNCTION_MODE to expand into the requisite
mode name. The purpose of this mode is to specify what kind of addressing
is allowed, on machines where the allowed kinds of addressing depend on the
machine mode being addressed.

(clobber x)
Represents the storing or possible storing of an unpredictable, undescribed value
into x, which must be a reg, scratch, parallel or mem expression.

One place this is used is in string instructions that store standard values into
particular hard registers. It may not be worth the trouble to describe the values
that are stored, but it is essential to inform the compiler that the registers will
be altered, lest it attempt to keep data in them across the string instruction.

If x is (mem:BLK (const_int 0)) or (mem:BLK (scratch)), it means that all
memory locations must be presumed clobbered. If x is a parallel, it has the
same meaning as a parallel in a set expression.

Note that the machine description classifies certain hard registers as “call-
clobbered”. All function call instructions are assumed by default to clobber
these registers, so there is no need to use clobber expressions to indicate this
fact. Also, each function call is assumed to have the potential to alter any
memory location, unless the function is declared const.

If the last group of expressions in a parallel are each a clobber expression
whose arguments are reg or match_scratch (see Section 9.4 [RTL Template],
page 119) expressions, the combiner phase can add the appropriate clobber
expressions to an insn it has constructed when doing so will cause a pattern to
be matched.

This feature can be used, for example, on a machine that whose multiply and
add instructions don’t use an MQ register but which has an add-accumulate
instruction that does clobber the MQ register. Similarly, a combined instruction
might require a temporary register while the constituent instructions might not.

When a clobber expression for a register appears inside a parallel with other
side effects, the register allocator guarantees that the register is unoccupied
both before and after that insn. However, the reload phase may allocate a
register used for one of the inputs unless the ‘&’ constraint is specified for the
selected alternative (see Section 9.7.4 [Modifiers], page 131). You can clobber
either a specific hard register, a pseudo register, or a scratch expression; in

100

(use x)

GNU Compiler Collection (GCC) Internals

the latter two cases, GCC will allocate a hard register that is available there
for use as a temporary.

For instructions that require a temporary register, you should use scratch
instead of a pseudo-register because this will allow the combiner phase to add
the clobber when required. You do this by coding (clobber (match_scratch
..)). If you do clobber a pseudo register, use one which appears nowhere
else—generate a new one each time. Otherwise, you may confuse CSE.

There is one other known use for clobbering a pseudo register in a parallel:
when one of the input operands of the insn is also clobbered by the insn. In
this case, using the same pseudo register in the clobber and elsewhere in the
insn produces the expected results.

Represents the use of the value of x. It indicates that the value in x at this
point in the program is needed, even though it may not be apparent why this
is so. Therefore, the compiler will not attempt to delete previous instructions
whose only effect is to store a value in x. x must be a reg expression.

In some situations, it may be tempting to add a use of a register in a parallel
to describe a situation where the value of a special register will modify the
behavior of the instruction. An hypothetical example might be a pattern for
an addition that can either wrap around or use saturating addition depending
on the value of a special control register:
(parallel [(set (reg:SI 2) (unspec:SI [(reg:SI 3)
(reg:SI 4)1 0))
(use (reg:SI 1))]1)

This will not work, several of the optimizers only look at expressions locally; it
is very likely that if you have multiple insns with identical inputs to the unspec,
they will be optimized away even if register 1 changes in between.

This means that use can only be used to describe that the register is live. You
should think twice before adding use statements, more often you will want to
use unspec instead. The use RTX is most commonly useful to describe that
a fixed register is implicitly used in an insn. It is also safe to use in patterns
where the compiler knows for other reasons that the result of the whole pattern
is variable, such as ‘movstrm’ or ‘call’ patterns.

During the reload phase, an insn that has a use as pattern can carry a reg_equal
note. These use insns will be deleted before the reload phase exits.

During the delayed branch scheduling phase, x may be an insn. This indicates
that x previously was located at this place in the code and its data dependencies
need to be taken into account. These use insns will be deleted before the delayed
branch scheduling phase exits.

(parallel [x0 x1 ...])

Represents several side effects performed in parallel. The square brackets stand
for a vector; the operand of parallel is a vector of expressions. x0, xI and so
on are individual side effect expressions—expressions of code set, call, return,
clobber or use.

“In parallel” means that first all the values used in the individual side-effects are
computed, and second all the actual side-effects are performed. For example,

Chapter 8: RTL Representation 101

(parallel [(set (reg:SI 1) (mem:SI (reg:SI 1)))
(set (mem:SI (reg:SI 1)) (reg:SI 1))1)

says unambiguously that the values of hard register 1 and the memory location
addressed by it are interchanged. In both places where (reg:SI 1) appears as
a memory address it refers to the value in register 1 before the execution of the
insn.

It follows that it is incorrect to use parallel and expect the result of one set
to be available for the next one. For example, people sometimes attempt to
represent a jump-if-zero instruction this way:

(parallel [(set (cc0O) (reg:SI 34))
(set (pc) (if_then_else
(eq (cc0) (const_int 0))
(label_ref ...)
(pc) D)

But this is incorrect, because it says that the jump condition depends on the
condition code value before this instruction, not on the new value that is set by
this instruction.

Peephole optimization, which takes place together with final assembly code
output, can produce insns whose patterns consist of a parallel whose elements
are the operands needed to output the resulting assembler code—often reg, mem
or constant expressions. This would not be well-formed RTL at any other stage
in compilation, but it is ok then because no further optimization remains to be
done. However, the definition of the macro NOTICE_UPDATE_CC, if any, must
deal with such insns if you define any peephole optimizations.

(cond_exec [cond expr])
Represents a conditionally executed expression. The expr is executed only if
the cond is nonzero. The cond expression must not have side-effects, but the
expr may very well have side-effects.

(sequence [insns ...])
Represents a sequence of insns. Each of the insns that appears in the vector is
suitable for appearing in the chain of insns, so it must be an insn, jump_insn,
call_insn, code_label, barrier or note.

A sequence RTX is never placed in an actual insn during RTL generation. It
represents the sequence of insns that result from a define_expand before those
insns are passed to emit_insn to insert them in the chain of insns. When
actually inserted, the individual sub-insns are separated out and the sequence
is forgotten.

After delay-slot scheduling is completed, an insn and all the insns that reside
in its delay slots are grouped together into a sequence. The insn requiring the
delay slot is the first insn in the vector; subsequent insns are to be placed in
the delay slot.

INSN_ANNULLED_BRANCH_P is set on an insn in a delay slot to indicate that a
branch insn should be used that will conditionally annul the effect of the insns
in the delay slots. In such a case, INSN_FROM_TARGET_P indicates that the insn

102 GNU Compiler Collection (GCC) Internals

is from the target of the branch and should be executed only if the branch is
taken; otherwise the insn should be executed only if the branch is not taken.
See Section 9.18.7 [Delay Slots], page 182.

These expression codes appear in place of a side effect, as the body of an insn, though
strictly speaking they do not always describe side effects as such:

(asm_input s)
Represents literal assembler code as described by the string s.

(unspec [operands ...] index)

(unspec_volatile [operands ...] index)
Represents a machine-specific operation on operands. index selects between
multiple machine-specific operations. unspec_volatile is used for volatile op-
erations and operations that may trap; unspec is used for other operations.

These codes may appear inside a pattern of an insn, inside a parallel, or
inside an expression.

(addr_vec:m [1r0 1r1 ...])
Represents a table of jump addresses. The vector elements Ir0, etc., are label_
ref expressions. The mode m specifies how much space is given to each address;
normally m would be Pmode.

(addr_diff_vec:m base [1r0 1rl ...] min max flags)
Represents a table of jump addresses expressed as offsets from base. The vector
elements Ir0, etc., are label_ref expressions and so is base. The mode m
specifies how much space is given to each address-difference. min and max are
set up by branch shortening and hold a label with a minimum and a maximum
address, respectively. flags indicates the relative position of base, min and max
to the containing insn and of min and max to base. See rtl.def for details.

(prefetch:m addr rw locality)
Represents prefetch of memory at address addr. Operand rw is 1 if the
prefetch is for data to be written, 0 otherwise; targets that do not support
write prefetches should treat this as a normal prefetch. Operand locality
specifies the amount of temporal locality; O if there is none or 1, 2, or 3 for
increasing levels of temporal locality; targets that do not support locality hints
should ignore this.

This insn is used to minimize cache-miss latency by moving data into a cache
before it is accessed. It should use only non-faulting data prefetch instructions.

8.15 Embedded Side-Effects on Addresses

Six special side-effect expression codes appear as memory addresses.

(pre_dec:m x)
Represents the side effect of decrementing x by a standard amount and repre-
sents also the value that x has after being decremented. x must be a reg or
mem, but most machines allow only a reg. m must be the machine mode for

Chapter 8: RTL Representation 103

pointers on the machine in use. The amount x is decremented by is the length
in bytes of the machine mode of the containing memory reference of which this
expression serves as the address. Here is an example of its use:

(mem:DF (pre_dec:SI (reg:SI 39)))

This says to decrement pseudo register 39 by the length of a DFmode value and
use the result to address a DFmode value.

(pre_inc:m x)
Similar, but specifies incrementing x instead of decrementing it.

(post_dec:m x)
Represents the same side effect as pre_dec but a different value. The value
represented here is the value x has before being decremented.

(post_inc:m x)
Similar, but specifies incrementing x instead of decrementing it.

(post_modify:m x y)
Represents the side effect of setting x to y and represents x before x is modified.
x must be a reg or mem, but most machines allow only a reg. m must be the
machine mode for pointers on the machine in use.

The expression y must be one of three forms:
(plus:m x z), (minus:m x z), or (plus:m x i),

where z is an index register and i is a constant.

Here is an example of its use:
(mem:SF (post_modify:SI (reg:SI 42) (plus (reg:SI 42)
(reg:SI 48))))
This says to modify pseudo register 42 by adding the contents of pseudo register
48 to it, after the use of what ever 42 points to.

(pre_modify:m x expr)
Similar except side effects happen before the use.

These embedded side effect expressions must be used with care. Instruction patterns
may not use them. Until the ‘flow’ pass of the compiler, they may occur only to represent
pushes onto the stack. The ‘flow’ pass finds cases where registers are incremented or
decremented in one instruction and used as an address shortly before or after; these cases
are then transformed to use pre- or post-increment or -decrement.

If a register used as the operand of these expressions is used in another address in an
insn, the original value of the register is used. Uses of the register outside of an address are
not permitted within the same insn as a use in an embedded side effect expression because
such insns behave differently on different machines and hence must be treated as ambiguous
and disallowed.

An instruction that can be represented with an embedded side effect could also be rep-
resented using parallel containing an additional set to describe how the address register
is altered. This is not done because machines that allow these operations at all typically
allow them wherever a memory address is called for. Describing them as additional parallel
stores would require doubling the number of entries in the machine description.

104 GNU Compiler Collection (GCC) Internals

8.16 Assembler Instructions as Expressions

The RTX code asm_operands represents a value produced by a user-specified assembler
instruction. It is used to represent an asm statement with arguments. An asm statement
with a single output operand, like this:

asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (*z));

is represented using a single asm_operands RTX which represents the value that is stored
in outputvar:

(set rtx-for-outputvar
(asm_operands "foo %1,%2,%0" "a" 0
[rtx-for-addition-result rtx-for-*z]
[(asm_input:m1 "g")
(asm_input:m2 "di")]1))
Here the operands of the asm_operands RTX are the assembler template string, the output-
operand’s constraint, the index-number of the output operand among the output operands
specified, a vector of input operand RTX’s, and a vector of input-operand modes and
constraints. The mode m1 is the mode of the sum x+y; m2 is that of *z.

When an asm statement has multiple output values, its insn has several such set RTX’s
inside of a parallel. Each set contains a asm_operands; all of these share the same
assembler template and vectors, but each contains the constraint for the respective output
operand. They are also distinguished by the output-operand index number, which is 0, 1,
... for successive output operands.

8.17 Insns

The RTL representation of the code for a function is a doubly-linked chain of objects called
insns. Insns are expressions with special codes that are used for no other purpose. Some
insns are actual instructions; others represent dispatch tables for switch statements; others
represent labels to jump to or various sorts of declarative information.

In addition to its own specific data, each insn must have a unique id-number that dis-
tinguishes it from all other insns in the current function (after delayed branch scheduling,
copies of an insn with the same id-number may be present in multiple places in a function,
but these copies will always be identical and will only appear inside a sequence), and chain
pointers to the preceding and following insns. These three fields occupy the same position
in every insn, independent of the expression code of the insn. They could be accessed with
XEXP and XINT, but instead three special macros are always used:

INSN_UID (i)
Accesses the unique id of insn i.

PREV_INSN (i)
Accesses the chain pointer to the insn preceding i. If i is the first insn, this is
a null pointer.

NEXT_INSN (i)
Accesses the chain pointer to the insn following i. If i is the last insn, this is a
null pointer.

Chapter 8: RTL Representation 105

The first insn in the chain is obtained by calling get_insns; the last insn is the result
of calling get_last_insn. Within the chain delimited by these insns, the NEXT_INSN and
PREV_INSN pointers must always correspond: if insn is not the first insn,

NEXT_INSN (PREV_INSN (insn)) == insn
is always true and if insn is not the last insn,

PREV_INSN (NEXT_INSN (insn)) == insn
is always true.

After delay slot scheduling, some of the insns in the chain might be sequence expressions,
which contain a vector of insns. The value of NEXT_INSN in all but the last of these insns
is the next insn in the vector; the value of NEXT_INSN of the last insn in the vector is the
same as the value of NEXT_INSN for the sequence in which it is contained. Similar rules
apply for PREV_INSN.

This means that the above invariants are not necessarily true for insns inside sequence
expressions. Specifically, if insn is the first insn in a sequence, NEXT_INSN (PREV_INSN
(insn)) is the insn containing the sequence expression, as is the value of PREV_INSN
(NEXT_INSN (insn)) if insn is the last insn in the sequence expression. You can use these
expressions to find the containing sequence expression.

Every insn has one of the following six expression codes:

insn The expression code insn is used for instructions that do not jump and do not
do function calls. sequence expressions are always contained in insns with code
insn even if one of those insns should jump or do function calls.

Insns with code insn have four additional fields beyond the three mandatory
ones listed above. These four are described in a table below.

jump_insn
The expression code jump_insn is used for instructions that may jump (or,
more generally, may contain label_ref expressions). If there is an instruction
to return from the current function, it is recorded as a jump_insn.

jump_insn insns have the same extra fields as insn insns, accessed in the same
way and in addition contain a field JUMP_LABEL which is defined once jump
optimization has completed.

For simple conditional and unconditional jumps, this field contains the code_
label to which this insn will (possibly conditionally) branch. In a more complex
jump, JUMP_LABEL records one of the labels that the insn refers to; the only
way to find the others is to scan the entire body of the insn. In an addr_vec,
JUMP_LABEL is NULL_RTX.

Return insns count as jumps, but since they do not refer to any labels, their
JUMP_LABEL is NULL_RTX.

call_insn
The expression code call_insn is used for instructions that may do function
calls. It is important to distinguish these instructions because they imply that
certain registers and memory locations may be altered unpredictably.

call_insn insns have the same extra fields as insn insns, accessed in the same
way and in addition contain a field CALL_INSN_FUNCTION_USAGE, which contains

106

code_label

barrier

GNU Compiler Collection (GCC) Internals

a list (chain of expr_list expressions) containing use and clobber expressions
that denote hard registers and MEMs used or clobbered by the called function.
A MEM generally points to a stack slots in which arguments passed to the
libcall by reference (see Section 10.10.7 [Register Arguments|, page 242) are
stored. If the argument is caller-copied (see Section 10.10.7 [Register Argu-
ments], page 242), the stack slot will be mentioned in CLOBBER and USE entries;
if it’s callee-copied, only a USE will appear, and the MEM may point to addresses
that are not stack slots. These MEMs are used only in libcalls, because, unlike
regular function calls, CONST_CALLs (which libcalls generally are, see Section 8.4
[Flags], page 75) aren’t assumed to read and write all memory, so flow would
consider the stores dead and remove them. Note that, since a libcall must never
return values in memory (see Section 10.10.9 [Aggregate Return], page 247),
there will never be a CLOBBER for a memory address holding a return value.

CLOBBERed registers in this list augment registers specified in CALL_USED_
REGISTERS (see Section 10.8.1 [Register Basics], page 218).

A code_label insn represents a label that a jump insn can jump to. It con-
tains two special fields of data in addition to the three standard ones. CODE_
LABEL_NUMBER is used to hold the label number, a number that identifies this
label uniquely among all the labels in the compilation (not just in the current
function). Ultimately, the label is represented in the assembler output as an
assembler label, usually of the form ‘Ln’ where n is the label number.

When a code_label appears in an RTL expression, it normally appears within
a label_ref which represents the address of the label, as a number.

Besides as a code_label, a label can also be represented as a note of type
NOTE_INSN_DELETED_LABEL.

The field LABEL_NUSES is only defined once the jump optimization phase is
completed. It contains the number of times this label is referenced in the
current function.

The field LABEL_KIND differentiates four different types of labels: LABEL_
NORMAL, LABEL_STATIC_ENTRY, LABEL_GLOBAL_ENTRY, and LABEL_WEAK_ENTRY.
The only labels that do not have type LABEL_NORMAL are alternate entry points
to the current function. These may be static (visible only in the containing
translation unit), global (exposed to all translation units), or weak (global,
but can be overridden by another symbol with the same name).

Much of the compiler treats all four kinds of label identically. Some of it needs
to know whether or not a label is an alternate entry point; for this purpose,
the macro LABEL_ALT_ENTRY_P is provided. It is equivalent to testing whether
‘LABEL_KIND (label) == LABEL_NORMAL’. The only place that cares about the
distinction between static, global, and weak alternate entry points, besides the
front-end code that creates them, is the function output_alternate_entry_
point, in ‘final.c’.

To set the kind of a label, use the SET_LABEL_KIND macro.

Barriers are placed in the instruction stream when control cannot flow past
them. They are placed after unconditional jump instructions to indicate that

Chapter 8: RTL Representation 107

note

the jumps are unconditional and after calls to volatile functions, which do
not return (e.g., exit). They contain no information beyond the three standard
fields.

note insns are used to represent additional debugging and declarative informa-
tion. They contain two nonstandard fields, an integer which is accessed with
the macro NOTE_LINE_NUMBER and a string accessed with NOTE_SOURCE_FILE.

If NOTE_LINE_NUMBER is positive, the note represents the position of a source
line and NOTE_SOURCE_FILE is the source file name that the line came from.
These notes control generation of line number data in the assembler output.

Otherwise, NOTE_LINE_NUMBER is not really a line number but a code with one
of the following values (and NOTE_SOURCE_FILE must contain a null pointer):

NOTE_INSN_DELETED
Such a note is completely ignorable. Some passes of the compiler
delete insns by altering them into notes of this kind.

NOTE_INSN_DELETED_LABEL
This marks what used to be a code_label, but was not used for
other purposes than taking its address and was transformed to mark
that no code jumps to it.

NOTE_INSN_BLOCK_BEG

NOTE_INSN_BLOCK_END
These types of notes indicate the position of the beginning and end
of a level of scoping of variable names. They control the output of
debugging information.

NOTE_INSN_EH_REGION_BEG

NOTE_INSN_EH_REGION_END
These types of notes indicate the position of the beginning and end
of a level of scoping for exception handling. NOTE_BLOCK_NUMBER
identifies which CODE_LABEL or note of type NOTE_INSN_DELETED_
LABEL is associated with the given region.

NOTE_INSN_LOOP_BEG

NOTE_INSN_LOOP_END
These types of notes indicate the position of the beginning and end
of a while or for loop. They enable the loop optimizer to find
loops quickly.

NOTE_INSN_LOOP_CONT
Appears at the place in a loop that continue statements jump to.

NOTE_INSN_LOOP_VTOP
This note indicates the place in a loop where the exit test begins
for those loops in which the exit test has been duplicated. This
position becomes another virtual start of the loop when considering
loop invariants.

108 GNU Compiler Collection (GCC) Internals

NOTE_INSN_FUNCTION_END
Appears near the end of the function body, just before the label that
return statements jump to (on machine where a single instruction
does not suffice for returning). This note may be deleted by jump
optimization.

NOTE_INSN_SETJMP
Appears following each call to setjmp or a related function.

These codes are printed symbolically when they appear in debugging dumps.

The machine mode of an insn is normally VOIDmode, but some phases use the mode for
various purposes.

The common subexpression elimination pass sets the mode of an insn to QImode when
it is the first insn in a block that has already been processed.

The second Haifa scheduling pass, for targets that can multiple issue, sets the mode of
an insn to TImode when it is believed that the instruction begins an issue group. That is,
when the instruction cannot issue simultaneously with the previous. This may be relied on
by later passes, in particular machine-dependent reorg.

Here is a table of the extra fields of insn, jump_insn and call_insn insns:

PATTERN (i)

An expression for the side effect performed by this insn. This must be one of the
following codes: set, call, use, clobber, return, asm_input, asm_output,
addr_vec, addr_diff_vec, trap_if, unspec, unspec_volatile, parallel,
cond_exec, or sequence. If it is a parallel, each element of the parallel
must be one these codes, except that parallel expressions cannot be nested
and addr_vec and addr_diff_vec are not permitted inside a parallel expres-
sion.

INSN_CODE (i)
An integer that says which pattern in the machine description matches this
insn, or —1 if the matching has not yet been attempted.

Such matching is never attempted and this field remains —1 on an insn whose
pattern consists of a single use, clobber, asm_input, addr_vec or addr_diff_
vec expression.

Matching is also never attempted on insns that result from an asm state-
ment. These contain at least one asm_operands expression. The function
asm_noperands returns a non-negative value for such insns.

In the debugging output, this field is printed as a number followed by a symbolic
representation that locates the pattern in the ‘md’ file as some small positive or
negative offset from a named pattern.

LOG_LINKS (i)
A list (chain of insn_list expressions) giving information about dependencies
between instructions within a basic block. Neither a jump nor a label may come
between the related insns.

Chapter 8: RTL Representation 109

REG_NOTES (1)
A list (chain of expr_list and insn_list expressions) giving miscellaneous
information about the insn. It is often information pertaining to the registers
used in this insn.

The LOG_LINKS field of an insn is a chain of insn_list expressions. Each of these has
two operands: the first is an insn, and the second is another insn_list expression (the
next one in the chain). The last insn_list in the chain has a null pointer as second
operand. The significant thing about the chain is which insns appear in it (as first operands
of insn_list expressions). Their order is not significant.

This list is originally set up by the flow analysis pass; it is a null pointer until then. Flow
only adds links for those data dependencies which can be used for instruction combination.
For each insn, the flow analysis pass adds a link to insns which store into registers values
that are used for the first time in this insn. The instruction scheduling pass adds extra
links so that every dependence will be represented. Links represent data dependencies,
antidependencies and output dependencies; the machine mode of the link distinguishes
these three types: antidependencies have mode REG_DEP_ANTI, output dependencies have
mode REG_DEP_OUTPUT, and data dependencies have mode VOIDmode.

The REG_NOTES field of an insn is a chain similar to the LOG_LINKS field but it includes
expr_list expressions in addition to insn_list expressions. There are several kinds of
register notes, which are distinguished by the machine mode, which in a register note is
really understood as being an enum reg_note. The first operand op of the note is data
whose meaning depends on the kind of note.

The macro REG_NOTE_KIND (x) returns the kind of register note. Its counterpart, the
macro PUT_REG_NOTE_KIND (x, newkind) sets the register note type of x to be newkind.

Register notes are of three classes: They may say something about an input to an insn,
they may say something about an output of an insn, or they may create a linkage between
two insns. There are also a set of values that are only used in LOG_LINKS.

These register notes annotate inputs to an insn:

REG_DEAD The value in op dies in this insn; that is to say, altering the value immediately
after this insn would not affect the future behavior of the program.

It does not follow that the register op has no useful value after this insn since
op is not necessarily modified by this insn. Rather, no subsequent instruction
uses the contents of op.

REG_UNUSED
The register op being set by this insn will not be used in a subsequent insn.
This differs from a REG_DEAD note, which indicates that the value in an input
will not be used subsequently. These two notes are independent; both may be
present for the same register.

REG_INC The register op is incremented (or decremented; at this level there is no dis-
tinction) by an embedded side effect inside this insn. This means it appears in
a post_inc, pre_inc, post_dec or pre_dec expression.

110

REG_NONNEG

GNU Compiler Collection (GCC) Internals

The register op is known to have a nonnegative value when this insn is reached.
This is used so that decrement and branch until zero instructions, such as the
m68k dbra, can be matched.

The REG_NONNEG note is added to insns only if the machine description has a
‘decrement_and_branch_until_zero’ pattern.

REG_NO_CONFLICT

REG_LABEL

This insn does not cause a conflict between op and the item being set by this
insn even though it might appear that it does. In other words, if the destination
register and op could otherwise be assigned the same register, this insn does
not prevent that assignment.

Insns with this note are usually part of a block that begins with a clobber insn
specifying a multi-word pseudo register (which will be the output of the block),
a group of insns that each set one word of the value and have the REG_NO_
CONFLICT note attached, and a final insn that copies the output to itself with
an attached REG_EQUAL note giving the expression being computed. This block
is encapsulated with REG_LIBCALL and REG_RETVAL notes on the first and last
insns, respectively.

This insn uses op, a code_label or a note of type NOTE_INSN_DELETED_LABEL,
but is not a jump_insn, or it is a jump_insn that required the label to be held
in a register. The presence of this note allows jump optimization to be aware
that op is, in fact, being used, and flow optimization to build an accurate flow
graph.

The following notes describe attributes of outputs of an insn:

REG_EQUIV
REG_EQUAL

This note is only valid on an insn that sets only one register and indicates that
that register will be equal to op at run time; the scope of this equivalence differs
between the two types of notes. The value which the insn explicitly copies into
the register may look different from op, but they will be equal at run time. If
the output of the single set is a strict_low_part expression, the note refers
to the register that is contained in SUBREG_REG of the subreg expression.

For REG_EQUIV, the register is equivalent to op throughout the entire function,
and could validly be replaced in all its occurrences by op. (“Validly” here refers
to the data flow of the program; simple replacement may make some insns
invalid.) For example, when a constant is loaded into a register that is never
assigned any other value, this kind of note is used.

When a parameter is copied into a pseudo-register at entry to a function, a note
of this kind records that the register is equivalent to the stack slot where the
parameter was passed. Although in this case the register may be set by other
insns, it is still valid to replace the register by the stack slot throughout the
function.

Chapter 8: RTL Representation 111

REG_WAS_O

A REG_EQUIV note is also used on an instruction which copies a register param-
eter into a pseudo-register at entry to a function, if there is a stack slot where
that parameter could be stored. Although other insns may set the pseudo-
register, it is valid for the compiler to replace the pseudo-register by stack slot
throughout the function, provided the compiler ensures that the stack slot is
properly initialized by making the replacement in the initial copy instruction as
well. This is used on machines for which the calling convention allocates stack
space for register parameters. See REG_PARM_STACK_SPACE in Section 10.10.6
[Stack Arguments], page 239.

In the case of REG_EQUAL, the register that is set by this insn will be equal
to op at run time at the end of this insn but not necessarily elsewhere in the
function. In this case, op is typically an arithmetic expression. For example,
when a sequence of insns such as a library call is used to perform an arithmetic
operation, this kind of note is attached to the insn that produces or copies the
final value.

These two notes are used in different ways by the compiler passes. REG_EQUAL
is used by passes prior to register allocation (such as common subexpression
elimination and loop optimization) to tell them how to think of that value.
REG_EQUIV notes are used by register allocation to indicate that there is an
available substitute expression (either a constant or a mem expression for the
location of a parameter on the stack) that may be used in place of a register if
insufficient registers are available.

Except for stack homes for parameters, which are indicated by a REG_EQUIV note
and are not useful to the early optimization passes and pseudo registers that
are equivalent to a memory location throughout their entire life, which is not
detected until later in the compilation, all equivalences are initially indicated
by an attached REG_EQUAL note. In the early stages of register allocation, a
REG_EQUAL note is changed into a REG_EQUIV note if op is a constant and the
insn represents the only set of its destination register.

Thus, compiler passes prior to register allocation need only check for REG_
EQUAL notes and passes subsequent to register allocation need only check for
REG_EQUIV notes.

The single output of this insn contained zero before this insn. op is the insn
that set it to zero. You can rely on this note if it is present and op has not
been deleted or turned into a note; its absence implies nothing.

These notes describe linkages between insns. They occur in pairs: one insn has one of a
pair of notes that points to a second insn, which has the inverse note pointing back to the

first insn.

REG_RETVAL

This insn copies the value of a multi-insn sequence (for example, a library call),
and op is the first insn of the sequence (for a library call, the first insn that was
generated to set up the arguments for the library call).

112 GNU Compiler Collection (GCC) Internals

Loop optimization uses this note to treat such a sequence as a single opera-
tion for code motion purposes and flow analysis uses this note to delete such
sequences whose results are dead.

A REG_EQUAL note will also usually be attached to this insn to provide the
expression being computed by the sequence.

These notes will be deleted after reload, since they are no longer accurate or
useful.

REG_LIBCALL
This is the inverse of REG_RETVAL: it is placed on the first insn of a multi-insn
sequence, and it points to the last one.

These notes are deleted after reload, since they are no longer useful or accurate.

REG_CC_SETTER

REG_CC_USER
On machines that use cc0, the insns which set and use ccO set and use ccO are
adjacent. However, when branch delay slot filling is done, this may no longer
be true. In this case a REG_CC_USER note will be placed on the insn setting ccO
to point to the insn using ccO and a REG_CC_SETTER note will be placed on the
insn using ccO to point to the insn setting ccO.

These values are only used in the LOG_LINKS field, and indicate the type of dependency
that each link represents. Links which indicate a data dependence (a read after write
dependence) do not use any code, they simply have mode V0IDmode, and are printed without
any descriptive text.

REG_DEP_ANTI
This indicates an anti dependence (a write after read dependence).

REG_DEP_QOUTPUT
This indicates an output dependence (a write after write dependence).

These notes describe information gathered from gcov profile data. They are stored in
the REG_NOTES field of an insn as an expr_list.

REG_BR_PROB
This is used to specify the ratio of branches to non-branches of a branch insn
according to the profile data. The value is stored as a value between 0 and
REG_BR_PROB_BASE; larger values indicate a higher probability that the
branch will be taken.

REG_BR_PRED
These notes are found in JUMP insns after delayed branch scheduling has taken
place. They indicate both the direction and the likelihood of the JUMP. The
format is a bitmask of ATTR_FLAG_* values.

REG_FRAME_RELATED_EXPR
This is used on an RTX_FRAME_RELATED_P insn wherein the attached ex-
pression is used in place of the actual insn pattern. This is done in cases where
the pattern is either complex or misleading.

Chapter 8: RTL Representation 113

For convenience, the machine mode in an insn_1list or expr_list is printed using these
symbolic codes in debugging dumps.

The only difference between the expression codes insn_list and expr_list is that the
first operand of an insn_list is assumed to be an insn and is printed in debugging dumps
as the insn’s unique id; the first operand of an expr_list is printed in the ordinary way as
an expression.

8.18 RTL Representation of Function-Call Insns

Insns that call subroutines have the RTL expression code call_insn. These insns must
satisfy special rules, and their bodies must use a special RTL expression code, call.

A call expression has two operands, as follows:
(call (mem:fm addr) nbytes)

Here nbytes is an operand that represents the number of bytes of argument data being
passed to the subroutine, fm is a machine mode (which must equal as the definition of the
FUNCTION_MODE macro in the machine description) and addr represents the address of the
subroutine.

For a subroutine that returns no value, the call expression as shown above is the entire
body of the insn, except that the insn might also contain use or clobber expressions.

For a subroutine that returns a value whose mode is not BLKmode, the value is returned
in a hard register. If this register’s number is r, then the body of the call insn looks like
this:

(set (reg:m r)
(call (mem:fm addr) nbytes))

This RTL expression makes it clear (to the optimizer passes) that the appropriate register
receives a useful value in this insn.

When a subroutine returns a BLKmode value, it is handled by passing to the subroutine
the address of a place to store the value. So the call insn itself does not “return” any value,
and it has the same RTL form as a call that returns nothing.

On some machines, the call instruction itself clobbers some register, for example to
contain the return address. call_insn insns on these machines should have a body which
is a parallel that contains both the call expression and clobber expressions that indicate
which registers are destroyed. Similarly, if the call instruction requires some register other
than the stack pointer that is not explicitly mentioned it its RTL, a use subexpression
should mention that register.

Functions that are called are assumed to modify all registers listed in the configuration
macro CALL_USED_REGISTERS (see Section 10.8.1 [Register Basics|, page 218) and, with the
exception of const functions and library calls, to modify all of memory.

Insns containing just use expressions directly precede the call_insn insn to indicate
which registers contain inputs to the function. Similarly, if registers other than those
in CALL_USED_REGISTERS are clobbered by the called function, insns containing a single
clobber follow immediately after the call to indicate which registers.

114 GNU Compiler Collection (GCC) Internals

8.19 Structure Sharing Assumptions

The compiler assumes that certain kinds of RTL expressions are unique; there do not exist
two distinct objects representing the same value. In other cases, it makes an opposite
assumption: that no RTL expression object of a certain kind appears in more than one
place in the containing structure.

These assumptions refer to a single function; except for the RTL objects that describe
global variables and external functions, and a few standard objects such as small integer
constants, no RTL objects are common to two functions.

e FEach pseudo-register has only a single reg object to represent it, and therefore only a
single machine mode.

e For any symbolic label, there is only one symbol_ref object referring to it.
e All const_int expressions with equal values are shared.

e There is only one pc expression.

e There is only one ccO expression.

e There is only one const_double expression with value 0 for each floating point mode.
Likewise for values 1 and 2.

e There is only one const_vector expression with value 0 for each vector mode, be it
an integer or a double constant vector.

e No label_ref or scratch appears in more than one place in the RTL structure; in
other words, it is safe to do a tree-walk of all the insns in the function and assume that
each time a label_ref or scratch is seen it is distinct from all others that are seen.

e Only one mem object is normally created for each static variable or stack slot, so these
objects are frequently shared in all the places they appear. However, separate but equal
objects for these variables are occasionally made.

e When a single asm statement has multiple output operands, a distinct asm_operands
expression is made for each output operand. However, these all share the vector which
contains the sequence of input operands. This sharing is used later on to test whether
two asm_operands expressions come from the same statement, so all optimizations
must carefully preserve the sharing if they copy the vector at all.

e No RTL object appears in more than one place in the RTL structure except as described
above. Many passes of the compiler rely on this by assuming that they can modify
RTL objects in place without unwanted side-effects on other insns.

e During initial RTL generation, shared structure is freely introduced. After all the RTL
for a function has been generated, all shared structure is copied by unshare_all_rtl
in ‘emit-rtl.c’, after which the above rules are guaranteed to be followed.

e During the combiner pass, shared structure within an insn can exist temporarily. How-
ever, the shared structure is copied before the combiner is finished with the insn. This
is done by calling copy_rtx_if_shared, which is a subroutine of unshare_all_rtl.

8.20 Reading RTL

To read an RTL object from a file, call read_rtx. It takes one argument, a stdio stream,
and returns a single RTL object. This routine is defined in ‘read-rtl.c’. It is not available

Chapter 8: RTL Representation 115

in the compiler itself, only the various programs that generate the compiler back end from
the machine description.

People frequently have the idea of using RTL stored as text in a file as an interface
between a language front end and the bulk of GCC. This idea is not feasible.

GCC was designed to use RTL internally only. Correct RTL for a given program is
very dependent on the particular target machine. And the RTL does not contain all the
information about the program.

The proper way to interface GCC to a new language front end is with the “tree” data
structure, described in the files ‘tree.h’ and ‘tree.def’. The documentation for this struc-
ture (see Chapter 7 [Trees|, page 39) is incomplete.

116 GNU Compiler Collection (GCC) Internals

Chapter 9: Machine Descriptions 117

9 Machine Descriptions

A machine description has two parts: a file of instruction patterns (‘.md’ file) and a C
header file of macro definitions.

The ‘.md’ file for a target machine contains a pattern for each instruction that the target
machine supports (or at least each instruction that is worth telling the compiler about).
It may also contain comments. A semicolon causes the rest of the line to be a comment,
unless the semicolon is inside a quoted string.

See the next chapter for information on the C header file.

9.1 Overview of How the Machine Description is Used

There are three main conversions that happen in the compiler:
1. The front end reads the source code and builds a parse tree.
2. The parse tree is used to generate an RTL insn list based on named instruction patterns.

3. The insn list is matched against the RTL templates to produce assembler code.

For the generate pass, only the names of the insns matter, from either a named define_
insn or a define_expand. The compiler will choose the pattern with the right name and
apply the operands according to the documentation later in this chapter, without regard
for the RTL template or operand constraints. Note that the names the compiler looks for
are hard-coded in the compiler—it will ignore unnamed patterns and patterns with names
it doesn’t know about, but if you don’t provide a named pattern it needs, it will abort.

If a define_insn is used, the template given is inserted into the insn list. If a define_
expand is used, one of three things happens, based on the condition logic. The condition
logic may manually create new insns for the insn list, say via emit_insn(), and invoke DONE.
For certain named patterns, it may invoke FAIL to tell the compiler to use an alternate way
of performing that task. If it invokes neither DONE nor FAIL, the template given in the
pattern is inserted, as if the define_expand were a define_insn.

Once the insn list is generated, various optimization passes convert, replace, and rear-
range the insns in the insn list. This is where the define_split and define_peephole
patterns get used, for example.

Finally, the insn list’s RTL is matched up with the RTL templates in the define_insn
patterns, and those patterns are used to emit the final assembly code. For this purpose,
each named define_insn acts like it’s unnamed, since the names are ignored.

9.2 Everything about Instruction Patterns

Each instruction pattern contains an incomplete RTL expression, with pieces to be filled in
later, operand constraints that restrict how the pieces can be filled in, and an output pattern
or C code to generate the assembler output, all wrapped up in a define_insn expression.

A define_insn is an RTL expression containing four or five operands:

118 GNU Compiler Collection (GCC) Internals

1. An optional name. The presence of a name indicate that this instruction pattern can
perform a certain standard job for the RTL-generation pass of the compiler. This pass
knows certain names and will use the instruction patterns with those names, if the
names are defined in the machine description.

The absence of a name is indicated by writing an empty string where the name should
go. Nameless instruction patterns are never used for generating RTL code, but they
may permit several simpler insns to be combined later on.

Names that are not thus known and used in RTL-generation have no effect; they are
equivalent to no name at all.

For the purpose of debugging the compiler, you may also specify a name beginning
with the ‘*’ character. Such a name is used only for identifying the instruction in RTL
dumps; it is entirely equivalent to having a nameless pattern for all other purposes.

2. The RTL template (see Section 9.4 [RTL Template|, page 119) is a vector of incomplete
RTL expressions which show what the instruction should look like. It is incomplete
because it may contain match_operand, match_operator, and match_dup expressions
that stand for operands of the instruction.

If the vector has only one element, that element is the template for the instruction
pattern. If the vector has multiple elements, then the instruction pattern is a parallel
expression containing the elements described.

3. A condition. This is a string which contains a C expression that is the final test to
decide whether an insn body matches this pattern.

For a named pattern, the condition (if present) may not depend on the data in the insn
being matched, but only the target-machine-type flags. The compiler needs to test these
conditions during initialization in order to learn exactly which named instructions are
available in a particular run.

For nameless patterns, the condition is applied only when matching an individual insn,
and only after the insn has matched the pattern’s recognition template. The insn’s
operands may be found in the vector operands. For an insn where the condition has
once matched, it can’t be used to control register allocation, for example by excluding
certain hard registers or hard register combinations.

4. The output template: a string that says how to output matching insns as assembler
code. ‘%’ in this string specifies where to substitute the value of an operand. See
Section 9.5 [Output Template], page 123.

When simple substitution isn’t general enough, you can specify a piece of C code to
compute the output. See Section 9.6 [Output Statement], page 124.

5. Optionally, a vector containing the values of attributes for insns matching this pattern.
See Section 9.18 [Insn Attributes|, page 175.

9.3 Example of define_insn

Here is an actual example of an instruction pattern, for the 68000/68020.

(define_insn "tstsi"
[(set (cc0)
(match_operand:SI O "general_operand" "rm"))]

Chapter 9: Machine Descriptions 119

"k
{
if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
return \"tstl %0\";
return \"cmpl #0,%0\";
12D
This can also be written using braced strings:

(define_insn "tstsi"
[(set (ccO)
(match_operand:SI O "general_operand" "rm"))]

nn

{
if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
return "tstl %0";
return "cmpl #0,%0";
1))

This is an instruction that sets the condition codes based on the value of a general
operand. It has no condition, so any insn whose RTL description has the form shown may
be handled according to this pattern. The name ‘tstsi’ means “test a SImode value” and
tells the RTL generation pass that, when it is necessary to test such a value, an insn to do
so can be constructed using this pattern.

The output control string is a piece of C code which chooses which output template to
return based on the kind of operand and the specific type of CPU for which code is being
generated.

‘“"rm"’ is an operand constraint. Its meaning is explained below.

9.4 RTL Template

The RTL template is used to define which insns match the particular pattern and how to
find their operands. For named patterns, the RTL template also says how to construct an
insn from specified operands.

Construction involves substituting specified operands into a copy of the template. Match-
ing involves determining the values that serve as the operands in the insn being matched.
Both of these activities are controlled by special expression types that direct matching and
substitution of the operands.

(match_operand:m n predicate constraint)
This expression is a placeholder for operand number n of the insn. When
constructing an insn, operand number n will be substituted at this point. When
matching an insn, whatever appears at this position in the insn will be taken
as operand number n; but it must satisfy predicate or this instruction pattern
will not match at all.

Operand numbers must be chosen consecutively counting from zero in each
instruction pattern. There may be only one match_operand expression in the

120

GNU Compiler Collection (GCC) Internals

pattern for each operand number. Usually operands are numbered in the order
of appearance in match_operand expressions. In the case of a define_expand,
any operand numbers used only in match_dup expressions have higher values
than all other operand numbers.

predicate is a string that is the name of a C function that accepts two arguments,
an expression and a machine mode. During matching, the function will be called
with the putative operand as the expression and m as the mode argument (if
m is not specified, VOIDmode will be used, which normally causes predicate to
accept any mode). If it returns zero, this instruction pattern fails to match.
predicate may be an empty string; then it means no test is to be done on the
operand, so anything which occurs in this position is valid.

Most of the time, predicate will reject modes other than m—but not always.
For example, the predicate address_operand uses m as the mode of memory
ref that the address should be valid for. Many predicates accept const_int
nodes even though their mode is VOIDmode.

constraint controls reloading and the choice of the best register class to use for
a value, as explained later (see Section 9.7 [Constraints], page 126).

People are often unclear on the difference between the constraint and the predi-
cate. The predicate helps decide whether a given insn matches the pattern. The
constraint plays no role in this decision; instead, it controls various decisions in
the case of an insn which does match.

On CISC machines, the most common predicate is "general_operand". This
function checks that the putative operand is either a constant, a register or a
memory reference, and that it is valid for mode m.

For an operand that must be a register, predicate should be "register_
operand". Using "general_operand" would be valid, since the reload pass
would copy any non-register operands through registers, but this would make
GCC do extra work, it would prevent invariant operands (such as constant)
from being removed from loops, and it would prevent the register allocator
from doing the best possible job. On RISC machines, it is usually most
efficient to allow predicate to accept only objects that the constraints allow.

For an operand that must be a constant, you must be sure to either use
"immediate_operand" for predicate, or make the instruction pattern’s extra
condition require a constant, or both. You cannot expect the constraints to
do this work! If the constraints allow only constants, but the predicate allows
something else, the compiler will crash when that case arises.

(match_scratch:m n constraint)

This expression is also a placeholder for operand number n and indicates that
operand must be a scratch or reg expression.
When matching patterns, this is equivalent to

(match_operand:m n "scratch_operand" pred)
but, when generating RTL, it produces a (scratch:m) expression.
If the last few expressions in a parallel are clobber expressions whose
operands are either a hard register or match_scratch, the combiner can add
or delete them when necessary. See Section 8.14 [Side Effects], page 97.

Chapter 9: Machine Descriptions 121

(match_dup n)
This expression is also a placeholder for operand number n. It is used when the
operand needs to appear more than once in the insn.

In construction, match_dup acts just like match_operand: the operand is sub-
stituted into the insn being constructed. But in matching, match_dup behaves
differently. It assumes that operand number n has already been determined by
a match_operand appearing earlier in the recognition template, and it matches
only an identical-looking expression.

Note that match_dup should not be used to tell the compiler that a particular
register is being used for two operands (example: add that adds one register to
another; the second register is both an input operand and the output operand).
Use a matching constraint (see Section 9.7.1 [Simple Constraints|, page 126)
for those. match_dup is for the cases where one operand is used in two places
in the template, such as an instruction that computes both a quotient and a
remainder, where the opcode takes two input operands but the RTL template
has to refer to each of those twice; once for the quotient pattern and once for
the remainder pattern.

(match_operator:m n predicate [operands...])
This pattern is a kind of placeholder for a variable RTL expression code.

When constructing an insn, it stands for an RTL expression whose expression
code is taken from that of operand n, and whose operands are constructed from
the patterns operands.

When matching an expression, it matches an expression if the function predi-
cate returns nonzero on that expression and the patterns operands match the
operands of the expression.

Suppose that the function commutative_operator is defined as follows, to
match any expression whose operator is one of the commutative arithmetic
operators of RTL and whose mode is mode:
int
commutative_operator (x, mode)
rtx x;
enum machine_mode mode;

{
enum rtx_code code = GET_CODE (x);
if (GET_MODE (x) '= mode)
return O;
return (GET_RTX_CLASS (code) == ’c’
|l code == EQ || code == NE);
}
Then the following pattern will match any RTL expression consisting of a com-
mutative operator applied to two general operands:
(match_operator:SI 3 "commutative_operator"
[(match_operand:SI 1 "general_operand" "g")
(match_operand:SI 2 "general_operand" "g")])
Here the vector [operands...] contains two patterns because the expressions

to be matched all contain two operands.

When this pattern does match, the two operands of the commutative operator
are recorded as operands 1 and 2 of the insn. (This is done by the two instances

122

GNU Compiler Collection (GCC) Internals

of match_operand.) Operand 3 of the insn will be the entire commutative
expression: use GET_CODE (operands[3]) to see which commutative operator
was used.

The machine mode m of match_operator works like that of match_operand: it
is passed as the second argument to the predicate function, and that function
is solely responsible for deciding whether the expression to be matched “has”
that mode.

When constructing an insn, argument 3 of the gen-function will specify the
operation (i.e. the expression code) for the expression to be made. It should
be an RTL expression, whose expression code is copied into a new expression
whose operands are arguments 1 and 2 of the gen-function. The subexpressions
of argument 3 are not used; only its expression code matters.

When match_operator is used in a pattern for matching an insn, it usually best
if the operand number of the match_operator is higher than that of the actual
operands of the insn. This improves register allocation because the register
allocator often looks at operands 1 and 2 of insns to see if it can do register
tying.

There is no way to specify constraints in match_operator. The operand of
the insn which corresponds to the match_operator never has any constraints
because it is never reloaded as a whole. However, if parts of its operands are
matched by match_operand patterns, those parts may have constraints of their
own.

(match_op_dup:m n[operands...])

Like match_dup, except that it applies to operators instead of operands. When
constructing an insn, operand number n will be substituted at this point. But in
matching, match_op_dup behaves differently. It assumes that operand number
n has already been determined by a match_operator appearing earlier in the
recognition template, and it matches only an identical-looking expression.

(match_parallel n predicate [subpat...])

This pattern is a placeholder for an insn that consists of a parallel expression
with a variable number of elements. This expression should only appear at the
top level of an insn pattern.

When constructing an insn, operand number n will be substituted at this point.
When matching an insn, it matches if the body of the insn is a parallel
expression with at least as many elements as the vector of subpat expressions
in the match_parallel, if each subpat matches the corresponding element of
the parallel, and the function predicate returns nonzero on the parallel
that is the body of the insn. It is the responsibility of the predicate to validate
elements of the parallel beyond those listed in the match_parallel.

A typical use of match_parallel is to match load and store multiple expres-
sions, which can contain a variable number of elements in a parallel. For
example,

(define_insn ""
[(match_parallel O "load_multiple_operation"
[(set (match_operand:SI 1 "gpc_reg_operand" "=r")

Chapter 9: Machine Descriptions 123

(match_operand:SI 2 "memory_operand" "m"))
(use (reg:SI 179))
(clobber (reg:SI 179))1)]

"loadm 0,0,%1,%2")
This example comes from ‘a29k.md’. The function load_multiple_operation
is defined in ‘a29k.c’ and checks that subsequent elements in the parallel are
the same as the set in the pattern, except that they are referencing subsequent
registers and memory locations.

An insn that matches this pattern might look like:

(parallel
[(set (reg:SI 20) (mem:SI (reg:SI 100)))
(use (reg:SI 179))
(clobber (reg:SI 179))
(set (reg:SI 21)
(mem:SI (plus:SI (reg:SI 100)
(const_int 4))))
(set (reg:SI 22)
(mem:SI (plus:SI (reg:SI 100)
(const_int 8))))1)

(match_par_dup n [subpat...])
Like match_op_dup, but for match_parallel instead of match_operator.

(match_insn predicate)
Match a complete insn. Unlike the other match_* recognizers, match_insn does
not take an operand number.

The machine mode m of match_insn works like that of match_operand: it is
passed as the second argument to the predicate function, and that function is
solely responsible for deciding whether the expression to be matched “has” that
mode.

(match_insn2 n predicate)
Match a complete insn.

The machine mode m of match_insn2 works like that of match_operand: it
is passed as the second argument to the predicate function, and that function
is solely responsible for deciding whether the expression to be matched “has”
that mode.

9.5 Output Templates and Operand Substitution

The output template is a string which specifies how to output the assembler code for an
instruction pattern. Most of the template is a fixed string which is output literally. The
character ‘%’ is used to specify where to substitute an operand; it can also be used to identify
places where different variants of the assembler require different syntax.

In the simplest case, a ‘%’ followed by a digit n says to output operand n at that point
in the string.

‘% followed by a letter and a digit says to output an operand in an alternate fashion.
Four letters have standard, built-in meanings described below. The machine description
macro PRINT_OPERAND can define additional letters with nonstandard meanings.

124 GNU Compiler Collection (GCC) Internals

‘hcdigit’ can be used to substitute an operand that is a constant value without the
syntax that normally indicates an immediate operand.

‘fndigit’ is like ‘%cdigit’ except that the value of the constant is negated before
printing.

‘hadigit’ can be used to substitute an operand as if it were a memory reference, with
the actual operand treated as the address. This may be useful when outputting a “load
address” instruction, because often the assembler syntax for such an instruction requires
you to write the operand as if it were a memory reference.

‘%1ldigit’ is used to substitute a label_ref into a jump instruction.

‘%=’ outputs a number which is unique to each instruction in the entire compilation.
This is useful for making local labels to be referred to more than once in a single template
that generates multiple assembler instructions.

‘% followed by a punctuation character specifies a substitution that does not use an
operand. Only one case is standard: ‘%%’ outputs a ‘%’ into the assembler code. Other
nonstandard cases can be defined in the PRINT_OPERAND macro. You must also define
which punctuation characters are valid with the PRINT_OPERAND_PUNCT_VALID_P macro.

The template may generate multiple assembler instructions. Write the text for the
instructions, with ‘\;’ between them.

When the RTL contains two operands which are required by constraint to match each
other, the output template must refer only to the lower-numbered operand. Matching
operands are not always identical, and the rest of the compiler arranges to put the proper
RTL expression for printing into the lower-numbered operand.

One use of nonstandard letters or punctuation following ‘%’ is to distinguish between
different assembler languages for the same machine; for example, Motorola syntax versus
MIT syntax for the 68000. Motorola syntax requires periods in most opcode names, while
MIT syntax does not. For example, the opcode ‘movel’ in MIT syntax is ‘move.l’ in
Motorola syntax. The same file of patterns is used for both kinds of output syntax, but
the character sequence ‘%." is used in each place where Motorola syntax wants a period.
The PRINT_OPERAND macro for Motorola syntax defines the sequence to output a period;
the macro for MIT syntax defines it to do nothing.

As a special case, a template consisting of the single character # instructs the compiler
to first split the insn, and then output the resulting instructions separately. This helps
eliminate redundancy in the output templates. If you have a define_insn that needs
to emit multiple assembler instructions, and there is an matching define_split already
defined, then you can simply use # as the output template instead of writing an output
template that emits the multiple assembler instructions.

If the macro ASSEMBLER_DIALECT is defined, you can use construct of the form
‘{optionO|optionl|option2}’ in the templates. These describe multiple variants of
assembler language syntax. See Section 10.20.7 [Instruction Output], page 296.

9.6 C Statements for Assembler Output

Often a single fixed template string cannot produce correct and efficient assembler code for
all the cases that are recognized by a single instruction pattern. For example, the opcodes

Chapter 9: Machine Descriptions 125

may depend on the kinds of operands; or some unfortunate combinations of operands may
require extra machine instructions.

If the output control string starts with a ‘@’, then it is actually a series of templates, each
on a separate line. (Blank lines and leading spaces and tabs are ignored.) The templates
correspond to the pattern’s constraint alternatives (see Section 9.7.2 [Multi-Alternative],
page 130). For example, if a target machine has a two-address add instruction ‘addr’ to
add into a register and another ‘addm’ to add a register to memory, you might write this
pattern:

(define_insn "addsi3"
[(set (match_operand:SI O "general_operand" "=r,m")
(plus:SI (match_operand:SI 1 "general_operand" "0,0")
(match_operand:SI 2 "general_operand" "g,r")))]

ll@

addr %2,%0

addm %2,%0")

If the output control string starts with a ‘*’, then it is not an output template but rather

a piece of C program that should compute a template. It should execute a return statement
to return the template-string you want. Most such templates use C string literals, which
require doublequote characters to delimit them. To include these doublequote characters in
the string, prefix each one with ‘\’.

If the output control string is written as a brace block instead of a double-quoted string,
it is automatically assumed to be C code. In that case, it is not necessary to put in a leading
asterisk, or to escape the doublequotes surrounding C string literals.

The operands may be found in the array operands, whose C data type is rtx [].

It is very common to select different ways of generating assembler code based on whether
an immediate operand is within a certain range. Be careful when doing this, because the
result of INTVAL is an integer on the host machine. If the host machine has more bits in an
int than the target machine has in the mode in which the constant will be used, then some
of the bits you get from INTVAL will be superfluous. For proper results, you must carefully
disregard the values of those bits.

It is possible to output an assembler instruction and then go on to output or compute
more of them, using the subroutine output_asm_insn. This receives two arguments: a
template-string and a vector of operands. The vector may be operands, or it may be
another array of rtx that you declare locally and initialize yourself.

When an insn pattern has multiple alternatives in its constraints, often the appearance
of the assembler code is determined mostly by which alternative was matched. When this
is so, the C code can test the variable which_alternative, which is the ordinal number of
the alternative that was actually satisfied (0 for the first, 1 for the second alternative, etc.).

For example, suppose there are two opcodes for storing zero, ‘clrreg’ for registers and
‘clrmem’ for memory locations. Here is how a pattern could use which_alternative to
choose between them:

(define_insn ""
[(set (match_operand:SI O "general_operand" "=r,m")
(const_int 0))]

{

126

GNU Compiler Collection (GCC) Internals

return (which_alternative ==

b

? "clrreg %0" : "clrmem %0");

The example above, where the assembler code to generate was solely determined by the

alternative,

with a ‘@’:

could also have been specified as follows, having the output control string start

(define_insn ""
[(set (match_operand:SI O "general_operand" "=r,m")

"Q

(const_int 0))]

clrreg %0
clrmem %0")

9.7 Operand Constraints

Each match_operand in an instruction pattern can specify a constraint for the type of
operands allowed. Constraints can say whether an operand may be in a register, and which
kinds of register; whether the operand can be a memory reference, and which kinds of
address; whether the operand may be an immediate constant, and which possible values it
may have. Constraints can also require two operands to match.

9.7.1 Simple Constraints

The simplest kind of constraint is a string full of letters, each of which describes one kind
of operand that is permitted. Here are the letters that are allowed:

whitespace

Whitespace characters are ignored and can be inserted at any position except
the first. This enables each alternative for different operands to be visually
aligned in the machine description even if they have different number of con-
straints and modifiers.

A memory operand is allowed, with any kind of address that the machine sup-
ports in general.

A memory operand is allowed, but only if the address is offsettable. This
means that adding a small integer (actually, the width in bytes of the operand,
as determined by its machine mode) may be added to the address and the result
is also a valid memory address.

For example, an address which is constant is offsettable; so is an address that
is the sum of a register and a constant (as long as a slightly larger constant
is also within the range of address-offsets supported by the machine); but an
autoincrement or autodecrement address is not offsettable. More complicated
indirect/indexed addresses may or may not be offsettable depending on the
other addressing modes that the machine supports.

Note that in an output operand which can be matched by another operand,
the constraint letter ‘o’ is valid only when accompanied by both ‘<’ (if the

Chapter 9: Machine Descriptions 127

LI7’ LJ7’ ‘K’, X

target machine has predecrement addressing) and ‘>’ (if the target machine has
preincrement addressing).

A memory operand that is not offsettable. In other words, anything that would
fit the ‘m’ constraint but not the ‘o’ constraint.

A memory operand with autodecrement addressing (either predecrement or
postdecrement) is allowed.

A memory operand with autoincrement addressing (either preincrement or
postincrement) is allowed.

A register operand is allowed provided that it is in a general register.

An immediate integer operand (one with constant value) is allowed. This in-
cludes symbolic constants whose values will be known only at assembly time.

An immediate integer operand with a known numeric value is allowed. Many
systems cannot support assembly-time constants for operands less than a word
wide. Constraints for these operands should use ‘n’ rather than ‘i’.

.. P

Other letters in the range ‘I’ through ‘P’ may be defined in a machine-dependent
fashion to permit immediate integer operands with explicit integer values in
specified ranges. For example, on the 68000, ‘I’ is defined to stand for the
range of values 1 to 8. This is the range permitted as a shift count in the shift
instructions.

An immediate floating operand (expression code const_double) is allowed, but
only if the target floating point format is the same as that of the host machine
(on which the compiler is running).

An immediate floating operand (expression code const_double or
const_vector) is allowed.

‘G’ and ‘H’ may be defined in a machine-dependent fashion to permit immediate
floating operands in particular ranges of values.

An immediate integer operand whose value is not an explicit integer is allowed.

This might appear strange; if an insn allows a constant operand with a value
not known at compile time, it certainly must allow any known value. So why
use ‘s’ instead of ‘i’? Sometimes it allows better code to be generated.

For example, on the 68000 in a fullword instruction it is possible to use an
immediate operand; but if the immediate value is between —128 and 127, better
code results from loading the value into a register and using the register. This
is because the load into the register can be done with a ‘moveq’ instruction. We
arrange for this to happen by defining the letter ‘K’ to mean “any integer outside
the range —128 to 127”7, and then specifying ‘Ks’ in the operand constraints.

Any register, memory or immediate integer operand is allowed, except for reg-
isters that are not general registers.

Any operand whatsoever is allowed, even if it does not satisfy general_
operand. This is normally used in the constraint of a match_scratch when
certain alternatives will not actually require a scratch register.

128 GNU Compiler Collection (GCC) Internals

407’ 417’ (27’ . 697
An operand that matches the specified operand number is allowed. If a digit
is used together with letters within the same alternative, the digit should come
last.

This number is allowed to be more than a single digit. If multiple digits are en-
countered consecutively, they are interpreted as a single decimal integer. There
is scant chance for ambiguity, since to-date it has never been desirable that
‘10’ be interpreted as matching either operand 1 or operand 0. Should this be
desired, one can use multiple alternatives instead.

This is called a matching constraint and what it really means is that the as-
sembler has only a single operand that fills two roles considered separate in the
RTL insn. For example, an add insn has two input operands and one output
operand in the RTL, but on most CISC machines an add instruction really has
only two operands, one of them an input-output operand:

addl #35,r12

Matching constraints are used in these circumstances. More precisely, the two
operands that match must include one input-only operand and one output-only
operand. Moreover, the digit must be a smaller number than the number of
the operand that uses it in the constraint.

For operands to match in a particular case usually means that they are identical-
looking RTL expressions. But in a few special cases specific kinds of dissimi-
larity are allowed. For example, *x as an input operand will match *x++ as an
output operand. For proper results in such cases, the output template should
always use the output-operand’s number when printing the operand.

P An operand that is a valid memory address is allowed. This is for “load address”
and “push address” instructions.

‘p’ in the constraint must be accompanied by address_operand as the predicate
in the match_operand. This predicate interprets the mode specified in the
match_operand as the mode of the memory reference for which the address
would be valid.

other-letters
Other letters can be defined in machine-dependent fashion to stand for par-
ticular classes of registers or other arbitrary operand types. ‘d’, ‘a’ and ‘f’
are defined on the 68000/68020 to stand for data, address and floating point
registers.

The machine description macro REG_CLASS_FROM_LETTER has first cut at the

otherwise unused letters. If it evaluates to NO_REGS, then EXTRA_CONSTRAINT
is evaluated.

A typical use for EXTRA_CONSTRAINT would be to distinguish certain types of
memory references that affect other insn operands.

In order to have valid assembler code, each operand must satisfy its constraint. But a
failure to do so does not prevent the pattern from applying to an insn. Instead, it directs
the compiler to modify the code so that the constraint will be satisfied. Usually this is done
by copying an operand into a register.

Chapter 9: Machine Descriptions 129

Contrast, therefore, the two instruction patterns that follow:

(define_insn ""
[(set (match_operand:SI O "general_operand" "=r"
(plus:SI (match_dup 0)
(match_operand:SI 1 "general_operand" "r")))]

u.__n)

which has two operands, one of which must appear in two places, and

(define_insn ""
[(set (match_operand:SI O "general_operand" "=r")
(plus:SI (match_operand:SI 1 "general_operand" "O")
(match_operand:SI 2 "general_operand" "r")))]

||'.‘||)

which has three operands, two of which are required by a constraint to be identical. If we
are considering an insn of the form

(insn n prev next
(set (reg:SI 3)
(plus:SI (reg:SI 6) (reg:SI 109)))

)
the first pattern would not apply at all, because this insn does not contain two identical
subexpressions in the right place. The pattern would say, “That does not look like an
add instruction; try other patterns.” The second pattern would say, “Yes, that’s an add
instruction, but there is something wrong with it.” It would direct the reload pass of the
compiler to generate additional insns to make the constraint true. The results might look
like this:

(insn n2 prev n
(set (reg:SI 3) (reg:SI 6))
o)

(insn n n2 next
(set (reg:SI 3)
(plus:SI (reg:SI 3) (reg:SI 109)))
.

It is up to you to make sure that each operand, in each pattern, has constraints that
can handle any RTL expression that could be present for that operand. (When multiple
alternatives are in use, each pattern must, for each possible combination of operand expres-
sions, have at least one alternative which can handle that combination of operands.) The
constraints don’t need to allow any possible operand—when this is the case, they do not
constrain—but they must at least point the way to reloading any possible operand so that
it will fit.

e If the constraint accepts whatever operands the predicate permits, there is no problem:
reloading is never necessary for this operand.

For example, an operand whose constraints permit everything except registers is safe
provided its predicate rejects registers.

An operand whose predicate accepts only constant values is safe provided its constraints
include the letter ‘i’. If any possible constant value is accepted, then nothing less than
‘i’ will do; if the predicate is more selective, then the constraints may also be more
selective.

130 GNU Compiler Collection (GCC) Internals

e Any operand expression can be reloaded by copying it into a register. So if an operand’s
constraints allow some kind of register, it is certain to be safe. It need not permit all
classes of registers; the compiler knows how to copy a register into another register of
the proper class in order to make an instruction valid.

e A nonoffsettable memory reference can be reloaded by copying the address into a
register. So if the constraint uses the letter ‘o’, all memory references are taken care
of.

e A constant operand can be reloaded by allocating space in memory to hold it as preini-
tialized data. Then the memory reference can be used in place of the constant. So if
the constraint uses the letters ‘o’ or ‘m’, constant operands are not a problem.

e If the constraint permits a constant and a pseudo register used in an insn was not
allocated to a hard register and is equivalent to a constant, the register will be replaced
with the constant. If the predicate does not permit a constant and the insn is re-
recognized for some reason, the compiler will crash. Thus the predicate must always
recognize any objects allowed by the constraint.

If the operand’s predicate can recognize registers, but the constraint does not permit
them, it can make the compiler crash. When this operand happens to be a register, the
reload pass will be stymied, because it does not know how to copy a register temporarily
into memory.

If the predicate accepts a unary operator, the constraint applies to the operand. For
example, the MIPS processor at ISA level 3 supports an instruction which adds two registers
in SImode to produce a DImode result, but only if the registers are correctly sign extended.
This predicate for the input operands accepts a sign_extend of an SImode register. Write
the constraint to indicate the type of register that is required for the operand of the sign_
extend.

9.7.2 Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of possible operands. For ex-
ample, on the 68000, a logical-or instruction can combine register or an immediate value
into memory, or it can combine any kind of operand into a register; but it cannot combine
one memory location into another.

These constraints are represented as multiple alternatives. An alternative can be de-
scribed by a series of letters for each operand. The overall constraint for an operand is
made from the letters for this operand from the first alternative, a comma, the letters for
this operand from the second alternative, a comma, and so on until the last alternative.
Here is how it is done for fullword logical-or on the 68000:

(define_insn "iorsi3"
[(set (match_operand:SI O "general_operand" "=m,d")
(ior:SI (match_operand:SI 1 "general_operand" "%0,0")
(match_operand:SI 2 "general_operand" "dKs,dmKs")))]
L)

The first alternative has ‘m’ (memory) for operand 0, ‘0’ for operand 1 (meaning it must
match operand 0), and ‘dKs’ for operand 2. The second alternative has ‘d’ (data register)
for operand 0, ‘0’ for operand 1, and ‘dmKs’ for operand 2. The ‘=’ and ‘/’ in the constraints

Chapter 9: Machine Descriptions 131

apply to all the alternatives; their meaning is explained in the next section (see Section 9.7.3
[Class Preferences], page 131).

If all the operands fit any one alternative, the instruction is valid. Otherwise, for each
alternative, the compiler counts how many instructions must be added to copy the operands
so that that alternative applies. The alternative requiring the least copying is chosen. If
two alternatives need the same amount of copying, the one that comes first is chosen. These
choices can be altered with the ‘?” and ‘!’ characters:

¢

? Disparage slightly the alternative that the ‘?’ appears in, as a choice when no
alternative applies exactly. The compiler regards this alternative as one unit
more costly for each ‘?’ that appears in it.

! Disparage severely the alternative that the ‘!’ appears in. This alternative can
still be used if it fits without reloading, but if reloading is needed, some other
alternative will be used.

When an insn pattern has multiple alternatives in its constraints, often the appearance
of the assembler code is determined mostly by which alternative was matched. When this
is so, the C code for writing the assembler code can use the variable which_alternative,
which is the ordinal number of the alternative that was actually satisfied (0 for the first, 1
for the second alternative, etc.). See Section 9.6 [Output Statement]|, page 124.

9.7.3 Register Class Preferences

The operand constraints have another function: they enable the compiler to decide which
kind of hardware register a pseudo register is best allocated to. The compiler examines the
constraints that apply to the insns that use the pseudo register, looking for the machine-
dependent letters such as ‘d’ and ‘a’ that specify classes of registers. The pseudo register
is put in whichever class gets the most “votes”. The constraint letters ‘g’ and ‘r’ also vote:
they vote in favor of a general register. The machine description says which registers are
considered general.

Of course, on some machines all registers are equivalent, and no register classes are
defined. Then none of this complexity is relevant.

9.7.4 Constraint Modifier Characters

Here are constraint modifier characters.

[

= Means that this operand is write-only for this instruction: the previous value
is discarded and replaced by output data.

+ Means that this operand is both read and written by the instruction.

When the compiler fixes up the operands to satisfy the constraints, it needs
to know which operands are inputs to the instruction and which are outputs
from it. ‘=’ identifies an output; ‘+’ identifies an operand that is both input and
output; all other operands are assumed to be input only.

(=0

If you specify or ‘+’ in a constraint, you put it in the first character of the

constraint string.

132

4%7

GNU Compiler Collection (GCC) Internals

Means (in a particular alternative) that this operand is an earlyclobber operand,
which is modified before the instruction is finished using the input operands.
Therefore, this operand may not lie in a register that is used as an input operand
or as part of any memory address.

‘&’ applies only to the alternative in which it is written. In constraints with
multiple alternatives, sometimes one alternative requires ‘%’ while others do
not. See, for example, the ‘movdf’ insn of the 68000.

An input operand can be tied to an earlyclobber operand if its only use as an
input occurs before the early result is written. Adding alternatives of this form
often allows GCC to produce better code when only some of the inputs can be
affected by the earlyclobber. See, for example, the ‘mulsi3’ insn of the ARM.

‘&’ does not obviate the need to write ‘=’.

Declares the instruction to be commutative for this operand and the following
operand. This means that the compiler may interchange the two operands if
that is the cheapest way to make all operands fit the constraints. This is often
used in patterns for addition instructions that really have only two operands:
the result must go in one of the arguments. Here for example, is how the 68000
halfword-add instruction is defined:

(define_insn "addhi3"
[(set (match_operand:HI O "general_operand" "=m,r")
(plus:HI (match_operand:HI 1 "general_operand" "%0,0")
(match_operand:HI 2 "general_operand" "di,g")))]

L)

GCC can only handle one commutative pair in an asm; if you use more, the
y p) y >

compiler may fail.

Says that all following characters, up to the next comma, are to be ignored as
a constraint. They are significant only for choosing register preferences.

Says that the following character should be ignored when choosing register
preferences. ‘*’ has no effect on the meaning of the constraint as a constraint,
and no effect on reloading.

Here is an example: the 68000 has an instruction to sign-extend a halfword
in a data register, and can also sign-extend a value by copying it into an ad-
dress register. While either kind of register is acceptable, the constraints on
an address-register destination are less strict, so it is best if register allocation
makes an address register its goal. Therefore, ‘*’ is used so that the ‘d’ con-
straint letter (for data register) is ignored when computing register preferences.

(define_insn "extendhisi2"
[(set (match_operand:SI O "general_operand" "=xd,a")
(sign_extend:SI
(match_operand:HI 1 "general_operand" "0,g")))]
L)

9.7.5 Constraints for Particular Machines

Whenever possible, you should use the general-purpose constraint letters in asm arguments,
since they will convey meaning more readily to people reading your code. Failing that, use

Chapter 9: Machine Descriptions 133

the constraint letters that usually have very similar meanings across architectures. The
most commonly used constraints are ‘m’ and ‘r’ (for memory and general-purpose registers
respectively; see Section 9.7.1 [Simple Constraints], page 126), and ‘I’, usually the letter
indicating the most common immediate-constant format.

For each machine architecture, the ‘config/machine/machine.h’ file defines additional
constraints. These constraints are used by the compiler itself for instruction generation, as
well as for asm statements; therefore, some of the constraints are not particularly interesting
for asm. The constraints are defined through these macros:

REG_CLASS_FROM_LETTER
Register class constraints (usually lower case).

CONST_OK_FOR_LETTER_P
Immediate constant constraints, for non-floating point constants of word size
or smaller precision (usually upper case).

CONST_DOUBLE_OK_FOR_LETTER_P
Immediate constant constraints, for all floating point constants and for con-
stants of greater than word size precision (usually upper case).

EXTRA_CONSTRAINT
Special cases of registers or memory. This macro is not required, and is only
defined for some machines.

Inspecting these macro definitions in the compiler source for your machine is the best
way to be certain you have the right constraints. However, here is a summary of the
machine-dependent constraints available on some particular machines.

ARM family— ‘arm.h’

f Floating-point register

F One of the floating-point constants 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 or
10.0

G Floating-point constant that would satisfy the constraint ‘F’ if it

were negated

I Integer that is valid as an immediate operand in a data processing
instruction. That is, an integer in the range 0 to 255 rotated by a
multiple of 2

J Integer in the range —4095 to 4095

K Integer that satisfies constraint ‘I’ when inverted (ones comple-
ment)

L Integer that satisfies constraint ‘I’ when negated (twos comple-
ment)

M Integer in the range 0 to 32

Q A memory reference where the exact address is in a single register

(“m” is preferable for asm statements)

R An item in the constant pool

134 GNU Compiler Collection (GCC) Internals

S A symbol in the text segment of the current file
AVR family—‘avr.h’

1 Registers from r0 to r15

a Registers from r16 to r23

d Registers from r16 to r31

W Registers from 124 to r31. These registers can be used in ‘adiw’

command

e Pointer register (r26-r31)

b Base pointer register (r28-r31)

q Stack pointer register (SPH:SPL)

t Temporary register r0

X Register pair X (r27:126)

y Register pair Y (r29:r28)

z Register pair Z (r31:r30)

I Constant greater than —1, less than 64

J Constant greater than —64, less than 1

K Constant integer 2

L Constant integer 0

M Constant that fits in 8 bits

N Constant integer —1

0 Constant integer 8, 16, or 24

P Constant integer 1

G A floating point constant 0.0
IBM RS6000— ‘rs6000.h’

b Address base register

f Floating point register

h ‘MQ’, ‘CTR’, or ‘LINK’ register

q ‘MQ’ register

c ‘CTR’ register

1 ‘LINK’ register

X ‘CR’ register (condition register) number 0

y ‘CR’ register (condition register)

z ‘FPMEM’ stack memory for FPR-GPR transfers

Chapter 9: Machine Descriptions 135

Intel 386—°

Q v O =2 = - = [

o

R
S
T
8)
i386.h’
q

Signed 16-bit constant

Unsigned 16-bit constant shifted left 16 bits (use ‘L’ instead for
SImode constants)

Unsigned 16-bit constant

Signed 16-bit constant shifted left 16 bits

Constant larger than 31

Exact power of 2

Zero

Constant whose negation is a signed 16-bit constant

Floating point constant that can be loaded into a register with one
instruction per word

Memory operand that is an offset from a register (‘m’ is preferable
for asm statements)

AIX TOC entry
Constant suitable as a 64-bit mask operand
Constant suitable as a 32-bit mask operand

System V Release 4 small data area reference

‘a’, b, ¢, or d register for the i386. For x86-64 it is equivalent to ‘r’
class. (for 8-bit instructions that do not use upper halves)

‘a’; b, ¢, or d register. (for 8-bit instructions, that do use upper
halves)

Legacy register—equivalent to r class in 1386 mode. (for non-8-bit
registers used together with 8-bit upper halves in a single instruc-
tion)

Specifies the ‘a’ or ‘d’ registers. This is primarily useful for 64-bit
integer values (when in 32-bit mode) intended to be returned with
the ‘d’ register holding the most significant bits and the ‘a’ register
holding the least significant bits.

Floating point register

First (top of stack) floating point register
Second floating point register

‘a’ register

‘D’ register

‘c’ register

Specifies constant that can be easily constructed in SSE register
without loading it from memory.

136

—

N =2 =2 P XN 4

G

Intel 960—“1960.h’
f

- & X o H QT H

Intel IA-6/—‘1a64.h’

a
b

C

GNU Compiler Collection (GCC) Internals

‘d’ register

‘di’ register

‘si’ register

‘xmm’ SSE register

MMX register

Constant in range 0 to 31 (for 32-bit shifts)
Constant in range 0 to 63 (for 64-bit shifts)
‘Oxff’

‘Oxffff’

0, 1, 2, or 3 (shifts for lea instruction)
Constant in range 0 to 255 (for out instruction)

Constant in range 0 to Oxffffffff or symbolic reference known to
fit specified range. (for using immediates in zero extending 32-bit
to 64-bit x86-64 instructions)

Constant in range —2147483648 to 2147483647 or symbolic refer-
ence known to fit specified range. (for using immediates in 64-bit
x86-64 instructions)

Standard 80387 floating point constant

Floating point register (£p0 to £p3)
Local register (r0 to r15)

Global register (g0 to g15)

Any local or global register
Integers from 0 to 31

0

Integers from —31 to 0

Floating point 0

Floating point 1

General register r0 to r3 for addl instruction
Branch register

Predicate register (‘c’ as in “conditional”)
Application register residing in M-unit

Application register residing in I-unit

Chapter 9: Machine Descriptions 137

FRV—‘“rv.

()]

o M W WO YU O =2 R PR GoH

(e]

Floating-point register

Memory operand. Remember that ‘m’ allows postincrement and
postdecrement which require printing with ‘%Pn’ on IA-64. Use ‘S’
to disallow postincrement and postdecrement.

Floating-point constant 0.0 or 1.0

14-bit signed integer constant

22-bit signed integer constant

8-bit signed integer constant for logical instructions

8-bit adjusted signed integer constant for compare pseudo-ops
6-bit unsigned integer constant for shift counts

9-bit signed integer constant for load and store postincrements
The constant zero

0 or -1 for dep instruction

Non-volatile memory for floating-point loads and stores
Integer constant in the range 1 to 4 for shladd instruction

Memory operand except postincrement and postdecrement

Register in the class ACC_REGS (accO to acc7).

Register in the class EVEN_ACC_REGS (accO to acc7).

Register in the class CC_REGS (fccO to fce3 and iccO to icc3).
Register in the class GPR_REGS (gr0 to gr63).

Register in the class EVEN_REGS (gr0 to gr63). Odd registers are
excluded not in the class but through the use of a machine mode
larger than 4 bytes.

Register in the class FPR_REGS (fr0 to fr63).

Register in the class FEVEN_REGS (fr0 to fr63). Odd registers are
excluded not in the class but through the use of a machine mode
larger than 4 bytes.

Register in the class LR_REG (the 1r register).

Register in the class QUAD_REGS (gr2 to gr63). Register numbers
not divisible by 4 are excluded not in the class but through the use
of a machine mode larger than 8 bytes.

Register in the class ICC_REGS (iccO to icc3).
Register in the class FCC_REGS (fccO to fcc3).
Register in the class ICR_REGS (cc4 to cc7).

138

= =2 0 4 HAH Q@ Q W = N

o

IP2K—“ip2k.

a

f

o W

N <

Q

h)

GNU Compiler Collection (GCC) Internals

Register in the class FCR_REGS (ccO to cc3).

Register in the class QUAD_FPR_REGS (fr0 to fr63). Register num-
bers not divisible by 4 are excluded not in the class but through
the use of a machine mode larger than 8 bytes.

Register in the class SPR_REGS (lcr and 1r).
Register in the class QUAD_ACC_REGS (accO to acc7).
Register in the class ACCG_REGS (accg0 to accg7).
Register in the class CR_REGS (ccO to cc7).

Floating point constant zero

6-bit signed integer constant

10-bit signed integer constant

16-bit signed integer constant

16-bit unsigned integer constant

12-bit signed integer constant that is negative—i.e. in the range of
—2048 to —1

Constant zero

12-bit signed integer constant that is greater than zero—i.e. in the
range of 1 to 2047.

‘DP’ or ‘IP’ registers (general address)
‘IP’ register

‘IPL’ register

‘IPH’ register

‘DP’ register

‘DPH’ register

‘DPL’ register

‘SP’ register

‘DP’ or ‘SP’ registers (offsettable address)
Non-pointer registers (not ‘SP’, ‘DP’, ‘IP’)
Non-SP registers (everything except ‘SP’)

Indirect thru ‘IP’ - Avoid this except for QImode, since we can’t
access extra bytes

Indirect thru ‘SP’ or ‘DP” with short displacement (0..127)

Data-section immediate value

Chapter 9: Machine Descriptions 139

—

W 0O = = B XN 4

MIPS—mips.h’
d

f
h
1

kel

N

—

= B)" 4

o Q@ v o o o=

Integers from —255 to —1

Integers from 0 to 7—valid bit number in a register

Integers from 0 to 127—valid displacement for addressing mode
Integers from 1 to 127

Integer —1

Integer 1

Zero

Integers from 0 to 255

General-purpose integer register

Floating-point register (if available)

‘Hi’ register

‘Lo’ register

‘Hi’ or ‘Lo’ register

General-purpose integer register

Floating-point status register

Signed 16-bit constant (for arithmetic instructions)
Zero

Zero-extended 16-bit constant (for logic instructions)
Constant with low 16 bits zero (can be loaded with 1lui)

32-bit constant which requires two instructions to load (a constant
which is not ‘I’, ‘K’, or ‘L’)

Negative 16-bit constant
Exact power of two
Positive 16-bit constant
Floating point zero

Memory reference that can be loaded with more than one instruc-
tion (‘m’ is preferable for asm statements)

Memory reference that can be loaded with one instruction (‘m’ is
preferable for asm statements)

Memory reference in external OSF /rose PIC format (‘m’ is prefer-
able for asm statements)

Motorola 680x0— m68k.h’

a

Address register

140 GNU Compiler Collection (GCC) Internals

d Data register

f 68881 floating-point register, if available

X Sun FPA (floating-point) register, if available
y First 16 Sun FPA registers, if available

I Integer in the range 1 to 8

J 16-bit signed number

K Signed number whose magnitude is greater than 0x80

L Integer in the range —8 to —1

M Signed number whose magnitude is greater than 0x100

G Floating point constant that is not a 68881 constant

H Floating point constant that can be used by Sun FPA
Motorola 68HC11 € 68HC12 families— m68hcl1l.h’

a Register 'a’

b Register 'b’

d Register 'd’

q An 8-bit register

t Temporary soft register _.tmp

u A soft register _.d1 to _.d31

W Stack pointer register

X Register 'x’

y Register 'y’

z Pseudo register 'z’ (replaced by 'x’ or 'y’ at the end)

A An address register: x, y or z

B An address register: x or y

D Register pair (x:d) to form a 32-bit value

L Constants in the range —65536 to 65535

M Constants whose 16-bit low part is zero

N Constant integer 1 or —1

0 Constant integer 16

P Constants in the range —8 to 2
SPARC—‘sparc.h’

f Floating-point register on the SPARC-V8 architecture and lower

floating-point register on the SPARC-V9 architecture.

Chapter 9: Machine Descriptions 141

= o H P

=

o m Q O

T
U
W

Floating-point register. It is equivalent to ‘f’ on the SPARC-V8
architecture and contains both lower and upper floating-point reg-
isters on the SPARC-V9 architecture.

Floating-point condition code register.

Lower floating-point register. It is only valid on the SPARC-V9
architecture when the Visual Instruction Set is available.

Floating-point register. It is only valid on the SPARC-V9 architec-
ture when the Visual Instruction Set is available.

64-bit global or out register for the SPARC-V8+ architecture.
Signed 13-bit constant
Zero

32-bit constant with the low 12 bits clear (a constant that can be
loaded with the sethi instruction)

A constant in the range supported by movcc instructions
A constant in the range supported by movrcc instructions

Same as ‘K’, except that it verifies that bits that are not in the
lower 32-bit range are all zero. Must be used instead of ‘K’ for
modes wider than SImode

The constant 4096
Floating-point zero
Signed 13-bit constant, sign-extended to 32 or 64 bits

Floating-point constant whose integral representation can be moved
into an integer register using a single sethi instruction

Floating-point constant whose integral representation can be moved
into an integer register using a single mov instruction

Floating-point constant whose integral representation can be moved
into an integer register using a high/lo_sum instruction sequence

Memory address aligned to an 8-byte boundary
Even register

Memory address for ‘e’ constraint registers.

TMS3820C3x/Cljxr—‘cdx.h’

a
b

C

Auxiliary (address) register (ar0-ar7)

Stack pointer register (sp)

Standard (32-bit) precision integer register
Extended (40-bit) precision register (r0-rl1l)
Block count register (bk)

142

0 0O =2 =2 RN 4 H @B Q@ N < M

s n X

U

GNU Compiler Collection (GCC) Internals

Extended (40-bit) precision low register (r0-r7)
Extended (40-bit) precision register (r0-rl)
Extended (40-bit) precision register (r2-r3)
Repeat count register (rc)

Index register (ir0-irl)

Status (condition code) register (st)

Data page register (dp)

Floating-point zero

Immediate 16-bit floating-point constant
Signed 16-bit constant

Signed 8-bit constant

Signed 5-bit constant

Unsigned 16-bit constant

Unsigned 8-bit constant

Ones complement of unsigned 16-bit constant
High 16-bit constant (32-bit constant with 16 LSBs zero)

Indirect memory reference with signed 8-bit or index register dis-
placement

Indirect memory reference with unsigned 5-bit displacement
Indirect memory reference with 1 bit or index register displacement
Direct memory reference

Symbolic address

S/390 and zSeries—‘s390.h’

a

n o -0 X o H oo

Address register (general purpose register except r0)
Data register (arbitrary general purpose register)
Floating-point register

Unsigned 8-bit constant (0-255)

Unsigned 12-bit constant (0-4095)

Signed 16-bit constant (—32768-32767)

Unsigned 16-bit constant (0-65535)

Memory reference without index register

Symbolic constant suitable for use with the larl instruction

Xstormyl6— ‘stormy16.h’

a

Register r0.

Chapter 9: Machine Descriptions 143

b Register rl.

C Register r2.

d Register r8.

e Registers r0 through r7.

t Registers r0 and rl.

y The carry register.

z Registers r8 and r9.

I A constant between 0 and 3 inclusive.

J A constant that has exactly one bit set.

K A constant that has exactly one bit clear.

L A constant between 0 and 255 inclusive.

M A constant between —255 and 0 inclusive.

N A constant between —3 and 0 inclusive.

0 A constant between 1 and 4 inclusive.

P A constant between —4 and —1 inclusive.

Q A memory reference that is a stack push.

R A memory reference that is a stack pop.

S A memory reference that refers to a constant address of known
value.

T The register indicated by Rx (not implemented yet).

U A constant that is not between 2 and 15 inclusive.

Xtensa— xtensa.h’

a General-purpose 32-bit register

b One-bit boolean register

A MAC16 40-bit accumulator register

I Signed 12-bit integer constant, for use in MOVT instructions
J Signed 8-bit integer constant, for use in ADDI instructions
K Integer constant valid for Becl instructions

L Unsigned constant valid for BecUI instructions

144

GNU Compiler Collection (GCC) Internals

9.8 Standard Pattern Names For Generation

Here is a table of the instruction names that are meaningful in the RTL generation pass of
the compiler. Giving one of these names to an instruction pattern tells the RTL generation
pass that it can use the pattern to accomplish a certain task.

‘movm’

Here m stands for a two-letter machine mode name, in lower case. This instruc-
tion pattern moves data with that machine mode from operand 1 to operand
0. For example, ‘movsi’ moves full-word data.

If operand 0 is a subreg with mode m of a register whose own mode is wider
than m, the effect of this instruction is to store the specified value in the part
of the register that corresponds to mode m. Bits outside of m, but which
are within the same target word as the subreg are undefined. Bits which are
outside the target word are left unchanged.

This class of patterns is special in several ways. First of all, each of these names
up to and including full word size must be defined, because there is no other
way to copy a datum from one place to another. If there are patterns accepting
operands in larger modes, ‘movm’ must be defined for integer modes of those
sizes.

Second, these patterns are not used solely in the RTL generation pass. Even
the reload pass can generate move insns to copy values from stack slots into
temporary registers. When it does so, one of the operands is a hard register
and the other is an operand that can need to be reloaded into a register.
Therefore, when given such a pair of operands, the pattern must generate RTL
which needs no reloading and needs no temporary registers—no registers other
than the operands. For example, if you support the pattern with a define_
expand, then in such a case the define_expand mustn’t call force_reg or any
other such function which might generate new pseudo registers.

This requirement exists even for subword modes on a RISC machine where
fetching those modes from memory normally requires several insns and some
temporary registers.

During reload a memory reference with an invalid address may be passed as
an operand. Such an address will be replaced with a valid address later in the
reload pass. In this case, nothing may be done with the address except to use
it as it stands. If it is copied, it will not be replaced with a valid address. No
attempt should be made to make such an address into a valid address and no
routine (such as change_address) that will do so may be called. Note that
general_operand will fail when applied to such an address.

The global variable reload_in_progress (which must be explicitly declared if
required) can be used to determine whether such special handling is required.

The variety of operands that have reloads depends on the rest of the machine
description, but typically on a RISC machine these can only be pseudo regis-
ters that did not get hard registers, while on other machines explicit memory
references will get optional reloads.

If a scratch register is required to move an object to or from memory, it can be
allocated using gen_reg_rtx prior to life analysis.

Chapter 9: Machine Descriptions 145

If there are cases which need scratch registers during or after reload, you must
define SECONDARY_INPUT_RELOAD_CLASS and/or SECONDARY_OUTPUT_RELOAD_
CLASS to detect them, and provide patterns ‘reload_inm’ or ‘reload_outm’ to
handle them. See Section 10.9 [Register Classes|, page 223.

The global variable no_new_pseudos can be used to determine if it is unsafe to
create new pseudo registers. If this variable is nonzero, then it is unsafe to call
gen_reg_rtx to allocate a new pseudo.

The constraints on a ‘movm’ must permit moving any hard register to any other
hard register provided that HARD_REGNO_MODE_OK permits mode m in both reg-
isters and REGISTER_MOVE_COST applied to their classes returns a value of 2.

It is obligatory to support floating point ‘movm’ instructions into and out of any
registers that can hold fixed point values, because unions and structures (which
have modes SImode or DImode) can be in those registers and they may have
floating point members.

There may also be a need to support fixed point ‘movm’ instructions in and out
of floating point registers. Unfortunately, I have forgotten why this was so, and
I don’t know whether it is still true. If HARD_REGNO_MODE_OK rejects fixed point
values in floating point registers, then the constraints of the fixed point ‘movm’
instructions must be designed to avoid ever trying to reload into a floating point
register.

‘reload_inm’

‘reload_outm’
Like ‘movm’, but used when a scratch register is required to move between
operand 0 and operand 1. Operand 2 describes the scratch register. See the
discussion of the SECONDARY_RELOAD_CLASS macro in see Section 10.9 [Register
Classes], page 223.

There are special restrictions on the form of the match_operands used in these
patterns. First, only the predicate for the reload operand is examined, i.e.,
reload_in examines operand 1, but not the predicates for operand 0 or 2.
Second, there may be only one alternative in the constraints. Third, only a
single register class letter may be used for the constraint; subsequent constraint
letters are ignored. As a special exception, an empty constraint string matches
the ALL_REGS register class. This may relieve ports of the burden of defining
an ALL_REGS constraint letter just for these patterns.

‘movstrictm’
Like ‘movm’ except that if operand 0 is a subreg with mode m of a register
whose natural mode is wider, the ‘movstrictm’ instruction is guaranteed not
to alter any of the register except the part which belongs to mode m.

‘load_multiple’
Load several consecutive memory locations into consecutive registers. Operand
0 is the first of the consecutive registers, operand 1 is the first memory location,
and operand 2 is a constant: the number of consecutive registers.
Define this only if the target machine really has such an instruction; do not

define this if the most efficient way of loading consecutive registers from memory
is to do them one at a time.

146

GNU Compiler Collection (GCC) Internals

On some machines, there are restrictions as to which consecutive registers can
be stored into memory, such as particular starting or ending register numbers
or only a range of valid counts. For those machines, use a define_expand (see
Section 9.14 [Expander Definitions], page 164) and make the pattern fail if the
restrictions are not met.

Write the generated insn as a parallel with elements being a set of one register
from the appropriate memory location (you may also need use or clobber
elements). Use a match_parallel (see Section 9.4 [RTL Template], page 119)
to recognize the insn. See ‘rs6000.md’ for examples of the use of this insn
pattern.

‘store_multiple’

‘pushm’

‘addm3’

Similar to ‘load_multiple’, but store several consecutive registers into con-
secutive memory locations. Operand 0 is the first of the consecutive memory
locations, operand 1 is the first register, and operand 2 is a constant: the
number of consecutive registers.

Output a push instruction. Operand 0 is value to push. Used only when PUSH_
ROUNDING is defined. For historical reason, this pattern may be missing and in
such case an mov expander is used instead, with a MEM expression forming the
push operation. The mov expander method is deprecated.

Add operand 2 and operand 1, storing the result in operand 0. All operands
must have mode m. This can be used even on two-address machines, by means
of constraints requiring operands 1 and 0 to be the same location.

‘subm3’, ‘mulm3’

‘divm3’, ‘udivm3’, ‘modm3’, ‘umodm3’
‘sminm3’, ‘smaxm3’, ‘uminm3’, ‘umaxm3’
‘andm3’, ‘iorm3’; ‘xorm3’

Similar, for other arithmetic operations.

‘minm3’, ‘maxm3’

‘mulhisi3’

‘mulqihi3’,

Floating point min and max operations. If both operands are zeros, or if either
operand is NaN, then it is unspecified which of the two operands is returned as
the result.

Multiply operands 1 and 2, which have mode HImode, and store a SImode
product in operand 0.

‘mulsidi3’

Similar widening-multiplication instructions of other widths.

‘umulqgihi3’; ‘umulhisi3’, ‘umulsidild’

Similar widening-multiplication instructions that do unsigned multiplication.

‘smulm3_highpart’

Perform a signed multiplication of operands 1 and 2, which have mode m, and
store the most significant half of the product in operand 0. The least significant
half of the product is discarded.

Chapter 9: Machine Descriptions 147

‘umulm3_highpart’

‘divmodm4’

Similar, but the multiplication is unsigned.

Signed division that produces both a quotient and a remainder. Operand 1 is
divided by operand 2 to produce a quotient stored in operand 0 and a remainder
stored in operand 3.

For machines with an instruction that produces both a quotient and a remain-
der, provide a pattern for ‘divmodm4’ but do not provide patterns for ‘divm3’
and ‘modm3’. This allows optimization in the relatively common case when both
the quotient and remainder are computed.

If an instruction that just produces a quotient or just a remainder exists and is
more efficient than the instruction that produces both, write the output routine
of ‘divmodm4’ to call find_reg_note and look for a REG_UNUSED note on the
quotient or remainder and generate the appropriate instruction.

‘udivmodm4’

‘ashlm3’

Similar, but does unsigned division.

Arithmetic-shift operand 1 left by a number of bits specified by operand 2, and
store the result in operand 0. Here m is the mode of operand 0 and operand 1;
operand 2’s mode is specified by the instruction pattern, and the compiler will
convert the operand to that mode before generating the instruction.

‘ashrm3’, ‘1shrm3’, ‘rotlm3’, ‘rotrm3’

‘negm?2’
‘absm?2’

‘sqrtm2’

‘cosm?2’

‘sinm?2’

‘expm?2’

Other shift and rotate instructions, analogous to the ashlm3 instructions.
Negate operand 1 and store the result in operand 0.
Store the absolute value of operand 1 into operand 0.

Store the square root of operand 1 into operand 0.

The sqrt built-in function of C always uses the mode which corresponds to
the C data type double and the sqrtf built-in function uses the mode which
corresponds to the C data type float.

Store the cosine of operand 1 into operand 0.

The cos built-in function of C always uses the mode which corresponds to
the C data type double and the cosf built-in function uses the mode which
corresponds to the C data type float.

Store the sine of operand 1 into operand 0.

The sin built-in function of C always uses the mode which corresponds to
the C data type double and the sinf built-in function uses the mode which
corresponds to the C data type float.

Store the exponential of operand 1 into operand 0.

The exp built-in function of C always uses the mode which corresponds to
the C data type double and the expf built-in function uses the mode which
corresponds to the C data type float.

148 GNU Compiler Collection (GCC) Internals

‘logm2’ Store the natural logarithm of operand 1 into operand 0.

The log built-in function of C always uses the mode which corresponds to
the C data type double and the logf built-in function uses the mode which
corresponds to the C data type float.

‘ffsm2’ Store into operand 0 one plus the index of the least significant 1-bit of operand
1. If operand 1 is zero, store zero. m is the mode of operand 0; operand 1’s
mode is specified by the instruction pattern, and the compiler will convert the
operand to that mode before generating the instruction.

The f£fs built-in function of C always uses the mode which corresponds to the
C data type int.

‘one_cmplm?2’
Store the bitwise-complement of operand 1 into operand 0.

‘cmpm’ Compare operand 0 and operand 1, and set the condition codes. The RTL
pattern should look like this:
(set (ccO0) (compare (match_operand:m O ...)

(match_operand:m 1 ...)))

‘tstm’ Compare operand 0 against zero, and set the condition codes. The RTL pattern
should look like this:

(set (ccO0) (match_operand:m O ...))

‘tstm’ patterns should not be defined for machines that do not use (cc0).
Doing so would confuse the optimizer since it would no longer be clear which
set operations were comparisons. The ‘cmpm’ patterns should be used instead.

‘movstrm’ Block move instruction. The addresses of the destination and source strings are
the first two operands, and both are in mode Pmode.

The number of bytes to move is the third operand, in mode m. Usually, you
specify word_mode for m. However, if you can generate better code knowing
the range of valid lengths is smaller than those representable in a full word, you
should provide a pattern with a mode corresponding to the range of values you
can handle efficiently (e.g., QImode for values in the range 0-127; note we avoid
numbers that appear negative) and also a pattern with word_mode.

The fourth operand is the known shared alignment of the source and destination,
in the form of a const_int rtx. Thus, if the compiler knows that both source
and destination are word-aligned, it may provide the value 4 for this operand.

Descriptions of multiple movstrm patterns can only be beneficial if the pat-
terns for smaller modes have fewer restrictions on their first, second and fourth
operands. Note that the mode m in movstrm does not impose any restriction
on the mode of individually moved data units in the block.

These patterns need not give special consideration to the possibility that the
source and destination strings might overlap.

‘clrstrm’ Block clear instruction. The addresses of the destination string is the first
operand, in mode Pmode. The number of bytes to clear is the second operand,
in mode m. See ‘movstrm’ for a discussion of the choice of mode.

Chapter 9: Machine Descriptions 149

The third operand is the known alignment of the destination, in the form of
a const_int rtx. Thus, if the compiler knows that the destination is word-
aligned, it may provide the value 4 for this operand.

The use for multiple clrstrm is as for movstrm.

‘cmpstrm’ Block compare instruction, with five operands. Operand 0 is the output; it
has mode m. The remaining four operands are like the operands of ‘movstrm’.
The two memory blocks specified are compared byte by byte in lexicographic
order. The effect of the instruction is to store a value in operand 0 whose sign
indicates the result of the comparison.

‘strlenm’ Compute the length of a string, with three operands. Operand 0 is the result
(of mode m), operand 1 is a mem referring to the first character of the string,
operand 2 is the character to search for (normally zero), and operand 3 is a
constant describing the known alignment of the beginning of the string.

‘floatmn?2’
Convert signed integer operand 1 (valid for fixed point mode m) to floating
point mode n and store in operand 0 (which has mode n).

‘floatunsmn?2’
Convert unsigned integer operand 1 (valid for fixed point mode m) to floating
point mode n and store in operand 0 (which has mode n).

‘fixmn2’ Convert operand 1 (valid for floating point mode m) to fixed point mode n as a
signed number and store in operand 0 (which has mode n). This instruction’s
result is defined only when the value of operand 1 is an integer.

‘fixunsmn?2’
Convert operand 1 (valid for floating point mode m) to fixed point mode n as an
unsigned number and store in operand 0 (which has mode n). This instruction’s
result is defined only when the value of operand 1 is an integer.

‘ftruncm?2’
Convert operand 1 (valid for floating point mode m) to an integer value, still
represented in floating point mode m, and store it in operand 0 (valid for floating
point mode m).

‘fix_truncmn?2’
Like ‘fixmn?2’ but works for any floating point value of mode m by converting
the value to an integer.

‘fixuns_truncmn?2’
Like ‘fixunsmn2’ but works for any floating point value of mode m by convert-
ing the value to an integer.

‘truncmn?’
Truncate operand 1 (valid for mode m) to mode n and store in operand 0 (which
has mode n). Both modes must be fixed point or both floating point.

‘extendmn?2’
Sign-extend operand 1 (valid for mode m) to mode n and store in operand 0
(which has mode n). Both modes must be fixed point or both floating point.

150

GNU Compiler Collection (GCC) Internals

‘zero_extendmn?2’

‘extv’

‘extzv’

‘insv’

Zero-extend operand 1 (valid for mode m) to mode n and store in operand 0
(which has mode n). Both modes must be fixed point.

Extract a bit-field from operand 1 (a register or memory operand), where
operand 2 specifies the width in bits and operand 3 the starting bit, and store
it in operand 0. Operand 0 must have mode word_mode. Operand 1 may have
mode byte_mode or word_mode; often word_mode is allowed only for registers.
Operands 2 and 3 must be valid for word_mode.

The RTL generation pass generates this instruction only with constants for
operands 2 and 3.

The bit-field value is sign-extended to a full word integer before it is stored in
operand 0.

Like ‘extv’ except that the bit-field value is zero-extended.

Store operand 3 (which must be valid for word_mode) into a bit-field in operand
0, where operand 1 specifies the width in bits and operand 2 the starting bit.
Operand 0 may have mode byte_mode or word_mode; often word_mode is al-
lowed only for registers. Operands 1 and 2 must be valid for word_mode.

The RTL generation pass generates this instruction only with constants for
operands 1 and 2.

‘movmodecc’

‘scond’

Conditionally move operand 2 or operand 3 into operand 0 according to the
comparison in operand 1. If the comparison is true, operand 2 is moved into
operand 0, otherwise operand 3 is moved.

The mode of the operands being compared need not be the same as the operands
being moved. Some machines, sparc64 for example, have instructions that
conditionally move an integer value based on the floating point condition codes
and vice versa.

If the machine does not have conditional move instructions, do not define these
patterns.

Store zero or nonzero in the operand according to the condition codes. Value
stored is nonzero iff the condition cond is true. cond is the name of a comparison
operation expression code, such as eq, 1t or leu.

You specify the mode that the operand must have when you write the match_
operand expression. The compiler automatically sees which mode you have
used and supplies an operand of that mode.

The value stored for a true condition must have 1 as its low bit, or else must
be negative. Otherwise the instruction is not suitable and you should omit it
from the machine description. You describe to the compiler exactly which value
is stored by defining the macro STORE_FLAG_VALUE (see Section 10.26 [Misc|,
page 314). If a description cannot be found that can be used for all the ‘scond’
patterns, you should omit those operations from the machine description.
These operations may fail, but should do so only in relatively uncommon cases;
if they would fail for common cases involving integer comparisons, it is best to
omit these patterns.

Chapter 9: Machine Descriptions 151

‘bcond’

Ljumpﬂ

‘call’

If these operations are omitted, the compiler will usually generate code that
copies the constant one to the target and branches around an assignment of
zero to the target. If this code is more efficient than the potential instructions
used for the ‘scond’ pattern followed by those required to convert the result
into a 1 or a zero in SImode, you should omit the ‘scond’ operations from the
machine description.

Conditional branch instruction. Operand 0 is a label_ref that refers to the
label to jump to. Jump if the condition codes meet condition cond.

Some machines do not follow the model assumed here where a comparison in-
struction is followed by a conditional branch instruction. In that case, the
‘cmpm’ (and ‘tstm’) patterns should simply store the operands away and gen-
erate all the required insns in a define_expand (see Section 9.14 [Expander
Definitions], page 164) for the conditional branch operations. All calls to ex-
pand ‘becond’ patterns are immediately preceded by calls to expand either a
‘cmpm’ pattern or a ‘tstm’ pattern.

Machines that use a pseudo register for the condition code value, or where the
mode used for the comparison depends on the condition being tested, should
also use the above mechanism. See Section 9.11 [Jump Patterns], page 160.

The above discussion also applies to the ‘movmodecc’ and ‘scond’ patterns.

A jump inside a function; an unconditional branch. Operand 0 is the label_ref
of the label to jump to. This pattern name is mandatory on all machines.

Subroutine call instruction returning no value. Operand 0 is the function to
call; operand 1 is the number of bytes of arguments pushed as a const_int;
operand 2 is the number of registers used as operands.

On most machines, operand 2 is not actually stored into the RTL pattern. It is
supplied for the sake of some RISC machines which need to put this information
into the assembler code; they can put it in the RTL instead of operand 1.

Operand 0 should be a mem RTX whose address is the address of the function.
Note, however, that this address can be a symbol_ref expression even if it
would not be a legitimate memory address on the target machine. If it is also
not a valid argument for a call instruction, the pattern for this operation should
be a define_expand (see Section 9.14 [Expander Definitions], page 164) that
places the address into a register and uses that register in the call instruction.

‘call_value’

Subroutine call instruction returning a value. Operand 0 is the hard register in
which the value is returned. There are three more operands, the same as the
three operands of the ‘call’ instruction (but with numbers increased by one).

Subroutines that return BLKmode objects use the ‘call’ insn.

‘call_pop’, ‘call_value_pop’

Similar to ‘call’ and ‘call_value’, except used if defined and if RETURN_POPS_
ARGS is nonzero. They should emit a parallel that contains both the function
call and a set to indicate the adjustment made to the frame pointer.

152

GNU Compiler Collection (GCC) Internals

For machines where RETURN_POPS_ARGS can be nonzero, the use of these pat-
terns increases the number of functions for which the frame pointer can be
eliminated, if desired.

‘untyped_call’

‘return’

Subroutine call instruction returning a value of any type. Operand 0 is the
function to call; operand 1 is a memory location where the result of calling the
function is to be stored; operand 2 is a parallel expression where each element
is a set expression that indicates the saving of a function return value into the
result block.

This instruction pattern should be defined to support __builtin_apply on
machines where special instructions are needed to call a subroutine with ar-
bitrary arguments or to save the value returned. This instruction pattern is
required on machines that have multiple registers that can hold a return value
(i.e. FUNCTION_VALUE_REGNO_P is true for more than one register).

Subroutine return instruction. This instruction pattern name should be defined
only if a single instruction can do all the work of returning from a function.

Like the ‘movm’ patterns, this pattern is also used after the RTL generation
phase. In this case it is to support machines where multiple instructions are
usually needed to return from a function, but some class of functions only re-
quires one instruction to implement a return. Normally, the applicable functions
are those which do not need to save any registers or allocate stack space.

For such machines, the condition specified in this pattern should only be true
when reload_completed is nonzero and the function’s epilogue would only be
a single instruction. For machines with register windows, the routine leaf_
function_p may be used to determine if a register window push is required.

Machines that have conditional return instructions should define patterns such
as

(define_insn ""
[(set (pc)
(if_then_else (match_operator
0 "comparison_operator"
[(ccO0) (comnst_int 0)1)
(return)

(pc)))]

"condition"

||‘..||>

where condition would normally be the same condition specified on the named
‘return’ pattern.

‘untyped_return’

Untyped subroutine return instruction. This instruction pattern should be
defined to support __builtin_return on machines where special instructions
are needed to return a value of any type.

Operand 0 is a memory location where the result of calling a function with
__builtin_apply is stored; operand 1 is a parallel expression where each
element is a set expression that indicates the restoring of a function return
value from the result block.

Chapter 9: Machine Descriptions 153

3 9y

nop No-op instruction. This instruction pattern name should always be defined to
output a no-op in assembler code. (const_int 0) will do as an RTL pattern.

‘indirect_jump’
An instruction to jump to an address which is operand zero. This pattern name
is mandatory on all machines.

‘casesi’ Imstruction to jump through a dispatch table, including bounds checking. This
instruction takes five operands:

1. The index to dispatch on, which has mode SImode.
2. The lower bound for indices in the table, an integer constant.

3. The total range of indices in the table—the largest index minus the smallest
one (both inclusive).

4. A label that precedes the table itself.

5. A label to jump to if the index has a value outside the bounds. (If the
machine-description macro CASE_DROPS_THROUGH is defined, then an out-
of-bounds index drops through to the code following the jump table instead
of jumping to this label. In that case, this label is not actually used by the
‘casesi’ instruction, but it is always provided as an operand.)

The table is a addr_vec or addr_diff_vec inside of a jump_insn. The number
of elements in the table is one plus the difference between the upper bound and
the lower bound.

‘tablejump’
Instruction to jump to a variable address. This is a low-level capability which
can be used to implement a dispatch table when there is no ‘casesi’ pattern.

This pattern requires two operands: the address or offset, and a label which
should immediately precede the jump table. If the macro CASE_VECTOR_PC_
RELATIVE evaluates to a nonzero value then the first operand is an offset which
counts from the address of the table; otherwise, it is an absolute address to
jump to. In either case, the first operand has mode Pmode.

The ‘tablejump’ insn is always the last insn before the jump table it uses. Its
assembler code normally has no need to use the second operand, but you should
incorporate it in the RTL pattern so that the jump optimizer will not delete
the table as unreachable code.

‘decrement_and_branch_until_zero’
Conditional branch instruction that decrements a register and jumps if the
register is nonzero. Operand 0 is the register to decrement and test; operand
1 is the label to jump to if the register is nonzero. See Section 9.12 [Looping
Patterns|, page 161.

This optional instruction pattern is only used by the combiner, typically for
loops reversed by the loop optimizer when strength reduction is enabled.

‘doloop_end’
Conditional branch instruction that decrements a register and jumps if the
register is nonzero. This instruction takes five operands: Operand 0 is the

154

GNU Compiler Collection (GCC) Internals

register to decrement and test; operand 1 is the number of loop iterations as a
const_int or constO_rtx if this cannot be determined until run-time; operand
2 is the actual or estimated maximum number of iterations as a const_int;
operand 3 is the number of enclosed loops as a const_int (an innermost loop
has a value of 1); operand 4 is the label to jump to if the register is nonzero.
See Section 9.12 [Looping Patterns], page 161.

This optional instruction pattern should be defined for machines with low-
overhead looping instructions as the loop optimizer will try to modify suit-
able loops to utilize it. If nested low-overhead looping is not supported, use a
define_expand (see Section 9.14 [Expander Definitions|, page 164) and make
the pattern fail if operand 3 is not constl_rtx. Similarly, if the actual or esti-
mated maximum number of iterations is too large for this instruction, make it
fail.

‘doloop_begin’

Companion instruction to doloop_end required for machines that need to per-
form some initialization, such as loading special registers used by a low-overhead
looping instruction. If initialization insns do not always need to be emitted, use
a define_expand (see Section 9.14 [Expander Definitions|, page 164) and make
it fail.

‘canonicalize_funcptr_for_compare’

Canonicalize the function pointer in operand 1 and store the result into operand
0.

Operand 0 is always a reg and has mode Pmode; operand 1 may be a reg, mem,
symbol_ref, const_int, etc and also has mode Pmode.

Canonicalization of a function pointer usually involves computing the address
of the function which would be called if the function pointer were used in an
indirect call.

Only define this pattern if function pointers on the target machine can have
different values but still call the same function when used in an indirect call.

‘save_stack_block’
‘save_stack_function’
‘save_stack_nonlocal’
‘restore_stack_block’
‘restore_stack_function’
‘restore_stack_nonlocal’

Most machines save and restore the stack pointer by copying it to or from an
object of mode Pmode. Do not define these patterns on such machines.

Some machines require special handling for stack pointer saves and restores. On
those machines, define the patterns corresponding to the non-standard cases by
using a define_expand (see Section 9.14 [Expander Definitions|, page 164) that
produces the required insns. The three types of saves and restores are:

1. ‘save_stack_block’ saves the stack pointer at the start of a block that
allocates a variable-sized object, and ‘restore_stack_block’ restores the
stack pointer when the block is exited.

Chapter 9: Machine Descriptions 155

2. ‘save_stack_function’ and ‘restore_stack_function’ do a similar job
for the outermost block of a function and are used when the function al-
locates variable-sized objects or calls alloca. Only the epilogue uses the
restored stack pointer, allowing a simpler save or restore sequence on some
machines.

3. ‘save_stack_nonlocal’is used in functions that contain labels branched to
by nested functions. It saves the stack pointer in such a way that the inner
function can use ‘restore_stack_nonlocal’ to restore the stack pointer.
The compiler generates code to restore the frame and argument pointer
registers, but some machines require saving and restoring additional data
such as register window information or stack backchains. Place insns in
these patterns to save and restore any such required data.

When saving the stack pointer, operand 0 is the save area and operand 1 is the
stack pointer. The mode used to allocate the save area defaults to Pmode but
you can override that choice by defining the STACK_SAVEAREA_MODE macro (see
Section 10.5 [Storage Layout], page 205). You must specify an integral mode, or
VO0IDmode if no save area is needed for a particular type of save (either because
no save is needed or because a machine-specific save area can be used). Operand
0 is the stack pointer and operand 1 is the save area for restore operations. If
‘save_stack_block’ is defined, operand 0 must not be VOIDmode since these
saves can be arbitrarily nested.

A save area is a mem that is at a constant offset from virtual_stack_vars_rtx
when the stack pointer is saved for use by nonlocal gotos and a reg in the other
two cases.

‘allocate_stack’

‘probe’

Subtract (or add if STACK_GROWS_DOWNWARD is undefined) operand 1 from the
stack pointer to create space for dynamically allocated data.

Store the resultant pointer to this space into operand 0. If you are allocating
space from the main stack, do this by emitting a move insn to copy virtual_
stack_dynamic_rtx to operand 0. If you are allocating the space elsewhere,
generate code to copy the location of the space to operand 0. In the latter
case, you must ensure this space gets freed when the corresponding space on
the main stack is free.

Do not define this pattern if all that must be done is the subtraction. Some
machines require other operations such as stack probes or maintaining the back
chain. Define this pattern to emit those operations in addition to updating the
stack pointer.

Some machines require instructions to be executed after space is allocated from
the stack, for example to generate a reference at the bottom of the stack.

If you need to emit instructions before the stack has been adjusted, put them
into the ‘allocate_stack’ pattern. Otherwise, define this pattern to emit the
required instructions.

No operands are provided.

156 GNU Compiler Collection (GCC) Internals

‘check_stack’

If stack checking cannot be done on your system by probing the stack with
a load or store instruction (see Section 10.10.3 [Stack Checking], page 235),
define this pattern to perform the needed check and signaling an error if the
stack has overflowed. The single operand is the location in the stack furthest
from the current stack pointer that you need to validate. Normally, on machines
where this pattern is needed, you would obtain the stack limit from a global or
thread-specific variable or register.

‘nonlocal_goto’

Emit code to generate a non-local goto, e.g., a jump from one function to a
label in an outer function. This pattern has four arguments, each representing
a value to be used in the jump. The first argument is to be loaded into the
frame pointer, the second is the address to branch to (code to dispatch to the
actual label), the third is the address of a location where the stack is saved, and
the last is the address of the label, to be placed in the location for the incoming
static chain.

On most machines you need not define this pattern, since GCC will already
generate the correct code, which is to load the frame pointer and static chain,
restore the stack (using the ‘restore_stack_nonlocal’ pattern, if defined),
and jump indirectly to the dispatcher. You need only define this pattern if this
code will not work on your machine.

‘nonlocal_goto_receiver’

This pattern, if defined, contains code needed at the target of a nonlocal goto
after the code already generated by GCC. You will not normally need to define
this pattern. A typical reason why you might need this pattern is if some value,
such as a pointer to a global table, must be restored when the frame pointer
is restored. Note that a nonlocal goto only occurs within a unit-of-translation,
so a global table pointer that is shared by all functions of a given module need
not be restored. There are no arguments.

‘exception_receiver’
This pattern, if defined, contains code needed at the site of an exception handler
that isn’t needed at the site of a nonlocal goto. You will not normally need
to define this pattern. A typical reason why you might need this pattern is if
some value, such as a pointer to a global table, must be restored after control
flow is branched to the handler of an exception. There are no arguments.

‘builtin_setjmp_setup’

This pattern, if defined, contains additional code needed to initialize the jmp_
buf. You will not normally need to define this pattern. A typical reason why
you might need this pattern is if some value, such as a pointer to a global table,
must be restored. Though it is preferred that the pointer value be recalculated
if possible (given the address of a label for instance). The single argument is
a pointer to the jmp_buf. Note that the buffer is five words long and that the
first three are normally used by the generic mechanism.

Chapter 9: Machine Descriptions 157

‘builtin_setjmp_receiver’

This pattern, if defined, contains code needed at the site of an built-in setjmp
that isn’t needed at the site of a nonlocal goto. You will not normally need
to define this pattern. A typical reason why you might need this pattern is if
some value, such as a pointer to a global table, must be restored. It takes one
argument, which is the label to which builtin_longjmp transfered control; this
pattern may be emitted at a small offset from that label.

‘builtin_longjmp’

‘eh_return’

‘prologue’

‘epilogue’

This pattern, if defined, performs the entire action of the longjmp. You will not
normally need to define this pattern unless you also define builtin_setjmp_
setup. The single argument is a pointer to the jmp_buf.

This pattern, if defined, affects the way __builtin_eh_return, and thence the
call frame exception handling library routines, are built. It is intended to handle
non-trivial actions needed along the abnormal return path.

The pattern takes two arguments. The first is an offset to be applied to the stack
pointer. It will have been copied to some appropriate location (typically EH_
RETURN_STACKADJ_RTX) which will survive until after reload to when the normal
epilogue is generated. The second argument is the address of the exception
handler to which the function should return. This will normally need to copied
by the pattern to some special register or memory location.

This pattern only needs to be defined if call frame exception handling is to be
used, and simple moves involving EH_RETURN_STACKADJ_RTX and EH_RETURN_
HANDLER_RTX are not sufficient.

This pattern, if defined, emits RTL for entry to a function. The function entry is
responsible for setting up the stack frame, initializing the frame pointer register,
saving callee saved registers, etc.

Using a prologue pattern is generally preferred over defining TARGET_ASM_
FUNCTION_PROLOGUE to emit assembly code for the prologue.

The prologue pattern is particularly useful for targets which perform instruc-
tion scheduling.

This pattern emits RTL for exit from a function. The function exit is responsible
for deallocating the stack frame, restoring callee saved registers and emitting
the return instruction.

Using an epilogue pattern is generally preferred over defining TARGET_ASM_
FUNCTION_EPILOGUE to emit assembly code for the epilogue.

The epilogue pattern is particularly useful for targets which perform instruc-
tion scheduling or which have delay slots for their return instruction.

‘sibcall_epilogue’

This pattern, if defined, emits RTL for exit from a function without the final
branch back to the calling function. This pattern will be emitted before any
sibling call (aka tail call) sites.

158 GNU Compiler Collection (GCC) Internals

The sibcall_epilogue pattern must not clobber any arguments used for pa-
rameter passing or any stack slots for arguments passed to the current function.

‘trap’ This pattern, if defined, signals an error, typically by causing some kind of
signal to be raised. Among other places, it is used by the Java front end to
signal ‘invalid array index’ exceptions.

‘conditional_trap’
Conditional trap instruction. Operand 0 is a piece of RTL which performs a
comparison. Operand 1 is the trap code, an integer.

A typical conditional_trap pattern looks like

(define_insn "conditional_trap"
[(trap_if (match_operator O "trap_operator"
[(ccO) (comnst_int 0)])

(match_operand 1 "const_int_operand" "i"))]

‘prefetch’

This pattern, if defined, emits code for a non-faulting data prefetch instruction.
Operand 0 is the address of the memory to prefetch. Operand 1 is a constant
1 if the prefetch is preparing for a write to the memory address, or a constant
0 otherwise. Operand 2 is the expected degree of temporal locality of the data
and is a value between 0 and 3, inclusive; 0 means that the data has no temporal
locality, so it need not be left in the cache after the access; 3 means that the
data has a high degree of temporal locality and should be left in all levels of
cache possible; 1 and 2 mean, respectively, a low or moderate degree of temporal
locality.

Targets that do not support write prefetches or locality hints can ignore the
values of operands 1 and 2.

9.9 When the Order of Patterns Matters

Sometimes an insn can match more than one instruction pattern. Then the pattern that
appears first in the machine description is the one used. Therefore, more specific patterns
(patterns that will match fewer things) and faster instructions (those that will produce
better code when they do match) should usually go first in the description.

In some cases the effect of ordering the patterns can be used to hide a pattern when it
is not valid. For example, the 68000 has an instruction for converting a fullword to floating
point and another for converting a byte to floating point. An instruction converting an
integer to floating point could match either one. We put the pattern to convert the fullword
first to make sure that one will be used rather than the other. (Otherwise a large integer
might be generated as a single-byte immediate quantity, which would not work.) Instead
of using this pattern ordering it would be possible to make the pattern for convert-a-byte
smart enough to deal properly with any constant value.

Chapter 9: Machine Descriptions 159

9.10 Interdependence of Patterns

Every machine description must have a named pattern for each of the conditional branch
names ‘bcond’. The recognition template must always have the form

(set (pc)
(if_then_else (cond (ccO) (const_int 0))
(label_ref (match_operand O "" ""))
(pc)))

In addition, every machine description must have an anonymous pattern for each of the
possible reverse-conditional branches. Their templates look like

(set (pc)
(if_then_else (cond (ccO) (const_int 0))
(pc)
(label_ref (match_operand O "" ""))))

They are necessary because jump optimization can turn direct-conditional branches into
reverse-conditional branches.

It is often convenient to use the match_operator construct to reduce the number of
patterns that must be specified for branches. For example,

(define_insn ""
[(set (pc)
(if _then_else (match_operator 0 "comparison_operator"
[(cc0) (const_int 0)])
(pc)
(label_ref (match_operand 1 "" ""))))]
"condition"

n...u)

In some cases machines support instructions identical except for the machine mode of
one or more operands. For example, there may be “sign-extend halfword” and “sign-extend
byte” instructions whose patterns are

(set (match_operand:SI O ...)
(extend:SI (match_operand:HI 1 ...)))

(set (match_operand:SI O ...)
(extend:SI (match_operand:QI 1 ...)))

Constant integers do not specify a machine mode, so an instruction to extend a constant
value could match either pattern. The pattern it actually will match is the one that appears
first in the file. For correct results, this must be the one for the widest possible mode
(HImode, here). If the pattern matches the QImode instruction, the results will be incorrect
if the constant value does not actually fit that mode.

Such instructions to extend constants are rarely generated because they are optimized
away, but they do occasionally happen in nonoptimized compilations.

If a constraint in a pattern allows a constant, the reload pass may replace a register with
a constant permitted by the constraint in some cases. Similarly for memory references.
Because of this substitution, you should not provide separate patterns for increment and

160 GNU Compiler Collection (GCC) Internals

decrement instructions. Instead, they should be generated from the same pattern that sup-
ports register-register add insns by examining the operands and generating the appropriate
machine instruction.

9.11 Defining Jump Instruction Patterns

For most machines, GCC assumes that the machine has a condition code. A comparison
insn sets the condition code, recording the results of both signed and unsigned comparison
of the given operands. A separate branch insn tests the condition code and branches or not
according its value. The branch insns come in distinct signed and unsigned flavors. Many
common machines, such as the VAX, the 68000 and the 32000, work this way.

Some machines have distinct signed and unsigned compare instructions, and only one
set of conditional branch instructions. The easiest way to handle these machines is to treat
them just like the others until the final stage where assembly code is written. At this time,
when outputting code for the compare instruction, peek ahead at the following branch using
next_ccO_user (insn). (The variable insn refers to the insn being output, in the output-
writing code in an instruction pattern.) If the RTL says that is an unsigned branch, output
an unsigned compare; otherwise output a signed compare. When the branch itself is output,
you can treat signed and unsigned branches identically.

The reason you can do this is that GCC always generates a pair of consecutive RTL
insns, possibly separated by note insns, one to set the condition code and one to test it,
and keeps the pair inviolate until the end.

To go with this technique, you must define the machine-description macro NOTICE_
UPDATE_CC to do CC_STATUS_INIT; in other words, no compare instruction is superfluous.

Some machines have compare-and-branch instructions and no condition code. A similar
technique works for them. When it is time to “output” a compare instruction, record its
operands in two static variables. When outputting the branch-on-condition-code instruction
that follows, actually output a compare-and-branch instruction that uses the remembered
operands.

It also works to define patterns for compare-and-branch instructions. In optimizing
compilation, the pair of compare and branch instructions will be combined according to
these patterns. But this does not happen if optimization is not requested. So you must use
one of the solutions above in addition to any special patterns you define.

In many RISC machines, most instructions do not affect the condition code and there
may not even be a separate condition code register. On these machines, the restriction
that the definition and use of the condition code be adjacent insns is not necessary and can
prevent important optimizations. For example, on the IBM RS/6000, there is a delay for
taken branches unless the condition code register is set three instructions earlier than the
conditional branch. The instruction scheduler cannot perform this optimization if it is not
permitted to separate the definition and use of the condition code register.

On these machines, do not use (cc0), but instead use a register to represent the condition
code. If there is a specific condition code register in the machine, use a hard register. If
the condition code or comparison result can be placed in any general register, or if there
are multiple condition registers, use a pseudo register.

Chapter 9: Machine Descriptions 161

On some machines, the type of branch instruction generated may depend on the way the
condition code was produced; for example, on the 68k and SPARC, setting the condition
code directly from an add or subtract instruction does not clear the overflow bit the way that
a test instruction does, so a different branch instruction must be used for some conditional
branches. For machines that use (cc0), the set and use of the condition code must be
adjacent (separated only by note insns) allowing flags in cc_status to be used. (See
Section 10.15 [Condition Code], page 264.) Also, the comparison and branch insns can be
located from each other by using the functions prev_ccO_setter and next_ccO_user.

However, this is not true on machines that do not use (cc0). On those machines, no
assumptions can be made about the adjacency of the compare and branch insns and the
above methods cannot be used. Instead, we use the machine mode of the condition code
register to record different formats of the condition code register.

Registers used to store the condition code value should have a mode that is in class
MODE_CC. Normally, it will be CCmode. If additional modes are required (as for the add
example mentioned above in the SPARC), define the macro EXTRA_CC_MODES to list the
additional modes required (see Section 10.15 [Condition Code], page 264). Also define
SELECT_CC_MODE to choose a mode given an operand of a compare.

If it is known during RTL generation that a different mode will be required (for example,
if the machine has separate compare instructions for signed and unsigned quantities, like
most IBM processors), they can be specified at that time.

If the cases that require different modes would be made by instruction combination, the
macro SELECT_CC_MODE determines which machine mode should be used for the comparison
result. The patterns should be written using that mode. To support the case of the add on
the SPARC discussed above, we have the pattern

(define_insn ""
[(set (reg:CC_NOOV 0)
(compare:CC_NOOV
(plus:SI (match_operand:SI O "register_operand" "%r")
(match_operand:SI 1 "arith_operand" "rI"))
(const_int 0)))]

||“.||)

The SELECT_CC_MODE macro on the SPARC returns CC_N0OOVmode for comparisons whose
argument is a plus.

9.12 Defining Looping Instruction Patterns

Some machines have special jump instructions that can be utilized to make loops more
efficient. A common example is the 68000 ‘dbra’ instruction which performs a decrement
of a register and a branch if the result was greater than zero. Other machines, in particular
digital signal processors (DSPs), have special block repeat instructions to provide low-
overhead loop support. For example, the TI TMS320C3x/C4x DSPs have a block repeat
instruction that loads special registers to mark the top and end of a loop and to count the
number of loop iterations. This avoids the need for fetching and executing a ‘dbra’-like
instruction and avoids pipeline stalls associated with the jump.

GCC has three special named patterns to support low overhead looping. They are
‘decrement_and_branch_until_zero’, ‘doloop_begin’, and ‘doloop_end’. The first pat-

162 GNU Compiler Collection (GCC) Internals

tern, ‘decrement_and_branch_until_zero’, is not emitted during RTL generation but may
be emitted during the instruction combination phase. This requires the assistance of the
loop optimizer, using information collected during strength reduction, to reverse a loop to
count down to zero. Some targets also require the loop optimizer to add a REG_NONNEG
note to indicate that the iteration count is always positive. This is needed if the target
performs a signed loop termination test. For example, the 68000 uses a pattern similar to
the following for its dbra instruction:

(define_insn "decrement_and_branch_until_zero"
[(set (pc)
(if_then_else
(ge (plus:SI (match_operand:SI O "general_operand" "+d*am")
(const_int -1))
(const_int 0))
(label_ref (match_operand 1 "" ""))
(pe)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int -1)))]
"find_reg_note (insn, REG_NONNEG, 0)"
||.'.u)

Note that since the insn is both a jump insn and has an output, it must deal with
its own reloads, hence the ‘m’ constraints. Also note that since this insn is generated by
the instruction combination phase combining two sequential insns together into an implicit
parallel insn, the iteration counter needs to be biased by the same amount as the decrement
operation, in this case —1. Note that the following similar pattern will not be matched by
the combiner.

(define_insn "decrement_and_branch_until_zero"
[(set (pc)
(if_then_else
(ge (match_operand:SI O "general_operand" "+d*am")
(const_int 1))
(label_ref (match_operand 1 "" ""))
(pc)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int -1)))]
"find_reg_note (insn, REG_NONNEG, 0)"
n - n)
The other two special looping patterns, ‘doloop_begin’ and ‘doloop_end’, are emitted
by the loop optimizer for certain well-behaved loops with a finite number of loop iterations

using information collected during strength reduction.

The ‘doloop_end’ pattern describes the actual looping instruction (or the implicit loop-
ing operation) and the ‘doloop_begin’ pattern is an optional companion pattern that can
be used for initialization needed for some low-overhead looping instructions.

Note that some machines require the actual looping instruction to be emitted at the
top of the loop (e.g., the TMS320C3x/C4x DSPs). Emitting the true RTL for a looping
instruction at the top of the loop can cause problems with flow analysis. So instead, a
dummy doloop insn is emitted at the end of the loop. The machine dependent reorg pass
checks for the presence of this doloop insn and then searches back to the top of the loop,
where it inserts the true looping insn (provided there are no instructions in the loop which
would cause problems). Any additional labels can be emitted at this point. In addition,

Chapter 9: Machine Descriptions 163

if the desired special iteration counter register was not allocated, this machine dependent
reorg pass could emit a traditional compare and jump instruction pair.

The essential difference between the ‘decrement_and_branch_until_zero’ and the
‘doloop_end’ patterns is that the loop optimizer allocates an additional pseudo register
for the latter as an iteration counter. This pseudo register cannot be used within the loop
(i.e., general induction variables cannot be derived from it), however, in many cases the
loop induction variable may become redundant and removed by the flow pass.

9.13 Canonicalization of Instructions

There are often cases where multiple RTL expressions could represent an operation per-
formed by a single machine instruction. This situation is most commonly encountered with
logical, branch, and multiply-accumulate instructions. In such cases, the compiler attempts
to convert these multiple RTL expressions into a single canonical form to reduce the number
of insn patterns required.

In addition to algebraic simplifications, following canonicalizations are performed:

e For commutative and comparison operators, a constant is always made the second
operand. If a machine only supports a constant as the second operand, only patterns
that match a constant in the second operand need be supplied.

For these operators, if only one operand is a neg, not, mult, plus, or minus expression,
it will be the first operand.

e In combinations of neg, mult, plus, and minus, the neg operations (if any) will be
moved inside the operations as far as possible. For instance, (neg (mult A B)) is
canonicalized as (mult (neg A) B), but (plus (mult (neg A) B) C) is canonicalized
as (minus A (mult B C)).

e For the compare operator, a constant is always the second operand on machines where
cc0 is used (see Section 9.11 [Jump Patterns], page 160). On other machines, there are
rare cases where the compiler might want to construct a compare with a constant as the
first operand. However, these cases are not common enough for it to be worthwhile to
provide a pattern matching a constant as the first operand unless the machine actually
has such an instruction.

An operand of neg, not, mult, plus, or minus is made the first operand under the
same conditions as above.

e (minus x (const_int n)) is converted to (plus x (const_int -n)).

e Within address computations (i.e., inside mem), a left shift is converted into the appro-
priate multiplication by a power of two.

e De‘Morgan’s Law is used to move bitwise negation inside a bitwise logical-and or logical-
or operation. If this results in only one operand being a not expression, it will be the
first one.

A machine that has an instruction that performs a bitwise logical-and of one operand

with the bitwise negation of the other should specify the pattern for that instruction
as

(define_insn ""
[(set (match_operand:m O ...)

164 GNU Compiler Collection (GCC) Internals

(and:m (not:m (match_operand:m 1 ...))
(match_operand:m 2 ...)))]

n .. ||)
Similarly, a pattern for a “NAND” instruction should be written

(define_insn ""
[(set (match_operand:m O ...)
(ior:m (not:m (match_operand:m 1 ...))
(not:m (match_operand:m 2 ...))))]

ll...ll)

In both cases, it is not necessary to include patterns for the many logically equivalent
RTL expressions.

e The only possible RTL expressions involving both bitwise exclusive-or and bitwise
negation are (xor:m x y) and (not:m (xor:m x y)).

e The sum of three items, one of which is a constant, will only appear in the form
(plus:m (plus:m x y) constant)
e On machines that do not use cc0, (compare x (const_int 0)) will be converted to x.

e Equality comparisons of a group of bits (usually a single bit) with zero will be written
using zero_extract rather than the equivalent and or sign_extract operations.

9.14 Defining RTL Sequences for Code Generation

On some target machines, some standard pattern names for RTL generation cannot be
handled with single insn, but a sequence of RTL insns can represent them. For these target
machines, you can write a define_expand to specify how to generate the sequence of RTL.

A define_expand is an RTL expression that looks almost like a define_insn; but,
unlike the latter, a define_expand is used only for RTL generation and it can produce
more than one RTL insn.

A define_expand RTX has four operands:

e The name. Each define_expand must have a name, since the only use for it is to refer
to it by name.

e The RTL template. This is a vector of RTL expressions representing a sequence of
separate instructions. Unlike define_insn, there is no implicit surrounding PARALLEL.

e The condition, a string containing a C expression. This expression is used to express
how the availability of this pattern depends on subclasses of target machine, selected
by command-line options when GCC is run. This is just like the condition of a define_
insn that has a standard name. Therefore, the condition (if present) may not depend
on the data in the insn being matched, but only the target-machine-type flags. The
compiler needs to test these conditions during initialization in order to learn exactly
which named instructions are available in a particular run.

e The preparation statements, a string containing zero or more C statements which are
to be executed before RTL code is generated from the RTL template.

Chapter 9: Machine Descriptions 165

Usually these statements prepare temporary registers for use as internal operands in
the RTL template, but they can also generate RTL insns directly by calling routines
such as emit_insn, etc. Any such insns precede the ones that come from the RTL
template.

Every RTL insn emitted by a define_expand must match some define_insn in the
machine description. Otherwise, the compiler will crash when trying to generate code for
the insn or trying to optimize it.

The RTL template, in addition to controlling generation of RTL insns, also describes
the operands that need to be specified when this pattern is used. In particular, it gives a
predicate for each operand.

A true operand, which needs to be specified in order to generate RTL from the pattern,
should be described with a match_operand in its first occurrence in the RTL template.
This enters information on the operand’s predicate into the tables that record such things.
GCC uses the information to preload the operand into a register if that is required for valid
RTL code. If the operand is referred to more than once, subsequent references should use
match_dup.

The RTL template may also refer to internal “operands” which are temporary registers
or labels used only within the sequence made by the define_expand. Internal operands are
substituted into the RTL template with match_dup, never with match_operand. The values
of the internal operands are not passed in as arguments by the compiler when it requests
use of this pattern. Instead, they are computed within the pattern, in the preparation
statements. These statements compute the values and store them into the appropriate
elements of operands so that match_dup can find them.

There are two special macros defined for use in the preparation statements: DONE and
FAIL. Use them with a following semicolon, as a statement.

DONE Use the DONE macro to end RTL generation for the pattern. The only RTL
insns resulting from the pattern on this occasion will be those already emitted
by explicit calls to emit_insn within the preparation statements; the RTL
template will not be generated.

FAIL Make the pattern fail on this occasion. When a pattern fails, it means that the
pattern was not truly available. The calling routines in the compiler will try
other strategies for code generation using other patterns.

Failure is currently supported only for binary (addition, multiplication, shifting,
etc.) and bit-field (extv, extzv, and insv) operations.

If the preparation falls through (invokes neither DONE nor FAIL), then the define_expand
acts like a define_insn in that the RTL template is used to generate the insn.

The RTL template is not used for matching, only for generating the initial insn list. If
the preparation statement always invokes DONE or FAIL, the RTL template may be reduced
to a simple list of operands, such as this example:

(define_expand "addsi3"
[(match_operand:SI O "register_operand" "")

(match_operand:SI 1 "register_operand" ny
(match_operand:SI 2 "register_operand" "")]

166 GNU Compiler Collection (GCC) Internals

{
handle_add (operands[0], operands[1], operands([2]);

DONE;
™
Here is an example, the definition of left-shift for the SPUR chip:

(define_expand "ashlsi3"
[(set (match_operand:SI O "register_operand" "")
(ashift:SI
(match_operand:SI 1 "register_operand" "")

(match_operand:SI 2 "nonmemory_operand" "")))]
nn

{
if (GET_CODE (operands[2]) != CONST_INT
|| (unsigned) INTVAL (operands[2]) > 3)
FAIL;

bLD)
This example uses define_expand so that it can generate an RTL insn for shifting when the
shift-count is in the supported range of 0 to 3 but fail in other cases where machine insns
aren’t available. When it fails, the compiler tries another strategy using different patterns
(such as, a library call).

If the compiler were able to handle nontrivial condition-strings in patterns with names,
then it would be possible to use a define_insn in that case. Here is another case (zero-
extension on the 68000) which makes more use of the power of define_expand:

(define_expand "zero_extendhisi2"
[(set (match_operand:SI O "general_operand" "")
(const_int 0))
(set (strict_low_part
(subreg:HI
(match_dup 0)
0))

(match_operand:HI 1 "general_operand" ""))]

"operands[1] = make_safe_from (operands[1], operands[0]);")

Here two RTL insns are generated, one to clear the entire output operand and the other to
copy the input operand into its low half. This sequence is incorrect if the input operand
refers to [the old value of] the output operand, so the preparation statement makes sure this
isn’t so. The function make_safe_from copies the operands[1] into a temporary register
if it refers to operands[0]. It does this by emitting another RTL insn.

Finally, a third example shows the use of an internal operand. Zero-extension on the
SPUR chip is done by and-ing the result against a halfword mask. But this mask cannot
be represented by a const_int because the constant value is too large to be legitimate on
this machine. So it must be copied into a register with force_reg and then the register
used in the and.

(define_expand "zero_extendhisi2"

[(set (match_operand:SI O "register_operand" "")
(and:SI (subreg:SI
(match_operand:HI 1 "register_operand" "")
0)

(match_dup 2)))]

Chapter 9: Machine Descriptions 167

"operands [2]
= force_reg (SImode, GEN_INT (65535)); ")

Note: If the define_expand is used to serve a standard binary or unary arithmetic
operation or a bit-field operation, then the last insn it generates must not be a code_label,
barrier or note. It must be an insn, jump_insn or call_insn. If you don’t need a real
insn at the end, emit an insn to copy the result of the operation into itself. Such an insn
will generate no code, but it can avoid problems in the compiler.

9.15 Defining How to Split Instructions

There are two cases where you should specify how to split a pattern into multiple insns.
On machines that have instructions requiring delay slots (see Section 9.18.7 [Delay Slots],
page 182) or that have instructions whose output is not available for multiple cycles (see
Section 9.18.8 [Processor pipeline description], page 183), the compiler phases that optimize
these cases need to be able to move insns into one-instruction delay slots. However, some
insns may generate more than one machine instruction. These insns cannot be placed into
a delay slot.

Often you can rewrite the single insn as a list of individual insns, each corresponding to
one machine instruction. The disadvantage of doing so is that it will cause the compilation
to be slower and require more space. If the resulting insns are too complex, it may also
suppress some optimizations. The compiler splits the insn if there is a reason to believe
that it might improve instruction or delay slot scheduling.

The insn combiner phase also splits putative insns. If three insns are merged into one
insn with a complex expression that cannot be matched by some define_insn pattern,
the combiner phase attempts to split the complex pattern into two insns that are recog-
nized. Usually it can break the complex pattern into two patterns by splitting out some
subexpression. However, in some other cases, such as performing an addition of a large
constant in two insns on a RISC machine, the way to split the addition into two insns is
machine-dependent.

The define_split definition tells the compiler how to split a complex insn into several
simpler insns. It looks like this:
(define_split
[insn-pattern]
"condition"
[new-insn-pattern-1
new-insn-pattern-2
..
"preparation-statements")
insn-pattern is a pattern that needs to be split and condition is the final condition to be
tested, as in a define_insn. When an insn matching insn-pattern and satisfying condition
is found, it is replaced in the insn list with the insns given by new-insn-pattern-1, new-insn-
pattern-2, etc.

The preparation-statements are similar to those statements that are specified for define_
expand (see Section 9.14 [Expander Definitions|, page 164) and are executed before the new
RTL is generated to prepare for the generated code or emit some insns whose pattern is not
fixed. Unlike those in define_expand, however, these statements must not generate any

168 GNU Compiler Collection (GCC) Internals

new pseudo-registers. Once reload has completed, they also must not allocate any space in
the stack frame.

Patterns are matched against insn-pattern in two different circumstances. If an insn
needs to be split for delay slot scheduling or insn scheduling, the insn is already known
to be valid, which means that it must have been matched by some define_insn and, if
reload_completed is nonzero, is known to satisfy the constraints of that define_insn. In
that case, the new insn patterns must also be insns that are matched by some define_insn
and, if reload_completed is nonzero, must also satisfy the constraints of those definitions.

As an example of this usage of define_split, consider the following example from
‘a29k.md’, which splits a sign_extend from HImode to SImode into a pair of shift insns:
(define_split
[(set (match_operand:SI O "gen_reg_operand" "")
(sign_extend:SI (match_operand:HI 1 "gen_reg_operand" "")))]

[(set (match_dup 0)
(ashift:SI (match_dup 1)
(const_int 16)))
(set (match_dup 0)
(ashiftrt:SI (match_dup 0)
(const_int 16)))]

{ operands[1] = gen_lowpart (SImode, operands([1]); }")

When the combiner phase tries to split an insn pattern, it is always the case that the
pattern is not matched by any define_insn. The combiner pass first tries to split a single
set expression and then the same set expression inside a parallel, but followed by a
clobber of a pseudo-reg to use as a scratch register. In these cases, the combiner expects
exactly two new insn patterns to be generated. It will verify that these patterns match
some define_insn definitions, so you need not do this test in the define_split (of course,
there is no point in writing a define_split that will never produce insns that match).

Here is an example of this use of define_split, taken from ‘rs6000.md’:

(define_split
[(set (match_operand:SI O "gen_reg_operand" "")
(plus:SI (match_operand:SI 1 "gen_reg_operand" "")
(match_operand:SI 2 "non_add_cint_operand" "")))]
[(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))
(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]

int low = INTVAL (operands[2]) & Oxffff;
int high = (unsigned) INTVAL (operands[2]) >> 16;

if (low & 0x8000)
high++, low |= Oxffff0000;

operands[3] = GEN_INT (high << 16);
operands[4] = GEN_INT (low);
i)

Here the predicate non_add_cint_operand matches any const_int that is not a valid
operand of a single add insn. The add with the smaller displacement is written so that it
can be substituted into the address of a subsequent operation.

Chapter 9: Machine Descriptions 169

An example that uses a scratch register, from the same file, generates an equality com-
parison of a register and a large constant:

(define_split
[(set (match_operand:CC O "cc_reg_operand" "")
(compare:CC (match_operand:SI 1 "gen_reg_operand" "")
(match_operand:SI 2 "non_short_cint_operand" "")))
(clobber (match_operand:SI 3 "gen_reg_operand" ""))]
"find_single_use (operands[0], insn, 0)
&& (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ
|| GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)"
[(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4)))
(set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))]

/* Get the constant we are comparing against, C, and see what it
looks like sign-extended to 16 bits. Then see what constant
could be XOR’ed with C to get the sign-extended value. */

int ¢ = INTVAL (operands[2]);
int sextc = (c << 16) >> 16;

int xorv = c sextc;

operands[4] = GEN_INT (xorv);
operands[5] = GEN_INT (sextc);
™

To avoid confusion, don’t write a single define_split that accepts some insns that
match some define_insn as well as some insns that don’t. Instead, write two separate
define_split definitions, one for the insns that are valid and one for the insns that are
not valid.

The splitter is allowed to split jump instructions into sequence of jumps or create new
jumps in while splitting non-jump instructions. As the central flowgraph and branch pre-
diction information needs to be updated, several restriction apply.

Splitting of jump instruction into sequence that over by another jump instruction is
always valid, as compiler expect identical behavior of new jump. When new sequence
contains multiple jump instructions or new labels, more assistance is needed. Splitter
is required to create only unconditional jumps, or simple conditional jump instructions.
Additionally it must attach a REG_BR_PROB note to each conditional jump. A global variable
split_branch_probability hold the probability of original branch in case it was an simple
conditional jump, —1 otherwise. To simplify recomputing of edge frequencies, new sequence
is required to have only forward jumps to the newly created labels.

For the common case where the pattern of a define_split exactly matches the pattern of
a define_insn, use define_insn_and_split. It looks like this:

(define_insn_and_split
[insn-pattern]
"condition"
"output-template"
"split-condition"
[new-insn-pattern-1

new-insn-pattern-2
..
"preparation-statements"
[insn-attributes])

170 GNU Compiler Collection (GCC) Internals

insn-pattern, condition, output-template, and insn-attributes are used as in define_
insn. The new-insn-pattern vector and the preparation-statements are used as in a define_
split. The split-condition is also used as in define_split, with the additional behavior
that if the condition starts with ‘&&’, the condition used for the split will be the constructed
as a logical “and” of the split condition with the insn condition. For example, from i386.md:

(define_insn_and_split "zero_extendhisi2_and"
[(set (match_operand:SI O "register_operand" "=r")
(zero_extend:SI (match_operand:HI 1 "register_operand" "0")))
(clobber (reg:CC 17))]
"TARGET_ZERO_EXTEND_WITH_AND && 'optimize_size"
ll#ll
"&& reload_completed"
[(parallel [(set (match_dup 0)
(and:SI (match_dup 0) (const_int 65535)))
(clobber (reg:CC 17))1)]

[(set_attr "type" "alul")])

In this case, the actual split condition will be ‘TARGET_ZERO_EXTEND_WITH_AND &&
loptimize_size && reload_completed’.

The define_insn_and_split construction provides exactly the same functionality as
two separate define_insn and define_split patterns. It exists for compactness, and as
a maintenance tool to prevent having to ensure the two patterns’ templates match.

9.16 Including Patterns in Machine Descriptions.

The include pattern tells the compiler tools where to look for patterns that are in files
other than in the file ‘.md’. This is used only at build time and there is no preprocessing
allowed.

It looks like:

(include
pathname)

For example:

(include "filestuff")

Where pathname is a string that specifies the location of the file, specifies the include file
to be in ‘gcc/config/target/filestuff’. The directory ‘gcc/config/target’ is regarded
as the default directory.

Machine descriptions may be split up into smaller more manageable subsections and
placed into subdirectories.

By specifying:
(include "BOGUS/filestuff")

the include file is specified to be in ‘gcc/config/target /BOGUS/filestuff’.
Specifying an absolute path for the include file such as;

Chapter 9: Machine Descriptions 171

(include "/u2/BOGUS/filestuff")
is permitted but is not encouraged.

9.16.1 RTL Generation Tool Options for Directory Search

The ‘-Idir’ option specifies directories to search for machine descriptions. For example:

genrecog -I/pl/abc/procl -I/p2/abcd/pro2 target.md

Add the directory dir to the head of the list of directories to be searched for header files.
This can be used to override a system machine definition file, substituting your own version,
since these directories are searched before the default machine description file directories.
If you use more than one ‘-I’ option, the directories are scanned in left-to-right order; the
standard default directory come after.

9.17 Machine-Specific Peephole Optimizers

In addition to instruction patterns the ‘md’ file may contain definitions of machine-specific
peephole optimizations.

The combiner does not notice certain peephole optimizations when the data flow in the
program does not suggest that it should try them. For example, sometimes two consecutive
insns related in purpose can be combined even though the second one does not appear to
use a register computed in the first one. A machine-specific peephole optimizer can detect
such opportunities.

There are two forms of peephole definitions that may be used. The original define_
peephole is run at assembly output time to match insns and substitute assembly text. Use
of define_peephole is deprecated.

A newer define_peephole2 matches insns and substitutes new insns. The peephole2
pass is run after register allocation but before scheduling, which may result in much better
code for targets that do scheduling.

9.17.1 RTL to Text Peephole Optimizers

A definition looks like this:

(define_peephole
[insn-pattern-1
insn-pattern-2
..
"condition"
"template"
"optional-insn-attributes")

The last string operand may be omitted if you are not using any machine-specific information
in this machine description. If present, it must obey the same rules as in a define_insn.

172 GNU Compiler Collection (GCC) Internals

In this skeleton, insn-pattern-1 and so on are patterns to match consecutive insns. The
optimization applies to a sequence of insns when insn-pattern-1 matches the first one, insn-
pattern-2 matches the next, and so on.

Each of the insns matched by a peephole must also match a define_insn. Peepholes are
checked only at the last stage just before code generation, and only optionally. Therefore,
any insn which would match a peephole but no define_insn will cause a crash in code
generation in an unoptimized compilation, or at various optimization stages.

The operands of the insns are matched with match_operands, match_operator, and
match_dup, as usual. What is not usual is that the operand numbers apply to all the insn
patterns in the definition. So, you can check for identical operands in two insns by using
match_operand in one insn and match_dup in the other.

The operand constraints used in match_operand patterns do not have any direct effect
on the applicability of the peephole, but they will be validated afterward, so make sure your
constraints are general enough to apply whenever the peephole matches. If the peephole
matches but the constraints are not satisfied, the compiler will crash.

It is safe to omit constraints in all the operands of the peephole; or you can write
constraints which serve as a double-check on the criteria previously tested.

Once a sequence of insns matches the patterns, the condition is checked. This is a C
expression which makes the final decision whether to perform the optimization (we do so
if the expression is nonzero). If condition is omitted (in other words, the string is empty)
then the optimization is applied to every sequence of insns that matches the patterns.

The defined peephole optimizations are applied after register allocation is complete.
Therefore, the peephole definition can check which operands have ended up in which kinds
of registers, just by looking at the operands.

The way to refer to the operands in condition is to write operands[i] for operand
number i (as matched by (match_operand i ...)). Use the variable insn to refer to the
last of the insns being matched; use prev_active_insn to find the preceding insns.

When optimizing computations with intermediate results, you can use condition to match
only when the intermediate results are not used elsewhere. Use the C expression dead_or_
set_p (imsn, op), where insn is the insn in which you expect the value to be used for the
last time (from the value of insn, together with use of prev_nonnote_insn), and op is the
intermediate value (from operands([i]).

Applying the optimization means replacing the sequence of insns with one new insn.
The template controls ultimate output of assembler code for this combined insn. It works
exactly like the template of a define_insn. Operand numbers in this template are the
same ones used in matching the original sequence of insns.

The result of a defined peephole optimizer does not need to match any of the insn
patterns in the machine description; it does not even have an opportunity to match them.
The peephole optimizer definition itself serves as the insn pattern to control how the insn
is output.

Defined peephole optimizers are run as assembler code is being output, so the insns they
produce are never combined or rearranged in any way.

Here is an example, taken from the 68000 machine description:

Chapter 9: Machine Descriptions 173

(define_peephole
[(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))
(set (match_operand:DF O "register_operand" "=f")
(match_operand:DF 1 "register_operand" "ad"))]
"FP_REG_P (operands[0]) &% ! FP_REG_P (operands[1])"
{
rtx xoperands[2];
xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
#ifdef MOTOROLA
output_asm_insn ("move.l %1,(sp)", xoperands);
output_asm_insn ("move.l %1,-(sp)", operands);
return "fmove.d (sp)+,%0";
#else
output_asm_insn ("movel %1,sp@", xoperands);
output_asm_insn ("movel %1,sp@-", operands);
return "fmoved sp@+,%0";
#endif
B

The effect of this optimization is to change
jbsr _foobar
addql #4,sp
movel di,sp@-
movel dO,sp@-
fmoved sp@+,fp0

into
jbsr _foobar
movel di,sp@
movel dO,sp@-
fmoved sp@+,fp0

insn-pattern-1 and so on look almost like the second operand of define_insn. There
is one important difference: the second operand of define_insn consists of one or more
RTX’s enclosed in square brackets. Usually, there is only one: then the same action can
be written as an element of a define_peephole. But when there are multiple actions in a
define_insn, they are implicitly enclosed in a parallel. Then you must explicitly write
the parallel, and the square brackets within it, in the define_peephole. Thus, if an insn
pattern looks like this,

(define_insn "divmodsi4"

[(set (match_operand:SI O "general_operand" "=4")

(div:SI (match_operand:SI 1 "general_operand" "O")
(match_operand:SI 2 "general_operand" "dmsK")))

(set (match_operand:SI 3 "general_operand" "=d")
(mod:SI (match_dup 1) (match_dup 2)))]

"TARGET_68020"

"divsld%.1l %2,%3:%0")

then the way to mention this insn in a peephole is as follows:

(define_peephole
[...
(parallel
[(set (match_operand:SI O "general_operand" "=d")
(div:SI (match_operand:SI 1 "general_operand" "O")
(match_operand:SI 2 "general_operand" "dmsK")))
(set (match_operand:SI 3 "general_operand" "=d")
(mod:SI (match_dup 1) (match_dup 2)))]1)
.ol
L)

174 GNU Compiler Collection (GCC) Internals

9.17.2 RTL to RTL Peephole Optimizers

The define_peephole2 definition tells the compiler how to substitute one sequence of
instructions for another sequence, what additional scratch registers may be needed and
what their lifetimes must be.

(define_peephole2
[insn-pattern-1
insn-pattern-2
..
"condition"
[new-insn-pattern-1
new-insn-pattern-2
..
"preparation-statements")
The definition is almost identical to define_split (see Section 9.15 [Insn Splitting],
page 167) except that the pattern to match is not a single instruction, but a sequence of

instructions.

It is possible to request additional scratch registers for use in the output template. If
appropriate registers are not free, the pattern will simply not match.

Scratch registers are requested with a match_scratch pattern at the top level of the
input pattern. The allocated register (initially) will be dead at the point requested within
the original sequence. If the scratch is used at more than a single point, a match_dup
pattern at the top level of the input pattern marks the last position in the input sequence
at which the register must be available.

Here is an example from the TA-32 machine description:

(define_peephole2
[(match_scratch:SI 2 "r")
(parallel [(set (match_operand:SI O "register_operand" "")
(match_operator:SI 3 "arith_or_logical_operator"
[(match_dup 0)
(match_operand:SI 1 "memory_operand" "")]))
(clobber (reg:CC 17))1)]
"1 optimize_size && ! TARGET_READ_MODIFY"
[(set (match_dup 2) (match_dup 1))
(parallel [(set (match_dup 0)
(match_op_dup 3 [(match_dup 0) (match_dup 2)1))
(clobber (reg:CC 17))1)]
n u)

This pattern tries to split a load from its use in the hopes that we’ll be able to schedule
around the memory load latency. It allocates a single SImode register of class GENERAL_REGS
("r") that needs to be live only at the point just before the arithmetic.

A real example requiring extended scratch lifetimes is harder to come by, so here’s a silly
made-up example:

(define_peephole2
[(match_scratch:SI 4 "r")

(set (match_operand:SI O "" "") (match_operand:SI 1 "" ""))
(set (match_operand:SI 2 "" "") (match_dup 1))

(match_dup 4)

(set (match_operand:SI 3 "" "") (match_dup 1))]

"/* determine 1 does not overlap 0 and 2 */"
[(set (match_dup 4) (match_dup 1))

Chapter 9: Machine Descriptions 175

(set (match_dup 0) (match_dup 4))
(set (match_dup 2) (match_dup 4))]
(set (match_dup 3) (match_dup 4))]
n u)
If we had not added the (match_dup 4) in the middle of the input sequence, it might have
been the case that the register we chose at the beginning of the sequence is killed by the
first or second set.

9.18 Instruction Attributes

In addition to describing the instruction supported by the target machine, the ‘md’ file also
defines a group of attributes and a set of values for each. Every generated insn is assigned
a value for each attribute. One possible attribute would be the effect that the insn has on
the machine’s condition code. This attribute can then be used by NOTICE_UPDATE_CC to
track the condition codes.

9.18.1 Defining Attributes and their Values

The define_attr expression is used to define each attribute required by the target machine.
It looks like:

(define_attr name list-of-values default)
name is a string specifying the name of the attribute being defined.

list-of-values is either a string that specifies a comma-separated list of values that can
be assigned to the attribute, or a null string to indicate that the attribute takes numeric
values.

default is an attribute expression that gives the value of this attribute for insns that
match patterns whose definition does not include an explicit value for this attribute. See
Section 9.18.4 [Attr Example], page 180, for more information on the handling of defaults.
See Section 9.18.6 [Constant Attributes], page 182, for information on attributes that do
not depend on any particular insn.

For each defined attribute, a number of definitions are written to the ‘insn-attr.h’
file. For cases where an explicit set of values is specified for an attribute, the following are
defined:

e A ‘#define’ is written for the symbol ‘HAVE_ATTR_name’.

e An enumeral class is defined for ‘attr_name’ with elements of the form ‘upper-
name _upper-value’ where the attribute name and value are first converted to upper
case.

o A function ‘get_attr_name’ is defined that is passed an insn and returns the attribute
value for that insn.

For example, if the following is present in the ‘md’ file:
(define_attr "type" "branch,fp,load,store,arith" ...)

the following lines will be written to the file ‘insn-attr.h’.

#define HAVE_ATTR_type
enum attr_type {TYPE_BRANCH, TYPE_FP, TYPE_LOAD,

176 GNU Compiler Collection (GCC) Internals

TYPE_STORE, TYPE_ARITH};
extern enum attr_type get_attr_type ();
If the attribute takes numeric values, no enum type will be defined and the function to
obtain the attribute’s value will return int.

9.18.2 Attribute Expressions

RTL expressions used to define attributes use the codes described above plus a few specific
to attribute definitions, to be discussed below. Attribute value expressions must have one
of the following forms:

(const_int i)
The integer i specifies the value of a numeric attribute. i must be non-negative.
The value of a numeric attribute can be specified either with a const_int, or
as an integer represented as a string in const_string, eq_attr (see below),
attr, symbol_ref, simple arithmetic expressions, and set_attr overrides on
specific instructions (see Section 9.18.3 [Tagging Insns], page 178).

(const_string value)
The string value specifies a constant attribute value. If value is specified as
‘vx"’ it means that the default value of the attribute is to be used for the
insn containing this expression. ‘"*"’ obviously cannot be used in the default
expression of a define_attr.

If the attribute whose value is being specified is numeric, value must be a string
containing a non-negative integer (normally const_int would be used in this
case). Otherwise, it must contain one of the valid values for the attribute.

(if _then_else test true-value false-value)
test specifies an attribute test, whose format is defined below. The value of this
expression is true-value if test is true, otherwise it is false-value.

(cond [testl valuel ...] default)
The first operand of this expression is a vector containing an even number of
expressions and consisting of pairs of test and value expressions. The value
of the cond expression is that of the value corresponding to the first true test
expression. If none of the test expressions are true, the value of the cond
expression is that of the default expression.

test expressions can have one of the following forms:

(const_int i)
This test is true if i is nonzero and false otherwise.

(not test)
(ior testl test2)
(and testl test2)
These tests are true if the indicated logical function is true.

(match_operand:m n pred constraints)
This test is true if operand n of the insn whose attribute value is being de-
termined has mode m (this part of the test is ignored if m is VOIDmode) and

Chapter 9: Machine Descriptions 177

the function specified by the string pred returns a nonzero value when passed
operand n and mode m (this part of the test is ignored if pred is the null string).

The constraints operand is ignored and should be the null string.

(le arithl arith2)

(leu arithl arith2)

(1t arithl arith2)

(1tu arithl arith2)

(gt arithl arith2)

(gtu arithl arith2)

(ge arithl arith2)

(geu arithl arith2)

(ne arithl arith2)

(eq arithl arith2)
These tests are true if the indicated comparison of the two arithmetic expres-
sions is true. Arithmetic expressions are formed with plus, minus, mult, div,
mod, abs, neg, and, ior, xor, not, ashift, 1shiftrt, and ashiftrt expres-
sions.

const_int and symbol_ref are always valid terms (see Section 9.18.5 [Insn
Lengths|, page 180,for additional forms). symbol_ref is a string denoting a C
expression that yields an int when evaluated by the ‘get_attr_...’ routine.
It should normally be a global variable.

(eq_attr name value)
name is a string specifying the name of an attribute.

value is a string that is either a valid value for attribute name, a comma-
separated list of values, or ‘!’ followed by a value or list. If value does not
begin with a ‘!’, this test is true if the value of the name attribute of the
current insn is in the list specified by value. If value begins with a ‘!’, this test
is true if the attribute’s value is not in the specified list.
For example,

(eq_attr "type" "load,store")
is equivalent to

(ior (eq_attr "type" "load") (eq_attr "type" "store"))
If name specifies an attribute of ‘alternative’, it refers to the value of the
compiler variable which_alternative (see Section 9.6 [Output Statement],
page 124) and the values must be small integers. For example,

(eq_attr "alternative" "2,3")
is equivalent to

(ior (eq (symbol_ref "which_alternative") (comnst_int 2))

(eq (symbol_ref "which_alternative") (comst_int 3)))

Note that, for most attributes, an eq_attr test is simplified in cases where the
value of the attribute being tested is known for all insns matching a particular
pattern. This is by far the most common case.

(attr_flag name)
The value of an attr_flag expression is true if the flag specified by name is
true for the insn currently being scheduled.

178 GNU Compiler Collection (GCC) Internals

name is a string specifying one of a fixed set of flags to test. Test the flags
forward and backward to determine the direction of a conditional branch. Test
the flags very_likely, likely, very_unlikely, and unlikely to determine if
a conditional branch is expected to be taken.

If the very_likely flag is true, then the 1ikely flag is also true. Likewise for
the very_unlikely and unlikely flags.

This example describes a conditional branch delay slot which can be nullified for
forward branches that are taken (annul-true) or for backward branches which
are not taken (annul-false).

(define_delay (eq_attr "type" "cbranch")
[(eq_attr "in_branch_delay" "true")
(and (eq_attr "in_branch_delay" "true")
(attr_flag "forward"))
(and (eq_attr "in_branch_delay" "true")
(attr_flag "backward"))])
The forward and backward flags are false if the current insn being scheduled

is not a conditional branch.

The very_likely and likely flags are true if the insn being scheduled is not
a conditional branch. The very_unlikely and unlikely flags are false if the
insn being scheduled is not a conditional branch.

attr_flag is only used during delay slot scheduling and has no meaning to
other passes of the compiler.

(attr name)
The value of another attribute is returned. This is most useful for numeric
attributes, as eq_attr and attr_flag produce more efficient code for non-
numeric attributes.

9.18.3 Assigning Attribute Values to Insns

The value assigned to an attribute of an insn is primarily determined by which pattern is
matched by that insn (or which define_peephole generated it). Every define_insn and
define_peephole can have an optional last argument to specify the values of attributes for
matching insns. The value of any attribute not specified in a particular insn is set to the
default value for that attribute, as specified in its define_attr. Extensive use of default
values for attributes permits the specification of the values for only one or two attributes
in the definition of most insn patterns, as seen in the example in the next section.

The optional last argument of define_insn and define_peephole is a vector of ex-
pressions, each of which defines the value for a single attribute. The most general way of
assigning an attribute’s value is to use a set expression whose first operand is an attr
expression giving the name of the attribute being set. The second operand of the set is
an attribute expression (see Section 9.18.2 [Expressions|, page 176) giving the value of the
attribute.

When the attribute value depends on the ‘alternative’ attribute (i.e., which is the
applicable alternative in the constraint of the insn), the set_attr_alternative expression
can be used. It allows the specification of a vector of attribute expressions, one for each
alternative.

Chapter 9: Machine Descriptions 179

When the generality of arbitrary attribute expressions is not required, the simpler set_
attr expression can be used, which allows specifying a string giving either a single attribute
value or a list of attribute values, one for each alternative.

The form of each of the above specifications is shown below. In each case, name is a
string specifying the attribute to be set.

(set_attr name value-string)
value-string is either a string giving the desired attribute value, or a string
containing a comma-separated list giving the values for succeeding alternatives.
The number of elements must match the number of alternatives in the constraint
of the insn pattern.

Note that it may be useful to specify ‘*’ for some alternative, in which case the
attribute will assume its default value for insns matching that alternative.

(set_attr_alternative name [valuel value2 ...])
Depending on the alternative of the insn, the value will be one of the specified
values. This is a shorthand for using a cond with tests on the ‘alternative’
attribute.

(set (attr name) value)
The first operand of this set must be the special RTL expression attr, whose
sole operand is a string giving the name of the attribute being set. value is the
value of the attribute.

The following shows three different ways of representing the same attribute value speci-
fication:
(set_attr "type" "load,store,arith")

(set_attr_alternative "type"
[(const_string "load") (const_string "store")
(const_string "arith")])

(set (attr "type")
(cond [(eq_attr "alternative" "1") (const_string "load")
(eg_attr "alternative" "2") (const_string "store")]
(const_string "arith")))
The define_asm_attributes expression provides a mechanism to specify the attributes
assigned to insns produced from an asm statement. It has the form:

(define_asm_attributes [attr-sets])

where attr-sets is specified the same as for both the define_insn and the define_peephole
expressions.

These values will typically be the “worst case” attribute values. For example, they might
indicate that the condition code will be clobbered.

A specification for a length attribute is handled specially. The way to compute the
length of an asm insn is to multiply the length specified in the expression define_asm_
attributes by the number of machine instructions specified in the asm statement, deter-
mined by counting the number of semicolons and newlines in the string. Therefore, the
value of the length attribute specified in a define_asm_attributes should be the maxi-
mum possible length of a single machine instruction.

180 GNU Compiler Collection (GCC) Internals

9.18.4 Example of Attribute Specifications

The judicious use of defaulting is important in the efficient use of insn attributes. Typ-
ically, insns are divided into types and an attribute, customarily called type, is used to
represent this value. This attribute is normally used only to define the default value for
other attributes. An example will clarify this usage.

Assume we have a RISC machine with a condition code and in which only full-word
operations are performed in registers. Let us assume that we can divide all insns into loads,
stores, (integer) arithmetic operations, floating point operations, and branches.

Here we will concern ourselves with determining the effect of an insn on the condition
code and will limit ourselves to the following possible effects: The condition code can be set
unpredictably (clobbered), not be changed, be set to agree with the results of the operation,
or only changed if the item previously set into the condition code has been modified.

Here is part of a sample ‘md’ file for such a machine:

(define_attr "type" "load,store,arith,fp,branch" (const_string "arith"))

(define_attr "cc" "clobber,unchanged,set,change0"
(cond [(eg_attr "type" "load")
(const_string "changeO")
(eq_attr "type" "store,branch")
(const_string "unchanged")
(eqg_attr "type" "arith")
(if_then_else (match_operand:SI O "" "")
(const_string "set")
(const_string "clobber"))]
(const_string "clobber")))

(define_insn ""
[(set (match_operand:SI O "general_operand" "=r,r,m")

(match_operand:SI 1 "general_operand" "r,m,r"))]

ll@

move %0,%1

load %0,%1

store %0,%1"

[(set_attr "type" "arith,load,store")])

Note that we assume in the above example that arithmetic operations performed on

quantities smaller than a machine word clobber the condition code since they will set the
condition code to a value corresponding to the full-word result.

9.18.5 Computing the Length of an Insn

For many machines, multiple types of branch instructions are provided, each for different
length branch displacements. In most cases, the assembler will choose the correct instruction
to use. However, when the assembler cannot do so, GCC can when a special attribute, the
‘length’ attribute, is defined. This attribute must be defined to have numeric values by
specifying a null string in its define_attr.

In the case of the ‘length’ attribute, two additional forms of arithmetic terms are allowed
in test expressions:

Chapter 9: Machine Descriptions 181

(match_dup n)
This refers to the address of operand n of the current insn, which must be a
label_ref.

(pc) This refers to the address of the current insn. It might have been more consis-
tent with other usage to make this the address of the next insn but this would
be confusing because the length of the current insn is to be computed.

For normal insns, the length will be determined by value of the ‘length’ attribute. In the
case of addr_vec and addr_diff_vec insn patterns, the length is computed as the number
of vectors multiplied by the size of each vector.

Lengths are measured in addressable storage units (bytes).

The following macros can be used to refine the length computation:

FIRST_INSN_ADDRESS
When the length insn attribute is used, this macro specifies the value to be
assigned to the address of the first insn in a function. If not specified, 0 is used.

ADJUST_INSN_LENGTH (insn, length)
If defined, modifies the length assigned to instruction insn as a function of
the context in which it is used. length is an lvalue that contains the initially
computed length of the insn and should be updated with the correct length of
the insn.

This macro will normally not be required. A case in which it is required is the
ROMP. On this machine, the size of an addr_vec insn must be increased by
two to compensate for the fact that alignment may be required.

The routine that returns get_attr_length (the value of the length attribute) can be
used by the output routine to determine the form of the branch instruction to be written,
as the example below illustrates.

As an example of the specification of variable-length branches, consider the IBM 360. If
we adopt the convention that a register will be set to the starting address of a function, we
can jump to labels within 4k of the start using a four-byte instruction. Otherwise, we need
a six-byte sequence to load the address from memory and then branch to it.

On such a machine, a pattern for a branch instruction might be specified as follows:

(define_insn "jump"

[(set (pc)
(label_ref (match_operand O "" "")))]
{
return (get_attr_length (insn) ==
? "b %10" : "1 ri15,=a(%10); br ris5");
}

[(set (attr "length")
(if __then_else (1t (match_dup 0) (const_int 4096))
(const_int 4)
(const_int 6)))])

182 GNU Compiler Collection (GCC) Internals

9.18.6 Constant Attributes

A special form of define_attr, where the expression for the default value is a const
expression, indicates an attribute that is constant for a given run of the compiler. Constant
attributes may be used to specify which variety of processor is used. For example,

(define_attr "cpu" "m88100,m88110,m88000"
(const
(cond [(symbol_ref "TARGET_88100") (const_string "m88100")
(symbol_ref "TARGET_88110") (const_string "m88110")]
(const_string "m88000"))))

(define_attr "memory" "fast,slow"
(const
(if_then_else (symbol_ref "TARGET_FAST_MEM")
(const_string "fast")
(const_string "slow"))))

The routine generated for constant attributes has no parameters as it does not depend
on any particular insn. RTL expressions used to define the value of a constant attribute
may use the symbol_ref form, but may not use either the match_operand form or eq_attr
forms involving insn attributes.

9.18.7 Delay Slot Scheduling

The insn attribute mechanism can be used to specify the requirements for delay slots, if any,
on a target machine. An instruction is said to require a delay slot if some instructions that
are physically after the instruction are executed as if they were located before it. Classic
examples are branch and call instructions, which often execute the following instruction
before the branch or call is performed.

On some machines, conditional branch instructions can optionally annul instructions in
the delay slot. This means that the instruction will not be executed for certain branch
outcomes. Both instructions that annul if the branch is true and instructions that annul if
the branch is false are supported.

Delay slot scheduling differs from instruction scheduling in that determining whether an
instruction needs a delay slot is dependent only on the type of instruction being generated,
not on data flow between the instructions. See the next section for a discussion of data-
dependent instruction scheduling.

The requirement of an insn needing one or more delay slots is indicated via the define_
delay expression. It has the following form:

(define_delay test
[delay-1 annul-true-1 annul-false-1
delay-2 annul-true-2 annul-false-2

D
test is an attribute test that indicates whether this define_delay applies to a particular
insn. If so, the number of required delay slots is determined by the length of the vector
specified as the second argument. An insn placed in delay slot n must satisfy attribute
test delay-n. annul-true-n is an attribute test that specifies which insns may be annulled
if the branch is true. Similarly, annul-false-n specifies which insns in the delay slot may

Chapter 9: Machine Descriptions 183

be annulled if the branch is false. If annulling is not supported for that delay slot, (nil)
should be coded.

For example, in the common case where branch and call insns require a single delay slot,
which may contain any insn other than a branch or call, the following would be placed in
the ‘md’ file:

(define_delay (eq_attr "type" "branch,call")
[(eq_attr "type" "!branch,call") (nil) (nil)])
Multiple define_delay expressions may be specified. In this case, each such expression
specifies different delay slot requirements and there must be no insn for which tests in two
define_delay expressions are both true.

For example, if we have a machine that requires one delay slot for branches but two for
calls, no delay slot can contain a branch or call insn, and any valid insn in the delay slot
for the branch can be annulled if the branch is true, we might represent this as follows:

(define_delay (eq_attr "type" "branch")
[(eq_attr "type" "!branch,call")
(eq_attr "type" "!branch,call")
@il)1)

(define_delay (eq_attr "type" "call")
[(eq_attr "type" "!branch,call") (nil) (nil)
(eq_attr "type" "!branch,call") (nil) (nil)])

9.18.8 Specifying processor pipeline description

To achieve better performance, most modern processors (super-pipelined, superscalar RISC,
and VLIW processors) have many functional units on which several instructions can be exe-
cuted simultaneously. An instruction starts execution if its issue conditions are satisfied. If
not, the instruction is stalled until its conditions are satisfied. Such interlock (pipeline) delay
causes interruption of the fetching of successor instructions (or demands nop instructions,
e.g. for some MIPS processors).

There are two major kinds of interlock delays in modern processors. The first one is
a data dependence delay determining instruction latency time. The instruction execution
is not started until all source data have been evaluated by prior instructions (there are
more complex cases when the instruction execution starts even when the data are not avail-
able but will be ready in given time after the instruction execution start). Taking the
data dependence delays into account is simple. The data dependence (true, output, and
anti-dependence) delay between two instructions is given by a constant. In most cases
this approach is adequate. The second kind of interlock delays is a reservation delay. The
reservation delay means that two instructions under execution will be in need of shared pro-
cessors resources, i.e. buses, internal registers, and/or functional units, which are reserved
for some time. Taking this kind of delay into account is complex especially for modern RISC
processors.

The task of exploiting more processor parallelism is solved by an instruction scheduler.
For a better solution to this problem, the instruction scheduler has to have an adequate
description of the processor parallelism (or pipeline description). Currently GCC provides
two alternative ways to describe processor parallelism, both described below. The first
method is outlined in the next section; it was once the only method provided by GCC,

184 GNU Compiler Collection (GCC) Internals

and thus is used in a number of exiting ports. The second, and preferred method, specifies
functional unit reservations for groups of instructions with the aid of regular expressions.
This is called the automaton based description.

The GCC instruction scheduler uses a pipeline hazard recognizer to figure out the pos-
sibility of the instruction issue by the processor on a given simulated processor cycle. The
pipeline hazard recognizer is automatically generated from the processor pipeline descrip-
tion. The pipeline hazard recognizer generated from the automaton based description is
more sophisticated and based on a deterministic finite state automaton (DFA) and therefore
faster than one generated from the old description. Furthermore, its speed is not dependent
on processor complexity. The instruction issue is possible if there is a transition from one
automaton state to another one.

You can use any model to describe processor pipeline characteristics or even a mix of
them. You could use the old description for some processor submodels and the DFA-based
one for the rest processor submodels.

In general, the usage of the automaton based description is more preferable. Its model is
more rich. It permits to describe more accurately pipeline characteristics of processors which
results in improving code quality (although sometimes only on several percent fractions).
It will be also used as an infrastructure to implement sophisticated and practical insn
scheduling which will try many instruction sequences to choose the best one.

9.18.8.1 Specifying Function Units

On most RISC machines, there are instructions whose results are not available for a spe-
cific number of cycles. Common cases are instructions that load data from memory. On
many machines, a pipeline stall will result if the data is referenced too soon after the load
instruction.

In addition, many newer microprocessors have multiple function units, usually one for
integer and one for floating point, and often will incur pipeline stalls when a result that is
needed is not yet ready.

The descriptions in this section allow the specification of how much time must elapse
between the execution of an instruction and the time when its result is used. It also
allows specification of when the execution of an instruction will delay execution of similar
instructions due to function unit conflicts.

For the purposes of the specifications in this section, a machine is divided into func-
tion units, each of which execute a specific class of instructions in first-in-first-out order.
Function units that accept one instruction each cycle and allow a result to be used in the
succeeding instruction (usually via forwarding) need not be specified. Classic RISC micro-
processors will normally have a single function unit, which we can call ‘memory’. The newer
“superscalar” processors will often have function units for floating point operations, usually
at least a floating point adder and multiplier.

Each usage of a function units by a class of insns is specified with a define_function_
unit expression, which looks like this:

(define_function_unit name multiplicity simultaneity
test ready-delay issue-delay
[conflict-1ist])

Chapter 9: Machine Descriptions 185

name is a string giving the name of the function unit.

multiplicity is an integer specifying the number of identical units in the processor. If more
than one unit is specified, they will be scheduled independently. Only truly independent
units should be counted; a pipelined unit should be specified as a single unit. (The only
common example of a machine that has multiple function units for a single instruction class
that are truly independent and not pipelined are the two multiply and two increment units

of the CDC 6600.)

simultaneity specifies the maximum number of insns that can be executing in each
instance of the function unit simultaneously or zero if the unit is pipelined and has no limit.

All define_function_unit definitions referring to function unit name must have the
same name and values for multiplicity and simultaneity.

test is an attribute test that selects the insns we are describing in this definition. Note
that an insn may use more than one function unit and a function unit may be specified in
more than one define_function_unit.

ready-delay is an integer that specifies the number of cycles after which the result of the
instruction can be used without introducing any stalls.

issue-delay is an integer that specifies the number of cycles after the instruction matching
the test expression begins using this unit until a subsequent instruction can begin. A cost of
N indicates an N-1 cycle delay. A subsequent instruction may also be delayed if an earlier
instruction has a longer ready-delay value. This blocking effect is computed using the
simultaneity, ready-delay, issue-delay, and conflict-list terms. For a normal non-pipelined
function unit, simultaneity is one, the unit is taken to block for the ready-delay cycles of
the executing insn, and smaller values of issue-delay are ignored.

conflict-list is an optional list giving detailed conflict costs for this unit. If specified,
it is a list of condition test expressions to be applied to insns chosen to execute in name
following the particular insn matching test that is already executing in name. For each insn
in the list, issue-delay specifies the conflict cost; for insns not in the list, the cost is zero. If
not specified, conflict-list defaults to all instructions that use the function unit.

Typical uses of this vector are where a floating point function unit can pipeline either
single- or double-precision operations, but not both, or where a memory unit can pipeline
loads, but not stores, etc.

As an example, consider a classic RISC machine where the result of a load instruction
is not available for two cycles (a single “delay” instruction is required) and where only one
load instruction can be executed simultaneously. This would be specified as:

(define_function_unit "memory" 1 1 (eq_attr "type" "load") 2 0)

For the case of a floating point function unit that can pipeline either single or double
precision, but not both, the following could be specified:
(define_function_unit
"fp" 1 0 (eq_attr "type" "sp_fp") 4 4 [(eq_attr "type" "dp_fp")1)
(define_function_unit
"fp" 1 0 (eq_attr "type" "dp_fp") 4 4 [(eq_attr "type" "sp_fp")1)

Note: The scheduler attempts to avoid function unit conflicts and uses all the specifica-
tions in the define_function_unit expression. It has recently come to our attention that
these specifications may not allow modeling of some of the newer “superscalar” processors
that have insns using multiple pipelined units. These insns will cause a potential conflict

186 GNU Compiler Collection (GCC) Internals

for the second unit used during their execution and there is no way of representing that
conflict. We welcome any examples of how function unit conflicts work in such processors
and suggestions for their representation.

9.18.8.2 Describing instruction pipeline characteristics

This section describes constructions of the automaton based processor pipeline description.
The order of constructions within the machine description file is not important.

The following optional construction describes names of automata generated and used
for the pipeline hazards recognition. Sometimes the generated finite state automaton used
by the pipeline hazard recognizer is large. If we use more than one automaton and bind
functional units to the automata, the total size of the automata is usually less than the
size of the single automaton. If there is no one such construction, only one finite state
automaton is generated.

(define_automaton automata-names)

automata-names is a string giving names of the automata. The names are separated by
commas. All the automata should have unique names. The automaton name is used in the
constructions define_cpu_unit and define_query_cpu_unit.

Each processor functional unit used in the description of instruction reservations should
be described by the following construction.

(define_cpu_unit unit-names [automaton-name])

unit-names is a string giving the names of the functional units separated by commas.
Don’t use name ‘nothing’, it is reserved for other goals.

automaton-name is a string giving the name of the automaton with which the unit
is bound. The automaton should be described in construction define_automaton. You
should give automaton-name, if there is a defined automaton.

The following construction describes CPU functional units analogously to define_cpu_
unit. If we use automata without their minimization, the reservation of such units can
be queried for an automaton state. The instruction scheduler never queries reservation of
functional units for given automaton state. So as a rule, you don’t need this construction.
This construction could be used for future code generation goals (e.g. to generate VLIW
insn templates).

(define_query_cpu_unit unit-names [automaton-name])
unit-names is a string giving names of the functional units separated by commas.

automaton-name is a string giving the name of the automaton with which the unit is
bound.

The following construction is the major one to describe pipeline characteristics of an

instruction.
(define_insn_reservation insn-name default_latency
condition regexp)

default_latency is a number giving latency time of the instruction. There is an important
difference between the old description and the automaton based pipeline description. The
latency time is used for all dependencies when we use the old description. In the automa-
ton based pipeline description, the given latency time is only used for true dependencies.

Chapter 9: Machine Descriptions 187

The cost of anti-dependencies is always zero and the cost of output dependencies is the
difference between latency times of the producing and consuming insns (if the difference is
negative, the cost is considered to be zero). You can always change the default costs for
any description by using the target hook TARGET_SCHED_ADJUST_COST (see Section 10.17
[Scheduling], page 271).

insn-name is a string giving the internal name of the insn. The internal names are
used in constructions define_bypass and in the automaton description file generated for
debugging. The internal name has nothing in common with the names in define_insn. It
is a good practice to use insn classes described in the processor manual.

condition defines what RTL insns are described by this construction. You should re-
member that you will be in trouble if condition for two or more different define_insn_
reservation constructions is TRUE for an insn. In this case what reservation will be used
for the insn is not defined. Such cases are not checked during generation of the pipeline haz-
ards recognizer because in general recognizing that two conditions may have the same value
is quite difficult (especially if the conditions contain symbol_ref). It is also not checked
during the pipeline hazard recognizer work because it would slow down the recognizer con-
siderably.

regexp is a string describing the reservation of the cpu’s functional units by the instruc-
tion. The reservations are described by a regular expression according to the following
syntax:

regexp = regexp "," oneof
| oneof
oneof = oneof "|" allof
| allof

allof = allof "+" repeat
| repeat

repeat = element "*" number
| element

element = cpu_function_unit_name

| reservation_name

| result_name

| "nothing"

| u(u regexp Il)ll

‘,” is used for describing the start of the next cycle in the reservation.
‘|’ is used for describing a reservation described by the first regular expression or a
reservation described by the second regular expression or etc.

e ‘+’ is used for describing a reservation described by the first regular expression and a
reservation described by the second regular expression and etc.

e ‘x’ig used for convenience and simply means a sequence in which the regular expression
are repeated number times with cycle advancing (see *,’).

e ‘cpu_function_unit_name’ denotes reservation of the named functional unit.
e ‘reservation_name’ — see description of construction ‘define_reservation’.

e ‘nothing’ denotes no unit reservations.

188 GNU Compiler Collection (GCC) Internals

Sometimes unit reservations for different insns contain common parts. In such case,
you can simplify the pipeline description by describing the common part by the following
construction

(define_reservation reservation-name regexp)

reservation-name is a string giving name of regexp. Functional unit names and reserva-
tion names are in the same name space. So the reservation names should be different from
the functional unit names and can not be the reserved name ‘nothing’.

The following construction is used to describe exceptions in the latency time for given
instruction pair. This is so called bypasses.
(define_bypass number out_insn_names in_insn_names
[guard])
number defines when the result generated by the instructions given in string
out_insn_names will be ready for the instructions given in string in_insn_names. The
instructions in the string are separated by commas.

guard is an optional string giving the name of a C function which defines an additional
guard for the bypass. The function will get the two insns as parameters. If the function
returns zero the bypass will be ignored for this case. The additional guard is necessary to
recognize complicated bypasses, e.g. when the consumer is only an address of insn ‘store’
(not a stored value).

Usually the following three constructions are used to describe VLIW processors (more
correctly to describe a placement of small insns into VLIW insn slots). Although they can
be used for RISC processors too.

(exclusion_set unit-names unit-names)
(presence_set unit-names unit-names)
(absence_set unit-names unit-names)

unit-names is a string giving names of functional units separated by commas.

The first construction (‘exclusion_set’) means that each functional unit in the first
string can not be reserved simultaneously with a unit whose name is in the second string
and vice versa. For example, the construction is useful for describing processors (e.g. some
SPARC processors) with a fully pipelined floating point functional unit which can execute
simultaneously only single floating point insns or only double floating point insns.

The second construction (‘presence_set’) means that each functional unit in the first
string can not be reserved unless at least one of units whose names are in the second string
is reserved. This is an asymmetric relation. For example, it is useful for description that
VLIW ‘slotl’ is reserved after ‘slotQ’ reservation.

The third construction (‘absence_set’) means that each functional unit in the first
string can be reserved only if each unit whose name is in the second string is not reserved.
This is an asymmetric relation (actually ‘exclusion_set’ is analogous to this one but it is
symmetric). For example, it is useful for description that VLIW ‘s1lot0’ can not be reserved
after ‘slotl’ or ‘slot2’ reservation.

All functional units mentioned in a set should belong to the same automaton.

You can control the generator of the pipeline hazard recognizer with the following con-
struction.

(automata_option options)

Chapter 9: Machine Descriptions 189

options is a string giving options which affect the generated code. Currently there are
the following options:

e no-minimization makes no minimization of the automaton. This is only worth to do
when we are debugging the description and need to look more accurately at reservations
of states.

e time means printing additional time statistics about generation of automata.

e v means a generation of the file describing the result automata. The file has suffix
‘.dfa’ and can be used for the description verification and debugging.

e w means a generation of warning instead of error for non-critical errors.

e ndfa makes nondeterministic finite state automata. This affects the treatment of op-
erator ‘|’ in the regular expressions. The usual treatment of the operator is to try the
first alternative and, if the reservation is not possible, the second alternative. The non-
deterministic treatment means trying all alternatives, some of them may be rejected
by reservations in the subsequent insns. You can not query functional unit reservations
in nondeterministic automaton states.

As an example, consider a superscalar RISC machine which can issue three insns (two
integer insns and one floating point insn) on the cycle but can finish only two insns. To
describe this, we define the following functional units.

(define_cpu_unit "iO_pipeline, il_pipeline, f_pipeline")
(define_cpu_unit "portO, porti")

All simple integer insns can be executed in any integer pipeline and their result is ready
in two cycles. The simple integer insns are issued into the first pipeline unless it is reserved,
otherwise they are issued into the second pipeline. Integer division and multiplication insns
can be executed only in the second integer pipeline and their results are ready correspond-
ingly in 8 and 4 cycles. The integer division is not pipelined, i.e. the subsequent integer
division insn can not be issued until the current division insn finished. Floating point insns
are fully pipelined and their results are ready in 3 cycles. Where the result of a floating point
insn is used by an integer insn, an additional delay of one cycle is incurred. To describe all
of this we could specify

(define_cpu_unit "div")

(define_insn_reservation "simple" 2 (eq_attr "type" "int")
"(i0_pipeline | il_pipeline), (portO | porti)")

(define_insn_reservation "mult" 4 (eq_attr "type" "mult")
"il_pipeline, nothing*2, (portO | porti)")

(define_insn_reservation "div" 8 (eq_attr "type" "div")
"il_pipeline, div*7, div + (portO | porti)")

(define_insn_reservation "float" 3 (eg_attr "type" "float")
"f_pipeline, nothing, (portO | portil))

(define_bypass 4 "float" "simple,mult,div")

To simplify the description we could describe the following reservation

(define_reservation "finish" "portO|porti")

and use it in all define_insn_reservation as in the following construction

190 GNU Compiler Collection (GCC) Internals

(define_insn_reservation "simple" 2 (eq_attr "type" "int")
"(i0_pipeline | il_pipeline), finish")

9.18.8.3 Drawbacks of the old pipeline description

The old instruction level parallelism description and the pipeline hazards recognizer based
on it have the following drawbacks in comparison with the DFA-based ones:

e FEach functional unit is believed to be reserved at the instruction execution start. This
is a very inaccurate model for modern processors.

¢ An inadequate description of instruction latency times. The latency time is bound with
a functional unit reserved by an instruction not with the instruction itself. In other
words, the description is oriented to describe at most one unit reservation by each
instruction. It also does not permit to describe special bypasses between instruction
pairs.

e The implementation of the pipeline hazard recognizer interface has constraints on num-
ber of functional units. This is a number of bits in integer on the host machine.

e The interface to the pipeline hazard recognizer is more complex than one to the au-
tomaton based pipeline recognizer.

e An unnatural description when you write a unit and a condition which selects instruc-
tions using the unit. Writing all unit reservations for an instruction (an instruction
class) is more natural.

e The recognition of the interlock delays has a slow implementation. The GCC scheduler
supports structures which describe the unit reservations. The more functional units a
processor has, the slower its pipeline hazard recognizer will be. Such an implementation
would become even slower when we allowed to reserve functional units not only at the
instruction execution start. In an automaton based pipeline hazard recognizer, speed
is not dependent on processor complexity.

9.19 Conditional Execution

A number of architectures provide for some form of conditional execution, or predication.
The hallmark of this feature is the ability to nullify most of the instructions in the instruction
set. When the instruction set is large and not entirely symmetric, it can be quite tedious
to describe these forms directly in the ‘.md’ file. An alternative is the define_cond_exec
template.

(define_cond_exec

[predicate-pattern]

"condition"

"output-template")

predicate-pattern is the condition that must be true for the insn to be executed at

runtime and should match a relational operator. One can use match_operator to match
several relational operators at once. Any match_operand operands must have no more than
one alternative.

condition is a C expression that must be true for the generated pattern to match.

Chapter 9: Machine Descriptions 191

output-template is a string similar to the define_insn output template (see Section 9.5
[Output Template], page 123), except that the ‘*’ and ‘@ special cases do not apply. This
is only useful if the assembly text for the predicate is a simple prefix to the main insn. In
order to handle the general case, there is a global variable current_insn_predicate that
will contain the entire predicate if the current insn is predicated, and will otherwise be NULL.

When define_cond_exec is used, an implicit reference to the predicable instruction
attribute is made. See Section 9.18 [Insn Attributes|, page 175. This attribute must be
boolean (i.e. have exactly two elements in its list-of-values). Further, it must not be used
with complex expressions. That is, the default and all uses in the insns must be a simple
constant, not dependent on the alternative or anything else.

For each define_insn for which the predicable attribute is true, a new define_insn
pattern will be generated that matches a predicated version of the instruction. For example,

(define_insn "addsi"
[(set (match_operand:SI O "register_operand" "r")
(plus:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r")))]
"testl"
"add %2,%1,%0")

(define_cond_exec
[(ne (match_operand:CC 0O "register_operand" "c")
(const_int 0))]
"test2"
"(%0)™)

generates a new pattern

(define_insn ""
[(cond_exec
(ne (match_operand:CC 3 "register_operand" "c") (const_int 0))
(set (match_operand:SI O "register_operand" "r")
(plus:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r"))))]
"(test2) && (test1)"
"(%3) add %2,%1,%0")

9.20 Constant Definitions

Using literal constants inside instruction patterns reduces legibility and can be a mainte-
nance problem.

To overcome this problem, you may use the define_constants expression. It contains
a vector of name-value pairs. From that point on, wherever any of the names appears in
the MD file, it is as if the corresponding value had been written instead. You may use
define_constants multiple times; each appearance adds more constants to the table. It
is an error to redefine a constant with a different value.

To come back to the a29k load multiple example, instead of

(define_insn ""
[(match_parallel O "load_multiple_operation"
[(set (match_operand:SI 1 "gpc_reg_operand" "=r")
(match_operand:SI 2 "memory_operand" "m"))
(use (reg:SI 179))
(clobber (reg:SI 179))1)1]

192

"loadm 0,0,%1,%2")

You could write:

(define_constants [
(R_BP 177)
(R_FC 178)
(R_CR 179)

(R_Q 180)

D

(define_insn ""

GNU Compiler Collection (GCC) Internals

[(match_parallel O "load_multiple_operation"
[(set (match_operand:SI 1 "gpc_reg_operand" "=r")
P gp g-op
(match_operand:SI 2 "memory_operand" "m"))

(use (reg:SI R_CR))
(clobber (reg:SI R_CR))1)]

"loadm 0,0,%1,%2")

The constants that are defined with a define_constant are also output in the insn-codes.h

header file as #defines.

Chapter 10: Target Description Macros and Functions 193

10 Target Description Macros and Functions

In addition to the file ‘machine.md’, a machine description includes a C header file conven-
tionally given the name ‘machine.h’ and a C source file named ‘machine.c’. The header file
defines numerous macros that convey the information about the target machine that does
not fit into the scheme of the ‘.md’ file. The file ‘tm.h’ should be a link to ‘machine.h’. The
header file ‘config.h’ includes ‘tm.h’ and most compiler source files include ‘config.h’.
The source file defines a variable targetm, which is a structure containing pointers to
functions and data relating to the target machine. ‘machine.c’ should also contain their
definitions, if they are not defined elsewhere in GCC, and other functions called through
the macros defined in the *.h’ file.

10.1 The Global targetm Variable

struct gcc_target targetm [Variable]
The target ‘.c’ file must define the global targetm variable which contains pointers
to functions and data relating to the target machine. The variable is declared in
‘target.h’; ‘target-def.h’ defines the macro TARGET_INITIALIZER which is used
to initialize the variable, and macros for the default initializers for elements of the
structure. The ‘. ¢’ file should override those macros for which the default definition
is inappropriate. For example:

#include "target.h"
#include "target-def.h"

/* Initialize the GCC target structure. */

#undef TARGET_COMP_TYPE_ATTRIBUTES
#define TARGET_COMP_TYPE_ATTRIBUTES machine_comp_type_attributes

struct gcc_target targetm = TARGET_INITIALIZER;

Where a macro should be defined in the ‘.c’ file in this manner to form part of the
targetm structure, it is documented below as a “Target Hook” with a prototype. Many
macros will change in future from being defined in the ‘.h’ file to being part of the targetm
structure.

10.2 Controlling the Compilation Driver, ‘gcc’

You can control the compilation driver.

SWITCH_TAKES_ARG (char)
A C expression which determines whether the option ‘-char’ takes arguments.
The value should be the number of arguments that option takes—zero, for many
options.
By default, this macro is defined as DEFAULT_SWITCH_TAKES_ARG, which handles
the standard options properly. You need not define SWITCH_TAKES_ARG unless

you wish to add additional options which take arguments. Any redefinition
should call DEFAULT_SWITCH_TAKES_ARG and then check for additional options.

194 GNU Compiler Collection (GCC) Internals

WORD_SWITCH_TAKES_ARG (name)
A C expression which determines whether the option ‘-name’ takes arguments.
The value should be the number of arguments that option takes—zero, for many
options. This macro rather than SWITCH_TAKES_ARG is used for multi-character
option names.

By default, this macro is defined as DEFAULT_WORD_SWITCH_TAKES_ARG, which
handles the standard options properly. You need not define WORD_SWITCH_
TAKES_ARG unless you wish to add additional options which take arguments.
Any redefinition should call DEFAULT_WORD_SWITCH_TAKES_ARG and then check
for additional options.

SWITCH_CURTAILS_COMPILATION (char)
A C expression which determines whether the option ‘~char’ stops compilation
before the generation of an executable. The value is boolean, nonzero if the
option does stop an executable from being generated, zero otherwise.

By default, this macro is defined as DEFAULT_SWITCH_CURTAILS_COMPILATION,
which handles the standard options properly. You need not define SWITCH_
CURTAILS_COMPILATION unless you wish to add additional options which affect
the generation of an executable. Any redefinition should call DEFAULT_SWITCH_
CURTAILS_COMPILATION and then check for additional options.

SWITCHES_NEED_SPACES
A string-valued C expression which enumerates the options for which the linker
needs a space between the option and its argument.

If this macro is not defined, the default value is "".

TARGET_OPTION_TRANSLATE_TABLE
If defined, a list of pairs of strings, the first of which is a potential command
line target to the ‘gcc’ driver program, and the second of which is a space-
separated (tabs and other whitespace are not supported) list of options with
which to replace the first option. The target defining this list is responsible for
assuring that the results are valid. Replacement options may not be the ——opt
style, they must be the —opt style. It is the intention of this macro to provide a
mechanism for substitution that affects the multilibs chosen, such as one option
that enables many options, some of which select multilibs. Example nonsensical
definition, where -malt-abi, -EB, and -mspoo cause different multilibs to be

chosen:
#define TARGET_OPTION_TRANSLATE_TABLE \
{ "-fast", "-march=fast-foo -malt-abi -I/usr/fast-foo" }, \
{ "-compat", "-EB -malign=4 -mspoo" }

DRIVER_SELF_SPECS
A list of specs for the driver itself. It should be a suitable initializer for an array
of strings, with no surrounding braces.

The driver applies these specs to its own command line before choosing the
multilib directory or running any subcommands. It applies them in the order
given, so each spec can depend on the options added by earlier ones. It is also
possible to remove options using ‘%i<option’ in the usual way.

Chapter 10: Target Description Macros and Functions 195

CPP_SPEC

CPLUSPLUS_

CC1_SPEC

This macro can be useful when a port has several interdependent target options.
It provides a way of standardizing the command line so that the other specs
are easier to write.

Do not define this macro if it does not need to do anything.
A C string constant that tells the GCC driver program options to pass to CPP.

It can also specify how to translate options you give to GCC into options for
GCC to pass to the CPP.

Do not define this macro if it does not need to do anything.
CPP_SPEC

This macro is just like CPP_SPEC, but is used for C++, rather than C. If you do
not define this macro, then the value of CPP_SPEC (if any) will be used instead.

A C string constant that tells the GCC driver program options to pass to ccl,
cclplus, £771, and the other language front ends. It can also specify how to
translate options you give to GCC into options for GCC to pass to front ends.

Do not define this macro if it does not need to do anything.

CC1PLUS_SPEC

ASM_SPEC

ASM_FINAL_

LINK_SPEC

LIB_SPEC

A C string constant that tells the GCC driver program options to pass to
cclplus. It can also specify how to translate options you give to GCC into
options for GCC to pass to the cclplus.

Do not define this macro if it does not need to do anything. Note that everything

defined in CC1_SPEC is already passed to cclplus so there is no need to
duplicate the contents of CC1_SPEC in CC1PLUS_SPEC.

A C string constant that tells the GCC driver program options to pass to the
assembler. It can also specify how to translate options you give to GCC into
options for GCC to pass to the assembler. See the file ‘sun3.h’ for an example
of this.

Do not define this macro if it does not need to do anything.

SPEC

A C string constant that tells the GCC driver program how to run any programs
which cleanup after the normal assembler. Normally, this is not needed. See
the file ‘mips.h’ for an example of this.

Do not define this macro if it does not need to do anything.

A C string constant that tells the GCC driver program options to pass to the
linker. It can also specify how to translate options you give to GCC into options
for GCC to pass to the linker.

Do not define this macro if it does not need to do anything.
Another C string constant used much like LINK_SPEC. The difference between
the two is that LIB_SPEC is used at the end of the command given to the linker.

If this macro is not defined, a default is provided that loads the standard C
library from the usual place. See ‘gcc.c’.

196 GNU Compiler Collection (GCC) Internals

LIBGCC_SPEC
Another C string constant that tells the GCC driver program how and when
to place a reference to ‘libgcc.a’ into the linker command line. This constant
is placed both before and after the value of LIB_SPEC.

If this macro is not defined, the GCC driver provides a default that passes the
string ‘-1gcc’ to the linker.

STARTFILE_SPEC
Another C string constant used much like LINK_SPEC. The difference between
the two is that STARTFILE_SPEC is used at the very beginning of the command
given to the linker.

If this macro is not defined, a default is provided that loads the standard C
startup file from the usual place. See ‘gcc.c’.

ENDFILE_SPEC
Another C string constant used much like LINK_SPEC. The difference between
the two is that ENDFILE_SPEC is used at the very end of the command given to
the linker.

Do not define this macro if it does not need to do anything.

THREAD_MODEL_SPEC
GCC -v will print the thread model GCC was configured to use. However, this
doesn’t work on platforms that are multilibbed on thread models, such as AIX
4.3. On such platforms, define THREAD_MODEL_SPEC such that it evaluates to
a string without blanks that names one of the recognized thread models. %*,
the default value of this macro, will expand to the value of thread_file set in
‘config.gcc’.

EXTRA_SPECS
Define this macro to provide additional specifications to put in the ‘specs’ file
that can be used in various specifications like CC1_SPEC.
The definition should be an initializer for an array of structures, containing a
string constant, that defines the specification name, and a string constant that
provides the specification.
Do not define this macro if it does not need to do anything.
EXTRA_SPECS is useful when an architecture contains several related targets,
which have various ..._SPECS which are similar to each other, and the main-
tainer would like one central place to keep these definitions.
For example, the PowerPC System V.4 targets use EXTRA_SPECS to define either

_CALL_SYSV when the System V calling sequence is used or _CALL_AIX when
the older AIX-based calling sequence is used.

The ‘config/rs6000/rs6000.h’ target file defines:

#define EXTRA_SPECS \
{ "cpp_sysv_default", CPP_SYSV_DEFAULT },

#define CPP_SYS_DEFAULT ""
The ‘config/rs6000/sysv.h’ target file defines:

Chapter 10: Target Description Macros and Functions 197

#undef CPP_SPEC

#define CPP_SPEC \

"%{posix: -D_POSIX_SOURCE } \

%{mcall-sysv: -D_CALL_SYSV } Y%{mcall-aix: -D_CALL_AIX } \
%{!'mcall-sysv: %{!mcall-aix: %(cpp_sysv_default) }} \
%{msoft-float: -D_SOFT_FLOAT} %{mcpu=403: -D_SOFT_FLOAT}"

#undef CPP_SYSV_DEFAULT

#define CPP_SYSV_DEFAULT "-D_CALL_SYSV"
while the ‘config/rs6000/eabiaix.h’ target file defines CPP_SYSV_DEFAULT
as:

#undef CPP_SYSV_DEFAULT

#define CPP_SYSV_DEFAULT "-D_CALL_AIX"

LINK_LIBGCC_SPECIAL
Define this macro if the driver program should find the library ‘libgcc.a’ itself
and should not pass ‘-L’ options to the linker. If you do not define this macro,
the driver program will pass the argument ‘-1gcc’ to tell the linker to do the
search and will pass ‘-L’ options to it.

LINK_LIBGCC_SPECIAL_1
Define this macro if the driver program should find the library ‘libgcc.a’.
If you do not define this macro, the driver program will pass the argument
‘-1gcc’ to tell the linker to do the search. This macro is similar to LINK_
LIBGCC_SPECIAL, except that it does not affect ‘-L’ options.

LINK_GCC_C_SEQUENCE_SPEC
The sequence in which libgcc and libc are specified to the linker. By default
this is %G %L %G.

LINK_COMMAND_SPEC
A C string constant giving the complete command line need to execute the
linker. When you do this, you will need to update your port each time a change
is made to the link command line within ‘gcc.c’. Therefore, define this macro
only if you need to completely redefine the command line for invoking the linker
and there is no other way to accomplish the effect you need. Overriding this
macro may be avoidable by overriding LINK_GCC_C_SEQUENCE_SPEC instead.

LINK_ELIMINATE_DUPLICATE_LDIRECTORIES
A nonzero value causes collect2 to remove duplicate ‘-Ldirectory’ search
directories from linking commands. Do not give it a nonzero value if removing
duplicate search directories changes the linker’s semantics.

MULTILIB_DEFAULTS
Define this macro as a C expression for the initializer of an array of string to
tell the driver program which options are defaults for this target and thus do
not need to be handled specially when using MULTILIB_OPTIONS.

Do not define this macro if MULTILIB_OPTIONS is not defined in the target
makefile fragment or if none of the options listed in MULTILIB_OPTIONS are set
by default. See Section 12.1 [Target Fragment], page 331.

198 GNU Compiler Collection (GCC) Internals

RELATIVE_PREFIX_NOT_LINKDIR
Define this macro to tell gcc that it should only translate a ‘-B’ prefix into a
‘-L’ linker option if the prefix indicates an absolute file name.

STANDARD_EXEC_PREFIX
Define this macro as a C string constant if you wish to override the standard
choice of ‘/usr/local/1lib/gcc-1ib/’ as the default prefix to try when search-
ing for the executable files of the compiler.

MD_EXEC_PREFIX
If defined, this macro is an additional prefix to try after STANDARD_EXEC_
PREFIX. MD_EXEC_PREFIX is not searched when the ‘b’ option is used, or the
compiler is built as a cross compiler. If you define MD_EXEC_PREFIX, then be sure
to add it to the list of directories used to find the assembler in ‘configure.in’.

STANDARD_STARTFILE_PREFIX
Define this macro as a C string constant if you wish to override the standard
choice of ‘/usr/local/lib/’ as the default prefix to try when searching for
startup files such as ‘crt0.0’.

MD_STARTFILE_PREFIX
If defined, this macro supplies an additional prefix to try after the standard
prefixes. MD_EXEC_PREFIX is not searched when the ‘-b’ option is used, or
when the compiler is built as a cross compiler.

MD_STARTFILE_PREFIX_1
If defined, this macro supplies yet another prefix to try after the standard
prefixes. It is not searched when the ‘b’ option is used, or when the compiler
is built as a cross compiler.

INIT_ENVIRONMENT
Define this macro as a C string constant if you wish to set environment variables
for programs called by the driver, such as the assembler and loader. The driver
passes the value of this macro to putenv to initialize the necessary environment
variables.

LOCAL_INCLUDE_DIR
Define this macro as a C string constant if you wish to override the standard
choice of ‘/usr/local/include’ as the default prefix to try when searching for
local header files. LOCAL_INCLUDE_DIR comes before SYSTEM_INCLUDE_DIR in
the search order.

Cross compilers do not search either ‘/usr/local/include’ or its replacement.

MODIFY_TARGET_NAME
Define this macro if you with to define command-line switches that modify the
default target name

For each switch, you can include a string to be appended to the first part of the
configuration name or a string to be deleted from the configuration name, if
present. The definition should be an initializer for an array of structures. Each
array element should have three elements: the switch name (a string constant,
including the initial dash), one of the enumeration codes ADD or DELETE to

Chapter 10: Target Description Macros and Functions 199

indicate whether the string should be inserted or deleted, and the string to be
inserted or deleted (a string constant).

For example, on a machine where ‘64’ at the end of the configuration name
denotes a 64-bit target and you want the ‘-32" and ‘-64’ switches to select
between 32- and 64-bit targets, you would code

#define MODIFY_TARGET_NAME \
{ { "-32", DELETE, "64"}, \
{"—64", ADD, "64"}}

SYSTEM_INCLUDE_DIR
Define this macro as a C string constant if you wish to specify a system-specific
directory to search for header files before the standard directory. SYSTEM_
INCLUDE_DIR comes before STANDARD_INCLUDE_DIR in the search order.

Cross compilers do not use this macro and do not search the directory specified.

STANDARD_INCLUDE_DIR
Define this macro as a C string constant if you wish to override the standard

choice of ‘/usr/include’ as the default prefix to try when searching for header
files.

Cross compilers do not use this macro and do not search either ‘/usr/include’
or its replacement.

STANDARD_INCLUDE_COMPONENT
The “component” corresponding to STANDARD_INCLUDE_DIR. See INCLUDE_
DEFAULTS, below, for the description of components. If you do not define this
macro, no component is used.

INCLUDE_DEFAULTS

Define this macro if you wish to override the entire default search path for
include files. For a native compiler, the default search path usually consists
of GCC_INCLUDE_DIR, LOCAL_INCLUDE_DIR, SYSTEM_INCLUDE_DIR, GPLUSPLUS_
INCLUDE_DIR, and STANDARD_INCLUDE_DIR. In addition, GRLUSPLUS_INCLUDE_
DIR and GCC_INCLUDE_DIR are defined automatically by ‘Makefile’, and specify
private search areas for GCC. The directory GPLUSPLUS_INCLUDE_DIR is used
only for C++ programs.

The definition should be an initializer for an array of structures. Each array
element should have four elements: the directory name (a string constant), the
component name (also a string constant), a flag for C++-only directories, and
a flag showing that the includes in the directory don’t need to be wrapped
in extern ‘C’ when compiling C++. Mark the end of the array with a null
element.

The component name denotes what GNU package the include file is part of, if
any, in all upper-case letters. For example, it might be ‘GCC’ or ‘BINUTILS’. If
the package is part of a vendor-supplied operating system, code the component
name as ‘0.

For example, here is the definition used for VAX/VMS:

#define INCLUDE_DEFAULTS \
{ \

200

GNU Compiler Collection (GCC) Internals

{ "GNU_GXX_INCLUDE:", "G++", 1, 1}, \

{ "GNU_CC_INCLUDE:", "GCC", 0, O}, \

{ "SYS$SYSROOT: [SYSLIB.]", 0, 0, 0}, \

{ n'u, O, O, 0}, \

{0, 0, 0, 0} \
}

Here is the order of prefixes tried for exec files:

A o e

Any prefixes specified by the user with ‘-B’.

The environment variable GCC_EXEC_PREFIX, if any.

The directories specified by the environment variable COMPILER_PATH.
The macro STANDARD_EXEC_PREFIX.

‘/usr/1lib/gcc/’.

The macro MD_EXEC_PREFIX, if any.

Here is the order of prefixes tried for startfiles:

[

@

© XN

10.

Any prefixes specified by the user with ‘-B’.
The environment variable GCC_EXEC_PREFIX, if any.

The directories specified by the environment variable LIBRARY_PATH (or port-specific
name; native only, cross compilers do not use this).

The macro STANDARD_EXEC_PREFIX.
‘/usr/1ib/gcc/’.

The macro MD_EXEC_PREFIX, if any.

The macro MD_STARTFILE_PREFIX, if any.
The macro STANDARD_STARTFILE_PREFIX.
‘/1ib/’.

‘/usr/1lib/’.

10.3 Run-time Target Specification

Here are run-time target specifications.

TARGET_CPU_CPP_BUILTINS ()

This function-like macro expands to a block of code that defines built-in prepro-
cessor macros and assertions for the target cpu, using the functions builtin_
define, builtin_define_std and builtin_assert defined in ‘c-common.c’.
When the front end calls this macro it provides a trailing semicolon, and since
it has finished command line option processing your code can use those results
freely.

builtin_assert takes a string in the form you pass to the command-line option
‘-A’, such as cpu=mips, and creates the assertion. builtin_define takes a
string in the form accepted by option ‘-D’” and unconditionally defines the macro.
builtin_define_std takes a string representing the name of an object-like
macro. If it doesn’t lie in the user’s namespace, builtin_define_std defines

Chapter 10: Target Description Macros and Functions 201

it unconditionally. Otherwise, it defines a version with two leading underscores,
and another version with two leading and trailing underscores, and defines the
original only if an ISO standard was not requested on the command line. For
example, passing unix defines __unix, __unix__ and possibly unix; passing _
mips defines __mips, __mips__ and possibly _mips, and passing _ABI64 defines
only _ABI64.

You can also test for the C dialect being compiled. The variable c_language
is set to one of clk_c, clk_cplusplus or clk_objective_c. Note that if we
are preprocessing assembler, this variable will be clk_c but the function-like
macro preprocessing_asm_p() will return true, so you might want to check
for that first. If you need to check for strict ANSI, the variable flag_iso can be
used. The function-like macro preprocessing_trad_p() can be used to check
for traditional preprocessing.

With TARGET_0S_CPP_BUILTINS this macro obsoletes the CPP_PREDEFINES tar-
get macro.

[p———

TARGET_0S_CPP_BUILTINS()

Similarly to TARGET_CPU_CPP_BUILTINS but this macro is optional and is used
for the target operating system instead.

With TARGET_CPU_CPP_BUILTINS this macro obsoletes the CPP_PREDEFINES
target macro.

CPP_PREDEFINES

Define this to be a string constant containing ‘-D’ options to define the pre-
defined macros that identify this machine and system. These macros will be
predefined unless the ‘-ansi’ option (or a ‘-std’ option for strict ISO C con-
formance) is specified.

In addition, a parallel set of macros are predefined, whose names are made
by appending ‘__’ at the beginning and at the end. These ‘__’ macros are
permitted by the ISO standard, so they are predefined regardless of whether
‘-ansi’ or a ‘-std’ option is specified.
For example, on the Sun, one can use the following value:

"-Dmc68000 -Dsun -Dunix"

The result is to define the macros __mc68000__, __sun__ and __unix__ un-

conditionally, and the macros mc68000, sun and unix provided ‘-ansi’ is not
specified.

extern int target_flags;

TARGET_. ..

This declaration should be present.

This series of macros is to allow compiler command arguments to enable or
disable the use of optional features of the target machine. For example, one
machine description serves both the 68000 and the 68020; a command argument
tells the compiler whether it should use 68020-only instructions or not. This
command argument works by means of a macro TARGET_68020 that tests a bit
in target_flags.

202

GNU Compiler Collection (GCC) Internals

Define a macro TARGET_featurename for each such option. Its definition should
test a bit in target_flags. It is recommended that a helper macro TARGET_
MASK_featurename is defined for each bit-value to test, and used in TARGET_
featurename and TARGET_SWITCHES. For example:

#define TARGET_MASK_68020 1

#define TARGET_68020 (target_flags & TARGET_MASK_68020)
One place where these macros are used is in the condition-expressions of in-
struction patterns. Note how TARGET_68020 appears frequently in the 68000
machine description file, ‘m68k.md’. Another place they are used is in the defi-
nitions of the other macros in the ‘machine.h’ file.

TARGET_SWITCHES

This macro defines names of command options to set and clear bits in target_
flags. Its definition is an initializer with a subgrouping for each command
option.

Each subgrouping contains a string constant, that defines the option name, a
number, which contains the bits to set in target_flags, and a second string
which is the description displayed by ‘--help’. If the number is negative then
the bits specified by the number are cleared instead of being set. If the descrip-
tion string is present but empty, then no help information will be displayed
for that option, but it will not count as an undocumented option. The actual
option name is made by appending ‘-m’ to the specified name. Non-empty
description strings should be marked with N_(...) for xgettext. Please do
not mark empty strings because the empty string is reserved by GNU gettext.
gettext ("") returns the header entry of the message catalog with meta infor-
mation, not the empty string.

In addition to the description for ‘--help’, more detailed documentation for
each option should be added to ‘invoke.texi’.

One of the subgroupings should have a null string. The number in this grouping
is the default value for target_flags. Any target options act starting with that
value.

Here is an example which defines ‘-m68000’ and ‘-m68020’ with opposite mean-
ings, and picks the latter as the default:

#define TARGET_SWITCHES \
{ { "68020", TARGET_MASK_68020, "" }, \
{ "68000", -TARGET_MASK_68020, \
N_("Compile for the 68000") }, \
{ "", TARGET_MASK_68020, "" }}

TARGET_OPTIONS

This macro is similar to TARGET_SWITCHES but defines names of command op-
tions that have values. Its definition is an initializer with a subgrouping for
each command option.

Each subgrouping contains a string constant, that defines the fixed part of the
option name, the address of a variable, and a description string. Non-empty
description strings should be marked with N_(...) for xgettext. Please do
not mark empty strings because the empty string is reserved by GNU gettext.

Chapter 10: Target Description Macros and Functions 203

gettext ("") returns the header entry of the message catalog with meta infor-
mation, not the empty string.

The variable, type char *, is set to the variable part of the given option if
the fixed part matches. The actual option name is made by appending ‘-m’
to the specified name. Again, each option should also be documented in
‘invoke.texi’.

Here is an example which defines ‘-mshort-data-number’. If the given option
is ‘-mshort-data-512’, the variable m88k_short_data will be set to the string
n 5 12 n .

extern char *m88k_short_data;
#define TARGET_OPTIONS \
{ { "short-data-", &m88k_short_data, \
N_("Specify the size of the short data section") } }

TARGET_VERSION
This macro is a C statement to print on stderr a string describing the particular
machine description choice. Every machine description should define TARGET_
VERSION. For example:

#ifdef MOTOROLA
#define TARGET_VERSION \

fprintf (stderr, " (68k, Motorola syntax)");
#else
#define TARGET_VERSION \

fprintf (stderr, " (68k, MIT syntax)");
#endif

OVERRIDE_OPTIONS
Sometimes certain combinations of command options do not make sense on
a particular target machine. You can define a macro OVERRIDE_OPTIONS to
take account of this. This macro, if defined, is executed once just after all the
command options have been parsed.

Don’t use this macro to turn on various extra optimizations for ‘-0’. That is
what OPTIMIZATION_OPTIONS is for.

OPTIMIZATION_OPTIONS (level, size)
Some machines may desire to change what optimizations are performed for
various optimization levels. This macro, if defined, is executed once just after
the optimization level is determined and before the remainder of the command
options have been parsed. Values set in this macro are used as the default
values for the other command line options.

level is the optimization level specified; 2 if ‘-02’ is specified, 1 if ‘-0’ is specified,
and 0 if neither is specified.

size is nonzero if ‘-0s’ is specified and zero otherwise.

You should not use this macro to change options that are not machine-specific.
These should uniformly selected by the same optimization level on all supported
machines. Use this macro to enable machine-specific optimizations.

Do not examine write_symbols in this macro! The debugging options are not
supposed to alter the generated code.

204 GNU Compiler Collection (GCC) Internals

CAN_DEBUG_WITHOUT_FP
Define this macro if debugging can be performed even without a frame pointer.
If this macro is defined, GCC will turn on the ‘~fomit-frame-pointer’ option
whenever ‘-0’ is specified.

10.4 Defining data structures for per-function information.

If the target needs to store information on a per-function basis, GCC provides a macro and
a couple of variables to allow this. Note, just using statics to store the information is a bad
idea, since GCC supports nested functions, so you can be halfway through encoding one
function when another one comes along.

GCC defines a data structure called struct function which contains all of the data
specific to an individual function. This structure contains a field called machine whose
type is struct machine_function *, which can be used by targets to point to their own
specific data.

If a target needs per-function specific data it should define the type struct machine_
function and also the macro INIT_EXPANDERS. This macro should be used to initialize the
function pointer init_machine_status. This pointer is explained below.

One typical use of per-function, target specific data is to create an RTX to hold the
register containing the function’s return address. This RTX can then be used to implement
the __builtin_return_address function, for level 0.

Note—earlier implementations of GCC used a single data area to hold all of the per-
function information. Thus when processing of a nested function began the old per-function
data had to be pushed onto a stack, and when the processing was finished, it had to be
popped off the stack. GCC used to provide function pointers called save_machine_status
and restore_machine_status to handle the saving and restoring of the target specific
information. Since the single data area approach is no longer used, these pointers are no
longer supported.

The macro and function pointers are described below.

INIT_EXPANDERS
Macro called to initialize any target specific information. This macro is called
once per function, before generation of any RTL has begun. The intention of
this macro is to allow the initialization of the function pointers below.

init_machine_status
This is a void (*) (struct function *) function pointer. If this pointer is
non-NULL it will be called once per function, before function compilation starts,
in order to allow the target to perform any target specific initialization of the
struct function structure. It is intended that this would be used to initialize
the machine of that structure.

struct machine_function structures are expected to be freed by GC. Gener-
ally, any memory that they reference must be allocated by using ggc_alloc,
including the structure itself.

Chapter 10: Target Description Macros and Functions 205

10.5 Storage Layout

Note that the definitions of the macros in this table which are sizes or alignments measured
in bits do not need to be constant. They can be C expressions that refer to static variables,
such as the target_flags. See Section 10.3 [Run-time Target], page 200.

BITS_BIG_ENDIAN
Define this macro to have the value 1 if the most significant bit in a byte has
the lowest number; otherwise define it to have the value zero. This means that
bit-field instructions count from the most significant bit. If the machine has
no bit-field instructions, then this must still be defined, but it doesn’t matter
which value it is defined to. This macro need not be a constant.

This macro does not affect the way structure fields are packed into bytes or
words; that is controlled by BYTES_BIG_ENDIAN.

BYTES_BIG_ENDIAN
Define this macro to have the value 1 if the most significant byte in a word has
the lowest number. This macro need not be a constant.

WORDS_BIG_ENDIAN
Define this macro to have the value 1 if, in a multiword object, the most sig-
nificant word has the lowest number. This applies to both memory locations
and registers; GCC fundamentally assumes that the order of words in memory
is the same as the order in registers. This macro need not be a constant.

LIBGCC2_WORDS_BIG_ENDIAN
Define this macro if WORDS_BIG_ENDIAN is not constant. This must be a con-
stant value with the same meaning as WORDS_BIG_ENDIAN, which will be used
only when compiling ‘1ibgcc2.c’. Typically the value will be set based on
preprocessor defines.

FLOAT_WORDS_BIG_ENDIAN
Define this macro to have the value 1 if DFmode, XFmode or TFmode floating
point numbers are stored in memory with the word containing the sign bit at
the lowest address; otherwise define it to have the value 0. This macro need
not be a constant.

You need not define this macro if the ordering is the same as for multi-word
integers.

BITS_PER_UNIT
Define this macro to be the number of bits in an addressable storage unit (byte).
If you do not define this macro the default is 8.

BITS_PER_WORD
Number of bits in a word. If you do not define this macro, the default is
BITS_PER_UNIT * UNITS_PER_WORD.

MAX_BITS_PER_WORD
Maximum number of bits in a word. If this is undefined, the default is BITS_
PER_WORD. Otherwise, it is the constant value that is the largest value that
BITS_PER_WORD can have at run-time.

206 GNU Compiler Collection (GCC) Internals

UNITS_PER_WORD
Number of storage units in a word; normally 4.

MIN_UNITS_PER_WORD
Minimum number of units in a word. If this is undefined, the default is UNITS_
PER_WORD. Otherwise, it is the constant value that is the smallest value that
UNITS_PER_WORD can have at run-time.

POINTER_SIZE
Width of a pointer, in bits. You must specify a value no wider than the width
of Pmode. If it is not equal to the width of Pmode, you must define POINTERS_
EXTEND_UNSIGNED. If you do not specify a value the default is BITS_PER_WORD.

POINTERS_EXTEND_UNSIGNED
A C expression whose value is greater than zero if pointers that need to be
extended from being POINTER_SIZE bits wide to Pmode are to be zero-extended
and zero if they are to be sign-extended. If the value is less then zero then there
must be an "ptr_extend" instruction that extends a pointer from POINTER_SIZE
to Pmode.

You need not define this macro if the POINTER_SIZE is equal to the width of
Pmode.

PROMOTE_MODE (m, unsignedp, type)
A macro to update m and unsignedp when an object whose type is type and
which has the specified mode and signedness is to be stored in a register. This
macro is only called when type is a scalar type.

On most RISC machines, which only have operations that operate on a full reg-
ister, define this macro to set m to word_mode if m is an integer mode narrower
than BITS_PER_WORD. In most cases, only integer modes should be widened be-
cause wider-precision floating-point operations are usually more expensive than
their narrower counterparts.

For most machines, the macro definition does not change unsignedp. However,
some machines, have instructions that preferentially handle either signed or
unsigned quantities of certain modes. For example, on the DEC Alpha, 32-bit
loads from memory and 32-bit add instructions sign-extend the result to 64
bits. On such machines, set unsignedp according to which kind of extension is
more efficient.

Do not define this macro if it would never modify m.

PROMOTE_FUNCTION_ARGS
Define this macro if the promotion described by PROMOTE_MODE should also be
done for outgoing function arguments.

PROMOTE_FUNCTION_RETURN
Define this macro if the promotion described by PROMOTE_MODE should also be
done for the return value of functions.

If this macro is defined, FUNCTION_VALUE must perform the same promotions
done by PROMOTE_MODE.

Chapter 10: Target Description Macros and Functions 207

PROMOTE_FOR_CALL_ONLY
Define this macro if the promotion described by PROMOTE_MODE should only be
performed for outgoing function arguments or function return values, as speci-
fied by PROMOTE_FUNCTION_ARGS and PROMOTE_FUNCTION_RETURN, respectively.

PARM_BOUNDARY
Normal alignment required for function parameters on the stack, in bits. All
stack parameters receive at least this much alignment regardless of data type.
On most machines, this is the same as the size of an integer.

STACK_BOUNDARY
Define this macro to the minimum alignment enforced by hardware for the
stack pointer on this machine. The definition is a C expression for the desired
alignment (measured in bits). This value is used as a default if PREFERRED_
STACK_BOUNDARY is not defined. On most machines, this should be the same as
PARM_BOUNDARY.

PREFERRED_STACK_BOUNDARY
Define this macro if you wish to preserve a certain alignment for the stack
pointer, greater than what the hardware enforces. The definition is a C expres-
sion for the desired alignment (measured in bits). This macro must evaluate to
a value equal to or larger than STACK_BOUNDARY.

FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN

A C expression that evaluates true if PREFERRED_STACK_BOUNDARY is not guar-
anteed by the runtime and we should emit code to align the stack at the begin-
ning of main.

If PUSH_ROUNDING is not defined, the stack will always be aligned to the specified
boundary. If PUSH_ROUNDING is defined and specifies a less strict alignment than
PREFERRED_STACK_BOUNDARY, the stack may be momentarily unaligned while
pushing arguments.

FUNCTION_BOUNDARY
Alignment required for a function entry point, in bits.

BIGGEST_ALIGNMENT
Biggest alignment that any data type can require on this machine, in bits.

MINIMUM_ATOMIC_ALIGNMENT
If defined, the smallest alignment, in bits, that can be given to an object that can
be referenced in one operation, without disturbing any nearby object. Normally,
this is BITS_PER_UNIT, but may be larger on machines that don’t have byte or
half-word store operations.

BIGGEST_FIELD_ALIGNMENT
Biggest alignment that any structure or union field can require on this ma-
chine, in bits. If defined, this overrides BIGGEST_ALIGNMENT for structure and
union fields only, unless the field alignment has been set by the __attribute__
((aligned (n))) construct.

ADJUST_FIELD_ALIGN (field, computed)
An expression for the alignment of a structure field field if the alignment
computed in the usual way (including applying of BIGGEST_ALIGNMENT and

208 GNU Compiler Collection (GCC) Internals

BIGGEST_FIELD_ALIGNMENT to the alignment) is computed. It overrides
alignment only if the field alignment has not been set by the __attribute_
((aligned (n))) construct.

MAX_OFILE_ALIGNMENT
Biggest alignment supported by the object file format of this machine. Use this
macro to limit the alignment which can be specified using the __attribute_
_ ((aligned (n))) construct. If not defined, the default value is BIGGEST_
ALTIGNMENT.

DATA_ALIGNMENT (type, basic-align)
If defined, a C expression to compute the alignment for a variable in the static
store. type is the data type, and basic-align is the alignment that the object
would ordinarily have. The value of this macro is used instead of that alignment
to align the object.

If this macro is not defined, then basic-align is used.

One use of this macro is to increase alignment of medium-size data to make it all
fit in fewer cache lines. Another is to cause character arrays to be word-aligned
so that strcpy calls that copy constants to character arrays can be done inline.

CONSTANT_ALIGNMENT (constant, basic-align)
If defined, a C expression to compute the alignment given to a constant that
is being placed in memory. constant is the constant and basic-align is the
alignment that the object would ordinarily have. The value of this macro is
used instead of that alignment to align the object.
If this macro is not defined, then basic-align is used.

The typical use of this macro is to increase alignment for string constants to be
word aligned so that strcpy calls that copy constants can be done inline.

LOCAL_ALIGNMENT (type, basic-align)
If defined, a C expression to compute the alignment for a variable in the local
store. type is the data type, and basic-align is the alignment that the object
would ordinarily have. The value of this macro is used instead of that alignment
to align the object.

If this macro is not defined, then basic-align is used.

One use of this macro is to increase alignment of medium-size data to make it
all fit in fewer cache lines.

EMPTY_FIELD_BOUNDARY
Alignment in bits to be given to a structure bit-field that follows an empty field
such as int : 0;.

Note that PCC_BITFIELD_TYPE_MATTERS also affects the alignment that results
from an empty field.

STRUCTURE_SIZE_BOUNDARY
Number of bits which any structure or union’s size must be a multiple of. Each
structure or union’s size is rounded up to a multiple of this.

If you do not define this macro, the default is the same as BITS_PER_UNIT.

Chapter 10: Target Description Macros and Functions 209

STRICT_ALIGNMENT
Define this macro to be the value 1 if instructions will fail to work if given data
not on the nominal alignment. If instructions will merely go slower in that case,
define this macro as 0.

PCC_BITFIELD_TYPE_MATTERS
Define this if you wish to imitate the way many other C compilers handle
alignment of bit-fields and the structures that contain them.

The behavior is that the type written for a bit-field (int, short, or other integer
type) imposes an alignment for the entire structure, as if the structure really did
contain an ordinary field of that type. In addition, the bit-field is placed within
the structure so that it would fit within such a field, not crossing a boundary
for it.

Thus, on most machines, a bit-field whose type is written as int would not
cross a four-byte boundary, and would force four-byte alignment for the whole
structure. (The alignment used may not be four bytes; it is controlled by the
other alignment parameters.)

If the macro is defined, its definition should be a C expression; a nonzero value
for the expression enables this behavior.

Note that if this macro is not defined, or its value is zero, some bit-fields may
cross more than one alignment boundary. The compiler can support such ref-
erences if there are ‘insv’, ‘extv’, and ‘extzv’ insns that can directly reference
memory.

The other known way of making bit-fields work is to define STRUCTURE_SIZE_
BOUNDARY as large as BIGGEST_ALIGNMENT. Then every structure can be ac-
cessed with fullwords.

Unless the machine has bit-field instructions or you define STRUCTURE_SIZE_
BOUNDARY that way, you must define PCC_BITFIELD_TYPE_MATTERS to have a
nonzero value.

If your aim is to make GCC use the same conventions for laying out bit-fields as
are used by another compiler, here is how to investigate what the other compiler
does. Compile and run this program:

struct fool
{
char x;
char :0;
char y;
};

struct foo2
{
char x;
int :0;
char y;
};

210 GNU Compiler Collection (GCC) Internals

main ()
{
printf ("Size of fool is %d\n",
sizeof (struct fool));
printf ("Size of foo2 is %d\n",
sizeof (struct foo2));
exit (0);
}

If this prints 2 and 5, then the compiler’s behavior is what you would get from
PCC_BITFIELD_TYPE_MATTERS.

BITFIELD_NBYTES_LIMITED
Like PCC_BITFIELD_TYPE_MATTERS except that its effect is limited to aligning
a bit-field within the structure.

MEMBER_TYPE_FORCES_BLK (field, mode)
Return 1 if a structure or array containing field should be accessed using
BLKMODE.

If field is the only field in the structure, mode is its mode, otherwise mode is
VOIDmode. mode is provided in the case where structures of one field would
require the structure’s mode to retain the field’s mode.

Normally, this is not needed. See the file ‘c4x.h’ for an example of how to
use this macro to prevent a structure having a floating point field from being
accessed in an integer mode.

ROUND_TYPE_SIZE (type, computed, specified)
Define this macro as an expression for the overall size of a type (given by type
as a tree node) when the size computed in the usual way is computed and the
alignment is specified.

The default is to round computed up to a multiple of specified.

ROUND_TYPE_SIZE_UNIT (type, computed, specified)
Similar to ROUND_TYPE_SIZE, but sizes and alignments are specified in units
(bytes). If you define ROUND_TYPE_SIZE, you must also define this macro and
they must be defined consistently with each other.

ROUND_TYPE_ALIGN (type, computed, specified)
Define this macro as an expression for the alignment of a type (given by type
as a tree node) if the alignment computed in the usual way is computed and
the alignment explicitly specified was specified.

The default is to use specified if it is larger; otherwise, use the smaller of
computed and BIGGEST_ALIGNMENT

MAX_FIXED_MODE_SIZE
An integer expression for the size in bits of the largest integer machine mode
that should actually be used. All integer machine modes of this size or smaller
can be used for structures and unions with the appropriate sizes. If this macro
is undefined, GET_MODE_BITSIZE (DImode) is assumed.

Chapter 10: Target Description Macros and Functions 211

VECTOR_MODE_SUPPORTED_P (mode)
Define this macro to be nonzero if the port is prepared to handle insns involving
vector mode mode. At the very least, it must have move patterns for this mode.

STACK_SAVEAREA_MODE (save_level)
If defined, an expression of type enum machine_mode that specifies the mode of
the save area operand of a save_stack_level named pattern (see Section 9.8
[Standard Names], page 144). save_level is one of SAVE_BLOCK, SAVE_FUNCTION,
or SAVE_NONLOCAL and selects which of the three named patterns is having its
mode specified.

You need not define this macro if it always returns Pmode. You would most
commonly define this macro if the save_stack_level patterns need to support
both a 32- and a 64-bit mode.

STACK_SIZE_MODE
If defined, an expression of type enum machine_mode that specifies the mode

of the size increment operand of an allocate_stack named pattern (see Sec-
tion 9.8 [Standard Names|, page 144).

You need not define this macro if it always returns word_mode. You would most

commonly define this macro if the allocate_stack pattern needs to support

both a 32- and a 64-bit mode.

TARGET_FLOAT_FORMAT
A code distinguishing the floating point format of the target machine. There
are five defined values:

IEEE_FLOAT_FORMAT
This code indicates IEEE floating point. It is the default; there is
no need to define this macro when the format is IEEE.

VAX_FLOAT_FORMAT
This code indicates the “F float” (for float) and “D float” or “G
float” formats (for double) used on the VAX and PDP-11.

IBM_FLOAT_FORMAT
This code indicates the format used on the IBM System/370.

C4X_FLOAT_FORMAT
This code indicates the format used on the TMS320C3x/C4x.

UNKNOWN_FLOAT_FORMAT
This code indicates any other format.

If any other formats are actually in use on supported machines, new codes
should be defined for them.

The ordering of the component words of floating point values stored in memory
is controlled by FLOAT_WORDS_BIG_ENDIAN.

MODE_HAS_NANS (mode)
When defined, this macro should be true if mode has a NaN representation. The
compiler assumes that NaNs are not equal to anything (including themselves)

212 GNU Compiler Collection (GCC) Internals

and that addition, subtraction, multiplication and division all return NaNs
when one operand is NaN.

By default, this macro is true if mode is a floating-point mode and the target
floating-point format is IEEE.

MODE_HAS_INFINITIES (mode)
This macro should be true if mode can represent infinity. At present, the
compiler uses this macro to decide whether ‘x - x’ is always defined. By default,

the macro is true when mode is a floating-point mode and the target format is
IEEE.

MODE_HAS_SIGNED_ZEROS (mode)
True if mode distinguishes between positive and negative zero. The rules are
expected to follow the IEEE standard:

e ‘x + x’ has the same sign as ‘x’.

e If the sum of two values with opposite sign is zero, the result is positive
for all rounding modes expect towards —infinity, for which it is negative.

e The sign of a product or quotient is negative when exactly one of the
operands is negative.

The default definition is true if mode is a floating-point mode and the target
format is IEEE.

MODE_HAS_SIGN_DEPENDENT_ROUNDING (mode)
If defined, this macro should be true for mode if it has at least one rounding
mode in which ‘x’ and ‘-x’ can be rounded to numbers of different magnitude.
Two such modes are towards —infinity and towards +infinity.

The default definition of this macro is true if mode is a floating-point mode and
the target format is IEEE.

ROUND_TOWARDS_ZERO
If defined, this macro should be true if the prevailing rounding mode is towards
zero. A true value has the following effects:

e MODE_HAS_SIGN_DEPENDENT_ROUNDING will be false for all modes.

e ‘libgcc.a’’s floating-point emulator will round towards zero rather than
towards nearest.

e The compiler’s floating-point emulator will round towards zero after doing
arithmetic, and when converting from the internal float format to the target
format.

The macro does not affect the parsing of string literals. When the primary
rounding mode is towards zero, library functions like strtod might still round
towards nearest, and the compiler’s parser should behave like the target’s
strtod where possible.

Not defining this macro is equivalent to returning zero.
LARGEST_EXPONENT_IS_NORMAL (size)

This macro should return true if floats with size bits do not have a NaN or in-
finity representation, but use the largest exponent for normal numbers instead.

Chapter 10: Target Description Macros and Functions 213

Defining this macro to true for size causes MODE_HAS_NANS and MODE_HAS_
INFINITIES to be false for size-bit modes. It also affects the way ‘libgcc.a’
and ‘real.c’ emulate floating-point arithmetic.

The default definition of this macro returns false for all sizes.

bool TARGET_MS_BITFIELD_LAYOUT_P (tree record_type) [Target Hook]
This target hook returns true if bit-fields in the given record_type are to be laid out
following the rules of Microsoft Visual C/C++, namely: (i) a bit-field won’t share the
same storage unit with the previous bit-field if their underlying types have different
sizes, and the bit-field will be aligned to the highest alignment of the underlying types
of itself and of the previous bit-field; (ii) a zero-sized bit-field will affect the alignment
of the whole enclosing structure, even if it is unnamed; except that (iii) a zero-sized
bit-field will be disregarded unless it follows another bit-field of nonzero size. If this
hook returns true, other macros that control bit-field layout are ignored.

When a bit-field is inserted into a packed record, the whole size of the underlying type
is used by one or more same-size adjacent bit-fields (that is, if its long:3, 32 bits is used
in the record, and any additional adjacent long bit-fields are packed into the same
chunk of 32 bits. However, if the size changes, a new field of that size is allocated).
In an unpacked record, this is the same as using alignment, but not equivalent when
packing.

If both MS bit-fields and ‘__attribute__((packed))’ are used, the latter will take
precedence. If ‘__attribute__((packed))’ is used on a single field when MS bit-
fields are in use, it will take precedence for that field, but the alignment of the rest
of the structure may affect its placement.

10.6 Layout of Source Language Data Types

These macros define the sizes and other characteristics of the standard basic data types
used in programs being compiled. Unlike the macros in the previous section, these apply to
specific features of C and related languages, rather than to fundamental aspects of storage
layout.

INT_TYPE_SIZE
A C expression for the size in bits of the type int on the target machine. If
you don’t define this, the default is one word.

SHORT_TYPE_SIZE
A C expression for the size in bits of the type short on the target machine. If
you don’t define this, the default is half a word. (If this would be less than one
storage unit, it is rounded up to one unit.)

LONG_TYPE_SIZE
A C expression for the size in bits of the type long on the target machine. If
you don’t define this, the default is one word.

ADA_LONG_TYPE_SIZE
On some machines, the size used for the Ada equivalent of the type long by a
native Ada compiler differs from that used by C. In that situation, define this

214 GNU Compiler Collection (GCC) Internals

macro to be a C expression to be used for the size of that type. If you don’t
define this, the default is the value of LONG_TYPE_SIZE.

MAX_LONG_TYPE_SIZE
Maximum number for the size in bits of the type long on the target machine. If
this is undefined, the default is LONG_TYPE_SIZE. Otherwise, it is the constant
value that is the largest value that LONG_TYPE_SIZE can have at run-time. This
is used in cpp.

LONG_LONG_TYPE_SIZE
A C expression for the size in bits of the type long long on the target machine.
If you don’t define this, the default is two words. If you want to support GNU
Ada on your machine, the value of this macro must be at least 64.

CHAR_TYPE_SIZE
A C expression for the size in bits of the type char on the target machine. If
you don’t define this, the default is BITS_PER_UNIT.

BOOL_TYPE_SIZE
A C expression for the size in bits of the C++ type bool and C99 type _Bool
on the target machine. If you don’t define this, and you probably shouldn’t,
the default is CHAR_TYPE_SIZE.

FLOAT_TYPE_SIZE
A C expression for the size in bits of the type float on the target machine. If
you don’t define this, the default is one word.

DOUBLE_TYPE_SIZE
A C expression for the size in bits of the type double on the target machine.
If you don’t define this, the default is two words.

LONG_DOUBLE_TYPE_SIZE
A C expression for the size in bits of the type long double on the target ma-
chine. If you don’t define this, the default is two words.

Maximum number for the size in bits of the type long double on the target ma-
chine. If this is undefined, the default is LONG_DOUBLE_TYPE_SIZE. Otherwise,
it is the constant value that is the largest value that LONG_DOUBLE_TYPE_SIZE
can have at run-time. This is used in cpp.

TARGET_FLT_EVAL_METHOD
A C expression for the value for FLT_EVAL_METHOD in ‘float.h’, assuming, if
applicable, that the floating-point control word is in its default state. If you do
not define this macro the value of FLT_EVAL_METHOD will be zero.

WIDEST_HARDWARE_FP_SIZE
A C expression for the size in bits of the widest floating-point format supported
by the hardware. If you define this macro, you must specify a value less than or
equal to the value of LONG_DOUBLE_TYPE_SIZE. If you do not define this macro,
the value of LONG_DOUBLE_TYPE_SIZE is the default.

Chapter 10: Target Description Macros and Functions 215

DEFAULT_SIGNED_CHAR
An expression whose value is 1 or 0, according to whether the type char should
be signed or unsigned by default. The user can always override this default
with the options ‘~fsigned-char’ and ‘~funsigned-char’.

DEFAULT_SHORT_ENUMS
A C expression to determine whether to give an enum type only as many bytes
as it takes to represent the range of possible values of that type. A nonzero
value means to do that; a zero value means all enum types should be allocated
like int.

If you don’t define the macro, the default is 0.

SIZE_TYPE
A C expression for a string describing the name of the data type to use for size
values. The typedef name size_t is defined using the contents of the string.

The string can contain more than one keyword. If so, separate them with spaces,
and write first any length keyword, then unsigned if appropriate, and finally
int. The string must exactly match one of the data type names defined in the
function init_decl_processing in the file ‘c-decl.c’. You may not omit int
or change the order—that would cause the compiler to crash on startup.

If you don’t define this macro, the default is "long unsigned int".

PTRDIFF_TYPE
A C expression for a string describing the name of the data type to use for
the result of subtracting two pointers. The typedef name ptrdiff_t is defined
using the contents of the string. See SIZE_TYPE above for more information.

If you don’t define this macro, the default is "long int".

WCHAR_TYPE
A C expression for a string describing the name of the data type to use for
wide characters. The typedef name wchar_t is defined using the contents of
the string. See SIZE_TYPE above for more information.

If you don’t define this macro, the default is "int".

WCHAR_TYPE_SIZE
A C expression for the size in bits of the data type for wide characters. This is
used in cpp, which cannot make use of WCHAR_TYPE.

MAX_WCHAR_TYPE_SIZE
Maximum number for the size in bits of the data type for wide characters. If
this is undefined, the default is WCHAR_TYPE_SIZE. Otherwise, it is the constant
value that is the largest value that WCHAR_TYPE_SIZE can have at run-time. This
is used in cpp.

GCOV_TYPE_SIZE
A C expression for the size in bits of the type used for gcov counters on the
target machine. If you don’t define this, the default is one LONG_TYPE_SIZE in
case it is greater or equal to 64-bit and LONG_LONG_TYPE_SIZE otherwise. You
may want to re-define the type to ensure atomicity for counters in multithreaded
programs.

216

WINT_TYPE

GNU Compiler Collection (GCC) Internals

A C expression for a string describing the name of the data type to use for
wide characters passed to printf and returned from getwc. The typedef name
wint_t is defined using the contents of the string. See SIZE_TYPE above for
more information.

If you don’t define this macro, the default is "unsigned int".

INTMAX_TYPE

A C expression for a string describing the name of the data type that can
represent any value of any standard or extended signed integer type. The
typedef name intmax_t is defined using the contents of the string. See SIZE_
TYPE above for more information.

If you don’t define this macro, the default is the first of "int", "long int", or
"long long int" that has as much precision as long long int.

UINTMAX_TYPE

A C expression for a string describing the name of the data type that can
represent any value of any standard or extended unsigned integer type. The
typedef name uintmax_t is defined using the contents of the string. See SIZE_
TYPE above for more information.

If you don’t define this macro, the default is the first of "unsigned int", "long
unsigned int", or "long long unsigned int" that has as much precision as
long long unsigned int.

TARGET _PTRMEMFUNC_VBIT_LOCATION

The C++ compiler represents a pointer-to-member-function with a struct that
looks like:

struct {
union {

void (xfn) ();

ptrdiff_t vtable_index;
};
ptrdiff_t delta;
+
The C++ compiler must use one bit to indicate whether the function that will be
called through a pointer-to-member-function is virtual. Normally, we assume
that the low-order bit of a function pointer must always be zero. Then, by
ensuring that the vtable_index is odd, we can distinguish which variant of the
union is in use. But, on some platforms function pointers can be odd, and so
this doesn’t work. In that case, we use the low-order bit of the delta field, and
shift the remainder of the delta field to the left.

GCC will automatically make the right selection about where to store this bit
using the FUNCTION_BOUNDARY setting for your platform. However, some plat-
forms such as ARM/Thumb have FUNCTION_BOUNDARY set such that functions
always start at even addresses, but the lowest bit of pointers to functions indi-
cate whether the function at that address is in ARM or Thumb mode. If this
is the case of your architecture, you should define this macro to ptrmemfunc_
vbit_in_delta.

Chapter 10: Target Description Macros and Functions 217

In general, you should not have to define this macro. On architectures in which
function addresses are always even, according to FUNCTION_BOUNDARY, GCC
will automatically define this macro to ptrmemfunc_vbit_in_pfn.

TARGET_VTABLE_USES_DESCRIPTORS
Normally, the C++ compiler uses function pointers in vtables. This macro
allows the target to change to use “function descriptors” instead. Function
descriptors are found on targets for whom a function pointer is actually a small
data structure. Normally the data structure consists of the actual code address
plus a data pointer to which the function’s data is relative.

If vtables are used, the value of this macro should be the number of words that
the function descriptor occupies.

TARGET_VTABLE_ENTRY_ALIGN
By default, the vtable entries are void pointers, the so the alignment is the
same as pointer alignment. The value of this macro specifies the alignment of
the vtable entry in bits. It should be defined only when special alignment is
necessary. */

TARGET_VTABLE_DATA_ENTRY_DISTANCE
There are a few non-descriptor entries in the vtable at offsets below zero. If these
entries must be padded (say, to preserve the alignment specified by TARGET_
VTABLE_ENTRY_ALIGN), set this to the number of words in each data entry.

10.7 Target Character Escape Sequences

By default, GCC assumes that the C character escape sequences take on their ASCII values
for the target. If this is not correct, you must explicitly define all of the macros below.

TARGET_BELL
A C constant expression for the integer value for escape sequence ‘\a’.

TARGET_ESC
A C constant expression for the integer value of the target escape character.
As an extension, GCC evaluates the escape sequences ‘\e’ and ‘\E’ to this.

TARGET_BS
TARGET_TAB
TARGET_NEWLINE
C constant expressions for the integer values for escape sequences ‘\b’, ‘\t’ and

‘\n’.

TARGET_VT
TARGET_FF
TARGET_CR
C constant expressions for the integer values for escape sequences ‘\v’, ‘\f’ and

‘“\r’.

218 GNU Compiler Collection (GCC) Internals

10.8 Register Usage

This section explains how to describe what registers the target machine has, and how (in
general) they can be used.

The description of which registers a specific instruction can use is done with register
classes; see Section 10.9 [Register Classes|, page 223. For information on using registers to
access a stack frame, see Section 10.10.4 [Frame Registers|, page 236. For passing values
in registers, see Section 10.10.7 [Register Arguments|, page 242. For returning values in
registers, see Section 10.10.8 [Scalar Return|, page 245.

10.8.1 Basic Characteristics of Registers

Registers have various characteristics.

FIRST_PSEUDO_REGISTER
Number of hardware registers known to the compiler. They receive numbers
0 through FIRST_PSEUDO_REGISTER-1; thus, the first pseudo register’s number
really is assigned the number FIRST_PSEUDO_REGISTER.

FIXED_REGISTERS
An initializer that says which registers are used for fixed purposes all throughout
the compiled code and are therefore not available for general allocation. These
would include the stack pointer, the frame pointer (except on machines where
that can be used as a general register when no frame pointer is needed), the
program counter on machines where that is considered one of the addressable
registers, and any other numbered register with a standard use.

This information is expressed as a sequence of numbers, separated by commas
and surrounded by braces. The nth number is 1 if register n is fixed, 0 otherwise.

The table initialized from this macro, and the table initialized by the following
one, may be overridden at run time either automatically, by the actions of
the macro CONDITIONAL_REGISTER_USAGE, or by the user with the command
options ‘~ffixed-reg’, ‘-fcall-used-reg’ and ‘-fcall-saved-reg’.

CALL_USED_REGISTERS
Like FIXED_REGISTERS but has 1 for each register that is clobbered (in general)
by function calls as well as for fixed registers. This macro therefore identifies
the registers that are not available for general allocation of values that must
live across function calls.

If a register has 0 in CALL_USED_REGISTERS, the compiler automatically saves it
on function entry and restores it on function exit, if the register is used within
the function.

CALL_REALLY_USED_REGISTERS
Like CALL_USED_REGISTERS except this macro doesn’t require that the entire set
of FIXED_REGISTERS be included. (CALL_USED_REGISTERS must be a superset
of FIXED_REGISTERS). This macro is optional. If not specified, it defaults to
the value of CALL_USED_REGISTERS.

Chapter 10: Target Description Macros and Functions 219

HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)
A C expression that is nonzero if it is not permissible to store a value of mode
mode in hard register number regno across a call without some part of it being
clobbered. For most machines this macro need not be defined. It is only required
for machines that do not preserve the entire contents of a register across a call.

CONDITIONAL_REGISTER_USAGE

Zero or more C statements that may conditionally modify five variables
fixed_regs, call_used_regs, global_regs, reg_names, and reg_class_
contents, to take into account any dependence of these register sets on
target flags. The first three of these are of type char [] (interpreted as
Boolean vectors). global_regs is a const char *[], and reg_class_
contents is a HARD_REG_SET. Before the macro is called, fixed_regs,
call_used_regs, reg_class_contents, and reg_names have been initialized
from FIXED_REGISTERS, CALL_USED_REGISTERS, REG_CLASS_CONTENTS, and
REGISTER_NAMES, respectively. global_regs has been cleared, and any
‘~-ffixed-reg’, ‘-fcall-used-reg’ and ‘-fcall-saved-reg’ command
options have been applied.

You need not define this macro if it has no work to do.

If the usage of an entire class of registers depends on the target flags, you may
indicate this to GCC by using this macro to modify fixed_regs and call_
used_regs to 1 for each of the registers in the classes which should not be used
by GCC. Also define the macro REG_CLASS_FROM_LETTER to return NO_REGS if
it is called with a letter for a class that shouldn’t be used.

(However, if this class is not included in GENERAL_REGS and all of the insn pat-
terns whose constraints permit this class are controlled by target switches, then
GCC will automatically avoid using these registers when the target switches
are opposed to them.)

NON_SAVING_SETJMP
If this macro is defined and has a nonzero value, it means that setjmp and
related functions fail to save the registers, or that longjmp fails to restore them.
To compensate, the compiler avoids putting variables in registers in functions
that use setjmp.

INCOMING_REGNO (out)
Define this macro if the target machine has register windows. This C expression
returns the register number as seen by the called function corresponding to the
register number out as seen by the calling function. Return out if register
number out is not an outbound register.

OUTGOING_REGNO (in)
Define this macro if the target machine has register windows. This C expression
returns the register number as seen by the calling function corresponding to the
register number in as seen by the called function. Return in if register number
in is not an inbound register.

LOCAL_REGNO (regno)
Define this macro if the target machine has register windows. This C expression
returns true if the register is call-saved but is in the register window. Unlike

220

GNU Compiler Collection (GCC) Internals

most call-saved registers, such registers need not be explicitly restored on func-
tion exit or during non-local gotos.

10.8.2 Order of Allocation of Registers

Registers are allocated in order.

REG_ALLOC_ORDER

If defined, an initializer for a vector of integers, containing the numbers of hard
registers in the order in which GCC should prefer to use them (from most
preferred to least).

If this macro is not defined, registers are used lowest numbered first (all else
being equal).

One use of this macro is on machines where the highest numbered registers
must always be saved and the save-multiple-registers instruction supports only
sequences of consecutive registers. On such machines, define REG_ALLOC_ORDER
to be an initializer that lists the highest numbered allocable register first.

ORDER_REGS_FOR_LOCAL_ALLOC

A C statement (sans semicolon) to choose the order in which to allocate hard
registers for pseudo-registers local to a basic block.

Store the desired register order in the array reg_alloc_order. EKElement 0
should be the register to allocate first; element 1, the next register; and so on.

The macro body should not assume anything about the contents of reg_alloc_
order before execution of the macro.

On most machines, it is not necessary to define this macro.

10.8.3 How Values Fit in Registers

This section discusses the macros that describe which kinds of values (specifically, which
machine modes) each register can hold, and how many consecutive registers are needed for
a given mode.

HARD_REGNO_NREGS (regno, mode)

A C expression for the number of consecutive hard registers, starting at register
number regno, required to hold a value of mode mode.

On a machine where all registers are exactly one word, a suitable definition of
this macro is

#define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
/ UNITS_PER_WORD)

HARD_REGNO_MODE_OK (regno, mode)

A C expression that is nonzero if it is permissible to store a value of mode mode
in hard register number regno (or in several registers starting with that one).
For a machine where all registers are equivalent, a suitable definition is

Chapter 10: Target Description Macros and Functions 221

#define HARD_REGNO_MODE_OK(REGNO, MODE) 1

You need not include code to check for the numbers of fixed registers, because
the allocation mechanism considers them to be always occupied.

On some machines, double-precision values must be kept in even/odd register
pairs. You can implement that by defining this macro to reject odd register
numbers for such modes.

The minimum requirement for a mode to be OK in a register is that the
‘movmode’ instruction pattern support moves between the register and other
hard register in the same class and that moving a value into the register and
back out not alter it.

Since the same instruction used to move word_mode will work for all narrower
integer modes, it is not necessary on any machine for HARD_REGNO_MODE_OK to
distinguish between these modes, provided you define patterns ‘movhi’, etc.,
to take advantage of this. This is useful because of the interaction between
HARD_REGNO_MODE_OK and MODES_TIEABLE_P; it is very desirable for all integer
modes to be tieable.

Many machines have special registers for floating point arithmetic. Often people
assume that floating point machine modes are allowed only in floating point
registers. This is not true. Any registers that can hold integers can safely hold
a floating point machine mode, whether or not floating arithmetic can be done
on it in those registers. Integer move instructions can be used to move the
values.

On some machines, though, the converse is true: fixed-point machine modes
may not go in floating registers. This is true if the floating registers normalize
any value stored in them, because storing a non-floating value there would
garble it. In this case, HARD_REGNO_MODE_OK should reject fixed-point machine
modes in floating registers. But if the floating registers do not automatically
normalize, if you can store any bit pattern in one and retrieve it unchanged
without a trap, then any machine mode may go in a floating register, so you
can define this macro to say so.

The primary significance of special floating registers is rather that they are the
registers acceptable in floating point arithmetic instructions. However, this is
of no concern to HARD_REGNO_MODE_OK. You handle it by writing the proper
constraints for those instructions.

On some machines, the floating registers are especially slow to access, so that
it is better to store a value in a stack frame than in such a register if floating
point arithmetic is not being done. As long as the floating registers are not
in class GENERAL_REGS, they will not be used unless some pattern’s constraint
asks for one.

MODES_TIEABLE_P (model, mode2)
A C expression that is nonzero if a value of mode model is accessible in mode
modeZ2 without copying.
If HARD_REGNO_MODE_OK (r, model) and HARD_REGNO_MODE_OK (r, mode2)
are always the same for any r, then MODES_TIEABLE_P (model, mode2) should
be nonzero. If they differ for any r, you should define this macro to return

222 GNU Compiler Collection (GCC) Internals

zero unless some other mechanism ensures the accessibility of the value in a
narrower mode.

You should define this macro to return nonzero in as many cases as possible
since doing so will allow GCC to perform better register allocation.

AVOID_CCMODE_COPIES
Define this macro if the compiler should avoid copies to/from CCmode registers.
You should only define this macro if support for copying to/from CCmode is
incomplete.

10.8.4 Handling Leaf Functions

On some machines, a leaf function (i.e., one which makes no calls) can run more efficiently
if it does not make its own register window. Often this means it is required to receive its
arguments in the registers where they are passed by the caller, instead of the registers where
they would normally arrive.

The special treatment for leaf functions generally applies only when other conditions
are met; for example, often they may use only those registers for its own variables and
temporaries. We use the term “leaf function” to mean a function that is suitable for this
special handling, so that functions with no calls are not necessarily “leaf functions”.

GCC assigns register numbers before it knows whether the function is suitable for leaf
function treatment. So it needs to renumber the registers in order to output a leaf function.
The following macros accomplish this.

LEAF_REGISTERS
Name of a char vector, indexed by hard register number, which contains 1 for
a register that is allowable in a candidate for leaf function treatment.

If leaf function treatment involves renumbering the registers, then the registers
marked here should be the ones before renumbering—those that GCC would
ordinarily allocate. The registers which will actually be used in the assembler
code, after renumbering, should not be marked with 1 in this vector.

Define this macro only if the target machine offers a way to optimize the treat-
ment of leaf functions.

LEAF_REG_REMAP (regno)
A C expression whose value is the register number to which regno should be
renumbered, when a function is treated as a leaf function.

If regno is a register number which should not appear in a leaf function before
renumbering, then the expression should yield —1, which will cause the compiler
to abort.

Define this macro only if the target machine offers a way to optimize the treat-
ment of leaf functions, and registers need to be renumbered to do this.

TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE must usually
treat leaf functions specially. They can test the C variable current_function_is_leaf
which is nonzero for leaf functions. current_function_is_leaf is set prior to local register
allocation and is valid for the remaining compiler passes. They can also test the C variable

Chapter 10: Target Description Macros and Functions 223

current_function_uses_only_leaf_regs which is nonzero for leaf functions which only
use leaf registers. current_function_uses_only_leaf_regs is valid after reload and is
only useful if LEAF_REGISTERS is defined.

10.8.5 Registers That Form a Stack

There are special features to handle computers where some of the “registers” form a stack,
as in the 80387 coprocessor for the 80386. Stack registers are normally written by pushing
onto the stack, and are numbered relative to the top of the stack.

Currently, GCC can only handle one group of stack-like registers, and they must be
consecutively numbered.

STACK_REGS
Define this if the machine has any stack-like registers.

FIRST_STACK_REG
The number of the first stack-like register. This one is the top of the stack.

LAST_STACK_REG
The number of the last stack-like register. This one is the bottom of the stack.

10.9 Register Classes

On many machines, the numbered registers are not all equivalent. For example, certain
registers may not be allowed for indexed addressing; certain registers may not be allowed in
some instructions. These machine restrictions are described to the compiler using register
classes.

You define a number of register classes, giving each one a name and saying which of the
registers belong to it. Then you can specify register classes that are allowed as operands to
particular instruction patterns.

In general, each register will belong to several classes. In fact, one class must be named
ALL_REGS and contain all the registers. Another class must be named NO_REGS and contain
no registers. Often the union of two classes will be another class; however, this is not
required.

One of the classes must be named GENERAL_REGS. There is nothing terribly special about
the name, but the operand constraint letters ‘r’ and ‘g’ specify this class. If GENERAL_REGS
is the same as ALL_REGS, just define it as a macro which expands to ALL_REGS.

Order the classes so that if class x is contained in class y then x has a lower class number
than y.

The way classes other than GENERAL_REGS are specified in operand constraints is through
machine-dependent operand constraint letters. You can define such letters to correspond
to various classes, then use them in operand constraints.

You should define a class for the union of two classes whenever some instruction allows
both classes. For example, if an instruction allows either a floating point (coprocessor)
register or a general register for a certain operand, you should define a class FLOAT_OR_
GENERAL_REGS which includes both of them. Otherwise you will get suboptimal code.

224 GNU Compiler Collection (GCC) Internals

You must also specify certain redundant information about the register classes: for each
class, which classes contain it and which ones are contained in it; for each pair of classes,
the largest class contained in their union.

When a value occupying several consecutive registers is expected in a certain class, all
the registers used must belong to that class. Therefore, register classes cannot be used to
enforce a requirement for a register pair to start with an even-numbered register. The way
to specify this requirement is with HARD_REGNO_MODE_OK.

Register classes used for input-operands of bitwise-and or shift instructions have a special
requirement: each such class must have, for each fixed-point machine mode, a subclass whose
registers can transfer that mode to or from memory. For example, on some machines, the
operations for single-byte values (QImode) are limited to certain registers. When this is so,
each register class that is used in a bitwise-and or shift instruction must have a subclass
consisting of registers from which single-byte values can be loaded or stored. This is so that
PREFERRED_RELOAD_CLASS can always have a possible value to return.

enum reg_class
An enumeral type that must be defined with all the register class names as
enumeral values. NO_REGS must be first. ALL_REGS must be the last register
class, followed by one more enumeral value, LIM_REG_CLASSES, which is not a
register class but rather tells how many classes there are.

Each register class has a number, which is the value of casting the class name
to type int. The number serves as an index in many of the tables described
below.

N_REG_CLASSES
The number of distinct register classes, defined as follows:

#define N_REG_CLASSES (int) LIM_REG_CLASSES

REG_CLASS_NAMES
An initializer containing the names of the register classes as C string constants.
These names are used in writing some of the debugging dumps.

REG_CLASS_CONTENTS

An initializer containing the contents of the register classes, as integers which
are bit masks. The nth integer specifies the contents of class n. The way the
integer mask is interpreted is that register r is in the class if mask & (1 << r)
is 1.

When the machine has more than 32 registers, an integer does not suffice.
Then the integers are replaced by sub-initializers, braced groupings containing
several integers. Each sub-initializer must be suitable as an initializer for the
type HARD_REG_SET which is defined in ‘hard-reg-set.h’. In this situation,
the first integer in each sub-initializer corresponds to registers 0 through 31,
the second integer to registers 32 through 63, and so on.

REGNO_REG_CLASS (regno)
A C expression whose value is a register class containing hard register regno.
In general there is more than one such class; choose a class which is minimal,
meaning that no smaller class also contains the register.

Chapter 10: Target Description Macros and Functions 225

BASE_REG_CLASS
A macro whose definition is the name of the class to which a valid base register
must belong. A base register is one used in an address which is the register
value plus a displacement.

MODE_BASE_REG_CLASS (mode)
This is a variation of the BASE_REG_CLASS macro which allows the selection of
a base register in a mode dependent manner. If mode is VOIDmode then it
should return the same value as BASE_REG_CLASS.

INDEX_REG_CLASS
A macro whose definition is the name of the class to which a valid index register
must belong. An index register is one used in an address where its value is either
multiplied by a scale factor or added to another register (as well as added to a
displacement).

REG_CLASS_FROM_LETTER (char)
A C expression which defines the machine-dependent operand constraint letters
for register classes. If char is such a letter, the value should be the register class
corresponding to it. Otherwise, the value should be NO_REGS. The register letter
‘r’, corresponding to class GENERAL_REGS, will not be passed to this macro; you
do not need to handle it.

REGNO_OK_FOR_BASE_P (aum)
A C expression which is nonzero if register number num is suitable for use as a
base register in operand addresses. It may be either a suitable hard register or
a pseudo register that has been allocated such a hard register.

REGNO_MODE_OK_FOR_BASE_P (num, mode)
A C expression that is just like REGNO_OK_FOR_BASE_P, except that that ex-
pression may examine the mode of the memory reference in mode. You should
define this macro if the mode of the memory reference affects whether a register
may be used as a base register. If you define this macro, the compiler will use
it instead of REGNO_OK_FOR_BASE_P.

REGNO_OK_FOR_INDEX_P (num)
A C expression which is nonzero if register number num is suitable for use as an
index register in operand addresses. It may be either a suitable hard register
or a pseudo register that has been allocated such a hard register.

The difference between an index register and a base register is that the index
register may be scaled. If an address involves the sum of two registers, neither
one of them scaled, then either one may be labeled the “base” and the other the
“index”; but whichever labeling is used must fit the machine’s constraints of
which registers may serve in each capacity. The compiler will try both labelings,
looking for one that is valid, and will reload one or both registers only if neither
labeling works.

PREFERRED_RELOAD_CLASS (x, class)
A C expression that places additional restrictions on the register class to use
when it is necessary to copy value x into a register in class class. The value

226

GNU Compiler Collection (GCC) Internals

is a register class; perhaps class, or perhaps another, smaller class. On many
machines, the following definition is safe:

#define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS

Sometimes returning a more restrictive class makes better code. For example,
on the 68000, when x is an integer constant that is in range for a ‘moveq’
instruction, the value of this macro is always DATA_REGS as long as class includes
the data registers. Requiring a data register guarantees that a ‘moveq’ will be
used.

If x is a const_double, by returning NO_REGS you can force x into a memory
constant. This is useful on certain machines where immediate floating values
cannot be loaded into certain kinds of registers.

PREFERRED_QOUTPUT_RELOAD_CLASS (x, class)

Like PREFERRED_RELOAD_CLASS, but for output reloads instead of input reloads.
If you don’t define this macro, the default is to use class, unchanged.

LIMIT_RELOAD_CLASS (mode, class)

A C expression that places additional restrictions on the register class to use
when it is necessary to be able to hold a value of mode mode in a reload register
for which class class would ordinarily be used.

Unlike PREFERRED_RELOAD_CLASS, this macro should be used when there are
certain modes that simply can’t go in certain reload classes.

The value is a register class; perhaps class, or perhaps another, smaller class.

Don’t define this macro unless the target machine has limitations which require
the macro to do something nontrivial.

SECONDARY_RELOAD_CLASS (class, mode, x)
SECONDARY_INPUT_RELOAD_CLASS (class, mode, x)
SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x)

Many machines have some registers that cannot be copied directly to or from
memory or even from other types of registers. An example is the ‘MQ’ register,
which on most machines, can only be copied to or from general registers, but
not memory. Some machines allow copying all registers to and from memory,
but require a scratch register for stores to some memory locations (e.g., those
with symbolic address on the RT, and those with certain symbolic address on
the SPARC when compiling PIC). In some cases, both an intermediate and a
scratch register are required.

You should define these macros to indicate to the reload phase that it may
need to allocate at least one register for a reload in addition to the register to
contain the data. Specifically, if copying x to a register class in mode requires
an intermediate register, you should define SECONDARY_INPUT_RELOAD_CLASS to
return the largest register class all of whose registers can be used as intermediate
registers or scratch registers.

If copying a register class in mode to x requires an intermediate or scratch reg-
ister, SECONDARY_OUTPUT_RELOAD_CLASS should be defined to return the largest
register class required. If the requirements for input and output reloads are the

Chapter 10: Target Description Macros and Functions 227

same, the macro SECONDARY_RELOAD_CLASS should be used instead of defining
both macros identically.

The values returned by these macros are often GENERAL_REGS. Return NO_REGS
if no spare register is needed; i.e., if x can be directly copied to or from a register
of class in mode without requiring a scratch register. Do not define this macro
if it would always return NO_REGS.

If a scratch register is required (either with or without an intermediate register),
you should define patterns for ‘reload_inm’ or ‘reload_outm’, as required (see
Section 9.8 [Standard Names|, page 144. These patterns, which will normally be
implemented with a define_expand, should be similar to the ‘movm’ patterns,
except that operand 2 is the scratch register.

Define constraints for the reload register and scratch register that contain a
single register class. If the original reload register (whose class is class) can
meet the constraint given in the pattern, the value returned by these macros
is used for the class of the scratch register. Otherwise, two additional reload
registers are required. Their classes are obtained from the constraints in the
insn pattern.

x might be a pseudo-register or a subreg of a pseudo-register, which could
either be in a hard register or in memory. Use true_regnum to find out; it will
return —1 if the pseudo is in memory and the hard register number if it is in a
register.

These macros should not be used in the case where a particular class of registers
can only be copied to memory and not to another class of registers. In that case,
secondary reload registers are not needed and would not be helpful. Instead, a
stack location must be used to perform the copy and the movm pattern should
use memory as an intermediate storage. This case often occurs between floating-
point and general registers.

SECONDARY_MEMORY_NEEDED (classl1, class2, m)
Certain machines have the property that some registers cannot be copied to
some other registers without using memory. Define this macro on those ma-
chines to be a C expression that is nonzero if objects of mode m in registers
of classl can only be copied to registers of class class2 by storing a register of
class] into memory and loading that memory location into a register of class2.

Do not define this macro if its value would always be zero.

SECONDARY_MEMORY_NEEDED_RTX (mode)
Normally when SECONDARY_MEMORY_NEEDED is defined, the compiler allocates
a stack slot for a memory location needed for register copies. If this macro is
defined, the compiler instead uses the memory location defined by this macro.

Do not define this macro if you do not define SECONDARY_MEMORY _NEEDED.

SECONDARY_MEMORY_NEEDED_MODE (mode)
When the compiler needs a secondary memory location to copy between two
registers of mode mode, it normally allocates sufficient memory to hold a quan-
tity of BITS_PER_WORD bits and performs the store and load operations in a
mode that many bits wide and whose class is the same as that of mode.

228

GNU Compiler Collection (GCC) Internals

This is right thing to do on most machines because it ensures that all bits of the
register are copied and prevents accesses to the registers in a narrower mode,
which some machines prohibit for floating-point registers.

However, this default behavior is not correct on some machines, such as the
DEC Alpha, that store short integers in floating-point registers differently than
in integer registers. On those machines, the default widening will not work
correctly and you must define this macro to suppress that widening in some
cases. See the file ‘alpha.h’ for details.

Do not define this macro if you do not define SECONDARY_MEMORY_NEEDED or if
widening mode to a mode that is BITS_PER_WORD bits wide is correct for your
machine.

SMALL_REGISTER_CLASSES

On some machines, it is risky to let hard registers live across arbitrary insns.
Typically, these machines have instructions that require values to be in specific
registers (like an accumulator), and reload will fail if the required hard register
is used for another purpose across such an insn.

Define SMALL_REGISTER_CLASSES to be an expression with a nonzero value on
these machines. When this macro has a nonzero value, the compiler will try to
minimize the lifetime of hard registers.

It is always safe to define this macro with a nonzero value, but if you unnecessar-
ily define it, you will reduce the amount of optimizations that can be performed
in some cases. If you do not define this macro with a nonzero value when it
is required, the compiler will run out of spill registers and print a fatal error
message. For most machines, you should not define this macro at all.

CLASS_LIKELY_SPILLED_P (class)

A C expression whose value is nonzero if pseudos that have been assigned to
registers of class class would likely be spilled because registers of class are needed
for spill registers.

The default value of this macro returns 1 if class has exactly one register and
zero otherwise. On most machines, this default should be used. Only define this
macro to some other expression if pseudos allocated by ‘local-alloc.c’ end
up in memory because their hard registers were needed for spill registers. If this
macro returns nonzero for those classes, those pseudos will only be allocated
by ‘global.c’, which knows how to reallocate the pseudo to another register.
If there would not be another register available for reallocation, you should not
change the definition of this macro since the only effect of such a definition
would be to slow down register allocation.

CLASS_MAX_NREGS (class, mode)

A C expression for the maximum number of consecutive registers of class class
needed to hold a value of mode mode.

This is closely related to the macro HARD_REGNO_NREGS. In fact, the value of
the macro CLASS_MAX_NREGS (class, mode) should be the maximum value of
HARD_REGNO_NREGS (regno, mode) for all regno values in the class class.

This macro helps control the handling of multiple-word values in the reload
pass.

Chapter 10: Target Description Macros and Functions 229

CANNOT_CHANGE_MODE_CLASS(from, to, class)
If defined, a C expression that returns nonzero for a class for which a change
from mode from to mode to is invalid.

For the example, loading 32-bit integer or floating-point objects into floating-
point registers on the Alpha extends them to 64 bits. Therefore loading a 64-bit
object and then storing it as a 32-bit object does not store the low-order 32
bits, as would be the case for a normal register. Therefore, ‘alpha.h’ defines
CANNOT_CHANGE_MODE_CLASS as below:

#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
(GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)

Three other special macros describe which operands fit which constraint letters.

CONST_OK_FOR_LETTER_P (value, c)
A C expression that defines the machine-dependent operand constraint letters
(‘T’, ‘3, °K’, ... ‘P’) that specify particular ranges of integer values. If ¢ is
one of those letters, the expression should check that value, an integer, is in
the appropriate range and return 1 if so, 0 otherwise. If ¢ is not one of those
letters, the value should be 0 regardless of value.

CONST_DOUBLE_OK_FOR_LETTER_P (value, c)
A C expression that defines the machine-dependent operand constraint letters
that specify particular ranges of const_double values (‘G’ or ‘H’).

If ¢ is one of those letters, the expression should check that value, an RTX of
code const_double, is in the appropriate range and return 1 if so, 0 otherwise.
If ¢ is not one of those letters, the value should be 0 regardless of value.

const_double is used for all floating-point constants and for DImode fixed-point
constants. A given letter can accept either or both kinds of values. It can use
GET_MODE to distinguish between these kinds.

EXTRA_CONSTRAINT (value, c)
A C expression that defines the optional machine-dependent constraint letters
that can be used to segregate specific types of operands, usually memory refer-
ences, for the target machine. Any letter that is not elsewhere defined and not
matched by REG_CLASS_FROM_LETTER may be used. Normally this macro will
not be defined.

If it is required for a particular target machine, it should return 1 if value
corresponds to the operand type represented by the constraint letter c. If ¢ is
not defined as an extra constraint, the value returned should be 0 regardless of
value.

For example, on the ROMP, load instructions cannot have their output in r0
if the memory reference contains a symbolic address. Constraint letter ‘Q’ is
defined as representing a memory address that does mot contain a symbolic
address. An alternative is specified with a ‘Q’ constraint on the input and ‘r’
on the output. The next alternative specifies ‘m’ on the input and a register
class that does not include r0 on the output.

230 GNU Compiler Collection (GCC) Internals

EXTRA_MEMORY_CONSTRAINT (c)
A C expression that defines the optional machine-dependent constraint letters,
amongst those accepted by EXTRA_CONSTRAINT, that should be treated like
memory constraints by the reload pass.

It should return 1 if the operand type represented by the constraint letter ¢
comprises a subset of all memory references including all those whose address
is simply a base register. This allows the reload pass to reload an operand, if
it does not directly correspond to the operand type of ¢, by copying its address
into a base register.

For example, on the S/390, some instructions do not accept arbitrary memory
references, but only those that do not make use of an index register. The
constraint letter ‘Q’ is defined via EXTRA_CONSTRAINT as representing a memory
address of this type. If the letter ‘Q’ is marked as EXTRA_MEMORY_CONSTRAINT, a
‘Q’ constraint can handle any memory operand, because the reload pass knows it
can be reloaded by copying the memory address into a base register if required.
This is analogous to the way a ‘o’ constraint can handle any memory operand.

EXTRA_ADDRESS_CONSTRAINT (c)
A C expression that defines the optional machine-dependent constraint letters,
amongst those accepted by EXTRA_CONSTRAINT, that should be treated like
address constraints by the reload pass.

It should return 1 if the operand type represented by the constraint letter ¢
comprises a subset of all memory addresses including all those that consist of
just a base register. This allows the reload pass to reload an operand, if it
does not directly correspond to the operand type of ¢, by copying it into a base
register.

Any constraint marked as EXTRA_ADDRESS_CONSTRAINT can only be used with
the address_operand predicate. It is treated analogously to the ‘p’ constraint.

10.10 Stack Layout and Calling Conventions

This describes the stack layout and calling conventions.

10.10.1 Basic Stack Layout

Here is the basic stack layout.

STACK_GROWS_DOWNWARD
Define this macro if pushing a word onto the stack moves the stack pointer to
a smaller address.

When we say, “define this macro if .. .,” it means that the compiler checks this

macro only with #ifdef so the precise definition used does not matter.

STACK_PUSH_CODE
This macro defines the operation used when something is pushed on the stack.
In RTL, a push operation will be (set (mem (STACK_PUSH_CODE (reg sp)))
)

Chapter 10: Target Description Macros and Functions 231

The choices are PRE_DEC, POST_DEC, PRE_INC, and POST_INC. Which of these is
correct depends on the stack direction and on whether the stack pointer points
to the last item on the stack or whether it points to the space for the next item
on the stack.

The default is PRE_DEC when STACK_GROWS_DOWNWARD is defined, which is almost
always right, and PRE_INC otherwise, which is often wrong.

FRAME_GROWS_DOWNWARD
Define this macro if the addresses of local variable slots are at negative offsets
from the frame pointer.

ARGS_GROW_DOWNWARD
Define this macro if successive arguments to a function occupy decreasing ad-
dresses on the stack.

STARTING_FRAME_OFFSET
Offset from the frame pointer to the first local variable slot to be allocated.

If FRAME_GROWS_DOWNWARD, find the next slot’s offset by subtracting the first
slot’s length from STARTING_FRAME_OFFSET. Otherwise, it is found by adding
the length of the first slot to the value STARTING_FRAME_OFFSET.

STACK_POINTER_OFFSET
Offset from the stack pointer register to the first location at which outgoing
arguments are placed. If not specified, the default value of zero is used. This
is the proper value for most machines.

If ARGS_GROW_DOWNWARD, this is the offset to the location above the first location
at which outgoing arguments are placed.

FIRST_PARM_OFFSET (fundecl)
Offset from the argument pointer register to the first argument’s address. On
some machines it may depend on the data type of the function.

If ARGS_GROW_DOWNWARD, this is the offset to the location above the first argu-
ment’s address.

STACK_DYNAMIC_OFFSET (fundecl)
Offset from the stack pointer register to an item dynamically allocated on the
stack, e.g., by alloca.

The default value for this macro is STACK_POINTER_OFFSET plus the length
of the outgoing arguments. The default is correct for most machines. See
‘function.c’ for details.

DYNAMIC_CHAIN_ADDRESS (frameaddr)
A C expression whose value is RTL representing the address in a stack frame
where the pointer to the caller’s frame is stored. Assume that frameaddr is an
RTL expression for the address of the stack frame itself.

If you don’t define this macro, the default is to return the value of frameaddr—
that is, the stack frame address is also the address of the stack word that points
to the previous frame.

232 GNU Compiler Collection (GCC) Internals

SETUP_FRAME_ADDRESSES
If defined, a C expression that produces the machine-specific code to setup the
stack so that arbitrary frames can be accessed. For example, on the SPARC,
we must flush all of the register windows to the stack before we can access
arbitrary stack frames. You will seldom need to define this macro.

BUILTIN_SETJMP_FRAME_VALUE
If defined, a C expression that contains an rtx that is used to store the address of
the current frame into the built in setjmp buffer. The default value, virtual_
stack_vars_rtx, is correct for most machines. One reason you may need to
define this macro is if hard_frame_pointer_rtx is the appropriate value on
your machine.

RETURN_ADDR_RTX (count, frameaddr)
A C expression whose value is RTL representing the value of the return ad-
dress for the frame count steps up from the current frame, after the prologue.
frameaddr is the frame pointer of the count frame, or the frame pointer of the
count — 1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined.

The value of the expression must always be the correct address when count is
zero, but may be NULL_RTX if there is not way to determine the return address
of other frames.

RETURN_ADDR_IN_PREVIOUS_FRAME
Define this if the return address of a particular stack frame is accessed from the
frame pointer of the previous stack frame.

INCOMING_RETURN_ADDR_RTX
A C expression whose value is RTL representing the location of the incoming
return address at the beginning of any function, before the prologue. This RTL
is either a REG, indicating that the return value is saved in ‘REG’, or a MEM
representing a location in the stack.

You only need to define this macro if you want to support call frame debugging
information like that provided by DWARF 2.

If this RTL is a REG, you should also define DWARF_FRAME_RETURN_COLUMN to
DWARF_FRAME_REGNUM (REGNO).

INCOMING_FRAME_SP_OFFSET
A C expression whose value is an integer giving the offset, in bytes, from the
value of the stack pointer register to the top of the stack frame at the beginning
of any function, before the prologue. The top of the frame is defined to be the
value of the stack pointer in the previous frame, just before the call instruction.

You only need to define this macro if you want to support call frame debugging
information like that provided by DWARF 2.

ARG_POINTER_CFA_OFFSET (fundecl)
A C expression whose value is an integer giving the offset, in bytes, from the
argument pointer to the canonical frame address (cfa). The final value should
coincide with that calculated by INCOMING_FRAME_SP_OFFSET. Which is unfor-
tunately not usable during virtual register instantiation.

Chapter 10: Target Description Macros and Functions 233

The default value for this macro is FIRST_PARM_OFFSET (fundecl), which is
correct for most machines; in general, the arguments are found immediately
before the stack frame. Note that this is not the case on some targets that save
registers into the caller’s frame, such as SPARC and rs6000, and so such targets
need to define this macro.

You only need to define this macro if the default is incorrect, and you want to
support call frame debugging information like that provided by DWARF 2.

SMALL_STACK
Define this macro if the stack size for the target is very small. This has the
effect of disabling gcc’s built-in ‘alloca’, though ‘__builtin_alloca’ is not
affected.

10.10.2 Exception Handling Support

EH_RETURN_DATA_REGNO (IV)
A C expression whose value is the Nth register number used for data by excep-
tion handlers, or INVALID_REGNUM if fewer than N registers are usable.

The exception handling library routines communicate with the exception han-
dlers via a set of agreed upon registers. Ideally these registers should be call-
clobbered; it is possible to use call-saved registers, but may negatively impact
code size. The target must support at least 2 data registers, but should define
4 if there are enough free registers.

You must define this macro if you want to support call frame exception handling

like that provided by DWARF 2.

EH_RETURN_STACKADJ_RTX
A C expression whose value is RTL representing a location in which to store a
stack adjustment to be applied before function return. This is used to unwind
the stack to an exception handler’s call frame. It will be assigned zero on code
paths that return normally.

Typically this is a call-clobbered hard register that is otherwise untouched by
the epilogue, but could also be a stack slot.

Do not define this macro if the stack pointer is saved and restored by the reg-
ular prolog and epilog code in the call frame itself; in this case, the exception
handling library routines will update the stack location to be restored in place.
Otherwise, you must define this macro if you want to support call frame excep-
tion handling like that provided by DWARF 2.

EH_RETURN_HANDLER_RTX
A C expression whose value is RTL representing a location in which to store
the address of an exception handler to which we should return. It will not be
assigned on code paths that return normally.

Typically this is the location in the call frame at which the normal return
address is stored. For targets that return by popping an address off the stack,
this might be a memory address just below the target call frame rather than
inside the current call frame. If defined, EH_RETURN_STACKADJ_RTX will have

234

GNU Compiler Collection (GCC) Internals

already been assigned, so it may be used to calculate the location of the target
call frame.

Some targets have more complex requirements than storing to an address cal-
culable during initial code generation. In that case the eh_return instruction
pattern should be used instead.

If you want to support call frame exception handling, you must define either
this macro or the eh_return instruction pattern.

ASM_PREFERRED_EH_DATA_FORMAT (code, global)

This macro chooses the encoding of pointers embedded in the exception han-
dling sections. If at all possible, this should be defined such that the exception
handling section will not require dynamic relocations, and so may be read-only.
code is 0 for data, 1 for code labels, 2 for function pointers. global is true if
the symbol may be affected by dynamic relocations. The macro should return
a combination of the DW_EH_PE_* defines as found in ‘dwarf2.h’.

If this macro is not defined, pointers will not be encoded but represented di-
rectly.

ASM_MAYBE_QUTPUT_ENCODED_ADDR_RTX(file, encoding, size, addr, done)

This macro allows the target to emit whatever special magic is required to
represent the encoding chosen by ASM_PREFERRED_EH_DATA_FORMAT. Generic
code takes care of pc-relative and indirect encodings; this must be defined if
the target uses text-relative or data-relative encodings.

This is a C statement that branches to done if the format was handled. encoding

is the format chosen, size is the number of bytes that the format occupies, addr
is the SYMBOL_REF to be emitted.

MD_FALLBACK_FRAME_STATE_FOR(context, fs, success)

This macro allows the target to add cpu and operating system specific code
to the call-frame unwinder for use when there is no unwind data available.
The most common reason to implement this macro is to unwind through signal
frames.

This macro is called from uw_frame_state_for in ‘unwind-dw2.c’ and
‘unwind-ia64.c’. context is an _Unwind_Context; fs is an _Unwind_
FrameState. Examine context->ra for the address of the code being executed
and context->cfa for the stack pointer value. If the frame can be decoded,
the register save addresses should be updated in fs and the macro should
branch to success. If the frame cannot be decoded, the macro should do
nothing.

MD_HANDLE_UNWABI (context, fs)

This macro allows the target to add operating system specific code to the call-
frame unwinder to handle the IA-64 .unwabi unwinding directive, usually used
for signal or interrupt frames.

This macro is called from uw_update_context in ‘unwind-ia64.c’. context is
an _Unwind_Context; fs is an _Unwind_FrameState. Examine fs->unwabi for
the abi and context in the .unwabi directive. If the .unwabi directive can be
handled, the register save addresses should be updated in fs.

Chapter 10: Target Description Macros and Functions 235

10.10.3 Specifying How Stack Checking is Done

GCC will check that stack references are within the boundaries of the stack, if the
‘~fstack-check’ is specified, in one of three ways:

1. If the value of the STACK_CHECK_BUILTIN macro is nonzero, GCC will assume that
you have arranged for stack checking to be done at appropriate places in the configu-
ration files, e.g., in TARGET_ASM_FUNCTION_PROLOGUE. GCC will do not other special
processing.

2. If STACK_CHECK_BUILTIN is zero and you defined a named pattern called check_stack
in your ‘md’ file, GCC will call that pattern with one argument which is the address to
compare the stack value against. You must arrange for this pattern to report an error
if the stack pointer is out of range.

3. If neither of the above are true, GCC will generate code to periodically “probe” the
stack pointer using the values of the macros defined below.

Normally, you will use the default values of these macros, so GCC will use the third
approach.

STACK_CHECK_BUILTIN
A nonzero value if stack checking is done by the configuration files in a machine-
dependent manner. You should define this macro if stack checking is require
by the ABI of your machine or if you would like to have to stack checking in
some more efficient way than GCC’s portable approach. The default value of
this macro is zero.

STACK_CHECK_PROBE_INTERVAL
An integer representing the interval at which GCC must generate stack probe
instructions. You will normally define this macro to be no larger than the size
of the “guard pages” at the end of a stack area. The default value of 4096 is
suitable for most systems.

STACK_CHECK_PROBE_LOAD
A integer which is nonzero if GCC should perform the stack probe as a load
instruction and zero if GCC should use a store instruction. The default is zero,
which is the most efficient choice on most systems.

STACK_CHECK_PROTECT
The number of bytes of stack needed to recover from a stack overflow, for
languages where such a recovery is supported. The default value of 75 words
should be adequate for most machines.

STACK_CHECK_MAX_FRAME_SIZE
The maximum size of a stack frame, in bytes. GCC will generate probe in-
structions in non-leaf functions to ensure at least this many bytes of stack are
available. If a stack frame is larger than this size, stack checking will not be
reliable and GCC will issue a warning. The default is chosen so that GCC only
generates one instruction on most systems. You should normally not change
the default value of this macro.

236 GNU Compiler Collection (GCC) Internals

STACK_CHECK_FIXED_FRAME_SIZE
GCC uses this value to generate the above warning message. It represents the
amount of fixed frame used by a function, not including space for any callee-
saved registers, temporaries and user variables. You need only specify an upper
bound for this amount and will normally use the default of four words.

STACK_CHECK_MAX_VAR_SIZE
The maximum size, in bytes, of an object that GCC will place in the fixed area
of the stack frame when the user specifies ‘-fstack-check’. GCC computed
the default from the values of the above macros and you will normally not need
to override that default.

10.10.4 Registers That Address the Stack Frame

This discusses registers that address the stack frame.

STACK_POINTER_REGNUM
The register number of the stack pointer register, which must also be a fixed
register according to FIXED_REGISTERS. On most machines, the hardware de-
termines which register this is.

FRAME_POINTER_REGNUM
The register number of the frame pointer register, which is used to access auto-
matic variables in the stack frame. On some machines, the hardware determines
which register this is. On other machines, you can choose any register you wish
for this purpose.

HARD_FRAME_POINTER_REGNUM

On some machines the offset between the frame pointer and starting offset of the
automatic variables is not known until after register allocation has been done
(for example, because the saved registers are between these two locations). On
those machines, define FRAME_POINTER_REGNUM the number of a special, fixed
register to be used internally until the offset is known, and define HARD_FRAME _
POINTER_REGNUM to be the actual hard register number used for the frame
pointer.

You should define this macro only in the very rare circumstances when it is not
possible to calculate the offset between the frame pointer and the automatic
variables until after register allocation has been completed. When this macro
is defined, you must also indicate in your definition of ELIMINABLE_REGS how
to eliminate FRAME_POINTER_REGNUM into either HARD_FRAME_POINTER_REGNUM
or STACK_POINTER_REGNUM.

Do not define this macro if it would be the same as FRAME_POINTER_REGNUM.

ARG_POINTER_REGNUM
The register number of the arg pointer register, which is used to access the
function’s argument list. On some machines, this is the same as the frame
pointer register. On some machines, the hardware determines which register
this is. On other machines, you can choose any register you wish for this
purpose. If this is not the same register as the frame pointer register, then you

Chapter 10: Target Description Macros and Functions 237

must mark it as a fixed register according to FIXED_REGISTERS, or arrange to
be able to eliminate it (see Section 10.10.5 [Elimination], page 238).

RETURN_ADDRESS_POINTER_REGNUM
The register number of the return address pointer register, which is used to
access the current function’s return address from the stack. On some machines,
the return address is not at a fixed offset from the frame pointer or stack pointer
or argument pointer. This register can be defined to point to the return address
on the stack, and then be converted by ELIMINABLE_REGS into either the frame
pointer or stack pointer.

Do not define this macro unless there is no other way to get the return address
from the stack.

STATIC_CHAIN_REGNUM

STATIC_CHAIN_INCOMING_REGNUM
Register numbers used for passing a function’s static chain pointer. If reg-
ister windows are used, the register number as seen by the called function is
STATIC_CHAIN_INCOMING_REGNUM, while the register number as seen by the call-
ing function is STATIC_CHAIN_REGNUM. If these registers are the same, STATIC_
CHAIN_INCOMING_REGNUM need not be defined.

The static chain register need not be a fixed register.

If the static chain is passed in memory, these macros should not be defined;
instead, the next two macros should be defined.

STATIC_CHAIN

STATIC_CHAIN_INCOMING
If the static chain is passed in memory, these macros provide rtx giving mem
expressions that denote where they are stored. STATIC_CHAIN and STATIC_
CHAIN_INCOMING give the locations as seen by the calling and called functions,
respectively. Often the former will be at an offset from the stack pointer and
the latter at an offset from the frame pointer.

The variables stack_pointer_rtx, frame_pointer_rtx, and arg_pointer_
rtx will have been initialized prior to the use of these macros and should be
used to refer to those items.

If the static chain is passed in a register, the two previous macros should be
defined instead.

DWARF_FRAME_REGISTERS
This macro specifies the maximum number of hard registers that can be saved
in a call frame. This is used to size data structures used in DWARF2 exception
handling.

Prior to GCC 3.0, this macro was needed in order to establish a stable excep-
tion handling ABI in the face of adding new hard registers for ISA extensions.
In GCC 3.0 and later, the EH ABI is insulated from changes in the number
of hard registers. Nevertheless, this macro can still be used to reduce the run-
time memory requirements of the exception handling routines, which can be
substantial if the ISA contains a lot of registers that are not call-saved.

If this macro is not defined, it defaults to FIRST_PSEUDO_REGISTER.

238

GNU Compiler Collection (GCC) Internals

PRE_GCC3_DWARF_FRAME_REGISTERS

This macro is similar to DWARF_FRAME_REGISTERS, but is provided for backward
compatibility in pre GCC 3.0 compiled code.

If this macro is not defined, it defaults to DWARF_FRAME_REGISTERS.

10.10.5 Eliminating Frame Pointer and Arg Pointer

This is about eliminating the frame pointer and arg pointer.

FRAME_POINTER_REQUIRED

A C expression which is nonzero if a function must have and use a frame pointer.
This expression is evaluated in the reload pass. If its value is nonzero the
function will have a frame pointer.

The expression can in principle examine the current function and decide ac-
cording to the facts, but on most machines the constant 0 or the constant 1
suffices. Use 0 when the machine allows code to be generated with no frame
pointer, and doing so saves some time or space. Use 1 when there is no possible
advantage to avoiding a frame pointer.

In certain cases, the compiler does not know how to produce valid code without
a frame pointer. The compiler recognizes those cases and automatically gives
the function a frame pointer regardless of what FRAME_POINTER_REQUIRED says.
You don’t need to worry about them.

In a function that does not require a frame pointer, the frame pointer register
can be allocated for ordinary usage, unless you mark it as a fixed register. See
FIXED_REGISTERS for more information.

INITIAL_FRAME_POINTER_QOFFSET (depth-var)

A C statement to store in the variable depth-var the difference between the
frame pointer and the stack pointer values immediately after the function pro-
logue. The value would be computed from information such as the result of
get_frame_size () and the tables of registers regs_ever_live and call_
used_regs.

If ELIMINABLE_REGS is defined, this macro will be not be used and need not

be defined. Otherwise, it must be defined even if FRAME_POINTER_REQUIRED is
defined to always be true; in that case, you may set depth-var to anything.

ELIMINABLE_REGS

If defined, this macro specifies a table of register pairs used to eliminate un-
needed registers that point into the stack frame. If it is not defined, the only
elimination attempted by the compiler is to replace references to the frame
pointer with references to the stack pointer.

The definition of this macro is a list of structure initializations, each of which
specifies an original and replacement register.

On some machines, the position of the argument pointer is not known until the
compilation is completed. In such a case, a separate hard register must be used
for the argument pointer. This register can be eliminated by replacing it with

Chapter 10: Target Description Macros and Functions 239

either the frame pointer or the argument pointer, depending on whether or not
the frame pointer has been eliminated.

In this case, you might specify:

#define ELIMINABLE_REGS \
{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}

Note that the elimination of the argument pointer with the stack pointer is
specified first since that is the preferred elimination.

CAN_ELIMINATE (from-reg, to-reg)
A C expression that returns nonzero if the compiler is allowed to try to replace
register number from-reg with register number to-reg. This macro need only be
defined if ELIMINABLE_REGS is defined, and will usually be the constant 1, since
most of the cases preventing register elimination are things that the compiler
already knows about.

INITIAL_ELIMINATION_OFFSET (from-reg, to-reg, offset-var)
This macro is similar to INITIAL_FRAME_POINTER_OFFSET. It specifies the ini-
tial difference between the specified pair of registers. This macro must be
defined if ELIMINABLE_REGS is defined.

10.10.6 Passing Function Arguments on the Stack

The macros in this section control how arguments are passed on the stack. See the following
section for other macros that control passing certain arguments in registers.

PROMOTE_PROTOTYPES
A C expression whose value is nonzero if an argument declared in a prototype
as an integral type smaller than int should actually be passed as an int. In
addition to avoiding errors in certain cases of mismatch, it also makes for better
code on certain machines. If the macro is not defined in target header files, it
defaults to 0.

PUSH_ARGS
A C expression. If nonzero, push insns will be used to pass outgoing arguments.
If the target machine does not have a push instruction, set it to zero. That
directs GCC to use an alternate strategy: to allocate the entire argument block
and then store the arguments into it. When PUSH_ARGS is nonzero, PUSH_
ROUNDING must be defined too.

PUSH_ROUNDING (npushed)
A C expression that is the number of bytes actually pushed onto the stack when
an instruction attempts to push npushed bytes.
On some machines, the definition
#define PUSH_ROUNDING(BYTES) (BYTES)
will suffice. But on other machines, instructions that appear to push one byte

actually push two bytes in an attempt to maintain alignment. Then the defini-
tion should be

240 GNU Compiler Collection (GCC) Internals

#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)

ACCUMULATE_OUTGOING_ARGS
A C expression. If nonzero, the maximum amount of space required for outgoing
arguments will be computed and placed into the variable current_function_
outgoing_args_size. No space will be pushed onto the stack for each call; in-
stead, the function prologue should increase the stack frame size by this amount.

Setting both PUSH_ARGS and ACCUMULATE_OUTGOING_ARGS is not proper.

REG_PARM_STACK_SPACE (fndecl)
Define this macro if functions should assume that stack space has been allocated
for arguments even when their values are passed in registers.

The value of this macro is the size, in bytes, of the area reserved for arguments
passed in registers for the function represented by fndecl, which can be zero if
GCC is calling a library function.

This space can be allocated by the caller, or be a part of the machine-dependent
stack frame: OUTGOING_REG_PARM_STACK_SPACE says which.

MAYBE_REG_PARM_STACK_SPACE

FINAL_REG_PARM_STACK_SPACE (const_size, var_size)
Define these macros in addition to the one above if functions might allocate
stack space for arguments even when their values are passed in registers. These
should be used when the stack space allocated for arguments in registers is not
a simple constant independent of the function declaration.

The value of the first macro is the size, in bytes, of the area that we should
initially assume would be reserved for arguments passed in registers.

The value of the second macro is the actual size, in bytes, of the area that will
be reserved for arguments passed in registers. This takes two arguments: an
integer representing the number of bytes of fixed sized arguments on the stack,
and a tree representing the number of bytes of variable sized arguments on the
stack.

When these macros are defined, REG_PARM_STACK_SPACE will only be called for
libcall functions, the current function, or for a function being called when it is
known that such stack space must be allocated. In each case this value can be
easily computed.

When deciding whether a called function needs such stack space, and how
much space to reserve, GCC uses these two macros instead of REG_PARM_STACK_
SPACE.

OUTGOING_REG_PARM_STACK_SPACE
Define this if it is the responsibility of the caller to allocate the area reserved
for arguments passed in registers.
If ACCUMULATE_OUTGOING_ARGS is defined, this macro controls whether the space
for these arguments counts in the value of current_function_outgoing_args_
size.

STACK_PARMS_IN_REG_PARM_AREA
Define this macro if REG_PARM_STACK_SPACE is defined, but the stack parame-
ters don’t skip the area specified by it.

Chapter 10: Target Description Macros and Functions 241

Normally, when a parameter is not passed in registers, it is placed on the stack
beyond the REG_PARM_STACK_SPACE area. Defining this macro suppresses this
behavior and causes the parameter to be passed on the stack in its natural
location.

RETURN_POPS_ARGS (fundecl, funtype, stack-size)
A C expression that should indicate the number of bytes of its own arguments
that a function pops on returning, or 0 if the function pops no arguments and
the caller must therefore pop them all after the function returns.

fundecl is a C variable whose value is a tree node that describes the function
in question. Normally it is a node of type FUNCTION_DECL that describes the
declaration of the function. From this you can obtain the DECL_ATTRIBUTES of
the function.

funtype is a C variable whose value is a tree node that describes the function
in question. Normally it is a node of type FUNCTION_TYPE that describes the
data type of the function. From this it is possible to obtain the data types of
the value and arguments (if known).

When a call to a library function is being considered, fundecl will contain an
identifier node for the library function. Thus, if you need to distinguish among
various library functions, you can do so by their names. Note that “library
function” in this context means a function used to perform arithmetic, whose
name is known specially in the compiler and was not mentioned in the C code
being compiled.

stack-size is the number of bytes of arguments passed on the stack. If a variable
number of bytes is passed, it is zero, and argument popping will always be the
responsibility of the calling function.

On the VAX, all functions always pop their arguments, so the definition of this
macro is stack-size. On the 68000, using the standard calling convention, no
functions pop their arguments, so the value of the macro is always 0 in this case.
But an alternative calling convention is available in which functions that take
a fixed number of arguments pop them but other functions (such as printf)
pop nothing (the caller pops all). When this convention is in use, funtype is
examined to determine whether a function takes a fixed number of arguments.

CALL_POPS_ARGS (cum)
A C expression that should indicate the number of bytes a call sequence pops
off the stack. It is added to the value of RETURN_POPS_ARGS when compiling a
function call.

cum is the variable in which all arguments to the called function have been
accumulated.

On certain architectures, such as the SH5, a call trampoline is used that pops
certain registers off the stack, depending on the arguments that have been
passed to the function. Since this is a property of the call site, not of the called
function, RETURN_POPS_ARGS is not appropriate.

242 GNU Compiler Collection (GCC) Internals

10.10.7 Passing Arguments in Registers

This section describes the macros which let you control how various types of arguments are
passed in registers or how they are arranged in the stack.

FUNCTION_ARG (cum, mode, type, named)
A C expression that controls whether a function argument is passed in a register,
and which register.

The arguments are cum, which summarizes all the previous arguments; mode,
the machine mode of the argument; type, the data type of the argument as
a tree node or 0 if that is not known (which happens for C support library
functions); and named, which is 1 for an ordinary argument and 0 for nameless
arguments that correspond to ‘...’ in the called function’s prototype. type can
be an incomplete type if a syntax error has previously occurred.

The value of the expression is usually either a reg RTX for the hard register in
which to pass the argument, or zero to pass the argument on the stack.

For machines like the VAX and 68000, where normally all arguments are pushed,
zero suffices as a definition.

The value of the expression can also be a parallel RTX. This is used when
an argument is passed in multiple locations. The mode of the of the parallel
should be the mode of the entire argument. The parallel holds any number
of expr_list pairs; each one describes where part of the argument is passed.
In each expr_list the first operand must be a reg RTX for the hard register
in which to pass this part of the argument, and the mode of the register RTX
indicates how large this part of the argument is. The second operand of the
expr_list is a const_int which gives the offset in bytes into the entire argu-
ment of where this part starts. As a special exception the first expr_list in
the parallel RTX may have a first operand of zero. This indicates that the
entire argument is also stored on the stack.

The last time this macro is called, it is called with MODE == VOIDmode, and
its result is passed to the call or call_value pattern as operands 2 and 3
respectively.

The usual way to make the ISO library ‘stdarg.h’ work on a machine where
some arguments are usually passed in registers, is to cause nameless arguments
to be passed on the stack instead. This is done by making FUNCTION_ARG return
0 whenever named is 0.

You may use the macro MUST_PASS_IN_STACK (mode, type) in the definition
of this macro to determine if this argument is of a type that must be passed in
the stack. If REG_PARM_STACK_SPACE is not defined and FUNCTION_ARG returns
nonzero for such an argument, the compiler will abort. If REG_PARM_STACK_
SPACE is defined, the argument will be computed in the stack and then loaded
into a register.

MUST_PASS_IN_STACK (mode, type)
Define as a C expression that evaluates to nonzero if we do not know how to
pass TYPE solely in registers. The file ‘expr.h’ defines a definition that is
usually appropriate, refer to ‘expr.h’ for additional documentation.

Chapter 10: Target Description Macros and Functions 243

FUNCTION_INCOMING_ARG (cum, mode, type, named)
Define this macro if the target machine has “register windows”, so that the
register in which a function sees an arguments is not necessarily the same as
the one in which the caller passed the argument.

For such machines, FUNCTION_ARG computes the register in which the caller
passes the value, and FUNCTION_INCOMING_ARG should be defined in a similar
fashion to tell the function being called where the arguments will arrive.

If FUNCTION_INCOMING_ARG is not defined, FUNCTION_ARG serves both purposes.

FUNCTION_ARG_PARTIAL_NREGS (cum, mode, type, named)
A C expression for the number of words, at the beginning of an argument, that
must be put in registers. The value must be zero for arguments that are passed
entirely in registers or that are entirely pushed on the stack.

On some machines, certain arguments must be passed partially in registers
and partially in memory. On these machines, typically the first n words of
arguments are passed in registers, and the rest on the stack. If a multi-word
argument (a double or a structure) crosses that boundary, its first few words
must be passed in registers and the rest must be pushed. This macro tells the
compiler when this occurs, and how many of the words should go in registers.

FUNCTION_ARG for these arguments should return the first register to be used by
the caller for this argument; likewise FUNCTION_INCOMING_ARG, for the called
function.

FUNCTION_ARG_PASS_BY_REFERENCE (cum, mode, type, named)
A C expression that indicates when an argument must be passed by reference.
If nonzero for an argument, a copy of that argument is made in memory and a
pointer to the argument is passed instead of the argument itself. The pointer
is passed in whatever way is appropriate for passing a pointer to that type.

On machines where REG_PARM_STACK_SPACE is not defined, a suitable definition
of this macro might be

#define FUNCTION_ARG_PASS_BY_REFERENCE\
(CUM, MODE, TYPE, NAMED) \
MUST_PASS_IN_STACK (MODE, TYPE)

FUNCTION_ARG_CALLEE_COPIES (cum, mode, type, named)

If defined, a C expression that indicates when it is the called function’s respon-
sibility to make a copy of arguments passed by invisible reference. Normally,
the caller makes a copy and passes the address of the copy to the routine be-
ing called. When FUNCTION_ARG_CALLEE_COPIES is defined and is nonzero, the
caller does not make a copy. Instead, it passes a pointer to the “live” value.
The called function must not modify this value. If it can be determined that
the value won’t be modified, it need not make a copy; otherwise a copy must
be made.

CUMULATIVE_ARGS
A C type for declaring a variable that is used as the first argument of FUNCTION_
ARG and other related values. For some target machines, the type int suffices
and can hold the number of bytes of argument so far.

244 GNU Compiler Collection (GCC) Internals

There is no need to record in CUMULATIVE_ARGS anything about the arguments
that have been passed on the stack. The compiler has other variables to keep
track of that. For target machines on which all arguments are passed on the
stack, there is no need to store anything in CUMULATIVE_ARGS; however, the
data structure must exist and should not be empty, so use int.

INIT_CUMULATIVE_ARGS (cum, fntype, libname, indirect)

A C statement (sans semicolon) for initializing the variable cum for the state at
the beginning of the argument list. The variable has type CUMULATIVE_ARGS.
The value of fntype is the tree node for the data type of the function which
will receive the args, or 0 if the args are to a compiler support library function.
The value of indirect is nonzero when processing an indirect call, for example
a call through a function pointer. The value of indirect is zero for a call to an
explicitly named function, a library function call, or when INIT_CUMULATIVE_
ARGS is used to find arguments for the function being compiled.

When processing a call to a compiler support library function, libname identifies
which one. It is a symbol_ref rtx which contains the name of the function,
as a string. libname is 0 when an ordinary C function call is being processed.
Thus, each time this macro is called, either libname or fntype is nonzero, but
never both of them at once.

INIT_CUMULATIVE_LIBCALL_ARGS (cum, mode, libname)
Like INIT_CUMULATIVE_ARGS but only used for outgoing libcalls, it gets a MODE
argument instead of fntype, that would be NULL. indirect would always be zero,
too. If this macro is not defined, INIT_CUMULATIVE_ARGS (cum, NULL_RTX,
libname, 0) is used instead.

INIT_CUMULATIVE_INCOMING_ARGS (cum, fntype, libname)
Like INIT_CUMULATIVE_ARGS but overrides it for the purposes of finding the
arguments for the function being compiled. If this macro is undefined, INIT_
CUMULATIVE_ARGS is used instead.

The value passed for libname is always 0, since library routines with special
calling conventions are never compiled with GCC. The argument libname exists
for symmetry with INIT_CUMULATIVE_ARGS.

FUNCTION_ARG_ADVANCE (cum, mode, type, named)
A C statement (sans semicolon) to update the summarizer variable cum to
advance past an argument in the argument list. The values mode, type and
named describe that argument. Once this is done, the variable cum is suitable
for analyzing the following argument with FUNCTION_ARG, etc.

This macro need not do anything if the argument in question was passed on
the stack. The compiler knows how to track the amount of stack space used for
arguments without any special help.

FUNCTION_ARG_PADDING (mode, type)
If defined, a C expression which determines whether, and in which direction,
to pad out an argument with extra space. The value should be of type enum
direction: either upward to pad above the argument, downward to pad below,
or none to inhibit padding.

Chapter 10: Target Description Macros and Functions 245

The amount of padding is always just enough to reach the next multiple of
FUNCTION_ARG_BOUNDARY; this macro does not control it.

This macro has a default definition which is right for most systems. For little-
endian machines, the default is to pad upward. For big-endian machines, the
default is to pad downward for an argument of constant size shorter than an
int, and upward otherwise.

PAD_VARARGS_DOWN
If defined, a C expression which determines whether the default implementation
of va_arg will attempt to pad down before reading the next argument, if that
argument is smaller than its aligned space as controlled by PARM_BOUNDARY. If
this macro is not defined, all such arguments are padded down if BYTES_BIG_
ENDIAN is true.

FUNCTION_ARG_BOUNDARY (mode, type)
If defined, a C expression that gives the alignment boundary, in bits, of an
argument with the specified mode and type. If it is not defined, PARM_BOUNDARY
is used for all arguments.

FUNCTION_ARG_REGNO_P (regno)
A C expression that is nonzero if regno is the number of a hard register in
which function arguments are sometimes passed. This does not include implicit
arguments such as the static chain and the structure-value address. On many
machines, no registers can be used for this purpose since all function arguments
are pushed on the stack.

LOAD_ARGS_REVERSED
If defined, the order in which arguments are loaded into their respective argu-
ment registers is reversed so that the last argument is loaded first. This macro
only affects arguments passed in registers.

10.10.8 How Scalar Function Values Are Returned

This section discusses the macros that control returning scalars as values—values that can
fit in registers.

FUNCTION_VALUE (valtype, func)
A C expression to create an RTX representing the place where a function re-
turns a value of data type valtype. valtype is a tree node representing a data
type. Write TYPE_MODE (valtype) to get the machine mode used to represent
that type. On many machines, only the mode is relevant. (Actually, on most
machines, scalar values are returned in the same place regardless of mode).

The value of the expression is usually a reg RTX for the hard register where
the return value is stored. The value can also be a parallel RTX, if the
return value is in multiple places. See FUNCTION_ARG for an explanation of the
parallel form.

If PROMOTE_FUNCTION_RETURN is defined, you must apply the same promotion
rules specified in PROMOTE_MODE if valtype is a scalar type.

246

GNU Compiler Collection (GCC) Internals

If the precise function being called is known, func is a tree node (FUNCTION_
DECL) for it; otherwise, func is a null pointer. This makes it possible to use
a different value-returning convention for specific functions when all their calls
are known.

FUNCTION_VALUE is not used for return vales with aggregate data types, because
these are returned in another way. See STRUCT_VALUE_REGNUM and related
macros, below.

FUNCTION_OUTGOING_VALUE (valtype, func)

Define this macro if the target machine has “register windows” so that the
register in which a function returns its value is not the same as the one in
which the caller sees the value.

For such machines, FUNCTION_VALUE computes the register in which the caller
will see the value. FUNCTION_OUTGOING_VALUE should be defined in a similar
fashion to tell the function where to put the value.

If FUNCTION_OUTGOING_VALUE is not defined, FUNCTION_VALUE serves both pur-
poses.

FUNCTION_OUTGOING_VALUE is not used for return vales with aggregate data
types, because these are returned in another way. See STRUCT_VALUE_REGNUM
and related macros, below.

LIBCALL_VALUE (mode)

A C expression to create an RTX representing the place where a library function
returns a value of mode mode. If the precise function being called is known,
func is a tree node (FUNCTION_DECL) for it; otherwise, func is a null pointer.
This makes it possible to use a different value-returning convention for specific
functions when all their calls are known.

Note that “library function” in this context means a compiler support routine,
used to perform arithmetic, whose name is known specially by the compiler and
was not mentioned in the C code being compiled.

The definition of LIBRARY_VALUE need not be concerned aggregate data types,
because none of the library functions returns such types.

FUNCTION_VALUE_REGNO_P (regno)

A C expression that is nonzero if regno is the number of a hard register in which
the values of called function may come back.

A register whose use for returning values is limited to serving as the second of
a pair (for a value of type double, say) need not be recognized by this macro.
So for most machines, this definition suffices:

#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)

If the machine has register windows, so that the caller and the called function
use different registers for the return value, this macro should recognize only the
caller’s register numbers.

APPLY_RESULT_SIZE

Define this macro if ‘untyped_call’ and ‘untyped_return’ need more space
than is implied by FUNCTION_VALUE_REGNO_P for saving and restoring an arbi-
trary return value.

Chapter 10: Target Description Macros and Functions 247

10.10.9 How Large Values Are Returned

When a function value’s mode is BLKmode (and in some other cases), the value is not returned
according to FUNCTION_VALUE (see Section 10.10.8 [Scalar Return], page 245). Instead, the
caller passes the address of a block of memory in which the value should be stored. This
address is called the structure value address.

This section describes how to control returning structure values in memory.

RETURN_IN_MEMORY (type)
A C expression which can inhibit the returning of certain function values in
registers, based on the type of value. A nonzero value says to return the function
value in memory, just as large structures are always returned. Here type will
be a C expression of type tree, representing the data type of the value.

Note that values of mode BLKmode must be explicitly handled by this macro.
Also, the option ‘~fpcc-struct-return’ takes effect regardless of this macro.
On most systems, it is possible to leave the macro undefined; this causes a
default definition to be used, whose value is the constant 1 for BLKmode values,
and 0 otherwise.

Do not use this macro to indicate that structures and unions should always be
returned in memory. You should instead use DEFAULT_PCC_STRUCT_RETURN to
indicate this.

DEFAULT_PCC_STRUCT_RETURN
Define this macro to be 1 if all structure and union return values must be in
memory. Since this results in slower code, this should be defined only if needed
for compatibility with other compilers or with an ABI. If you define this macro
to be 0, then the conventions used for structure and union return values are
decided by the RETURN_IN_MEMORY macro.

If not defined, this defaults to the value 1.

STRUCT_VALUE_REGNUM
If the structure value address is passed in a register, then STRUCT_VALUE_REGNUM
should be the number of that register.

STRUCT_VALUE
If the structure value address is not passed in a register, define STRUCT_VALUE
as an expression returning an RTX for the place where the address is passed.
If it returns 0, the address is passed as an “invisible” first argument.

STRUCT_VALUE_INCOMING_REGNUM
On some architectures the place where the structure value address is found by
the called function is not the same place that the caller put it. This can be due
to register windows, or it could be because the function prologue moves it to a
different place.
If the incoming location of the structure value address is in a register, define
this macro as the register number.

STRUCT_VALUE_INCOMING
If the incoming location is not a register, then you should define STRUCT_VALUE_
INCOMING as an expression for an RTX for where the called function should find

248 GNU Compiler Collection (GCC) Internals

the value. If it should find the value on the stack, define this to create a mem
which refers to the frame pointer. A definition of 0 means that the address is
passed as an “invisible” first argument.

PCC_STATIC_STRUCT_RETURN
Define this macro if the usual system convention on the target machine for
returning structures and unions is for the called function to return the address
of a static variable containing the value.

Do not define this if the usual system convention is for the caller to pass an
address to the subroutine.

This macro has effect in ‘~fpcc-struct-return’ mode, but it does nothing
when you use ‘-freg-struct-return’ mode.

10.10.10 Caller-Saves Register Allocation

If you enable it, GCC can save registers around function calls. This makes it possible to
use call-clobbered registers to hold variables that must live across calls.

DEFAULT_CALLER_SAVES
Define this macro if function calls on the target machine do not preserve
any registers; in other words, if CALL_USED_REGISTERS has 1 for all registers.
When defined, this macro enables ‘-fcaller-saves’ by default for all opti-
mization levels. It has no effect for optimization levels 2 and higher, where
‘~fcaller-saves’ is the default.

CALLER_SAVE_PROFITABLE (refs, calls)
A C expression to determine whether it is worthwhile to consider placing a
pseudo-register in a call-clobbered hard register and saving and restoring it
around each function call. The expression should be 1 when this is worth
doing, and 0 otherwise.

If you don’t define this macro, a default is used which is good on most machines:
4 % calls < refs.

HARD_REGNO_CALLER_SAVE_MODE (regno, nregs)
A C expression specifying which mode is required for saving nregs of a pseudo-
register in call-clobbered hard register regno. If regno is unsuitable for caller
save, VOIDmode should be returned. For most machines this macro need not be
defined since GCC will select the smallest suitable mode.

10.10.11 Function Entry and Exit

This section describes the macros that output function entry (prologue) and exit (epilogue)
code.

void TARGET_ASM_FUNCTION_PROLOGUE (FILE *file, [Target Hook]
HOST_WIDE_INT size)

If defined, a function that outputs the assembler code for entry to a function. The

prologue is responsible for setting up the stack frame, initializing the frame pointer

Chapter 10: Target Description Macros and Functions 249

register, saving registers that must be saved, and allocating size additional bytes of
storage for the local variables. size is an integer. file is a stdio stream to which the
assembler code should be output.

The label for the beginning of the function need not be output by this macro. That
has already been done when the macro is run.

To determine which registers to save, the macro can refer to the array regs_ever_
live: element r is nonzero if hard register r is used anywhere within the function.
This implies the function prologue should save register r, provided it is not one of the
call-used registers. (TARGET_ASM_FUNCTION_EPILOGUE must likewise use regs_ever_
live.)

On machines that have “register windows”, the function entry code does not save
on the stack the registers that are in the windows, even if they are supposed to be
preserved by function calls; instead it takes appropriate steps to “push” the register
stack, if any non-call-used registers are used in the function.

On machines where functions may or may not have frame-pointers, the function entry
code must vary accordingly; it must set up the frame pointer if one is wanted, and not
otherwise. To determine whether a frame pointer is in wanted, the macro can refer
to the variable frame_pointer_needed. The variable’s value will be 1 at run time in
a function that needs a frame pointer. See Section 10.10.5 [Elimination|, page 238.

The function entry code is responsible for allocating any stack space required for the
function. This stack space consists of the regions listed below. In most cases, these
regions are allocated in the order listed, with the last listed region closest to the top
of the stack (the lowest address if STACK_GROWS_DOWNWARD is defined, and the highest
address if it is not defined). You can use a different order for a machine if doing so is
more convenient or required for compatibility reasons. Except in cases where required
by standard or by a debugger, there is no reason why the stack layout used by GCC
need agree with that used by other compilers for a machine.

void TARGET_ASM_FUNCTION_END_PROLOGUE (FILE *file) [Target Hook]
If defined, a function that outputs assembler code at the end of a prologue. This
should be used when the function prologue is being emitted as RTL, and you have
some extra assembler that needs to be emitted. See [prologue instruction pattern],
page 157.

void TARGET_ASM_FUNCTION_BEGIN_EPILOGUE (FILE *file) [Target Hook]
If defined, a function that outputs assembler code at the start of an epilogue. This
should be used when the function epilogue is being emitted as RTL, and you have
some extra assembler that needs to be emitted. See [epilogue instruction pattern],
page 157.

void TARGET_ASM_FUNCTION_EPILOGUE (FILE *file, [Target Hook]
HOST_WIDE_INT size)

If defined, a function that outputs the assembler code for exit from a function. The

epilogue is responsible for restoring the saved registers and stack pointer to their

values when the function was called, and returning control to the caller. This macro

takes the same arguments as the macro TARGET_ASM_FUNCTION_PROLOGUE, and the

250

GNU Compiler Collection (GCC) Internals

registers to restore are determined from regs_ever_live and CALL_USED_REGISTERS
in the same way.

On some machines, there is a single instruction that does all the work of returning
from the function. On these machines, give that instruction the name ‘return’ and
do not define the macro TARGET_ASM_FUNCTION_EPILOGUE at all.

Do not define a pattern named ‘return’ if you want the TARGET_ASM_FUNCTION_
EPILOGUE to be used. If you want the target switches to control whether return
instructions or epilogues are used, define a ‘return’ pattern with a validity condi-
tion that tests the target switches appropriately. If the ‘return’ pattern’s validity
condition is false, epilogues will be used.

On machines where functions may or may not have frame-pointers, the function exit
code must vary accordingly. Sometimes the code for these two cases is completely
different. To determine whether a frame pointer is wanted, the macro can refer to
the variable frame_pointer_needed. The variable’s value will be 1 when compiling
a function that needs a frame pointer.

Normally, TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE
must treat leaf functions specially. The C variable current_function_is_leaf is
nonzero for such a function. See Section 10.8.4 [Leaf Functions], page 222.

On some machines, some functions pop their arguments on exit while others leave
that for the caller to do. For example, the 68020 when given ‘-mrtd’ pops arguments
in functions that take a fixed number of arguments.

Your definition of the macro RETURN_POPS_ARGS decides which functions pop their
own arguments. TARGET_ASM_FUNCTION_EPILOGUE needs to know what was decided.
The variable that is called current_function_pops_args is the number of bytes
of its arguments that a function should pop. See Section 10.10.8 [Scalar Return],
page 245.

e A region of current_function_pretend_args_size bytes of uninitialized
space just underneath the first argument arriving on the stack. (This may
not be at the very start of the allocated stack region if the calling sequence
has pushed anything else since pushing the stack arguments. But usually,
on such machines, nothing else has been pushed yet, because the function
prologue itself does all the pushing.) This region is used on machines where
an argument may be passed partly in registers and partly in memory, and,
in some cases to support the features in <stdarg.h>.

e An area of memory used to save certain registers used by the function.
The size of this area, which may also include space for such things as the
return address and pointers to previous stack frames, is machine-specific
and usually depends on which registers have been used in the function.
Machines with register windows often do not require a save area.

e A region of at least size bytes, possibly rounded up to an allocation bound-
ary, to contain the local variables of the function. On some machines, this
region and the save area may occur in the opposite order, with the save
area closer to the top of the stack.

e Optionally, when ACCUMULATE_OUTGOING_ARGS is defined, a region of
current_function_outgoing_args_size bytes to be used for outgoing

Chapter 10: Target Description Macros and Functions 251

argument lists of the function. See Section 10.10.6 [Stack Arguments],
page 239.

Normally, it is necessary for the macros TARGET_ASM_FUNCTION_PROLOGUE and
TARGET_ASM_FUNCTION_EPILOGUE to treat leaf functions specially. The C vari-
able current_function_is_leaf is nonzero for such a function.

EXIT_IGNORE_STACK
Define this macro as a C expression that is nonzero if the return instruction or
the function epilogue ignores the value of the stack pointer; in other words, if it
is safe to delete an instruction to adjust the stack pointer before a return from
the function.

Note that this macro’s value is relevant only for functions for which frame
pointers are maintained. It is never safe to delete a final stack adjustment in a
function that has no frame pointer, and the compiler knows this regardless of
EXIT_IGNORE_STACK.

EPILOGUE_USES (regno)
Define this macro as a C expression that is nonzero for registers that are used
by the epilogue or the ‘return’ pattern. The stack and frame pointer registers
are already be assumed to be used as needed.

EH_USES (regno)
Define this macro as a C expression that is nonzero for registers that are used
by the exception handling mechanism, and so should be considered live on entry
to an exception edge.

DELAY_SLOTS_FOR_EPILOGUE
Define this macro if the function epilogue contains delay slots to which instruc-
tions from the rest of the function can be “moved”. The definition should be a
C expression whose value is an integer representing the number of delay slots
there.

ELIGIBLE_FOR_EPILOGUE_DELAY (insn, n)

A C expression that returns 1 if insn can be placed in delay slot number n of
the epilogue.

The argument n is an integer which identifies the delay slot now being considered
(since different slots may have different rules of eligibility). It is never negative
and is always less than the number of epilogue delay slots (what DELAY_SLOTS_
FOR_EPILOGUE returns). If you reject a particular insn for a given delay slot, in
principle, it may be reconsidered for a subsequent delay slot. Also, other insns
may (at least in principle) be considered for the so far unfilled delay slot.

The insns accepted to fill the epilogue delay slots are put in an RTL list made
with insn_list objects, stored in the variable current_function_epilogue_
delay_list. The insn for the first delay slot comes first in the list. Your
definition of the macro TARGET _ASM_FUNCTION_EPILOGUE should fill the delay
slots by outputting the insns in this list, usually by calling final_scan_insn.

You need not define this macro if you did not define DELAY_SLOTS_FOR_
EPILOGUE.

252 GNU Compiler Collection (GCC) Internals

void TARGET_ASM_OUTPUT_MI_THUNK (FILE *file, tree [Target Hook]
thunk_fndecl, HOST_WIDE_INT delta, tree function)
A function that outputs the assembler code for a thunk function, used to implement
C++ virtual function calls with multiple inheritance. The thunk acts as a wrapper
around a virtual function, adjusting the implicit object parameter before handing
control off to the real function.

First, emit code to add the integer delta to the location that contains the incoming
first argument. Assume that this argument contains a pointer, and is the one used
to pass the this pointer in C++. This is the incoming argument before the function
prologue, e.g. ‘%00’ on a sparc. The addition must preserve the values of all other
incoming arguments.

After the addition, emit code to jump to function, which is a FUNCTION_DECL. This is
a direct pure jump, not a call, and does not touch the return address. Hence returning
from FUNCTION will return to whoever called the current ‘thunk’.

The effect must be as if function had been called directly with the adjusted first ar-
gument. This macro is responsible for emitting all of the code for a thunk function;
TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE are not in-
voked.

The thunk_fndecl is redundant. (delta and function have already been extracted from
it.) It might possibly be useful on some targets, but probably not.

If you do not define this macro, the target-independent code in the C++ front end will
generate a less efficient heavyweight thunk that calls function instead of jumping to
it. The generic approach does not support varargs.

void TARGET_ASM_OUTPUT_MI_VCALL_THUNK (FILE *file, tree [Target Hook]
thunk_fndecl, HOST_WIDE_INT delta, int vcall_offset, tree function)
A function like TARGET _ASM_QUTPUT_MI_THUNK, except that if vcall_offset is nonzero,
an additional adjustment should be made after adding delta. In particular, if p is
the adjusted pointer, the following adjustment should be made:

p += (x((ptrdiff_t **)p)) [vcall_offset/sizeof (ptrdiff_t)]

If this function is defined, it will always be used in place of TARGET_ASM_QUTPUT_MI_
THUNK.

10.10.12 Generating Code for Profiling

These macros will help you generate code for profiling.

FUNCTION_PROFILER (file, labelno)
A C statement or compound statement to output to file some assembler code
to call the profiling subroutine mcount.

The details of how mcount expects to be called are determined by your operating
system environment, not by GCC. To figure them out, compile a small program
for profiling using the system’s installed C compiler and look at the assembler
code that results.

Chapter 10: Target Description Macros and Functions 253

Older implementations of mcount expect the address of a counter variable to
be loaded into some register. The name of this variable is ‘LP’ followed by the
number labelno, so you would generate the name using ‘LP%d’ in a fprintf.

PROFILE_HOOK
A C statement or compound statement to output to file some assembly code to
call the profiling subroutine mcount even the target does not support profiling.

NO_PROFILE_COUNTERS
Define this macro if the mcount subroutine on your system does not need a
counter variable allocated for each function. This is true for almost all mod-
ern implementations. If you define this macro, you must not use the labelno
argument to FUNCTION_PROFILER.

PROFILE_BEFORE_PROLOGUE
Define this macro if the code for function profiling should come before the
function prologue. Normally, the profiling code comes after.

10.10.13 Permitting tail calls

FUNCTION_OK_FOR_SIBCALL (decl)
A C expression that evaluates to true if it is ok to perform a sibling call to decl
from the current function.

It is not uncommon for limitations of calling conventions to prevent tail calls
to functions outside the current unit of translation, or during PIC compilation.
Use this macro to enforce these restrictions, as the sibcall md pattern can
not fail, or fall over to a “normal” call.

10.11 Implementing the Varargs Macros

GCC comes with an implementation of <varargs.h> and <stdarg.h> that work without
change on machines that pass arguments on the stack. Other machines require their own
implementations of varargs, and the two machine independent header files must have con-
ditionals to include it.

ISO <stdarg.h> differs from traditional <varargs.h> mainly in the calling convention
for va_start. The traditional implementation takes just one argument, which is the variable
in which to store the argument pointer. The ISO implementation of va_start takes an
additional second argument. The user is supposed to write the last named argument of the
function here.

However, va_start should not use this argument. The way to find the end of the named
arguments is with the built-in functions described below.

__builtin_saveregs ()
Use this built-in function to save the argument registers in memory so that
the varargs mechanism can access them. Both ISO and traditional versions
of va_start must use __builtin_saveregs, unless you use SETUP_INCOMING_
VARARGS (see below) instead.

254

GNU Compiler Collection (GCC) Internals

On some machines, __builtin_saveregs is open-coded under the control of
the macro EXPAND_BUILTIN_SAVEREGS. On other machines, it calls a routine
written in assembler language, found in ‘libgcc2.c’.

Code generated for the call to __builtin_saveregs appears at the beginning of
the function, as opposed to where the call to __builtin_saveregs is written,
regardless of what the code is. This is because the registers must be saved
before the function starts to use them for its own purposes.

__builtin_args_info (category)

Use this built-in function to find the first anonymous arguments in registers.

In general, a machine may have several categories of registers used for argu-
ments, each for a particular category of data types. (For example, on some
machines, floating-point registers are used for floating-point arguments while
other arguments are passed in the general registers.) To make non-varargs
functions use the proper calling convention, you have defined the CUMULATIVE_
ARGS data type to record how many registers in each category have been used
so far

__builtin_args_info accesses the same data structure of type CUMULATIVE_
ARGS after the ordinary argument layout is finished with it, with category spec-
ifying which word to access. Thus, the value indicates the first unused register
in a given category.

Normally, you would use __builtin_args_info in the implementation of va_
start, accessing each category just once and storing the value in the va_list
object. This is because va_list will have to update the values, and there is no
way to alter the values accessed by __builtin_args_info.

__builtin_next_arg (lastarg)

This is the equivalent of __builtin_args_info, for stack arguments. It re-
turns the address of the first anonymous stack argument, as type void *. If
ARGS_GROW_DOWNWARD, it returns the address of the location above the first
anonymous stack argument. Use it in va_start to initialize the pointer for
fetching arguments from the stack. Also use it in va_start to verify that the
second parameter lastarg is the last named argument of the current function.

__builtin_classify_type (object)

Since each machine has its own conventions for which data types are passed
in which kind of register, your implementation of va_arg has to embody these
conventions. The easiest way to categorize the specified data type is to use
__builtin_classify_type together with sizeof and __alignof__.

__builtin_classify_type ignores the value of object, considering only its
data type. It returns an integer describing what kind of type that is—integer,
floating, pointer, structure, and so on.

The file ‘typeclass.h’ defines an enumeration that you can use to interpret
the values of __builtin_classify_type.

These machine description macros help implement varargs:

Chapter 10: Target Description Macros and Functions 255

EXPAND_BUILTIN_SAVEREGS ()
If defined, is a C expression that produces the machine-specific code for a call
to __builtin_saveregs. This code will be moved to the very beginning of
the function, before any parameter access are made. The return value of this
function should be an RTX that contains the value to use as the return of
__builtin_saveregs.

SETUP_INCOMING_VARARGS (args_so_far, mode, type, pretend_args_size,

second_time)
This macro offers an alternative to using __builtin_saveregs and defining
the macro EXPAND_BUILTIN_SAVEREGS. Use it to store the anonymous register
arguments into the stack so that all the arguments appear to have been passed
consecutively on the stack. Once this is done, you can use the standard imple-
mentation of varargs that works for machines that pass all their arguments on
the stack.

The argument args_so_far is the CUMULATIVE_ARGS data structure, containing
the values that are obtained after processing the named arguments. The ar-
guments mode and type describe the last named argument—its machine mode
and its data type as a tree node.

The macro implementation should do two things: first, push onto the stack all
the argument registers not used for the named arguments, and second, store
the size of the data thus pushed into the int-valued variable whose name is
supplied as the argument pretend_args_size. The value that you store here will
serve as additional offset for setting up the stack frame.

Because you must generate code to push the anonymous arguments at compile
time without knowing their data types, SETUP_INCOMING_VARARGS is only useful
on machines that have just a single category of argument register and use it
uniformly for all data types.

If the argument second_time is nonzero, it means that the arguments of the
function are being analyzed for the second time. This happens for an inline
function, which is not actually compiled until the end of the source file. The
macro SETUP_INCOMING_VARARGS should not generate any instructions in this
case.

STRICT_ARGUMENT_NAMING
Define this macro to be a nonzero value if the location where a function argu-
ment is passed depends on whether or not it is a named argument.

This macro controls how the named argument to FUNCTION_ARG is set for
varargs and stdarg functions. If this macro returns a nonzero value, the named
argument is always true for named arguments, and false for unnamed argu-
ments. If it returns a value of zero, but SETUP_INCOMING_VARARGS is defined,
then all arguments are treated as named. Otherwise, all named arguments
except the last are treated as named.

You need not define this macro if it always returns zero.
PRETEND_OUTGOING_VARARGS_NAMED

If you need to conditionally change ABIs so that one works with SETUP_
INCOMING_VARARGS, but the other works like neither SETUP_INCOMING_VARARGS

256 GNU Compiler Collection (GCC) Internals

nor STRICT_ARGUMENT_NAMING was defined, then define this macro to return
nonzero if SETUP_INCOMING_VARARGS is used, zero otherwise. Otherwise, you
should not define this macro.

10.12 Trampolines for Nested Functions

A trampoline is a small piece of code that is created at run time when the address of
a nested function is taken. It normally resides on the stack, in the stack frame of the
containing function. These macros tell GCC how to generate code to allocate and initialize
a trampoline.

The instructions in the trampoline must do two things: load a constant address into
the static chain register, and jump to the real address of the nested function. On CISC
machines such as the m68k, this requires two instructions, a move immediate and a jump.
Then the two addresses exist in the trampoline as word-long immediate operands. On RISC
machines, it is often necessary to load each address into a register in two parts. Then pieces
of each address form separate immediate operands.

The code generated to initialize the trampoline must store the variable parts—the static
chain value and the function address—into the immediate operands of the instructions. On
a CISC machine, this is simply a matter of copying each address to a memory reference at
the proper offset from the start of the trampoline. On a RISC machine, it may be necessary
to take out pieces of the address and store them separately.

TRAMPOLINE_TEMPLATE (file)
A C statement to output, on the stream file, assembler code for a block of data
that contains the constant parts of a trampoline. This code should not include
a label—the label is taken care of automatically.
If you do not define this macro, it means no template is needed for the target.
Do not define this macro on systems where the block move code to copy the
trampoline into place would be larger than the code to generate it on the spot.

TRAMPOLINE_SECTION
The name of a subroutine to switch to the section in which the trampoline
template is to be placed (see Section 10.18 [Sections], page 275). The default
is a value of ‘readonly_data_section’, which places the trampoline in the
section containing read-only data.

TRAMPOLINE_SIZE
A C expression for the size in bytes of the trampoline, as an integer.

TRAMPOLINE_ALIGNMENT
Alignment required for trampolines, in bits.
If you don’t define this macro, the value of BIGGEST_ALIGNMENT is used for
aligning trampolines.

INITIALIZE_TRAMPOLINE (addr, fnaddr, static_chain)
A C statement to initialize the variable parts of a trampoline. addr is an RTX
for the address of the trampoline; fnaddr is an RTX for the address of the
nested function; static_chain is an RTX for the static chain value that should
be passed to the function when it is called.

Chapter 10: Target Description Macros and Functions 257

TRAMPOLINE_ADJUST_ADDRESS (addr)
A C statement that should perform any machine-specific adjustment in the
address of the trampoline. Its argument contains the address that was passed
to INITIALIZE_TRAMPOLINE. In case the address to be used for a function call
should be different from the address in which the template was stored, the
different address should be assigned to addr. If this macro is not defined, addr
will be used for function calls.

ALLOCATE_TRAMPOLINE (fp)
A C expression to allocate run-time space for a trampoline. The expression
value should be an RTX representing a memory reference to the space for the
trampoline.

If this macro is not defined, by default the trampoline is allocated as a stack slot.
This default is right for most machines. The exceptions are machines where it
is impossible to execute instructions in the stack area. On such machines, you
may have to implement a separate stack, using this macro in conjunction with
TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE.

fp points to a data structure, a struct function, which describes the compi-
lation status of the immediate containing function of the function which the
trampoline is for. Normally (when ALLOCATE_TRAMPOLINE is not defined), the
stack slot for the trampoline is in the stack frame of this containing function.
Other allocation strategies probably must do something analogous with this
information.

Implementing trampolines is difficult on many machines because they have separate
instruction and data caches. Writing into a stack location fails to clear the memory in the
instruction cache, so when the program jumps to that location, it executes the old contents.

Here are two possible solutions. One is to clear the relevant parts of the instruction cache
whenever a trampoline is set up. The other is to make all trampolines identical, by having
them jump to a standard subroutine. The former technique makes trampoline execution
faster; the latter makes initialization faster.

To clear the instruction cache when a trampoline is initialized, define the following
macros which describe the shape of the cache.

INSN_CACHE_SIZE
The total size in bytes of the cache.

INSN_CACHE_LINE_WIDTH
The length in bytes of each cache line. The cache is divided into cache lines
which are disjoint slots, each holding a contiguous chunk of data fetched from
memory. Each time data is brought into the cache, an entire line is read at
once. The data loaded into a cache line is always aligned on a boundary equal
to the line size.

INSN_CACHE_DEPTH
The number of alternative cache lines that can hold any particular memory
location.

Alternatively, if the machine has system calls or instructions to clear the instruction
cache directly, you can define the following macro.

258 GNU Compiler Collection (GCC) Internals

CLEAR_INSN_CACHE (beg, end)
If defined, expands to a C expression clearing the instruction cache in the spec-
ified interval. If it is not defined, and the macro INSN_CACHE_SIZE is defined,
some generic code is generated to clear the cache. The definition of this macro
would typically be a series of asm statements. Both beg and end are both
pointer expressions.

To use a standard subroutine, define the following macro. In addition, you must make
sure that the instructions in a trampoline fill an entire cache line with identical instructions,
or else ensure that the beginning of the trampoline code is always aligned at the same point
in its cache line. Look in ‘m68k.h’ as a guide.

TRANSFER_FROM_TRAMPOLINE
Define this macro if trampolines need a special subroutine to do their work. The
macro should expand to a series of asm statements which will be compiled with
GCC. They go in a library function named __transfer_from_trampoline.

If you need to avoid executing the ordinary prologue code of a compiled C
function when you jump to the subroutine, you can do so by placing a special
label of your own in the assembler code. Use one asm statement to generate an
assembler label, and another to make the label global. Then trampolines can
use that label to jump directly to your special assembler code.

10.13 Implicit Calls to Library Routines

Here is an explanation of implicit calls to library routines.

MULSI3_LIBCALL
A C string constant giving the name of the function to call for multiplication
of one signed full-word by another. If you do not define this macro, the default
name is used, which is __mulsi3, a function defined in ‘libgcc.a’.

DIVSI3_LIBCALL
A C string constant giving the name of the function to call for division of one
signed full-word by another. If you do not define this macro, the default name
is used, which is __divsi3, a function defined in ‘libgcc.a’.

UDIVSI3_LIBCALL
A C string constant giving the name of the function to call for division of one
unsigned full-word by another. If you do not define this macro, the default
name is used, which is __udivsi3, a function defined in ‘libgcc.a’.

MODSI3_LIBCALL
A C string constant giving the name of the function to call for the remainder
in division of one signed full-word by another. If you do not define this macro,
the default name is used, which is __modsi3, a function defined in ‘libgcc.a’.

UMODSI3_LIBCALL
A C string constant giving the name of the function to call for the remainder in
division of one unsigned full-word by another. If you do not define this macro,
the default name is used, which is __umodsi3, a function defined in ‘libgcc.a’.

Chapter 10: Target Description Macros and Functions 259

MULDI3_LIBCALL
A C string constant giving the name of the function to call for multiplication of
one signed double-word by another. If you do not define this macro, the default
name is used, which is __muldi3, a function defined in ‘libgcc.a’.

DIVDI3_LIBCALL
A C string constant giving the name of the function to call for division of one
signed double-word by another. If you do not define this macro, the default
name is used, which is __divdi3, a function defined in ‘libgcc.a’.

UDIVDI3_LIBCALL
A C string constant giving the name of the function to call for division of one
unsigned full-word by another. If you do not define this macro, the default
name is used, which is __udivdi3, a function defined in ‘libgcc.a’.

MODDI3_LIBCALL
A C string constant giving the name of the function to call for the remainder in
division of one signed double-word by another. If you do not define this macro,
the default name is used, which is __moddi3, a function defined in ‘libgcc.a’.

UMODDI3_LIBCALL
A C string constant giving the name of the function to call for the remainder in
division of one unsigned full-word by another. If you do not define this macro,
the default name is used, which is __umoddi3, a function defined in ‘libgcc.a’.

DECLARE_LIBRARY_RENAMES
This macro, if defined, should expand to a piece of C code that will get expanded
when compiling functions for libgcc.a. It can be used to provide alternate names
for gce’s internal library functions if there are ABI-mandated names that the
compiler should provide.

INIT_TARGET_OPTABS
Define this macro as a C statement that declares additional library routines
renames existing ones. init_optabs calls this macro after initializing all the
normal library routines.

FLOAT_LIB_COMPARE_RETURNS_BOOL
Define this macro as a C statement that returns nonzero if a call to the floating
point comparison library function will return a boolean value that indicates
the result of the comparison. It should return zero if one of gcc’s own libgce
functions is called.

Most ports don’t need to define this macro.

TARGET_EDOM
The value of EDOM on the target machine, as a C integer constant expression.
If you don’t define this macro, GCC does not attempt to deposit the value of
EDOM into errno directly. Look in ‘/usr/include/errno.h’ to find the value
of EDOM on your system.

If you do not define TARGET_EDOM, then compiled code reports domain errors
by calling the library function and letting it report the error. If mathematical
functions on your system use matherr when there is an error, then you should
leave TARGET_EDOM undefined so that matherr is used normally.

260 GNU Compiler Collection (GCC) Internals

GEN_ERRNO_RTX
Define this macro as a C expression to create an rtl expression that refers to
the global “variable” errno. (On certain systems, errno may not actually be
a variable.) If you don’t define this macro, a reasonable default is used.

TARGET_MEM_FUNCTIONS
Define this macro if GCC should generate calls to the ISO C (and System V)
library functions memcpy, memmove and memset rather than the BSD functions
bcopy and bzero.

LIBGCC_NEEDS_DOUBLE
Define this macro if float arguments cannot be passed to library routines
(so they must be converted to double). This macro affects both how library
calls are generated and how the library routines in ‘libgcc.a’ accept their
arguments. It is useful on machines where floating and fixed point arguments
are passed differently, such as the i860.

NEXT_OBJC_RUNTIME
Define this macro to generate code for Objective-C message sending using the
calling convention of the NeXT system. This calling convention involves passing
the object, the selector and the method arguments all at once to the method-
lookup library function.

The default calling convention passes just the object and the selector to the
lookup function, which returns a pointer to the method.

10.14 Addressing Modes

This is about addressing modes.

HAVE_PRE_INCREMENT

HAVE_PRE_DECREMENT

HAVE_POST_INCREMENT

HAVE_POST_DECREMENT
A C expression that is nonzero if the machine supports pre-increment, pre-
decrement, post-increment, or post-decrement addressing respectively.

HAVE_PRE_MODIFY_DISP

HAVE_POST_MODIFY_DISP
A C expression that is nonzero if the machine supports pre- or post-address
side-effect generation involving constants other than the size of the memory
operand.

HAVE_PRE_MODIFY_REG

HAVE_POST_MODIFY_REG
A C expression that is nonzero if the machine supports pre- or post-address
side-effect generation involving a register displacement.

CONSTANT_ADDRESS_P (x)
A C expression that is 1 if the RTX x is a constant which is a valid address.
On most machines, this can be defined as CONSTANT_P (x), but a few machines
are more restrictive in which constant addresses are supported.

Chapter 10: Target Description Macros and Functions 261

CONSTANT_P accepts integer-values expressions whose values are not explicitly
known, such as symbol_ref, label_ref, and high expressions and const arith-
metic expressions, in addition to const_int and const_double expressions.

MAX_REGS_PER_ADDRESS
A number, the maximum number of registers that can appear in a valid memory
address. Note that it is up to you to specify a value equal to the maximum
number that GO_IF_LEGITIMATE_ADDRESS would ever accept.

GO_IF_LEGITIMATE_ADDRESS (mode, x, label)
A C compound statement with a conditional goto label; executed if x (an
RTX) is a legitimate memory address on the target machine for a memory
operand of mode mode.

It usually pays to define several simpler macros to serve as subroutines for this
one. Otherwise it may be too complicated to understand.

This macro must exist in two variants: a strict variant and a non-strict one. The
strict variant is used in the reload pass. It must be defined so that any pseudo-
register that has not been allocated a hard register is considered a memory
reference. In contexts where some kind of register is required, a pseudo-register
with no hard register must be rejected.

The non-strict variant is used in other passes. It must be defined to accept all
pseudo-registers in every context where some kind of register is required.

Compiler source files that want to use the strict variant of this macro define the
macro REG_OK_STRICT. You should use an #ifdef REG_OK_STRICT conditional
to define the strict variant in that case and the non-strict variant otherwise.

Subroutines to check for acceptable registers for various purposes (one for base
registers, one for index registers, and so on) are typically among the subroutines
used to define GO_IF_LEGITIMATE_ADDRESS. Then only these subroutine macros
need have two variants; the higher levels of macros may be the same whether
strict or not.

Normally, constant addresses which are the sum of a symbol_ref and an integer
are stored inside a const RTX to mark them as constant. Therefore, there is
no need to recognize such sums specifically as legitimate addresses. Normally
you would simply recognize any const as legitimate.

Usually PRINT_OPERAND_ADDRESS is not prepared to handle constant sums that
are not marked with const. It assumes that a naked plus indicates indexing.
If so, then you must reject such naked constant sums as illegitimate addresses,
so that none of them will be given to PRINT_OPERAND_ADDRESS.

On some machines, whether a symbolic address is legitimate depends on the
section that the address refers to. On these machines, define the target hook
TARGET_ENCODE_SECTION_INFO to store the information into the symbol_ref,
and then check for it here. When you see a const, you will have to look inside
it to find the symbol_ref in order to determine the section. See Section 10.20
[Assembler Format|, page 279.

The best way to modify the name string is by adding text to the beginning,
with suitable punctuation to prevent any ambiguity. Allocate the new name in

262

GNU Compiler Collection (GCC) Internals

saveable_obstack. You will have to modify ASM_OUTPUT_LABELREF to remove
and decode the added text and output the name accordingly, and define TARGET_
STRIP_NAME_ENCODING to access the original name string.

You can check the information stored here into the symbol_ref in the definitions
of the macros GO_IF_LEGITIMATE_ADDRESS and PRINT_OPERAND_ADDRESS.

REG_OK_FOR_BASE_P (x)

A C expression that is nonzero if x (assumed to be a reg RTX) is valid for use
as a base register. For hard registers, it should always accept those which the
hardware permits and reject the others. Whether the macro accepts or rejects
pseudo registers must be controlled by REG_0K_STRICT as described above. This
usually requires two variant definitions, of which REG_OK_STRICT controls the
one actually used.

REG_MODE_OK_FOR_BASE_P (x, mode)

A C expression that is just like REG_OK_FOR_BASE_P, except that that expression
may examine the mode of the memory reference in mode. You should define
this macro if the mode of the memory reference affects whether a register may
be used as a base register. If you define this macro, the compiler will use it
instead of REG_OK_FOR_BASE_P.

REG_OK_FOR_INDEX_P (x)

A C expression that is nonzero if x (assumed to be a reg RTX) is valid for use
as an index register.

The difference between an index register and a base register is that the index
register may be scaled. If an address involves the sum of two registers, neither
one of them scaled, then either one may be labeled the “base” and the other the
“index”; but whichever labeling is used must fit the machine’s constraints of
which registers may serve in each capacity. The compiler will try both labelings,
looking for one that is valid, and will reload one or both registers only if neither
labeling works.

FIND_BASE_TERM (x)

A C expression to determine the base term of address x. This macro is used in
only one place: ‘find_base_term’ in alias.c.

It is always safe for this macro to not be defined. It exists so that alias analysis
can understand machine-dependent addresses.

The typical use of this macro is to handle addresses containing a label_ref or
symbol_ref within an UNSPEC.

LEGITIMIZE_ADDRESS (x, oldx, mode, win)

A C compound statement that attempts to replace x with a valid memory
address for an operand of mode mode. win will be a C statement label elsewhere
in the code; the macro definition may use

GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
to avoid further processing if the address has become legitimate.

x will always be the result of a call to break_out_memory_refs, and oldx will
be the operand that was given to that function to produce x.

Chapter 10: Target Description Macros and Functions 263

The code generated by this macro should not alter the substructure of x. If it
transforms x into a more legitimate form, it should assign x (which will always
be a C variable) a new value.

It is not necessary for this macro to come up with a legitimate address. The
compiler has standard ways of doing so in all cases. In fact, it is safe for this
macro to do nothing. But often a machine-dependent strategy can generate
better code.

LEGITIMIZE_RELOAD_ADDRESS (x, mode, opnum, type, ind_levels, win)
A C compound statement that attempts to replace x, which is an address that
needs reloading, with a valid memory address for an operand of mode mode.
win will be a C statement label elsewhere in the code. It is not necessary to
define this macro, but it might be useful for performance reasons.

For example, on the i386, it is sometimes possible to use a single reload register
instead of two by reloading a sum of two pseudo registers into a register. On
the other hand, for number of RISC processors offsets are limited so that often
an intermediate address needs to be generated in order to address a stack slot.
By defining LEGITIMIZE_RELOAD_ADDRESS appropriately, the intermediate ad-
dresses generated for adjacent some stack slots can be made identical, and thus
be shared.

Note: This macro should be used with caution. It is necessary to know some-
thing of how reload works in order to effectively use this, and it is quite easy
to produce macros that build in too much knowledge of reload internals.

Note: This macro must be able to reload an address created by a previous
invocation of this macro. If it fails to handle such addresses then the compiler
may generate incorrect code or abort.

The macro definition should use push_reload to indicate parts that need
reloading; opnum, type and ind_levels are usually suitable to be passed un-
altered to push_reload.

The code generated by this macro must not alter the substructure of x. If
it transforms x into a more legitimate form, it should assign x (which will
always be a C variable) a new value. This also applies to parts that you change
indirectly by calling push_reload.

The macro definition may use strict_memory_address_p to test if the address
has become legitimate.

If you want to change only a part of x, one standard way of doing this is to use
copy_rtx. Note, however, that is unshares only a single level of rtl. Thus, if
the part to be changed is not at the top level, you’ll need to replace first the top
level. It is not necessary for this macro to come up with a legitimate address;
but often a machine-dependent strategy can generate better code.

GO_IF_MODE_DEPENDENT_ADDRESS (addr, label)
A C statement or compound statement with a conditional goto label; exe-
cuted if memory address x (an RTX) can have different meanings depending
on the machine mode of the memory reference it is used for or if the address is
valid for some modes but not others.

264 GNU Compiler Collection (GCC) Internals

Autoincrement and autodecrement addresses typically have mode-dependent
effects because the amount of the increment or decrement is the size of the
operand being addressed. Some machines have other mode-dependent ad-
dresses. Many RISC machines have no mode-dependent addresses.

You may assume that addr is a valid address for the machine.

LEGITIMATE_CONSTANT_P (x)
A C expression that is nonzero if x is a legitimate constant for an immediate
operand on the target machine. You can assume that x satisfies CONSTANT_P,
so you need not check this. In fact, ‘1’ is a suitable definition for this macro on
machines where anything CONSTANT_P is valid.

10.15 Condition Code Status

This describes the condition code status.

The file ‘conditions.h’ defines a variable cc_status to describe how the condition code
was computed (in case the interpretation of the condition code depends on the instruction
that it was set by). This variable contains the RTL expressions on which the condition code
is currently based, and several standard flags.

Sometimes additional machine-specific flags must be defined in the machine description
header file. It can also add additional machine-specific information by defining CC_STATUS_
MDEP.

CC_STATUS_MDEP
C code for a data type which is used for declaring the mdep component of
cc_status. It defaults to int.

This macro is not used on machines that do not use ccO.

CC_STATUS_MDEP_INIT
A C expression to initialize the mdep field to “empty”. The default definition
does nothing, since most machines don’t use the field anyway. If you want to
use the field, you should probably define this macro to initialize it.

This macro is not used on machines that do not use ccO.

NOTICE_UPDATE_CC (exp, insn)
A C compound statement to set the components of cc_status appropriately
for an insn insn whose body is exp. It is this macro’s responsibility to recognize
insns that set the condition code as a byproduct of other activity as well as
those that explicitly set (cc0).

This macro is not used on machines that do not use ccO.

If there are insns that do not set the condition code but do alter other machine
registers, this macro must check to see whether they invalidate the expressions
that the condition code is recorded as reflecting. For example, on the 68000,
insns that store in address registers do not set the condition code, which means
that usually NOTICE_UPDATE_CC can leave cc_status unaltered for such insns.
But suppose that the previous insn set the condition code based on location

Chapter 10: Target Description Macros and Functions 265

‘a4@(102)’ and the current insn stores a new value in ‘a4’. Although the con-
dition code is not changed by this, it will no longer be true that it reflects the
contents of ‘a4@(102)’. Therefore, NOTICE_UPDATE_CC must alter cc_status
in this case to say that nothing is known about the condition code value.

The definition of NOTICE_UPDATE_CC must be prepared to deal with the results
of peephole optimization: insns whose patterns are parallel RTXs containing
various reg, mem or constants which are just the operands. The RTL structure
of these insns is not sufficient to indicate what the insns actually do. What
NOTICE_UPDATE_CC should do when it sees one is just to run CC_STATUS_INIT.

A possible definition of NOTICE_UPDATE_CC is to call a function that looks at
an attribute (see Section 9.18 [Insn Attributes], page 175) named, for example,
‘cc’. This avoids having detailed information about patterns in two places, the
‘md’ file and in NOTICE_UPDATE_CC.

EXTRA_CC_MODES

Condition codes are represented in registers by machine modes of class
MODE_CC. By default, there is just one mode, CCmode, with this class. If you
need more such modes, create a file named ‘machine-modes.def’ in your
‘config/machine’ directory (see Section 5.3.9 [Anatomy of a Target Back
End], page 23), containing a list of these modes. Each entry in the list should
be a call to the macro CC. This macro takes one argument, which is the name
of the mode: it should begin with ‘CC’. Do not put quotation marks around
the name, or include the trailing ‘mode’; these are automatically added. There
should not be anything else in the file except comments.

A sample ‘machine-modes.def’ file might look like this:
CC (CC_NOOV) /* Comparison only valid if there was no overflow. */
CC (CCFP) /* Floating point comparison that cannot trap. */
CC (CCFPE) /* Floating point comparison that may trap. */
When you create this file, the macro EXTRA_CC_MODES is automatically defined

by configure, with value ‘1.

SELECT_CC_MODE (op, x, y)
Returns a mode from class MODE_CC to be used when comparison operation code
op is applied to rtx x and y. For example, on the SPARC, SELECT_CC_MODE is
defined as (see see Section 9.11 [Jump Patterns], page 160 for a description of
the reason for this definition)

#define SELECT_CC_MODE(OP,X,Y) \
(GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT
? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode)
: ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
|| GET_CODE (X) == NEG) \
? CC_NOOVmode : CCmode))

You need not define this macro if EXTRA_CC_MODES is not defined.

CANONICALIZE_COMPARISON (code, op0O, opl)
On some machines not all possible comparisons are defined, but you can convert
an invalid comparison into a valid one. For example, the Alpha does not have a
GT comparison, but you can use an LT comparison instead and swap the order
of the operands.

~ -~

266

GNU Compiler Collection (GCC) Internals

On such machines, define this macro to be a C statement to do any required
conversions. code is the initial comparison code and op0 and opl are the left
and right operands of the comparison, respectively. You should modify code,
op0, and opl as required.

GCC will not assume that the comparison resulting from this macro is valid
but will see if the resulting insn matches a pattern in the ‘md’ file.

You need not define this macro if it would never change the comparison code
or operands.

REVERSIBLE_CC_MODE (mode)

A C expression whose value is one if it is always safe to reverse a comparison
whose mode is mode. If SELECT_CC_MODE can ever return mode for a floating-
point inequality comparison, then REVERSIBLE_CC_MODE (mode) must be zero.

You need not define this macro if it would always returns zero or if the floating-
point format is anything other than TEEE_FLOAT_FORMAT. For example, here is
the definition used on the SPARC, where floating-point inequality comparisons
are always given CCFPEmode:

#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)

A C expression whose value is reversed condition code of the code for compar-
ison done in CC_MODE mode. The macro is used only in case REVERSIBLE_
CC_MODE (mode) is nonzero. Define this macro in case machine has some non-
standard way how to reverse certain conditionals. For instance in case all float-
ing point conditions are non-trapping, compiler may freely convert unordered
compares to ordered one. Then definition may look like:

#define REVERSE_CONDITION(CODE, MODE) \
((MODE) !'= CCFPmode 7 reverse_condition (CODE) \
: reverse_condition_maybe_unordered (CODE))

REVERSE_CONDEXEC_PREDICATES_P (codel, code2)

A C expression that returns true if the conditional execution predicate codel
is the inverse of code2 and vice versa. Define this to return 0 if the target has
conditional execution predicates that cannot be reversed safely. If no expansion
is specified, this macro is defined as follows:

#define REVERSE_CONDEXEC_PREDICATES_P (x, y) \
((x) == reverse_condition (y))

bool TARGET_FIXED_CONDITION_CODE_REGS (unsigned int *, [Target Hook]

unsigned int *)

On targets which do not use (cc0), and which use a hard register rather than a
pseudo-register to hold condition codes, the regular CSE passes are often not able
to identify cases in which the hard register is set to a common value. Use this hook
to enable a small pass which optimizes such cases. This hook should return true to
enable this pass, and it should set the integers to which its arguments point to the
hard register numbers used for condition codes. When there is only one such register,
as is true on most systems, the integer pointed to by the second argument should be
set to INVALID_REGNUM.

The default version of this hook returns false.

Chapter 10: Target Description Macros and Functions 267

enum machine_mode TARGET_CC_MODES_COMPATIBLE (enum [Target Hook]
machine_mode, enum machine_mode)
On targets which use multiple condition code modes in class MODE_CC, it is sometimes
the case that a comparison can be validly done in more than one mode. On such a
system, define this target hook to take two mode arguments and to return a mode
in which both comparisons may be validly done. If there is no such mode, return
VOIDmode.

The default version of this hook checks whether the modes are the same. If they are,
it returns that mode. If they are different, it returns VOIDmode.

10.16 Describing Relative Costs of Operations

These macros let you describe the relative speed of various operations on the target machine.

CONST_COSTS (x, code, outer_code)

A part of a C switch statement that describes the relative costs of constant
RTL expressions. It must contain case labels for expression codes const_int,
const, symbol_ref, label_ref and const_double. Each case must ultimately
reach a return statement to return the relative cost of the use of that kind of
constant value in an expression. The cost may depend on the precise value of
the constant, which is available for examination in x, and the rtx code of the
expression in which it is contained, found in outer_code.

code is the expression code—redundant, since it can be obtained with GET_CODE

(x).

RTX_COSTS (x, code, outer_code)
Like CONST_COSTS but applies to nonconstant RTL expressions. This can be
used, for example, to indicate how costly a multiply instruction is. In writing
this macro, you can use the construct COSTS_N_INSNS (n) to specify a cost
equal to n fast instructions. outer_code is the code of the expression in which
x is contained.

This macro is optional; do not define it if the default cost assumptions are
adequate for the target machine.

DEFAULT_RTX_COSTS (x, code, outer_code)

This macro, if defined, is called for any case not handled by the RTX_COSTS
or CONST_COSTS macros. This eliminates the need to put case labels into the
macro, but the code, or any functions it calls, must assume that the RTL in x
could be of any type that has not already been handled. The arguments are
the same as for RTX_COSTS, and the macro should execute a return statement
giving the cost of any RTL expressions that it can handle. The default cost
calculation is used for any RTL for which this macro does not return a value.

This macro is optional; do not define it if the default cost assumptions are
adequate for the target machine.

268 GNU Compiler Collection (GCC) Internals

ADDRESS_COST (address)
An expression giving the cost of an addressing mode that contains address. If
not defined, the cost is computed from the address expression and the CONST_
COSTS values.

For most CISC machines, the default cost is a good approximation of the true
cost of the addressing mode. However, on RISC machines, all instructions
normally have the same length and execution time. Hence all addresses will
have equal costs.

In cases where more than one form of an address is known, the form with the
lowest cost will be used. If multiple forms have the same, lowest, cost, the one
that is the most complex will be used.

For example, suppose an address that is equal to the sum of a register and
a constant is used twice in the same basic block. When this macro is not
defined, the address will be computed in a register and memory references will
be indirect through that register. On machines where the cost of the addressing
mode containing the sum is no higher than that of a simple indirect reference,
this will produce an additional instruction and possibly require an additional
register. Proper specification of this macro eliminates this overhead for such
machines.

Similar use of this macro is made in strength reduction of loops.

address need not be valid as an address. In such a case, the cost is not relevant
and can be any value; invalid addresses need not be assigned a different cost.

On machines where an address involving more than one register is as cheap as
an address computation involving only one register, defining ADDRESS_COST to
reflect this can cause two registers to be live over a region of code where only
one would have been if ADDRESS_COST were not defined in that manner. This
effect should be considered in the definition of this macro. Equivalent costs
should probably only be given to addresses with different numbers of registers
on machines with lots of registers.

This macro will normally either not be defined or be defined as a constant.

REGISTER_MOVE_COST (mode, from, to)
A C expression for the cost of moving data of mode mode from a register in
class from to one in class to. The classes are expressed using the enumeration
values such as GENERAL_REGS. A value of 2 is the default; other values are
interpreted relative to that.

It is not required that the cost always equal 2 when from is the same as to; on
some machines it is expensive to move between registers if they are not general
registers.

If reload sees an insn consisting of a single set between two hard registers, and
if REGISTER_MOVE_COST applied to their classes returns a value of 2, reload does
not check to ensure that the constraints of the insn are met. Setting a cost of
other than 2 will allow reload to verify that the constraints are met. You should
do this if the ‘movm’ pattern’s constraints do not allow such copying.

Chapter 10: Target Description Macros and Functions 269

MEMORY_MQOVE_COST (mode, class, in)
A C expression for the cost of moving data of mode mode between a register
of class class and memory; in is zero if the value is to be written to memory,
nonzero if it is to be read in. This cost is relative to those in REGISTER_MOVE_
COST. If moving between registers and memory is more expensive than between
two registers, you should define this macro to express the relative cost.

If you do not define this macro, GCC uses a default cost of 4 plus the cost
of copying via a secondary reload register, if one is needed. If your machine
requires a secondary reload register to copy between memory and a register of
class but the reload mechanism is more complex than copying via an interme-
diate, define this macro to reflect the actual cost of the move.

GCC defines the function memory_move_secondary_cost if secondary reloads
are needed. It computes the costs due to copying via a secondary register. If
your machine copies from memory using a secondary register in the conventional
way but the default base value of 4 is not correct for your machine, define this
macro to add some other value to the result of that function. The arguments
to that function are the same as to this macro.

BRANCH_COST
A C expression for the cost of a branch instruction. A value of 1 is the default;
other values are interpreted relative to that.

Here are additional macros which do not specify precise relative costs, but only that
certain actions are more expensive than GCC would ordinarily expect.

SLOW_BYTE_ACCESS
Define this macro as a C expression which is nonzero if accessing less than a
word of memory (i.e. a char or a short) is no faster than accessing a word of
memory, i.e., if such access require more than one instruction or if there is no
difference in cost between byte and (aligned) word loads.

When this macro is not defined, the compiler will access a field by finding the
smallest containing object; when it is defined, a fullword load will be used if
alignment permits. Unless bytes accesses are faster than word accesses, using
word accesses is preferable since it may eliminate subsequent memory access if
subsequent accesses occur to other fields in the same word of the structure, but
to different bytes.

SLOW_UNALIGNED_ACCESS (mode, alignment)
Define this macro to be the value 1 if memory accesses described by the mode
and alignment parameters have a cost many times greater than aligned accesses,
for example if they are emulated in a trap handler.

When this macro is nonzero, the compiler will act as if STRICT_ALIGNMENT were
nonzero when generating code for block moves. This can cause significantly
more instructions to be produced. Therefore, do not set this macro nonzero if
unaligned accesses only add a cycle or two to the time for a memory access.

If the value of this macro is always zero, it need not be defined. If this macro is
defined, it should produce a nonzero value when STRICT_ALIGNMENT is nonzero.

270 GNU Compiler Collection (GCC) Internals

DONT_REDUCE_ADDR
Define this macro to inhibit strength reduction of memory addresses. (On some
machines, such strength reduction seems to do harm rather than good.)

MOVE_RATIO
The threshold of number of scalar memory-to-memory move insns, below which
a sequence of insns should be generated instead of a string move insn or a library
call. Increasing the value will always make code faster, but eventually incurs
high cost in increased code size.

Note that on machines where the corresponding move insn is a define_expand
that emits a sequence of insns, this macro counts the number of such sequences.

If you don’t define this, a reasonable default is used.

MOVE_BY_PIECES_P (size, alignment)
A C expression used to determine whether move_by_pieces will be used to
copy a chunk of memory, or whether some other block move mechanism will be
used. Defaults to 1 if move_by_pieces_ninsns returns less than MOVE_RATIO.

MOVE_MAX_PIECES
A C expression used by move_by_pieces to determine the largest unit a load
or store used to copy memory is. Defaults to MOVE_MAX.

CLEAR_RATIO
The threshold of number of scalar move insns, below which a sequence of insns
should be generated to clear memory instead of a string clear insn or a library
call. Increasing the value will always make code faster, but eventually incurs
high cost in increased code size.

If you don’t define this, a reasonable default is used.
CLEAR_BY_PIECES_P (size, alignment)
A C expression used to determine whether clear_by_pieces will be used to

clear a chunk of memory, or whether some other block clear mechanism will be
used. Defaults to 1 if move_by_pieces_ninsns returns less than CLEAR_RATIO.

USE_LOAD_POST_INCREMENT (mode)
A C expression used to determine whether a load postincrement is a good thing
to use for a given mode. Defaults to the value of HAVE_POST_INCREMENT.

USE_LOAD_POST_DECREMENT (mode)
A C expression used to determine whether a load postdecrement is a good thing
to use for a given mode. Defaults to the value of HAVE_POST_DECREMENT.

USE_LOAD_PRE_INCREMENT (mode)
A C expression used to determine whether a load preincrement is a good thing
to use for a given mode. Defaults to the value of HAVE_PRE_INCREMENT.

USE_LOAD_PRE_DECREMENT (mode)
A C expression used to determine whether a load predecrement is a good thing
to use for a given mode. Defaults to the value of HAVE_PRE_DECREMENT.

USE_STORE_POST_INCREMENT (mode)
A C expression used to determine whether a store postincrement is a good thing
to use for a given mode. Defaults to the value of HAVE_POST_INCREMENT.

Chapter 10: Target Description Macros and Functions 271

USE_STORE_POST_DECREMENT (mode)
A C expression used to determine whether a store postdecrement is a good
thing to use for a given mode. Defaults to the value of HAVE_POST_DECREMENT.

USE_STORE_PRE_INCREMENT (mode)
This macro is used to determine whether a store preincrement is a good thing
to use for a given mode. Defaults to the value of HAVE_PRE_INCREMENT.

USE_STORE_PRE_DECREMENT (mode)
This macro is used to determine whether a store predecrement is a good thing
to use for a given mode. Defaults to the value of HAVE_PRE_DECREMENT.

NO_FUNCTION_CSE
Define this macro if it is as good or better to call a constant function address
than to call an address kept in a register.

NO_RECURSIVE_FUNCTION_CSE
Define this macro if it is as good or better for a function to call itself with an
explicit address than to call an address kept in a register.

10.17 Adjusting the Instruction Scheduler

The instruction scheduler may need a fair amount of machine-specific adjustment in order
to produce good code. GCC provides several target hooks for this purpose. It is usually
enough to define just a few of them: try the first ones in this list first.

int TARGET_SCHED_ISSUE_RATE (void) [Target Hook]
This hook returns the maximum number of instructions that can ever issue at the
same time on the target machine. The default is one. Although the insn scheduler
can define itself the possibility of issue an insn on the same cycle, the value can serve
as an additional constraint to issue insns on the same simulated processor cycle (see
hooks ‘TARGET_SCHED_REORDER’ and ‘TARGET_SCHED_REORDER2’). This value must be
constant over the entire compilation. If you need it to vary depending on what the
instructions are, you must use ‘TARGET_SCHED_VARIABLE_ISSUE’.

For the automaton based pipeline interface, you could define this hook to return the
value of the macro MAX_DFA_ISSUE_RATE.

int TARGET_SCHED_VARIABLE_ISSUE (FILE *file, int verbose, [Target Hook]
rtx insn, int more)

This hook is executed by the scheduler after it has scheduled an insn from the ready
list. It should return the number of insns which can still be issued in the current
cycle. Normally this is ‘more - 1’. You should define this hook if some insns take
more machine resources than others, so that fewer insns can follow them in the same
cycle. file is either a null pointer, or a stdio stream to write any debug output to.
verbose is the verbose level provided by ‘~fsched-verbose-n’. insn is the instruction
that was scheduled.

272 GNU Compiler Collection (GCC) Internals

int TARGET_SCHED_ADJUST_COST (rtx insn, rtx link, rtx [Target Hook]
dep_insn, int cost)

This function corrects the value of cost based on the relationship between insn and
dep_insn through the dependence link. It should return the new value. The default is
to make no adjustment to cost. This can be used for example to specify to the sched-
uler using the traditional pipeline description that an output- or anti-dependence does
not incur the same cost as a data-dependence. If the scheduler using the automaton
based pipeline description, the cost of anti-dependence is zero and the cost of output-
dependence is maximum of one and the difference of latency times of the first and the
second insns. If these values are not acceptable, you could use the hook to modify
them too. See also see Section 9.18.8.2 [Automaton pipeline description], page 186.

int TARGET_SCHED_ADJUST_PRIORITY (rtx insn, int priority) [Target Hook]
This hook adjusts the integer scheduling priority priority of insn. It should return
the new priority. Reduce the priority to execute insn earlier, increase the priority to
execute insn later. Do not define this hook if you do not need to adjust the scheduling
priorities of insns.

int TARGET_SCHED_REORDER (FILE *file, int verbose, rtx [Target Hook]
*ready, int *n_readyp, int clock)

This hook is executed by the scheduler after it has scheduled the ready list, to allow
the machine description to reorder it (for example to combine two small instructions
together on ‘VLIW machines). file is either a null pointer, or a stdio stream to write
any debug output to. verbose is the verbose level provided by ‘-fsched-verbose-n’.
ready is a pointer to the ready list of instructions that are ready to be scheduled.
n_readyp is a pointer to the number of elements in the ready list. The scheduler
reads the ready list in reverse order, starting with ready[*n_readyp-1] and going to
ready|[0]. clock is the timer tick of the scheduler. You may modify the ready list and
the number of ready insns. The return value is the number of insns that can issue
this cycle; normally this is just issue_rate. See also ‘TARGET_SCHED_REORDER2’.

int TARGET_SCHED_REORDER2 (FILE *file, int verbose, rtx [Target Hook]
*ready, int *n_ready, clock)

Like ‘TARGET_SCHED_REORDER’, but called at a different time. That function is called
whenever the scheduler starts a new cycle. This one is called once per iteration over
a cycle, immediately after ‘TARGET_SCHED_VARIABLE_ISSUE’; it can reorder the ready
list and return the number of insns to be scheduled in the same cycle. Defining this
hook can be useful if there are frequent situations where scheduling one insn causes
other insns to become ready in the same cycle. These other insns can then be taken
into account properly.

void TARGET_SCHED_INIT (FILE *file, int verbose, int [Target Hook]
max_ready)

This hook is executed by the scheduler at the beginning of each block of instructions
that are to be scheduled. file is either a null pointer, or a stdio stream to write
any debug output to. verbose is the verbose level provided by ‘~-fsched-verbose-n’.
max_ready is the maximum number of insns in the current scheduling region that can
be live at the same time. This can be used to allocate scratch space if it is needed,
e.g. by ‘TARGET_SCHED_REORDER’.

Chapter 10: Target Description Macros and Functions 273

void TARGET_SCHED_FINISH (FILE *file, int verbose) [Target Hook]
This hook is executed by the scheduler at the end of each block of instructions that
are to be scheduled. It can be used to perform cleanup of any actions done by the
other scheduling hooks. file is either a null pointer, or a stdio stream to write any
debug output to. verbose is the verbose level provided by ‘~fsched-verbose-n’.

int TARGET_SCHED_USE_DFA_PIPELINE_INTERFACE (void) [Target Hook]
This hook is called many times during insn scheduling. If the hook returns nonzero,
the automaton based pipeline description is used for insn scheduling. Otherwise the
traditional pipeline description is used. The default is usage of the traditional pipeline
description.

You should also remember that to simplify the insn scheduler sources an empty tra-
ditional pipeline description interface is generated even if there is no a traditional
pipeline description in the ‘.md’ file. The same is true for the automaton based
pipeline description. That means that you should be accurate in defining the hook.

int TARGET_SCHED_DFA_PRE_CYCLE_INSN (void) [Target Hook]
The hook returns an RTL insn. The automaton state used in the pipeline hazard
recognizer is changed as if the insn were scheduled when the new simulated processor
cycle starts. Usage of the hook may simplify the automaton pipeline description for
some VLIW processors. If the hook is defined, it is used only for the automaton based
pipeline description. The default is not to change the state when the new simulated
processor cycle starts.

void TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN (void) [Target Hook]
The hook can be used to initialize data used by the previous hook.

int TARGET_SCHED_DFA_POST_CYCLE_INSN (void) [Target Hook]
The hook is analogous to ‘TARGET_SCHED_DFA_PRE_CYCLE_INSN’ but used to changed
the state as if the insn were scheduled when the new simulated processor cycle finishes.

void TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN (void) [Target Hook]
The hook is analogous to ‘TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN’ but used to
initialize data used by the previous hook.

int TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD [Target Hook]
(void)

This hook controls better choosing an insn from the ready insn queue for the DFA-
based insn scheduler. Usually the scheduler chooses the first insn from the queue.
If the hook returns a positive value, an additional scheduler code tries all permu-
tations of ‘TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD ()’ subsequent
ready insns to choose an insn whose issue will result in maximal number of issued
insns on the same cycle. For the VLIW processor, the code could actually solve the
problem of packing simple insns into the VLIW insn. Of course, if the rules of VvLIW
packing are described in the automaton.

This code also could be used for superscalar RISC processors. Let us consider a
superscalar RISC processor with 3 pipelines. Some insns can be executed in pipelines
A or B, some insns can be executed only in pipelines B or C, and one insn can be

274

GNU Compiler Collection (GCC) Internals

executed in pipeline B. The processor may issue the 1st insn into A and the 2nd one
into B. In this case, the 3rd insn will wait for freeing B until the next cycle. If the
scheduler issues the 3rd insn the first, the processor could issue all 3 insns per cycle.

Actually this code demonstrates advantages of the automaton based pipeline hazard
recognizer. We try quickly and easy many insn schedules to choose the best one.

The default is no multipass scheduling.

void TARGET_SCHED_INIT_DFA_BUBBLES (void) [Target Hook]

The DFA-based scheduler could take the insertion of nop operations for better insn
scheduling into account. It can be done only if the multi-pass insn scheduling works
(&xzhook‘TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEADﬂ.

Let us consider a VLIW processor insn with 3 slots. Each insn can be placed only in one
of the three slots. We have 3 ready insns A, B, and C. A and C can be placed only in
the 1st slot, B can be placed only in the 3rd slot. We described the automaton which
does not permit empty slot gaps between insns (usually such description is simpler).
Without this code the scheduler would place each insn in 3 separate VLIW insns. If
the scheduler places a nop insn into the 2nd slot, it could place the 3 insns into 2
VLIW insns. What is the nop insn is returned by hook ‘TARGET_SCHED_DFA_BUBBLE’.
Hook ‘TARGET_SCHED_INIT_DFA_BUBBLES’ can be used to initialize or create the nop
insns.

You should remember that the scheduler does not insert the nop insns. It is not wise
because of the following optimizations. The scheduler only considers such possibility
to improve the result schedule. The nop insns should be inserted lately, e.g. on the
final phase.

rtx TARGET_SCHED_DFA_BUBBLE (int index) [Target Hook]

This hook ‘FIRST_CYCLE_MULTIPASS_SCHEDULING’ is used to insert nop operations
for better insn scheduling when DFA-based scheduler makes multipass insn scheduling
(see also description of hook ‘TARGET_SCHED_INIT_DFA_BUBBLES’). This hook returns
a nop insn with given index. The indexes start with zero. The hook should return
NULL if there are no more nop insns with indexes greater than given index.

Macros in the following table are generated by the program ‘genattr’ and can be useful
for writing the hooks.

TRADITIONAL_PIPELINE_INTERFACE

The macro definition is generated if there is a traditional pipeline description in
‘.md’ file. You should also remember that to simplify the insn scheduler sources
an empty traditional pipeline description interface is generated even if there is
no a traditional pipeline description in the ‘.md’ file. The macro can be used
to distinguish the two types of the traditional interface.

DFA_PIPELINE_INTERFACE

The macro definition is generated if there is an automaton pipeline description
in ‘.md’ file. You should also remember that to simplify the insn scheduler
sources an empty automaton pipeline description interface is generated even if
there is no an automaton pipeline description in the ‘.md’ file. The macro can
be used to distinguish the two types of the automaton interface.

Chapter 10: Target Description Macros and Functions 275

MAX_DFA_ISSUE_RATE
The macro definition is generated in the automaton based pipeline description
interface. Its value is calculated from the automaton based pipeline descrip-
tion and is equal to maximal number of all insns described in constructions
‘define_insn_reservation’ which can be issued on the same processor cycle.

10.18 Dividing the Output into Sections (Texts, Data, .. .)

An object file is divided into sections containing different types of data. In the most common
case, there are three sections: the text section, which holds instructions and read-only data;
the data section, which holds initialized writable data; and the bss section, which holds
uninitialized data. Some systems have other kinds of sections.

The compiler must tell the assembler when to switch sections. These macros control what
commands to output to tell the assembler this. You can also define additional sections.

TEXT_SECTION_ASM_OP
A C expression whose value is a string, including spacing, containing the assem-
bler operation that should precede instructions and read-only data. Normally
"\t.text" is right.

TEXT_SECTION
A C statement that switches to the default section containing instructions. Nor-
mally this is not needed, as simply defining TEXT_SECTION_ASM_OP is enough.
The MIPS port uses this to sort all functions after all data declarations.

HOT_TEXT_SECTION_NAME
If defined, a C string constant for the name of the section containing most
frequently executed functions of the program. If not defined, GCC will provide
a default definition if the target supports named sections.

UNLIKELY_EXECUTED_TEXT_SECTION_NAME
If defined, a C string constant for the name of the section containing unlikely
executed functions in the program.

DATA_SECTION_ASM_OP
A C expression whose value is a string, including spacing, containing the as-
sembler operation to identify the following data as writable initialized data.
Normally "\t.data" is right.

READONLY_DATA_SECTION_ASM_OP
A C expression whose value is a string, including spacing, containing the as-
sembler operation to identify the following data as read-only initialized data.

READONLY_DATA_SECTION
A macro naming a function to call to switch to the proper section for read-only
data. The default is to use READONLY_DATA_SECTION_ASM_OP if defined, else
fall back to text_section.
The most common definition will be data_section, if the target does not have
a special read-only data section, and does not put data in the text section.

276 GNU Compiler Collection (GCC) Internals

SHARED_SECTION_ASM_OQOP
If defined, a C expression whose value is a string, including spacing, containing
the assembler operation to identify the following data as shared data. If not
defined, DATA_SECTION_ASM_OP will be used.

BSS_SECTION_ASM_QOP
If defined, a C expression whose value is a string, including spacing, containing
the assembler operation to identify the following data as uninitialized global
data. If not defined, and neither ASM_QUTPUT_BSS nor ASM_OUTPUT_ALIGNED_
BSS are defined, uninitialized global data will be output in the data section if
‘~fno-common’ is passed, otherwise ASM_QUTPUT_COMMON will be used.

SHARED_BSS_SECTION_ASM_OP
If defined, a C expression whose value is a string, including spacing, containing
the assembler operation to identify the following data as uninitialized global
shared data. If not defined, and BSS_SECTION_ASM_OP is, the latter will be
used.

INIT_SECTION_ASM_OP
If defined, a C expression whose value is a string, including spacing, containing
the assembler operation to identify the following data as initialization code. If
not defined, GCC will assume such a section does not exist.

FINI_SECTION_ASM_OP
If defined, a C expression whose value is a string, including spacing, containing
the assembler operation to identify the following data as finalization code. If
not defined, GCC will assume such a section does not exist.

CRT_CALL_STATIC_FUNCTION (section_op, function)

If defined, an ASM statement that switches to a different section via sec-
tion_op, calls function, and switches back to the text section. This is used
in ‘crtstuff.c’ if INIT_SECTION_ASM_OP or FINI_SECTION_ASM_OP to calls to
initialization and finalization functions from the init and fini sections. By de-
fault, this macro uses a simple function call. Some ports need hand-crafted
assembly code to avoid dependencies on registers initialized in the function
prologue or to ensure that constant pools don’t end up too far way in the text
section.

FORCE_CODE_SECTION_ALIGN
If defined, an ASM statement that aligns a code section to some arbitrary
boundary. This is used to force all fragments of the .init and .fini sections
to have to same alignment and thus prevent the linker from having to add any
padding.

EXTRA_SECTIONS
A list of names for sections other than the standard two, which are in_text and
in_data. You need not define this macro on a system with no other sections

(that GCC needs to use).

Chapter 10: Target Description Macros and Functions 277

EXTRA_SECTION_FUNCTIONS
One or more functions to be defined in ‘varasm.c’. These functions should do
jobs analogous to those of text_section and data_section, for your additional
sections. Do not define this macro if you do not define EXTRA_SECTIONS.

JUMP_TABLES_IN_TEXT_SECTION
Define this macro to be an expression with a nonzero value if jump tables (for
tablejump insns) should be output in the text section, along with the assembler
instructions. Otherwise, the readonly data section is used.

This macro is irrelevant if there is no separate readonly data section.

void TARGET_ASM_SELECT_SECTION (tree exp, int reloc, [Target Hook]
unsigned HOST_WIDE_INT align)

Switches to the appropriate section for output of exp. You can assume that exp is
either a VAR_DECL node or a constant of some sort. reloc indicates whether the initial
value of exp requires link-time relocations. Bit 0 is set when variable contains local
relocations only, while bit 1 is set for global relocations. Select the section by calling
data_section or one of the alternatives for other sections. align is the constant
alignment in bits.

The default version of this function takes care of putting read-only variables in
readonly_data_section.

void TARGET_ASM_UNIQUE_SECTION (tree decl, int reloc) [Target Hook]
Build up a unique section name, expressed as a STRING_CST node, and assign it
to ‘DECL_SECTION_NAME (decl)’. As with TARGET_ASM_SELECT_SECTION, reloc indi-
cates whether the initial value of exp requires link-time relocations.
The default version of this function appends the symbol name to the ELF section
name that would normally be used for the symbol. For example, the function foo
would be placed in .text.foo. Whatever the actual target object format, this is
often good enough.

void TARGET_ASM_SELECT_RTX_SECTION (enum machine_mode [Target Hook]
mode, rtx x, unsigned HOST_WIDE_INT align)

Switches to the appropriate section for output of constant pool entry x in mode. You
can assume that x is some kind of constant in RTL. The argument mode is redundant
except in the case of a const_int rtx. Select the section by calling readonly_data_
section or one of the alternatives for other sections. align is the constant alignment
in bits.
The default version of this function takes care of putting symbolic constants in flag_
pic mode in data_section and everything else in readonly_data_section.

void TARGET_ENCODE_SECTION_INFO (tree decl, int new_decl_p) [Target Hook]

Define this hook if references to a symbol or a constant must be treated differently
depending on something about the variable or function named by the symbol (such
as what section it is in).

The hook is executed under two circumstances. One is immediately after the rtl for

decl that represents a variable or a function has been created and stored in DECL_
RTL(decl). The value of the rtl will be a mem whose address is a symbol_ref. The

278 GNU Compiler Collection (GCC) Internals

other is immediately after the rtl for decl that represents a constant has been created
and stored in TREE_CST_RTL (decl). The macro is called once for each distinct
constant in a source file.

The new_decl_p argument will be true if this is the first time that ENCODE_SECTION_
INFO has been invoked on this decl. It will be false for subsequent invocations, which
will happen for duplicate declarations. Whether or not anything must be done for
the duplicate declaration depends on whether the hook examines DECL._ATTRIBUTES.
The usual thing for this hook to do is to record a flag in the symbol_ref (such as
SYMBOL_REF_FLAG) or to store a modified name string in the symbol_ref (if one bit
is not enough information).

const char *TARGET_STRIP_NAME_ENCODING (const char *name) [Target Hook]
Decode name and return the real name part, sans the characters that TARGET_ENCODE _
SECTION_INFO may have added.

bool TARGET_IN_SMALL_DATA_P (tree exp) [Target Hook]
Returns true if exp should be placed into a “small data” section. The default version
of this hook always returns false.

Target Hook bool TARGET_HAVE_SRODATA_SECTION [Variable]
Contains the value true if the target places read-only “small data” into a separate
section. The default value is false.

bool TARGET_BINDS_LOCAL_P (tree exp) [Target Hook]
Returns true if exp names an object for which name resolution rules must resolve to
the current “module” (dynamic shared library or executable image).
The default version of this hook implements the name resolution rules for ELF, which
has a looser model of global name binding than other currently supported object file

formats.

Target Hook bool TARGET_HAVE_TLS [Variable]
Contains the value true if the target supports thread-local storage. The default value
is false.

10.19 Position Independent Code

This section describes macros that help implement generation of position independent code.
Simply defining these macros is not enough to generate valid PIC; you must also add sup-
port to the macros GO_IF_LEGITIMATE_ADDRESS and PRINT_OPERAND_ADDRESS, as well as
LEGITIMIZE_ADDRESS. You must modify the definition of ‘movsi’ to do something appro-
priate when the source operand contains a symbolic address. You may also need to alter
the handling of switch statements so that they use relative addresses.

PIC_OFFSET_TABLE_REGNUM
The register number of the register used to address a table of static data ad-
dresses in memory. In some cases this register is defined by a processor’s “appli-
cation binary interface” (ABI). When this macro is defined, RTL is generated
for this register once, as with the stack pointer and frame pointer registers. If

Chapter 10: Target Description Macros and Functions 279

this macro is not defined, it is up to the machine-dependent files to allocate
such a register (if necessary). Note that this register must be fixed when in use
(e.g. when flag_pic is true).

PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
Define this macro if the register defined by PIC_OFFSET_TABLE_REGNUM is clob-
bered by calls. Do not define this macro if PIC_OFFSET_TABLE_REGNUM is not
defined.

FINALIZE_PIC
By generating position-independent code, when two different programs (A and
B) share a common library (libC.a), the text of the library can be shared
whether or not the library is linked at the same address for both programs.
In some of these environments, position-independent code requires not only the
use of different addressing modes, but also special code to enable the use of
these addressing modes.

The FINALIZE_PIC macro serves as a hook to emit these special codes once the
function is being compiled into assembly code, but not before. (It is not done
before, because in the case of compiling an inline function, it would lead to
multiple PIC prologues being included in functions which used inline functions
and were compiled to assembly language.)

LEGITIMATE_PIC_OPERAND_P (x)
A C expression that is nonzero if x is a legitimate immediate operand on the
target machine when generating position independent code. You can assume
that x satisfies CONSTANT_P, so you need not check this. You can also assume
flag_pic is true, so you need not check it either. You need not define this
macro if all constants (including SYMBOL_REF) can be immediate operands when
generating position independent code.

10.20 Defining the Output Assembler Language

This section describes macros whose principal purpose is to describe how to write instruc-
tions in assembler language—rather than what the instructions do.

10.20.1 The Overall Framework of an Assembler File

This describes the overall framework of an assembler file.

ASM_FILE_START (stream)
A C expression which outputs to the stdio stream stream some appropriate text
to go at the start of an assembler file.

Normally this macro is defined to output a line containing ‘#NO_APP’, which is
a comment that has no effect on most assemblers but tells the GNU assembler
that it can save time by not checking for certain assembler constructs.

On systems that use SDB, it is necessary to output certain commands; see
‘attasm.h’.

280 GNU Compiler Collection (GCC) Internals

ASM_FILE_END (stream)
A C expression which outputs to the stdio stream stream some appropriate text
to go at the end of an assembler file.

If this macro is not defined, the default is to output nothing special at the end
of the file. Most systems don’t require any definition.

On systems that use SDB, it is necessary to output certain commands; see
‘attasm.h’.

ASM_COMMENT_START
A C string constant describing how to begin a comment in the target assembler
language. The compiler assumes that the comment will end at the end of the
line.

ASM_APP_ON
A C string constant for text to be output before each asm statement or group
of consecutive ones. Normally this is "#APP", which is a comment that has no
effect on most assemblers but tells the GNU assembler that it must check the
lines that follow for all valid assembler constructs.

ASM_APP_QOFF
A C string constant for text to be output after each asm statement or group of
consecutive ones. Normally this is "#NO_APP", which tells the GNU assembler to
resume making the time-saving assumptions that are valid for ordinary compiler
output.

ASM_QUTPUT_SOURCE_FILENAME (stream, name)
A C statement to output COFF information or DWARF debugging information
which indicates that filename name is the current source file to the stdio stream
stream.

This macro need not be defined if the standard form of output for the file format
in use is appropriate.

OUTPUT_QUOTED_STRING (stream, string)
A C statement to output the string string to the stdio stream stream. If you
do not call the function output_quoted_string in your config files, GCC will
only call it to output filenames to the assembler source. So you can use it to
canonicalize the format of the filename using this macro.

ASM_QUTPUT_SOURCE_LINE (stream, line)
A C statement to output DBX or SDB debugging information before code for
line number line of the current source file to the stdio stream stream.

This macro need not be defined if the standard form of debugging information
for the debugger in use is appropriate.

ASM_OUTPUT_IDENT (stream, string)
A C statement to output something to the assembler file to handle a ‘#ident’
directive containing the text string. If this macro is not defined, nothing is
output for a ‘#ident’ directive.

Chapter 10: Target Description Macros and Functions 281

0BJC_PROLOGUE
A C statement to output any assembler statements which are required to pre-
cede any Objective-C object definitions or message sending. The statement is
executed only when compiling an Objective-C program.

void TARGET_ASM_NAMED_SECTION (const char *name, unsigned [Target Hook]
int flags, unsigned int align)

Output assembly directives to switch to section name. The section should have at-
tributes as specified by flags, which is a bit mask of the SECTION_* flags defined in
‘output.h’. If align is nonzero, it contains an alignment in bytes to be used for the
section, otherwise some target default should be used. Only targets that must specify
an alignment within the section directive need pay attention to align — we will still
use ASM_OUTPUT_ALIGN.

bool TARGET_HAVE_NAMED_SECTIONS [Target Hook]
This flag is true if the target supports TARGET_ASM_NAMED_SECTION.

unsigned int TARGET_SECTION_TYPE_FLAGS (tree decl, const [Target Hook]
char *name, int reloc)

Choose a set of section attributes for use by TARGET_ASM_NAMED_SECTION based on

a variable or function decl, a section name, and whether or not the declaration’s

initializer may contain runtime relocations. decl may be null, in which case read-
write data should be assumed.

The default version if this function handles choosing code vs data, read-only vs read-
write data, and flag_pic. You should only need to override this if your target has
special flags that might be set via __attribute__.

10.20.2 Output of Data

TARGET_ASM_BYTE_QOP

TARGET_ASM_ALIGNED_HI_QOP
TARGET_ASM_ALIGNED_SI_QOP Target Hook
TARGET_ASM_ALIGNED_DI_OP Target Hook

const char []
[|

-

TARGET_ASM_ALIGNED_TI_OP [Target Hook]
[|

[|

[]

]

const char
const char
const char
const char
const char

Target Hook
Target Hook

TARGET_ASM_UNALIGNED_HI_OP Target Hook

const char * TARGET_ASM_UNALIGNED_SI_OP Target Hook

const char * TARGET_ASM_UNALIGNED_DI_OP Target Hook

const char * TARGET_ASM_UNALIGNED_TI_OP [Target Hook
These hooks specify assembly directives for creating certain kinds of integer object.
The TARGET_ASM_BYTE_OP directive creates a byte-sized object, the TARGET_ASM_
ALIGNED_HI_OP one creates an aligned two-byte object, and so on. Any of the hooks
may be NULL, indicating that no suitable directive is available.

* X X X ¥ X ¥ *

The compiler will print these strings at the start of a new line, followed immediately by
the object’s initial value. In most cases, the string should contain a tab, a pseudo-op,
and then another tab.

282 GNU Compiler Collection (GCC) Internals

bool TARGET_ASM_INTEGER (rtx x, unsigned int size, int [Target Hook]
aligned_p)
The assemble_integer function uses this hook to output an integer object. x is the
object’s value, size is its size in bytes and aligned_p indicates whether it is aligned.
The function should return true if it was able to output the object. If it returns false,
assemble_integer will try to split the object into smaller parts.

The default implementation of this hook will use the TARGET_ASM_BYTE_QP family of
strings, returning false when the relevant string is NULL.

OUTPUT_ADDR_CONST_EXTRA (stream, x, fail)
A C statement to recognize rtx patterns that output_addr_const can’t deal
with, and output assembly code to stream corresponding to the pattern x. This
may be used to allow machine-dependent UNSPECs to appear within constants.

If OUTPUT_ADDR_CONST_EXTRA fails to recognize a pattern, it must goto fail, so
that a standard error message is printed. If it prints an error message itself, by
calling, for example, output_operand_lossage, it may just complete normally.

ASM_QOUTPUT_ASCII (stream, ptr, len)
A C statement to output to the stdio stream stream an assembler instruction
to assemble a string constant containing the len bytes at ptr. ptr will be a C
expression of type char * and len a C expression of type int.

If the assembler has a .ascii pseudo-op as found in the Berkeley Unix assem-
bler, do not define the macro ASM_OUTPUT_ASCII.

ASM_QUTPUT_FDESC (stream, decl, n)
A C statement to output word n of a function descriptor for decl. This must
be defined if TARGET_VTABLE_USES_DESCRIPTORS is defined, and is otherwise
unused.

CONSTANT_POOL_BEFORE_FUNCTION
You may define this macro as a C expression. You should define the expression
to have a nonzero value if GCC should output the constant pool for a function
before the code for the function, or a zero value if GCC should output the
constant pool after the function. If you do not define this macro, the usual
case, GCC will output the constant pool before the function.

ASM_OUTPUT_POOL_PROLOGUE (file, funname, fundecl, size)
A C statement to output assembler commands to define the start of the constant
pool for a function. funname is a string giving the name of the function. Should
the return type of the function be required, it can be obtained via fundecl. size
is the size, in bytes, of the constant pool that will be written immediately after
this call.

If no constant-pool prefix is required, the usual case, this macro need not be
defined.

ASM_OUTPUT_SPECIAL_POOL_ENTRY (file, x, mode, align, labelno, jumpto)
A C statement (with or without semicolon) to output a constant in the constant
pool, if it needs special treatment. (This macro need not do anything for RTL
expressions that can be output normally.)

Chapter 10: Target Description Macros and Functions 283

The argument file is the standard I/O stream to output the assembler code on.
x is the RTL expression for the constant to output, and mode is the machine
mode (in case x is a ‘const_int’). align is the required alignment for the value
x; you should output an assembler directive to force this much alignment.

The argument labelno is a number to use in an internal label for the address of
this pool entry. The definition of this macro is responsible for outputting the
label definition at the proper place. Here is how to do this:

ASM_OUTPUT_INTERNAL_LABEL (file, "LC", labelno);

When you output a pool entry specially, you should end with a goto to the label
jumpto. This will prevent the same pool entry from being output a second time
in the usual manner.

You need not define this macro if it would do nothing.

CONSTANT_AFTER_FUNCTION_P (exp)
Define this macro as a C expression which is nonzero if the constant exp, of
type tree, should be output after the code for a function. The compiler will
normally output all constants before the function; you need not define this
macro if this is OK.

ASM_QUTPUT_POOL_EPILOGUE (file funname fundecl size)
A C statement to output assembler commands to at the end of the constant
pool for a function. funname is a string giving the name of the function. Should
the return type of the function be required, you can obtain it via fundecl. size
is the size, in bytes, of the constant pool that GCC wrote immediately before
this call.

If no constant-pool epilogue is required, the usual case, you need not define this
macro.

IS_ASM_LOGICAL_LINE_SEPARATOR (C)
Define this macro as a C expression which is nonzero if C is used as a logical
line separator by the assembler.

(3]

If you do not define this macro, the default is that only the character ;’ is
treated as a logical line separator.

const char * TARGET_ASM_OPEN_PAREN [Target Hook]

const char * TARGET_ASM_CLOSE_PAREN [Target Hook]
These target hooks are C string constants, describing the syntax in the assembler for
grouping arithmetic expressions. If not overridden, they default to normal parenthe-
ses, which is correct for most assemblers.

These macros are provided by ‘real.h’ for writing the definitions of ASM_OUTPUT_DOUBLE
and the like:

REAL_VALUE_TO_TARGET_SINGLE (x, 1)

REAL_VALUE_TO_TARGET_DOUBLE (x, 1)

REAL_VALUE_TO_TARGET_LONG_DOUBLE (x, 1)
These translate x, of type REAL_VALUE_TYPE, to the target’s floating point rep-
resentation, and store its bit pattern in the variable I. For REAL_VALUE_TO_
TARGET_SINGLE, this variable should be a simple long int. For the others, it

284 GNU Compiler Collection (GCC) Internals

should be an array of long int. The number of elements in this array is deter-
mined by the size of the desired target floating point data type: 32 bits of it go
in each long int array element. Each array element holds 32 bits of the result,
even if long int is wider than 32 bits on the host machine.

The array element values are designed so that you can print them out using
fprintf in the order they should appear in the target machine’s memory.

10.20.3 Output of Uninitialized Variables

Each of the macros in this section is used to do the whole job of outputting a single
uninitialized variable.

ASM_OUTPUT_COMMON (stream, name, size, rounded)
A C statement (sans semicolon) to output to the stdio stream stream the as-
sembler definition of a common-label named name whose size is size bytes. The
variable rounded is the size rounded up to whatever alignment the caller wants.

Use the expression assemble_name (stream, name) to output the name itself;
before and after that, output the additional assembler syntax for defining the
name, and a newline.

This macro controls how the assembler definitions of uninitialized common
global variables are output.

ASM_QUTPUT_ALIGNED_COMMON (stream, name, size, alignment)
Like ASM_OUTPUT_COMMON except takes the required alignment as a separate,
explicit argument. If you define this macro, it is used in place of ASM_OUTPUT_
COMMON, and gives you more flexibility in handling the required alignment of
the variable. The alignment is specified as the number of bits.

ASM_QUTPUT_ALIGNED_DECL_COMMON (stream, decl, name, size, alignment)
Like ASM_OUTPUT_ALIGNED_COMMON except that decl of the variable to be out-
put, if there is one, or NULL_TREE if there is no corresponding variable. If you
define this macro, GCC will use it in place of both ASM_OUTPUT_COMMON and
ASM_QUTPUT_ALIGNED_COMMON. Define this macro when you need to see the
variable’s decl in order to chose what to output.

ASM_QOUTPUT_SHARED_COMMON (stream, name, size, rounded)
If defined, it is similar to ASM_OUTPUT_COMMON, except that it is used when name
is shared. If not defined, ASM_OUTPUT_COMMON will be used.

ASM_QUTPUT_BSS (stream, decl, name, size, rounded)
A C statement (sans semicolon) to output to the stdio stream stream the as-
sembler definition of uninitialized global decl named name whose size is size
bytes. The variable rounded is the size rounded up to whatever alignment the
caller wants.

Try to use function asm_output_bss defined in ‘varasm.c’ when defining this
macro. If unable, use the expression assemble_name (stream, name) to output
the name itself; before and after that, output the additional assembler syntax
for defining the name, and a newline.

Chapter 10: Target Description Macros and Functions 285

This macro controls how the assembler definitions of uninitialized global
variables are output. This macro exists to properly support languages like
C++ which do not have common data. However, this macro currently is not
defined for all targets. If this macro and ASM_OUTPUT_ALIGNED_BSS are
not defined then ASM_OUTPUT_COMMON or ASM_OUTPUT_ALIGNED_COMMON or
ASM_QUTPUT_ALIGNED_DECL_COMMON is used.

ASM_QUTPUT_ALIGNED_BSS (stream, decl, name, size, alignment)
Like ASM_OUTPUT_BSS except takes the required alignment as a separate, explicit
argument. If you define this macro, it is used in place of ASM_0OUTPUT_BSS, and
gives you more flexibility in handling the required alignment of the variable.
The alignment is specified as the number of bits.

Try to use function asm_output_aligned_bss defined in file ‘varasm.c’ when
defining this macro.

ASM_OUTPUT_SHARED_BSS (stream, decl, name, size, rounded)
If defined, it is similar to ASM_OUTPUT_BSS, except that it is used when name
is shared. If not defined, ASM_OUTPUT_BSS will be used.

ASM_OUTPUT_LOCAL (stream, name, size, rounded)
A C statement (sans semicolon) to output to the stdio stream stream the as-
sembler definition of a local-common-label named name whose size is size bytes.
The variable rounded is the size rounded up to whatever alignment the caller
wants.

Use the expression assemble_name (stream, name) to output the name itself;
before and after that, output the additional assembler syntax for defining the
name, and a newline.

This macro controls how the assembler definitions of uninitialized static vari-
ables are output.

ASM_OUTPUT_ALIGNED_LOCAL (stream, name, size, alignment)
Like ASM_OUTPUT_LOCAL except takes the required alignment as a separate,
explicit argument. If you define this macro, it is used in place of ASM_OUTPUT_
LOCAL, and gives you more flexibility in handling the required alignment of the
variable. The alignment is specified as the number of bits.

ASM_OUTPUT_ALIGNED_DECL_LOCAL (stream, decl, name, size, alignment)
Like ASM_OUTPUT_ALIGNED_DECL except that decl of the variable to be output,
if there is one, or NULL_TREE if there is no corresponding variable. If you define
this macro, GCC will use it in place of both ASM_QUTPUT_DECL and ASM_OUTPUT_
ALIGNED_DECL. Define this macro when you need to see the variable’s decl in
order to chose what to output.

ASM_QOUTPUT_SHARED_LOCAL (stream, name, size, rounded)
If defined, it is similar to ASM_OUTPUT_LOCAL, except that it is used when name
is shared. If not defined, ASM_OUTPUT_LOCAL will be used.

10.20.4 Output and Generation of Labels

This is about outputting labels.

286 GNU Compiler Collection (GCC) Internals

ASM_QUTPUT_LABEL (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream the as-
sembler definition of a label named name. Use the expression assemble_name
(stream, name) to output the name itself; before and after that, output the
additional assembler syntax for defining the name, and a newline. A default
definition of this macro is provided which is correct for most systems.

SIZE_ASM_OP
A C string containing the appropriate assembler directive to specify the size of
a symbol, without any arguments. On systems that use ELF, the default (in
‘config/elfos.h’) is ‘"\t.size\t"’; on other systems, the default is not to
define this macro.

Define this macro only if it is correct to use the default definitions of ASM_
OUTPUT_SIZE_DIRECTIVE and ASM_QUTPUT_MEASURED_SIZE for your system. If
you need your own custom definitions of those macros, or if you do not need
explicit symbol sizes at all, do not define this macro.

ASM_QUTPUT_SIZE_DIRECTIVE (stream, name, size)
A C statement (sans semicolon) to output to the stdio stream stream a directive
telling the assembler that the size of the symbol name is size. size is a HOST_
WIDE_INT. If you define SIZE_ASM_OP, a default definition of this macro is
provided.

ASM_QUTPUT_MEASURED_SIZE (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream a directive
telling the assembler to calculate the size of the symbol name by subtracting
its address from the current address.

If you define SIZE_ASM_OP, a default definition of this macro is provided. The
default assumes that the assembler recognizes a special ‘.’ symbol as referring to
the current address, and can calculate the difference between this and another
symbol. If your assembler does not recognize ‘.’ or cannot do calculations with
it, you will need to redefine ASM_OUTPUT_MEASURED_SIZE to use some other
technique.

TYPE_ASM_OP
A C string containing the appropriate assembler directive to specify the type
of a symbol, without any arguments. On systems that use ELF, the default
(in ‘config/elfos.h’) is ‘"\t.type\t"’; on other systems, the default is not
to define this macro.

Define this macro only if it is correct to use the default definition of ASM_
OUTPUT_TYPE_DIRECTIVE for your system. If you need your own custom defi-
nition of this macro, or if you do not need explicit symbol types at all, do not
define this macro.

TYPE_OPERAND_FMT
A C string which specifies (using printf syntax) the format of the second
operand to TYPE_ASM_OP. On systems that use ELF, the default (in
‘config/elfos.h’) is ‘"@%s"’; on other systems, the default is not to define
this macro.

Chapter 10: Target Description Macros and Functions 287

Define this macro only if it is correct to use the default definition of ASM_
OUTPUT_TYPE_DIRECTIVE for your system. If you need your own custom defi-
nition of this macro, or if you do not need explicit symbol types at all, do not
define this macro.

ASM_OUTPUT_TYPE_DIRECTIVE (stream, type)
A C statement (sans semicolon) to output to the stdio stream stream a directive
telling the assembler that the type of the symbol name is type. type is a C
string; currently, that string is always either ‘"function"’ or ‘"object"’, but
you should not count on this.

If you define TYPE_ASM_0OP and TYPE_OPERAND_FMT, a default definition of this
macro is provided.

ASM_DECLARE_FUNCTION_NAME (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream stream any text
necessary for declaring the name name of a function which is being defined.
This macro is responsible for outputting the label definition (perhaps using
ASM_OUTPUT_LABEL). The argument decl is the FUNCTION_DECL tree node rep-
resenting the function.

If this macro is not defined, then the function name is defined in the usual
manner as a label (by means of ASM_OUTPUT_LABEL).

You may wish to use ASM_OUTPUT_TYPE_DIRECTIVE in the definition of this
macro.

ASM_DECLARE_FUNCTION_SIZE (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream stream any text
necessary for declaring the size of a function which is being defined. The argu-
ment name is the name of the function. The argument decl is the FUNCTION_
DECL tree node representing the function.

If this macro is not defined, then the function size is not defined.

You may wish to use ASM_OUTPUT_MEASURED_SIZE in the definition of this
macro.

ASM_DECLARE_OBJECT_NAME (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream stream any text
necessary for declaring the name name of an initialized variable which is being
defined. This macro must output the label definition (perhaps using ASM_
OUTPUT_LABEL). The argument decl is the VAR_DECL tree node representing the
variable.

If this macro is not defined, then the variable name is defined in the usual
manner as a label (by means of ASM_OUTPUT_LABEL).

You may wish to use ASM_QUTPUT_TYPE_DIRECTIVE and/or ASM_OUTPUT_SIZE_
DIRECTIVE in the definition of this macro.

ASM_DECLARE_CONSTANT_NAME (stream, name, exp, size)
A C statement (sans semicolon) to output to the stdio stream stream any text
necessary for declaring the name name of a constant which is being defined.
This macro is responsible for outputting the label definition (perhaps using

288

GNU Compiler Collection (GCC) Internals

ASM_OUTPUT_LABEL). The argument exp is the value of the constant, and size
is the size of the constant in bytes. name will be an internal label.

If this macro is not defined, then the name is defined in the usual manner as a
label (by means of ASM_OUTPUT_LABEL).

You may wish to use ASM_OUTPUT_TYPE_DIRECTIVE in the definition of this
macro.

ASM_DECLARE_REGISTER_GLOBAL (stream, decl, regno, name)

A C statement (sans semicolon) to output to the stdio stream stream any text
necessary for claiming a register regno for a global variable decl with name
name.

If you don’t define this macro, that is equivalent to defining it to do nothing.

ASM_FINISH_DECLARE_OBJECT (stream, decl, toplevel, atend)

A C statement (sans semicolon) to finish up declaring a variable name once
the compiler has processed its initializer fully and thus has had a chance to
determine the size of an array when controlled by an initializer. This is used on
systems where it’s necessary to declare something about the size of the object.

If you don’t define this macro, that is equivalent to defining it to do nothing.

You may wish to use ASM_OUTPUT_SIZE_DIRECTIVE and/or ASM_OUTPUT_
MEASURED_SIZE in the definition of this macro.

void TARGET_ASM_GLOBALIZE_LABEL (FILE *stream, const char [Target Hook]

*name)

This target hook is a function to output to the stdio stream stream some commands
that will make the label name global; that is, available for reference from other files.

The default implementation relies on a proper definition of GLOBAL_ASM_OP.

ASM_WEAKEN_LABEL (stream, name)

A C statement (sans semicolon) to output to the stdio stream stream some
commands that will make the label name weak; that is, available for reference
from other files but only used if no other definition is available. Use the ex-
pression assemble_name (stream, name) to output the name itself; before and
after that, output the additional assembler syntax for making that name weak,
and a newline.

If you don’t define this macro or ASM_WEAKEN_DECL, GCC will not support weak
symbols and you should not define the SUPPORTS_WEAK macro.

ASM_WEAKEN_DECL (stream, decl, name, value)

Combines (and replaces) the function of ASM_WEAKEN_LABEL and ASM_OUTPUT_
WEAK_ALTIAS, allowing access to the associated function or variable decl. If
value is not NULL, this C statement should output to the stdio stream stream
assembler code which defines (equates) the weak symbol name to have the value
value. If value is NULL, it should output commands to make name weak.

SUPPORTS_WEAK

A C expression which evaluates to true if the target supports weak symbols.

Chapter 10: Target Description Macros and Functions 289

If you don’t define this macro, ‘defaults.h’ provides a default definition. If
either ASM_WEAKEN_LABEL or ASM_WEAKEN_DECL is defined, the default definition
is ‘1’; otherwise, it is ‘0’. Define this macro if you want to control weak symbol
support with a compiler flag such as ‘-melf’.

MAKE_DECL_ONE_ONLY
A C statement (sans semicolon) to mark decl to be emitted as a public symbol
such that extra copies in multiple translation units will be discarded by the
linker. Define this macro if your object file format provides support for this
concept, such as the ‘COMDAT’ section flags in the Microsoft Windows PE/COFF
format, and this support requires changes to decl, such as putting it in a separate
section.

SUPPORTS_ONE_ONLY
A C expression which evaluates to true if the target supports one-only seman-
tics.

If you don’t define this macro, ‘varasm.c’ provides a default definition. If MAKE_
DECL_ONE_ONLY is defined, the default definition is ‘1’; otherwise, it is ‘0’. Define
this macro if you want to control one-only symbol support with a compiler flag,
or if setting the DECL_ONE_ONLY flag is enough to mark a declaration to be
emitted as one-only.

void TARGET_ASM_ASSEMBLE_VISIBILITY (tree decl, [Target Hook]
const char *visibility)
This target hook is a function to output to asm_out_file some commands
that will make the symbol(s) associated with decl have hidden, protected
or internal visibility as specified by visibility.

ASM_QUTPUT_EXTERNAL (stream, decl, name)
A C statement (sans semicolon) to output to the stdio stream stream any text
necessary for declaring the name of an external symbol named name which is
referenced in this compilation but not defined. The value of decl is the tree
node for the declaration.

This macro need not be defined if it does not need to output anything. The
GNU assembler and most Unix assemblers don’t require anything.

ASM_OUTPUT_EXTERNAL_LIBCALL (stream, symref)
A C statement (sans semicolon) to output on stream an assembler pseudo-op
to declare a library function name external. The name of the library function
is given by symref, which has type rtx and is a symbol_ref.

This macro need not be defined if it does not need to output anything. The
GNU assembler and most Unix assemblers don’t require anything.

ASM_OUTPUT_LABELREF (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream a reference
in assembler syntax to a label named name. This should add ‘_’ to the front
of the name, if that is customary on your operating system, as it is in most
Berkeley Unix systems. This macro is used in assemble_name.

290 GNU Compiler Collection (GCC) Internals

ASM_QOUTPUT_SYMBOL_REF (stream, sym)
A C statement (sans semicolon) to output a reference to SYMBOL_REF sym. If
not defined, assemble_name will be used to output the name of the symbol.
This macro may be used to modify the way a symbol is referenced depending
on information encoded by TARGET_ENCODE_SECTION_INFO.

ASM_OUTPUT_LABEL_REF (stream, buf)
A C statement (sans semicolon) to output a reference to buf, the result of ASM_
GENERATE_INTERNAL_LABEL. If not defined, assemble_name will be used to
output the name of the symbol. This macro is not used by output_asm_label,
or the %1 specifier that calls it; the intention is that this macro should be set
when it is necessary to output a label differently when its address is being taken.

ASM_OUTPUT_INTERNAL_LABEL (stream, prefix, num)
A C statement to output to the stdio stream stream a label whose name is
made from the string prefix and the number num.

It is absolutely essential that these labels be distinct from the labels used for
user-level functions and variables. Otherwise, certain programs will have name
conflicts with internal labels.

It is desirable to exclude internal labels from the symbol table of the object file.
Most assemblers have a naming convention for labels that should be excluded;
on many systems, the letter ‘L’ at the beginning of a label has this effect. You
should find out what convention your system uses, and follow it.

The usual definition of this macro is as follows:

fprintf (stream, "LYs%d:\n", prefix, num)

ASM_QUTPUT_DEBUG_LABEL (stream, prefix, num)
A C statement to output to the stdio stream stream a debug info label whose
name is made from the string prefix and the number num. This is useful for
VLIW targets, where debug info labels may need to be treated differently than
branch target labels. On some systems, branch target labels must be at the
beginning of instruction bundles, but debug info labels can occur in the middle
of instruction bundles.

If this macro is not defined, then ASM_OUTPUT_INTERNAL_LABEL will be used.

ASM_GENERATE_INTERNAL_LABEL (string, prefix, num)
A C statement to store into the string string a label whose name is made from
the string prefix and the number num.

This string, when output subsequently by assemble_name, should produce the
output that ASM_OUTPUT_INTERNAL_LABEL would produce with the same prefix
and num.

If the string begins with ‘*’, then assemble_name will output the rest of the
string unchanged. It is often convenient for ASM_GENERATE_INTERNAL_LABEL
to use ‘¥’ in this way. If the string doesn’t start with ‘x’, then ASM_OUTPUT_
LABELREF gets to output the string, and may change it. (Of course, ASM_
OUTPUT_LABELREF is also part of your machine description, so you should know
what it does on your machine.)

Chapter 10: Target Description Macros and Functions 291

ASM_FORMAT_PRIVATE_NAME (outvar, name, number)
A C expression to assign to outvar (which is a variable of type char *) a newly
allocated string made from the string name and the number number, with some
suitable punctuation added. Use alloca to get space for the string.

The string will be used as an argument to ASM_0UTPUT_LABELREF to produce an
assembler label for an internal static variable whose name is name. Therefore,
the string must be such as to result in valid assembler code. The argument num-
ber is different each time this macro is executed; it prevents conflicts between
similarly-named internal static variables in different scopes.

Ideally this string should not be a valid C identifier, to prevent any conflict
with the user’s own symbols. Most assemblers allow periods or percent signs
in assembler symbols; putting at least one of these between the name and the
number will suffice.

ASM_QUTPUT_DEF (stream, name, value)
A C statement to output to the stdio stream stream assembler code which
defines (equates) the symbol name to have the value value.

If SET_ASM_QOP is defined, a default definition is provided which is correct for
most systems.

ASM_QUTPUT_DEF_FROM_DECLS (stream, decl_of_name, decl_of_value)
A C statement to output to the stdio stream stream assembler code which
defines (equates) the symbol whose tree node is decl_of_name to have the
value of the tree node decl_of_value. This macro will be used in preference
to ‘ASM_OUTPUT_DEF’ if it is defined and if the tree nodes are available.

If SET_ASM_OP is defined, a default definition is provided which is correct for
most systems.

ASM_OUTPUT_WEAK_ALIAS (stream, name, value)
A C statement to output to the stdio stream stream assembler code which
defines (equates) the weak symbol name to have the value value. If value is
NULL, it defines name as an undefined weak symbol.

Define this macro if the target only supports weak aliases; define ASM_0QUTPUT_
DEF instead if possible.

OBJC_GEN_METHOD_LABEL (buf, is_inst, class_name, cat_name, sel_name)
Define this macro to override the default assembler names used for Objective-C
methods.

The default name is a unique method number followed by the name of the class
(e.g. ‘_1_Foo’). For methods in categories, the name of the category is also
included in the assembler name (e.g. ‘_1_Foo_Bar’).

These names are safe on most systems, but make debugging difficult since the
method’s selector is not present in the name. Therefore, particular systems
define other ways of computing names.

buf is an expression of type char * which gives you a buffer in which to store the
name; its length is as long as class_name, cat_name and sel_name put together,
plus 50 characters extra.

292 GNU Compiler Collection (GCC) Internals

The argument is_inst specifies whether the method is an instance method or
a class method; class_name is the name of the class; cat_name is the name of
the category (or NULL if the method is not in a category); and sel_name is the
name of the selector.

On systems where the assembler can handle quoted names, you can use this
macro to provide more human-readable names.

ASM_DECLARE_CLASS_REFERENCE (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream commands
to declare that the label name is an Objective-C class reference. This is only
needed for targets whose linkers have special support for NeXT-style runtimes.

ASM_DECLARE_UNRESOLVED_REFERENCE (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream commands
to declare that the label name is an unresolved Objective-C class reference. This
is only needed for targets whose linkers have special support for NeXT-style
runtimes.

10.20.5 How Initialization Functions Are Handled

The compiled code for certain languages includes constructors (also called initialization
routines)—functions to initialize data in the program when the program is started. These
functions need to be called before the program is “started”—that is to say, before main is
called.

Compiling some languages generates destructors (also called termination routines) that
should be called when the program terminates.

To make the initialization and termination functions work, the compiler must output
something in the assembler code to cause those functions to be called at the appropriate
time. When you port the compiler to a new system, you need to specify how to do this.

There are two major ways that GCC currently supports the execution of initialization
and termination functions. Each way has two variants. Much of the structure is common
to all four variations.

The linker must build two lists of these functions—a list of initialization functions, called
__CTOR_LIST__, and a list of termination functions, called __DTOR_LIST__.

Each list always begins with an ignored function pointer (which may hold 0, —1, or a
count of the function pointers after it, depending on the environment). This is followed
by a series of zero or more function pointers to constructors (or destructors), followed by a
function pointer containing zero.

-

Depending on the operating system and its executable file format, either ‘crtstuff.c’
or ‘libgcc2.c’ traverses these lists at startup time and exit time. Constructors are called
in reverse order of the list; destructors in forward order.

The best way to handle static constructors works only for object file formats which
provide arbitrarily-named sections. A section is set aside for a list of constructors, and
another for a list of destructors. Traditionally these are called ‘. ctors’ and ‘.dtors’. Each
object file that defines an initialization function also puts a word in the constructor section

Chapter 10: Target Description Macros and Functions 293

to point to that function. The linker accumulates all these words into one contiguous
‘.ctors’ section. Termination functions are handled similarly.

This method will be chosen as the default by ‘target-def.h’ if TARGET_ASM_NAMED_
SECTION is defined. A target that does not support arbitrary sections, but does support
special designated constructor and destructor sections may define CTORS_SECTION_ASM_0OP
and DTORS_SECTION_ASM_OP to achieve the same effect.

When arbitrary sections are available, there are two variants, depending upon how the
code in ‘crtstuff.c’ is called. On systems that support a .init section which is executed
at program startup, parts of ‘crtstuff.c’ are compiled into that section. The program is
linked by the gcc driver like this:

1d -o output_file crti.o crtbegin.o ... -lgcc crtend.o crtn.o

The prologue of a function (__init) appears in the .init section of ‘crti.o’; the
epilogue appears in ‘crtn.o’. Likewise for the function __fini in the .fini section. Normally
these files are provided by the operating system or by the GNU C library, but are provided
by GCC for a few targets.

The objects ‘crtbegin.o’ and ‘crtend.o’ are (for most targets) compiled from
‘crtstuff.c’. They contain, among other things, code fragments within the .init and
.fini sections that branch to routines in the .text section. The linker will pull all parts
of a section together, which results in a complete __init function that invokes the routines
we need at startup.

To use this variant, you must define the INIT_SECTION_ASM_OP macro properly.

If no init section is available, when GCC compiles any function called main (or more
accurately, any function designated as a program entry point by the language front end
calling expand_main_function), it inserts a procedure call to __main as the first executable
code after the function prologue. The __main function is defined in ‘libgcc2.c’ and runs
the global constructors.

In file formats that don’t support arbitrary sections, there are again two variants. In
the simplest variant, the GNU linker (GNU 1d) and an ‘a.out’ format must be used. In
this case, TARGET_ASM_CONSTRUCTOR is defined to produce a .stabs entry of type ‘N_SETT’,
referencing the name __CTOR_LIST__, and with the address of the void function containing
the initialization code as its value. The GNU linker recognizes this as a request to add the
value to a set; the values are accumulated, and are eventually placed in the executable as
a vector in the format described above, with a leading (ignored) count and a trailing zero
element. TARGET_ASM_DESTRUCTOR is handled similarly. Since no init section is available,
the absence of INIT_SECTION_ASM_OP causes the compilation of main to call __main as
above, starting the initialization process.

The last variant uses neither arbitrary sections nor the GNU linker. This is preferable
when you want to do dynamic linking and when using file formats which the GNU linker
does not support, such as ‘ECOFF’. In this case, TARGET_HAVE_CTORS_DTORS is false,
initialization and termination functions are recognized simply by their names. This requires
an extra program in the linkage step, called collect2. This program pretends to be the
linker, for use with GCC; it does its job by running the ordinary linker, but also arranges to
include the vectors of initialization and termination functions. These functions are called
via __main as described above. In order to use this method, use_collect2 must be defined

in the target in ‘config.gcc’.

294 GNU Compiler Collection (GCC) Internals

10.20.6 Macros Controlling Initialization Routines

Here are the macros that control how the compiler handles initialization and termination
functions:

INIT_SECTION_ASM_OP
If defined, a C string constant, including spacing, for the assembler opera-
tion to identify the following data as initialization code. If not defined, GCC
will assume such a section does not exist. When you are using special sec-
tions for initialization and termination functions, this macro also controls how
‘crtstuff.c’ and ‘libgcc2.c’ arrange to run the initialization functions.

HAS_INIT_SECTION
If defined, main will not call __main as described above. This macro should
be defined for systems that control start-up code on a symbol-by-symbol basis,
such as OSF/1, and should not be defined explicitly for systems that support
INIT_SECTION_ASM_OP.

LD_INIT_SWITCH
If defined, a C string constant for a switch that tells the linker that the following
symbol is an initialization routine.

LD_FINI_SWITCH
If defined, a C string constant for a switch that tells the linker that the following
symbol is a finalization routine.

COLLECT_SHARED_INIT_FUNC (stream, func)
If defined, a C statement that will write a function that can be automatically
called when a shared library is loaded. The function should call func, which
takes no arguments. If not defined, and the object format requires an explicit
initialization function, then a function called _GLOBAL__DI will be generated.

This function and the following one are used by collect2 when linking a shared
library that needs constructors or destructors, or has DWARF2 exception tables
embedded in the code.

COLLECT_SHARED_FINI_FUNC (stream, func)
If defined, a C statement that will write a function that can be automatically
called when a shared library is unloaded. The function should call func, which
takes no arguments. If not defined, and the object format requires an explicit
finalization function, then a function called _GLOBAL__DD will be generated.

INVOKE__main
If defined, main will call __main despite the presence of INIT_SECTION_ASM_OP.
This macro should be defined for systems where the init section is not actually
run automatically, but is still useful for collecting the lists of constructors and
destructors.

SUPPORTS_INIT_PRIORITY
If nonzero, the C++ init_priority attribute is supported and the compiler
should emit instructions to control the order of initialization of objects. If zero,
the compiler will issue an error message upon encountering an init_priority
attribute.

Chapter 10: Target Description Macros and Functions 295

bool TARGET_HAVE_CTORS_DTORS [Target Hook]
This value is true if the target supports some “native” method of collecting con-
structors and destructors to be run at startup and exit. It is false if we must use
collect2.

void TARGET_ASM_CONSTRUCTOR (rtx symbol, int priority) [Target Hook]
If defined, a function that outputs assembler code to arrange to call the function
referenced by symbol at initialization time.

Assume that symbol is a SYMBOL_REF for a function taking no arguments and with
no return value. If the target supports initialization priorities, priority is a value
between 0 and MAX_INIT_PRIORITY; otherwise it must be DEFAULT_INIT_PRIORITY.

If this macro is not defined by the target, a suitable default will be chosen if (1) the
target supports arbitrary section names, (2) the target defines CTORS_SECTION_ASM_
0P, or (3) USE_COLLECT2 is not defined.

void TARGET_ASM_DESTRUCTOR (rtx symbol, int priority) [Target Hook]
This is like TARGET_ASM_CONSTRUCTOR but used for termination functions rather than
initialization functions.

If TARGET_HAVE_CTORS_DTORS is true, the initialization routine generated for the gener-
ated object file will have static linkage.

If your system uses collect2 as the means of processing constructors, then that program
normally uses nm to scan an object file for constructor functions to be called.

On certain kinds of systems, you can define these macros to make collect2 work faster
(and, in some cases, make it work at all):

OBJECT _FORMAT_COFF
Define this macro if the system uses COFF (Common Object File Format)
object files, so that collect2 can assume this format and scan object files
directly for dynamic constructor/destructor functions.

OBJECT_FORMAT_ROSE
Define this macro if the system uses ROSE format object files, so that collect2
can assume this format and scan object files directly for dynamic construc-
tor/destructor functions.

These macros are effective only in a native compiler; collect2 as part of a
cross compiler always uses nm for the target machine.

REAL_NM_FILE_NAME
Define this macro as a C string constant containing the file name to use to
execute nm. The default is to search the path normally for nm.

If your system supports shared libraries and has a program to list the dynamic
dependencies of a given library or executable, you can define these macros to
enable support for running initialization and termination functions in shared
libraries:

LDD_SUFFIX
Define this macro to a C string constant containing the name of the program
which lists dynamic dependencies, like "1dd" under SunOS 4.

296 GNU Compiler Collection (GCC) Internals

PARSE_LDD_OUTPUT (ptr)
Define this macro to be C code that extracts filenames from the output of the
program denoted by LDD_SUFFIX. ptr is a variable of type char * that points to
the beginning of a line of output from LDD_SUFFIX. If the line lists a dynamic
dependency, the code must advance ptr to the beginning of the filename on
that line. Otherwise, it must set ptr to NULL.

10.20.7 Output of Assembler Instructions

This describes assembler instruction output.

REGISTER_NAMES
A C initializer containing the assembler’s names for the machine registers, each
one as a C string constant. This is what translates register numbers in the
compiler into assembler language.

ADDITIONAL_REGISTER_NAMES
If defined, a C initializer for an array of structures containing a name and a
register number. This macro defines additional names for hard registers, thus
allowing the asm option in declarations to refer to registers using alternate
names.

ASM_QUTPUT_OPCODE (stream, ptr)
Define this macro if you are using an unusual assembler that requires different
names for the machine instructions.

The definition is a C statement or statements which output an assembler in-
struction opcode to the stdio stream stream. The macro-operand ptr is a vari-
able of type char * which points to the opcode name in its “internal” form—the
form that is written in the machine description. The definition should output
the opcode name to stream, performing any translation you desire, and incre-
ment the variable ptr to point at the end of the opcode so that it will not be
output twice.

In fact, your macro definition may process less than the entire opcode name,
or more than the opcode name; but if you want to process text that includes
‘%’-sequences to substitute operands, you must take care of the substitution
yourself. Just be sure to increment ptr over whatever text should not be output
normally.

If you need to look at the operand values, they can be found as the elements of
recog_data.operand.

If the macro definition does nothing, the instruction is output in the usual way.

FINAL_PRESCAN_INSN (insn, opvec, noperands)
If defined, a C statement to be executed just prior to the output of assem-
bler code for insn, to modify the extracted operands so they will be output
differently.

Here the argument opvec is the vector containing the operands extracted from
insn, and noperands is the number of elements of the vector which contain
meaningful data for this insn. The contents of this vector are what will be

Chapter 10: Target Description Macros and Functions 297

used to convert the insn template into assembler code, so you can change the
assembler output by changing the contents of the vector.

This macro is useful when various assembler syntaxes share a single file of in-
struction patterns; by defining this macro differently, you can cause a large class
of instructions to be output differently (such as with rearranged operands). Nat-
urally, variations in assembler syntax affecting individual insn patterns ought
to be handled by writing conditional output routines in those patterns.

If this macro is not defined, it is equivalent to a null statement.

FINAL_PRESCAN_LABEL
If defined, FINAL_PRESCAN_INSN will be called on each CODE_LABEL. In that
case, opvec will be a null pointer and noperands will be zero.

PRINT_OPERAND (stream, x, code)
A C compound statement to output to stdio stream stream the assembler syntax
for an instruction operand x. x is an RTL expression.

code is a value that can be used to specify one of several ways of printing
the operand. It is used when identical operands must be printed differently
depending on the context. code comes from the ‘%’ specification that was used
to request printing of the operand. If the specification was just ‘%digit’ then
code is 0; if the specification was ‘%1tr digit’ then code is the ASCII code for
Itr.

If x is a register, this macro should print the register’s name. The names can be
found in an array reg_names whose type is char *[]. reg_names is initialized
from REGISTER_NAMES.

When the machine description has a specification ‘%punct’ (a ‘%’ followed by a
punctuation character), this macro is called with a null pointer for x and the
punctuation character for code.

PRINT_OPERAND_PUNCT_VALID_P (code)
A C expression which evaluates to true if code is a valid punctuation character
for use in the PRINT_OPERAND macro. If PRINT_OPERAND_PUNCT_VALID_P is not
defined, it means that no punctuation characters (except for the standard one,
‘%)) are used in this way.

PRINT_OPERAND_ADDRESS (stream, x)
A C compound statement to output to stdio stream stream the assembler syntax
for an instruction operand that is a memory reference whose address is x. x is
an RTL expression.

On some machines, the syntax for a symbolic address depends on the section
that the address refers to. On these machines, define the hook TARGET_ENCODE_
SECTION_INFO to store the information into the symbol_ref, and then check
for it here. See Section 10.20 [Assembler Format], page 279.

DBR_QUTPUT_SEQEND(file)
A C statement, to be executed after all slot-filler instructions have been output.
If necessary, call dbr_sequence_length to determine the number of slots filled
in a sequence (zero if not currently outputting a sequence), to decide how many
no-ops to output, or whatever.

298

GNU Compiler Collection (GCC) Internals

Don’t define this macro if it has nothing to do, but it is helpful in reading
assembly output if the extent of the delay sequence is made explicit (e.g. with
white space).

Note that output routines for instructions with delay slots must be prepared to
deal with not being output as part of a sequence (i.e. when the scheduling pass is
not run, or when no slot fillers could be found.) The variable final_sequence
is null when not processing a sequence, otherwise it contains the sequence rtx
being output.

REGISTER_PREFIX
LOCAL_LABEL_PREFIX
USER_LABEL_PREFIX
IMMEDIATE_PREFIX

If defined, C string expressions to be used for the ‘%R’, ‘4L’, ‘%U’, and ‘%I’ options
of asm_fprintf (see ‘final.c’). These are useful when a single ‘md’ file must
support multiple assembler formats. In that case, the various ‘tm.h’ files can
define these macros differently.

ASM_FPRINTF_EXTENSIONS(file, argptr, format)

If defined this macro should expand to a series of case statements which will
be parsed inside the switch statement of the asm_fprintf function. This
allows targets to define extra printf formats which may useful when generating
their assembler statements. Note that upper case letters are reserved for future
generic extensions to asm_fprintf, and so are not available to target specific
code. The output file is given by the parameter file. The varargs input pointer
is argptr and the rest of the format string, starting the character after the one
that is being switched upon, is pointed to by format.

ASSEMBLER_DIALECT

If your target supports multiple dialects of assembler language (such as different

opcodes), define this macro as a C expression that gives the numeric index of

the assembler language dialect to use, with zero as the first variant.

If this macro is defined, you may use constructs of the form
‘{optionO|optionl|option2.. .}’

in the output templates of patterns (see Section 9.5 [Output Template],
page 123) or in the first argument of asm_fprintf. This construct outputs
‘option0’, ‘optionl’, ‘option2’, etc., if the value of ASSEMBLER_DIALECT is
zero, one, two, etc. Any special characters within these strings retain their
usual meaning. If there are fewer alternatives within the braces than the value
of ASSEMBLER_DIALECT, the construct outputs nothing.

If you do not define this macro, the characters ‘{’, ‘1’ and ‘}’ do not have any
special meaning when used in templates or operands to asm_fprintf.

Define the macros REGISTER_PREFIX, LOCAL_LABEL_PREFIX, USER_LABEL_
PREFIX and IMMEDIATE_PREFIX if you can express the variations in assembler
language syntax with that mechanism. Define ASSEMBLER_DIALECT and use
the ‘{option0O|optionl}’ syntax if the syntax variant are larger and involve
such things as different opcodes or operand order.

Chapter 10: Target Description Macros and Functions 299

ASM_OUTPUT_REG_PUSH (stream, regno)
A C expression to output to stream some assembler code which will push hard
register number regno onto the stack. The code need not be optimal, since this
macro is used only when profiling.

ASM_OUTPUT_REG_POP (stream, regno)
A C expression to output to stream some assembler code which will pop hard
register number regno off of the stack. The code need not be optimal, since
this macro is used only when profiling.

10.20.8 Output of Dispatch Tables

This concerns dispatch tables.

ASM_QUTPUT_ADDR_DIFF_ELT (stream, body, value, rel)
A C statement to output to the stdio stream stream an assembler pseudo-
instruction to generate a difference between two labels. value and rel are the
numbers of two internal labels. The definitions of these labels are output using
ASM_OUTPUT_INTERNAL_LABEL, and they must be printed in the same way here.
For example,

fprintf (stream, "\t.word LJ%d-Li%d\n",
value, rel)

You must provide this macro on machines where the addresses in a dispatch
table are relative to the table’s own address. If defined, GCC will also use
this macro on all machines when producing PIC. body is the body of the
ADDR_DIFF_VEC; it is provided so that the mode and flags can be read.

ASM_OUTPUT_ADDR_VEC_ELT (stream, value)
This macro should be provided on machines where the addresses in a dispatch
table are absolute.
The definition should be a C statement to output to the stdio stream stream
an assembler pseudo-instruction to generate a reference to a label. value is
the number of an internal label whose definition is output using ASM_OUTPUT_
INTERNAL_LABEL. For example,

fprintf (stream, "\t.word L%d\n", value)

ASM_OUTPUT_CASE_LABEL (stream, prefix, num, table)
Define this if the label before a jump-table needs to be output specially. The
first three arguments are the same as for ASM_OUTPUT_INTERNAL_LABEL; the
fourth argument is the jump-table which follows (a jump_insn containing an
addr_vec or addr_diff_vec).
This feature is used on system V to output a swbeg statement for the table.

If this macro is not defined, these labels are output with ASM_OUTPUT_
INTERNAL_LABEL.

ASM_OUTPUT_CASE_END (stream, num, table)
Define this if something special must be output at the end of a jump-table. The
definition should be a C statement to be executed after the assembler code for

300

GNU Compiler Collection (GCC) Internals

the table is written. It should write the appropriate code to stdio stream stream.
The argument table is the jump-table insn, and num is the label-number of the
preceding label.

If this macro is not defined, nothing special is output at the end of the jump-
table.

10.20.9 Assembler Commands for Exception Regions

This describes commands marking the start and the end of an exception region.

EH_FRAME_SECTION_NAME

If defined, a C string constant for the name of the section containing exception
handling frame unwind information. If not defined, GCC will provide a default
definition if the target supports named sections. ‘crtstuff.c’ uses this macro
to switch to the appropriate section.

You should define this symbol if your target supports DWARF 2 frame unwind
information and the default definition does not work.

EH_FRAME_IN_DATA_SECTION

If defined, DWARF 2 frame unwind information will be placed in the data sec-
tion even though the target supports named sections. This might be necessary,
for instance, if the system linker does garbage collection and sections cannot be
marked as not to be collected.

Do not define this macro unless TARGET_ASM_NAMED_SECTION is also defined.

MASK_RETURN_ADDR

An rtx used to mask the return address found via RETURN_ADDR_RTX, so that it
does not contain any extraneous set bits in it.

DWARF2_UNWIND_INFO

Define this macro to 0 if your target supports DWARF 2 frame unwind infor-
mation, but it does not yet work with exception handling. Otherwise, if your
target supports this information (if it defines ‘INCOMING_RETURN_ADDR_RTX’ and
eﬂher‘UNALIGNED_INT_ASM_OP’Or‘OBJECT_FORMAT_ELFv,CKjC‘WﬂlprOkaea
default definition of 1.

If this macro is defined to 1, the DWARF 2 unwinder will be the default excep-
tion handling mechanism; otherwise, setjmp/longjmp will be used by default.

If this macro is defined to anything, the DWARF 2 unwinder will be used
instead of inline unwinders and __unwind_function in the non-setjmp case.

DWARF_CIE_DATA_ALIGNMENT

This macro need only be defined if the target might save registers in the function
prologue at an offset to the stack pointer that is not aligned to UNITS_PER_
WORD. The definition should be the negative minimum alignment if STACK_
GROWS_DOWNWARD is defined, and the positive minimum alignment otherwise.
See Section 10.21.5 [SDB and DWARF], page 308. Only applicable if the target
supports DWARF 2 frame unwind information.

Chapter 10: Target Description Macros and Functions 301

void TARGET_ASM_EXCEPTION_SECTION () [Target Hook]
If defined, a function that switches to the section in which the main exception table
is to be placed (see Section 10.18 [Sections]|, page 275). The default is a function that
switches to a section named .gcc_except_table on machines that support named
sections via TARGET_ASM_NAMED_SECTION, otherwise if ‘~fpic’ or ‘~fPIC’ is in effect,
the data_section, otherwise the readonly_data_section.

void TARGET_ASM_EH_FRAME_SECTION () [Target Hook]
If defined, a function that switches to the section in which the DWARF 2 frame unwind
information to be placed (see Section 10.18 [Sections], page 275). The default is a
function that outputs a standard GAS section directive, if EH_FRAME_SECTION_NAME
is defined, or else a data section directive followed by a synthetic label.

Target Hook bool TARGET_TERMINATE_DW2_EH_FRAME_INFO [Variable]
Contains the value true if the target should add a zero word onto the end of a Dwarf-2
frame info section when used for exception handling. Default value is false if EH_
FRAME_SECTION_NAME is defined, and true otherwise.

10.20.10 Assembler Commands for Alignment

This describes commands for alignment.

JUMP_ALIGN (label)
The alignment (log base 2) to put in front of label, which is a common desti-
nation of jumps and has no fallthru incoming edge.

This macro need not be defined if you don’t want any special alignment to be
done at such a time. Most machine descriptions do not currently define the
macro.

Unless it’s necessary to inspect the label parameter, it is better to set the vari-
able align_jumps in the target’s OVERRIDE_OPTIONS. Otherwise, you should try
to honor the user’s selection in align_jumps in a JUMP_ALIGN implementation.

LABEL_ALIGN_AFTER_BARRIER (label)
The alignment (log base 2) to put in front of label, which follows a BARRIER.

This macro need not be defined if you don’t want any special alignment to be
done at such a time. Most machine descriptions do not currently define the
macro.

LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
The maximum number of bytes to skip when applying LABEL_ALIGN_AFTER_
BARRIER. This works only if ASM_OUTPUT_MAX_SKIP_ALIGN is defined.

LOOP_ALIGN (label)
The alignment (log base 2) to put in front of label, which follows a NOTE_INSN_
LOOP_BEG note.

This macro need not be defined if you don’t want any special alignment to be
done at such a time. Most machine descriptions do not currently define the
macro.

302 GNU Compiler Collection (GCC) Internals

Unless it’s necessary to inspect the label parameter, it is better to set the vari-
able align_loops in the target’s OVERRIDE_OPTIONS. Otherwise, you should
try to honor the user’s selection in align_loops in a LOOP_ALIGN implementa-
tion.

LOOP_ALIGN_MAX_SKIP
The maximum number of bytes to skip when applying LOOP_ALIGN. This works
only if ASM_OUTPUT_MAX_SKIP_ALIGN is defined.

LABEL_ALIGN (label)
The alignment (log base 2) to put in front of label. If LABEL_ALIGN_AFTER_
BARRIER / LOOP_ALIGN specify a different alignment, the maximum of the spec-
ified values is used.

Unless it’s necessary to inspect the label parameter, it is better to set the vari-
able align_labels in the target’s OVERRIDE_OPTIONS. Otherwise, you should
try to honor the user’s selection in align_labels in a LABEL_ALIGN implemen-
tation.

LABEL_ALIGN_MAX_SKIP
The maximum number of bytes to skip when applying LABEL_ALIGN. This
works only if ASM_OUTPUT_MAX_SKIP_ALIGN is defined.

ASM_QOUTPUT_SKIP (stream, nbytes)
A C statement to output to the stdio stream stream an assembler instruction
to advance the location counter by nbytes bytes. Those bytes should be zero
when loaded. nbytes will be a C expression of type int.

ASM_NO_SKIP_IN_TEXT
Define this macro if ASM_OUTPUT_SKIP should not be used in the text section
because it fails to put zeros in the bytes that are skipped. This is true on many
Unix systems, where the pseudo—op to skip bytes produces no-op instructions
rather than zeros when used in the text section.

ASM_QUTPUT_ALIGN (stream, power)
A C statement to output to the stdio stream stream an assembler command to
advance the location counter to a multiple of 2 to the power bytes. power will
be a C expression of type int.

ASM_QUTPUT_ALIGN_WITH_NOP (stream, power)
Like ASM_OUTPUT_ALIGN, except that the “nop” instruction is used for padding,
if necessary.

ASM_OUTPUT_MAX_SKIP_ALIGN (stream, power, max_skip)
A C statement to output to the stdio stream stream an assembler command to
advance the location counter to a multiple of 2 to the power bytes, but only
if max_skip or fewer bytes are needed to satisfy the alignment request. power
and max_skip will be a C expression of type int.

Chapter 10: Target Description Macros and Functions 303

10.21 Controlling Debugging Information Format

This describes how to specify debugging information.

10.21.1 Macros Affecting All Debugging Formats

These macros affect all debugging formats.

DBX_REGISTER_NUMBER (regno)
A C expression that returns the DBX register number for the compiler register
number regno. In the default macro provided, the value of this expression will
be regno itself. But sometimes there are some registers that the compiler knows
about and DBX does not, or vice versa. In such cases, some register may need
to have one number in the compiler and another for DBX.

If two registers have consecutive numbers inside GCC, and they can be used as a
pair to hold a multiword value, then they must have consecutive numbers after
renumbering with DBX_REGISTER_NUMBER. Otherwise, debuggers will be unable
to access such a pair, because they expect register pairs to be consecutive in
their own numbering scheme.

If you find yourself defining DBX_REGISTER_NUMBER in way that does not pre-
serve register pairs, then what you must do instead is redefine the actual register
numbering scheme.

DEBUGGER_AUTO_OFFSET (x)
A C expression that returns the integer offset value for an automatic variable
having address x (an RTL expression). The default computation assumes that x
is based on the frame-pointer and gives the offset from the frame-pointer. This
is required for targets that produce debugging output for DBX or COFF-style
debugging output for SDB and allow the frame-pointer to be eliminated when
the ‘-g’ options is used.

DEBUGGER_ARG_OFFSET (offset, x)
A C expression that returns the integer offset value for an argument having
address x (an RTL expression). The nominal offset is offset.

PREFERRED_DEBUGGING_TYPE
A C expression that returns the type of debugging output GCC should produce
when the user specifies just ‘-g’. Define this if you have arranged for GCC to
support more than one format of debugging output. Currently, the allowable
values are DBX_DEBUG, SDB_DEBUG, DWARF_DEBUG, DWARF2_DEBUG, XCOFF_DEBUG,
VMS_DEBUG, and VMS_AND_DWARF2_DEBUG.

When the user specifies ‘-ggdb’, GCC normally also uses the value of this macro
to select the debugging output format, but with two exceptions. If DWARF2_
DEBUGGING_INFO is defined and LINKER_DOES_NOT_WORK_WITH_DWARF2 is not
defined, GCC uses the value DWARF2_DEBUG. Otherwise, if DBX_DEBUGGING_
INFO is defined, GCC uses DBX_DEBUG.

304 GNU Compiler Collection (GCC) Internals

The value of this macro only affects the default debugging output; the user can
always get a specific type of output by using ‘-gstabs’, ‘-gcoff’, ‘-gdwarf-1’,
‘-gdwarf-2’, ‘-~gxcoff’, or ‘~gvms’.

10.21.2 Specific Options for DBX Output

These are specific options for DBX output.

DBX_DEBUGGING_INFO
Define this macro if GCC should produce debugging output for DBX in response
to the ‘-g’ option.

XCOFF_DEBUGGING_INFO
Define this macro if GCC should produce XCOFF format debugging output in
response to the ‘-g’ option. This is a variant of DBX format.

DEFAULT_GDB_EXTENSIONS
Define this macro to control whether GCC should by default generate GDB’s
extended version of DBX debugging information (assuming DBX-format debug-
ging information is enabled at all). If you don’t define the macro, the default
is 1: always generate the extended information if there is any occasion to.

DEBUG_SYMS_TEXT
Define this macro if all .stabs commands should be output while in the text
section.

ASM_STABS_QOP
A C string constant, including spacing, naming the assembler pseudo op to use
instead of "\t.stabs\t" to define an ordinary debugging symbol. If you don’t
define this macro, "\t.stabs\t" is used. This macro applies only to DBX
debugging information format.

ASM_STABD_OP
A C string constant, including spacing, naming the assembler pseudo op to
use instead of "\t.stabd\t" to define a debugging symbol whose value is the
current location. If you don’t define this macro, "\t.stabd\t" is used. This
macro applies only to DBX debugging information format.

ASM_STABN_QOP
A C string constant, including spacing, naming the assembler pseudo op to use
instead of "\t.stabn\t" to define a debugging symbol with no name. If you
don’t define this macro, "\t.stabn\t" is used. This macro applies only to
DBX debugging information format.

DBX_NO_XREFS
Define this macro if DBX on your system does not support the construct
‘xstagname’. On some systems, this construct is used to describe a forward
reference to a structure named tagname. On other systems, this construct is
not supported at all.

Chapter 10: Target Description Macros and Functions 305

DBX_CONTIN_LENGTH
A symbol name in DBX-format debugging information is normally continued
(split into two separate .stabs directives) when it exceeds a certain length
(by default, 80 characters). On some operating systems, DBX requires this
splitting; on others, splitting must not be done. You can inhibit splitting by
defining this macro with the value zero. You can override the default splitting-
length by defining this macro as an expression for the length you desire.

DBX_CONTIN_CHAR
Normally continuation is indicated by adding a ‘\’ character to the end of a
.stabs string when a continuation follows. To use a different character instead,
define this macro as a character constant for the character you want to use. Do
not define this macro if backslash is correct for your system.

DBX_STATIC_STAB_DATA_SECTION
Define this macro if it is necessary to go to the data section before outputting
the ‘. stabs’ pseudo-op for a non-global static variable.

DBX_TYPE_DECL_STABS_CODE
The value to use in the “code” field of the .stabs directive for a typedef. The
default is N_LSYM.

DBX_STATIC_CONST_VAR_CODE
The value to use in the “code” field of the .stabs directive for a static variable
located in the text section. DBX format does not provide any “right” way to
do this. The default is N_FUN.

DBX_REGPARM_STABS_CODE
The value to use in the “code” field of the .stabs directive for a parameter
passed in registers. DBX format does not provide any “right” way to do this.
The default is N_RSYM.

DBX_REGPARM_STABS_LETTER
The letter to use in DBX symbol data to identify a symbol as a parameter
passed in registers. DBX format does not customarily provide any way to do
this. The default is ’P’.

DBX_MEMPARM_STABS_LETTER
The letter to use in DBX symbol data to identify a symbol as a stack parameter.
The default is ’p°.

DBX_FUNCTION_FIRST
Define this macro if the DBX information for a function and its arguments
should precede the assembler code for the function. Normally, in DBX format,
the debugging information entirely follows the assembler code.

DBX_LBRAC_FIRST
Define this macro if the N_LBRAC symbol for a block should precede the debug-
ging information for variables and functions defined in that block. Normally, in
DBX format, the N_LBRAC symbol comes first.

306 GNU Compiler Collection (GCC) Internals

DBX_BLOCKS_FUNCTION_RELATIVE
Define this macro if the value of a symbol describing the scope of a block (N_
LBRAC or N_RBRAC) should be relative to the start of the enclosing function.
Normally, GCC uses an absolute address.

DBX_USE_BINCL
Define this macro if GCC should generate N_BINCL and N_EINCL stabs for in-
cluded header files, as on Sun systems. This macro also directs GCC to output
a type number as a pair of a file number and a type number within the file.
Normally, GCC does not generate N_BINCL or N_EINCL stabs, and it outputs a
single number for a type number.

10.21.3 Open-Ended Hooks for DBX Format

These are hooks for DBX format.

DBX_OUTPUT_LBRAC (stream, name)
Define this macro to say how to output to stream the debugging information
for the start of a scope level for variable names. The argument name is the
name of an assembler symbol (for use with assemble_name) whose value is the
address where the scope begins.

DBX_OUTPUT_RBRAC (stream, name)
Like DBX_OUTPUT_LBRAC, but for the end of a scope level.

DBX_OUTPUT_NFUN (stream, lscope_label, decl)
Define this macro if the target machine requires special handling to output an
N_FUN entry for the function decl.

DBX_OUTPUT_ENUM (stream, type)
Define this macro if the target machine requires special handling to output an
enumeration type. The definition should be a C statement (sans semicolon) to
output the appropriate information to stream for the type type.

DBX_OUTPUT_FUNCTION_END (stream, function)
Define this macro if the target machine requires special output at the end of the
debugging information for a function. The definition should be a C statement
(sans semicolon) to output the appropriate information to stream. function is
the FUNCTION_DECL node for the function.

DBX_OUTPUT_STANDARD_TYPES (syms)
Define this macro if you need to control the order of output of the standard data
types at the beginning of compilation. The argument syms is a tree which is
a chain of all the predefined global symbols, including names of data types.

Normally, DBX output starts with definitions of the types for integers and
characters, followed by all the other predefined types of the particular language
in no particular order.

On some machines, it is necessary to output different particular types first. To
do this, define DBX_OUTPUT_STANDARD_TYPES to output those symbols in the

Chapter 10: Target Description Macros and Functions 307

necessary order. Any predefined types that you don’t explicitly output will be
output afterward in no particular order.

Be careful not to define this macro so that it works only for C. There are no
global variables to access most of the built-in types, because another language
may have another set of types. The way to output a particular type is to look
through syms to see if you can find it. Here is an example:

{

tree decl;
for (decl = syms; decl; decl = TREE_CHAIN (decl))
if (!strcmp (IDENTIFIER_POINTER (DECL_NAME (decl)),
"long int"))
dbxout_symbol (decl);

L
This does nothing if the expected type does not exist.

See the function init_decl_processing in ‘c-decl.c’ to find the names to
use for all the built-in C types.

Here is another way of finding a particular type:
{

tree decl;
for (decl = syms; decl; decl = TREE_CHAIN (decl))
if (TREE_CODE (decl) == TYPE_DECL
&& (TREE_CODE (TREE_TYPE (decl))
== INTEGER_CST)
&& TYPE_PRECISION (TREE_TYPE (decl)) == 16
&& TYPE_UNSIGNED (TREE_TYPE (decl)))
/* This must be unsigned short. */
dbxout_symbol (decl);

}
NO_DBX_FUNCTION_END
Some stabs encapsulation formats (in particular ECOFF), cannot handle the
.stabs "",N_FUN, ,0,0,Lscope-function-1 gdb dbx extension construct. On
those machines, define this macro to turn this feature off without disturbing
the rest of the gdb extensions.

10.21.4 File Names in DBX Format

This describes file names in DBX format.

DBX_WORKING_DIRECTORY
Define this if DBX wants to have the current directory recorded in each object
file.

Note that the working directory is always recorded if GDB extensions are en-
abled.

DBX_QUTPUT_MAIN_SOURCE_FILENAME (stream, name)
A C statement to output DBX debugging information to the stdio stream
stream which indicates that file name is the main source file—the file speci-
fied as the input file for compilation. This macro is called only once, at the
beginning of compilation.

308 GNU Compiler Collection (GCC) Internals

This macro need not be defined if the standard form of output for DBX debug-
ging information is appropriate.

DBX_OUTPUT_MAIN_SOURCE_DIRECTORY (stream, name)
A C statement to output DBX debugging information to the stdio stream
stream which indicates that the current directory during compilation is named
name.

This macro need not be defined if the standard form of output for DBX debug-
ging information is appropriate.

DBX_QUTPUT_MAIN_SOURCE_FILE_END (stream, name)
A C statement to output DBX debugging information at the end of compilation
of the main source file name.

If you don’t define this macro, nothing special is output at the end of compila-
tion, which is correct for most machines.

DBX_OUTPUT_SOURCE_FILENAME (stream, name)
A C statement to output DBX debugging information to the stdio stream
stream which indicates that file name is the current source file. This out-
put is generated each time input shifts to a different source file as a result of
‘#include’, the end of an included file, or a ‘#line’ command.

This macro need not be defined if the standard form of output for DBX debug-
ging information is appropriate.

10.21.5 Macros for SDB and DWARF Output

Here are macros for SDB and DWARF output.

SDB_DEBUGGING_INFO
Define this macro if GCC should produce COFF-style debugging output for
SDB in response to the ‘-g’ option.

DWARF_DEBUGGING_INFO
Define this macro if GCC should produce dwarf format debugging output in
response to the ‘-g’ option.

DWARF2_DEBUGGING_INFO
Define this macro if GCC should produce dwarf version 2 format debugging
output in response to the ‘-g’ option.

To support optional call frame debugging information, you must also define
INCOMING_RETURN_ADDR_RTX and either set RTX_FRAME_RELATED_P on the pro-
logue insns if you use RTL for the prologue, or call dwarf2out_def_cfa and
dwarf2out_reg_save as appropriate from TARGET_ASM_FUNCTION_PROLOGUE if
you don’t.

DWARF2_FRAME_INFO
Define this macro to a nonzero value if GCC should always output Dwarf 2
frame information. If DWARF2_UNWIND_INFO (see Section 10.20.9 [Exception
Region Output], page 300 is nonzero, GCC will output this information not
matter how you define DWARF2_FRAME_INFO.

Chapter 10: Target Description Macros and Functions 309

LINKER_DOES_NOT_WORK_WITH_DWARF2
Define this macro if the linker does not work with Dwarf version 2. Normally,
if the user specifies only ‘-ggdb’ GCC will use Dwarf version 2 if available; this
macro disables this. See the description of the PREFERRED_DEBUGGING_TYPE
macro for more details.

DWARF2_GENERATE_TEXT_SECTION_LABEL
By default, the Dwarf 2 debugging information generator will generate a label
to mark the beginning of the text section. If it is better simply to use the name
of the text section itself, rather than an explicit label, to indicate the beginning
of the text section, define this macro to zero.

DWARF2_ASM_LINE_DEBUG_INFO
Define this macro to be a nonzero value if the assembler can generate Dwarf 2
line debug info sections. This will result in much more compact line number
tables, and hence is desirable if it works.

ASM_OUTPUT_DWARF_DELTA (stream, size, labell, label2)
A C statement to issue assembly directives that create a difference between the
two given labels, using an integer of the given size.

ASM_QUTPUT_DWARF_OFFSET (stream, size, label)
A C statement to issue assembly directives that create a section-relative refer-
ence to the given label, using an integer of the given size.

ASM_QUTPUT_DWARF_PCREL (stream, size, label)
A C statement to issue assembly directives that create a self-relative reference
to the given label, using an integer of the given size.

PUT_SDB_. ..
Define these macros to override the assembler syntax for the special SDB assem-
bler directives. See ‘sdbout.c’ for a list of these macros and their arguments.
If the standard syntax is used, you need not define them yourself.

SDB_DELIM

Some assemblers do not support a semicolon as a delimiter, even between SDB
assembler directives. In that case, define this macro to be the delimiter to use
(usually ‘\n’). It is not necessary to define a new set of PUT_SDB_op macros if
this is the only change required.

SDB_GENERATE_FAKE
Define this macro to override the usual method of constructing a dummy name
for anonymous structure and union types. See ‘sdbout.c’ for more information.

SDB_ALLOW_UNKNOWN_REFERENCES
Define this macro to allow references to unknown structure, union, or enumer-
ation tags to be emitted. Standard COFF does not allow handling of unknown
references, MIPS ECOFF has support for it.

SDB_ALLOW_FORWARD_REFERENCES
Define this macro to allow references to structure, union, or enumeration tags
that have not yet been seen to be handled. Some assemblers choke if forward
tags are used, while some require it.

310 GNU Compiler Collection (GCC) Internals

10.21.6 Macros for VMS Debug Format

Here are macros for VMS debug format.

VMS_DEBUGGING_INFO
Define this macro if GCC should produce debugging output for VMS in response
to the ‘=g’ option. The default behavior for VMS is to generate minimal debug
info for a traceback in the absence of ‘~g’ unless explicitly overridden with ‘-g0’.
This behavior is controlled by OPTIMIZATION_OPTIONS and OVERRIDE_QPTIONS.

10.22 Cross Compilation and Floating Point

While all modern machines use twos-complement representation for integers, there are a
variety of representations for floating point numbers. This means that in a cross-compiler
the representation of floating point numbers in the compiled program may be different from
that used in the machine doing the compilation.

Because different representation systems may offer different amounts of range and pre-
cision, all floating point constants must be represented in the target machine’s format.
Therefore, the cross compiler cannot safely use the host machine’s floating point arith-
metic; it must emulate the target’s arithmetic. To ensure consistency, GCC always uses
emulation to work with floating point values, even when the host and target floating point
formats are identical.

The following macros are provided by ‘real.h’ for the compiler to use. All parts of
the compiler which generate or optimize floating-point calculations must use these macros.
They may evaluate their operands more than once, so operands must not have side effects.

REAL_VALUE_TYPE [Macro]
The C data type to be used to hold a floating point value in the target machine’s
format. Typically this is a struct containing an array of HOST_WIDE_INT, but all
code should treat it as an opaque quantity.

int REAL_VALUES_EQUAL (REAL_VALUE_TYPE x, REAL_VALUE_TYPE y) [Macro]
Compares for equality the two values, x and y. If the target floating point format
supports negative zeroes and/or NaNs, ‘REAL_VALUES_EQUAL (-0.0, 0.0)’ is true,
and ‘REAL_VALUES_EQUAL (NaN, NaN)’ is false.

int REAL_VALUES_LESS (REAL_VALUE_TYPE x, REAL_VALUE_TYPE y) [Macro]
Tests whether x is less than y.

HOST_WIDE_INT REAL_VALUE_FIX (REAL_VALUE_TYPE x) [Macro]
Truncates x to a signed integer, rounding toward zero.

unsigned HOST_WIDE_INT REAL_VALUE_UNSIGNED_FIX [Macro]
(REAL_VALUE_TYPE X)
Truncates x to an unsigned integer, rounding toward zero. If x is negative, returns
Zero.

Chapter 10: Target Description Macros and Functions 311

REAL_VALUE_TYPE REAL_VALUE_ATOF (const char *string, enum [Macro]
machine_mode mode)
Converts string into a floating point number in the target machine’s representation
for mode mode. This routine can handle both decimal and hexadecimal floating point
constants, using the syntax defined by the C language for both.

int REAL_VALUE_NEGATIVE (REAL_VALUE_TYPE x) [Macro]
Returns 1 if x is negative (including negative zero), 0 otherwise.

int REAL_VALUE_ISINF (REAL_VALUE_TYPE x) [Macro]
Determines whether x represents infinity (positive or negative).

int REAL_VALUE_ISNAN (REAL_VALUE_TYPE x) [Macro]
Determines whether x represents a “NaN” (not-a-number).

void REAL_ARITHMETIC (REAL_VALUE_TYPE output, enum tree_code [Macro]
code, REAL_VALUE_TYPE x, REAL_VALUE_TYPE y)
Calculates an arithmetic operation on the two floating point values x and y, storing
the result in output (which must be a variable).

The operation to be performed is specified by code. Only the following codes are
supported: PLUS_EXPR, MINUS_EXPR, MULT_EXPR, RDIV_EXPR, MAX_EXPR, MIN_EXPR.

If REAL_ARITHMETIC is asked to evaluate division by zero and the target’s floating
point format cannot represent infinity, it will call abort. Callers should check for
this situation first, using MODE_HAS_INFINITIES. See Section 10.5 [Storage Layout],
page 205.

REAL_VALUE_TYPE REAL_VALUE_NEGATE (REAL_VALUE_TYPE x) [Macro]
Returns the negative of the floating point value x.

REAL_VALUE_TYPE REAL_VALUE_ABS (REAL_VALUE_TYPE x) [Macro]
Returns the absolute value of x.

REAL_VALUE_TYPE REAL_VALUE_TRUNCATE (REAL_VALUE_TYPE mode, enum [Macro]
machine_mode x)
Truncates the floating point value x to fit in mode. The return value is still a full-size
REAL_VALUE_TYPE, but it has an appropriate bit pattern to be output asa floating
constant whose precision accords with mode mode.

void REAL_VALUE_TO_INT (HOST_WIDE_INT low, HOST_WIDE_INT high, [Macro]
REAL_VALUE_TYPE x)
Converts a floating point value x into a double-precision integer which is then stored
into low and high. If the value is not integral, it is truncated.

void REAL_VALUE_FROM_INT (REAL_VALUE_TYPE x, HOST_WIDE_INT low, [Macro]
HOST_WIDE_INT high, enum machine_mode mode)
Converts a double-precision integer found in low and high, into a floating point value
which is then stored into x. The value is truncated to fit in mode mode.

312

GNU Compiler Collection (GCC) Internals

10.23 Mode Switching Instructions

The following macros control mode switching optimizations:

OPTIMIZE_MODE_SWITCHING (entity)

Define this macro if the port needs extra instructions inserted for mode switch-
ing in an optimizing compilation.

For an example, the SH4 can perform both single and double precision floating
point operations, but to perform a single precision operation, the FPSCR PR
bit has to be cleared, while for a double precision operation, this bit has to
be set. Changing the PR bit requires a general purpose register as a scratch
register, hence these FPSCR sets have to be inserted before reload, i.e. you
can’t put this into instruction emitting or MACHINE_DEPENDENT_REORG.

You can have multiple entities that are mode-switched, and select at run time
which entities actually need it. OPTIMIZE_MODE_SWITCHING should return
nonzero for any entity that needs mode-switching. If you define this macro,
you also have to define NUM_MODES_FOR_MODE_SWITCHING, MODE_NEEDED,
MODE_PRIORITY_TO_MODE and EMIT_MODE_SET. NORMAL_MODE is optional.

NUM_MODES_FOR_MODE_SWITCHING

If you define OPTIMIZE_MODE_SWITCHING, you have to define this as initializer
for an array of integers. Each initializer element N refers to an entity that
needs mode switching, and specifies the number of different modes that might
need to be set for this entity. The position of the initializer in the initializer -
starting counting at zero - determines the integer that is used to refer to the
mode-switched entity in question. In macros that take mode arguments / yield
a mode result, modes are represented as numbers 0 ... N — 1. N is used to
specify that no mode switch is needed / supplied.

MODE_NEEDED (entity, insn)

entity is an integer specifying a mode-switched entity. If OPTIMIZE_MODE_
SWITCHING is defined, you must define this macro to return an integer value not
larger than the corresponding element in NUM_MODES_FOR_MODE_SWITCHING, to
denote the mode that entity must be switched into prior to the execution of
insn.

NORMAL_MODE (entity)

If this macro is defined, it is evaluated for every entity that needs mode switch-
ing. It should evaluate to an integer, which is a mode that entity is assumed
to be switched to at function entry and exit.

MODE_PRIORITY_TO_MODE (entity, n)

This macro specifies the order in which modes for entity are processed. 0 is

the highest priority, NUM_MODES_FOR_MODE_SWITCHING[entity] - 1 the lowest.

The value of the macro should be an integer designating a mode for entity. For

any fixed entity, mode_priority_to_mode (entity, n) shall be a bijection in 0
. num_modes_for_mode_switching[entity] - 1.

Chapter 10: Target Description Macros and Functions 313

EMIT_MODE_SET (entity, mode, hard_regs_live)
Generate one or more insns to set entity to mode. hard_reg_live is the set of
hard registers live at the point where the insn(s) are to be inserted.

10.24 Defining target-specific uses of __attribute__

Target-specific attributes may be defined for functions, data and types. These are described
using the following target hooks; they also need to be documented in ‘extend.texi’.

const struct attribute_spec * TARGET_ATTRIBUTE_TABLE [Target Hook]
If defined, this target hook points to an array of ‘struct attribute_spec’ (defined
in ‘tree.h’) specifying the machine specific attributes for this target and some of the
restrictions on the entities to which these attributes are applied and the arguments
they take.

int TARGET_COMP_TYPE_ATTRIBUTES (tree typel, tree type2) [Target Hook]
If defined, this target hook is a function which returns zero if the attributes on typel
and type2 are incompatible, one if they are compatible, and two if they are nearly
compatible (which causes a warning to be generated). If this is not defined, machine-
specific attributes are supposed always to be compatible.

void TARGET_SET_DEFAULT_TYPE_ATTRIBUTES (tree type) [Target Hook]
If defined, this target hook is a function which assigns default attributes to newly
defined type.

tree TARGET_MERGE_TYPE_ATTRIBUTES (tree typel, tree type2) [Target Hook]
Define this target hook if the merging of type attributes needs special handling. If
defined, the result is a list of the combined TYPE_ATTRIBUTES of typel and type2. It
is assumed that comptypes has already been called and returned 1. This function
may call merge_attributes to handle machine-independent merging.

tree TARGET_MERGE_DECL_ATTRIBUTES (tree olddecl, tree [Target Hook]
newdecl)

Define this target hook if the merging of decl attributes needs special handling. If
defined, the result is a list of the combined DECL_ATTRIBUTES of olddecl and newdecl.
newdecl is a duplicate declaration of olddecl. Examples of when this is needed are
when one attribute overrides another, or when an attribute is nullified by a subsequent
definition. This function may call merge_attributes to handle machine-independent
merging.
If the only target-specific handling you require is ‘d11limport’ for Windows targets,
you should define the macro TARGET_DLLIMPORT_DECL_ATTRIBUTES. This links in a
function called merge_dllimport_decl_attributes which can then be defined as
the expansion of TARGET_MERGE_DECL_ATTRIBUTES. This is done in ‘i386/cygwin.h’
and ‘1386/1386.c’, for example.

void TARGET_INSERT_ATTRIBUTES (tree node, tree *attr_ptr) [Target Hook]
Define this target hook if you want to be able to add attributes to a decl when it
is being created. This is normally useful for back ends which wish to implement a

314 GNU Compiler Collection (GCC) Internals

pragma by using the attributes which correspond to the pragma’s effect. The node
argument is the decl which is being created. The attr_ptr argument is a pointer to
the attribute list for this decl. The list itself should not be modified, since it may be
shared with other decls, but attributes may be chained on the head of the list and
xattr_ptr modified to point to the new attributes, or a copy of the list may be made
if further changes are needed.

bool TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P (tree fndecl) [Target Hook]
This target hook returns true if it is ok to inline fndecl into the current function,
despite its having target-specific attributes, false otherwise. By default, if a function
has a target specific attribute attached to it, it will not be inlined.

10.25 Defining coprocessor specifics for MIPS targets.

The MIPS specification allows MIPS implementations to have as many as 4 coprocessors,
each with as many as 32 private registers. gcc supports accessing these registers and trans-
ferring values between the registers and memory using asm-ized variables. For example:

register unsigned int cpOcount asm ("cOri");
unsigned int d;

d = cpOcount + 3;
(“cOrl” is the default name of register 1 in coprocessor 0; alternate names may be

added as described below, or the default names may be overridden entirely in SUBTARGET_
CONDITIUNAL_REGISTER_USAGEJ

Coprocessor registers are assumed to be epilogue-used; sets to them will be preserved
even if it does not appear that the register is used again later in the function.

Another note: according to the MIPS spec, coprocessor 1 (if present) is the FPU. One
accesses COP1 registers through standard mips floating-point support; they are not included
in this mechanism.

There is one macro used in defining the MIPS coprocessor interface which you may want
to override in subtargets; it is described below.
ALL_COP_ADDITIONAL_REGISTER_NAMES

A comma-separated list (with leading commag of pairs describing the alternate
names of coprocessor registers. The format of each entry should be

{ alternatename, register_number}

Default: empty.

10.26 Miscellaneous Parameters

Here are several miscellaneous parameters.

PREDICATE_CODES
Define this if you have defined special-purpose predicates in the file ‘machine.c’.
This macro is called within an initializer of an array of structures. The first
field in the structure is the name of a predicate and the second field is an array
of rtl codes. For each predicate, list all rtl codes that can be in expressions

Chapter 10: Target Description Macros and Functions 315

matched by the predicate. The list should have a trailing comma. Here is an
example of two entries in the list for a typical RISC machine:
#define PREDICATE_CODES \

{"gen_reg_rtx_operand", {SUBREG, REG}}, \

{"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
Defining this macro does not affect the generated code (however, incorrect def-
initions that omit an rtl code that may be matched by the predicate can cause
the compiler to malfunction). Instead, it allows the table built by ‘genrecog’
to be more compact and efficient, thus speeding up the compiler. The most
important predicates to include in the list specified by this macro are those
used in the most insn patterns.

For each predicate function named in PREDICATE_CODES, a declaration will be
generated in ‘insn-codes.h’.

SPECIAL_MODE_PREDICATES
Define this if you have special predicates that know special things about modes.
Genrecog will warn about certain forms of match_operand without a mode; if
the operand predicate is listed in SPECIAL_MODE_PREDICATES, the warning will
be suppressed.

Here is an example from the IA-32 port (ext_register_operand specially
checks for HImode or SImode in preparation for a byte extraction from %ah
etc.).

#define SPECIAL_MODE_PREDICATES \
"ext_register_operand",

CASE_VECTOR_MODE
An alias for a machine mode name. This is the machine mode that elements of
a jump-table should have.

CASE_VECTOR_SHORTEN_MODE (min_offset, max_offset, body)
Optional: return the preferred mode for an addr_diff_vec when the minimum
and maximum offset are known. If you define this, it enables extra code in
branch shortening to deal with addr_diff_vec. To make this work, you also
have to define INSN_ALIGN and make the alignment for addr_diff_vec explicit.
The body argument is provided so that the offset_unsigned and scale flags can
be updated.

CASE_VECTOR_PC_RELATIVE
Define this macro to be a C expression to indicate when jump-tables should
contain relative addresses. If jump-tables never contain relative addresses, then
you need not define this macro.

CASE_DROPS_THROUGH
Define this if control falls through a case insn when the index value is out of
range. This means the specified default-label is actually ignored by the case
insn proper.

CASE_VALUES_THRESHOLD
Define this to be the smallest number of different values for which it is best
to use a jump-table instead of a tree of conditional branches. The default is

316 GNU Compiler Collection (GCC) Internals

four for machines with a casesi instruction and five otherwise. This is best for
most machines.

WORD_REGISTER_OPERATIONS
Define this macro if operations between registers with integral mode smaller
than a word are always performed on the entire register. Most RISC machines
have this property and most CISC machines do not.

LOAD_EXTEND_OP (mode)
Define this macro to be a C expression indicating when insns that read memory
in mode, an integral mode narrower than a word, set the bits outside of mode
to be either the sign-extension or the zero-extension of the data read. Return
SIGN_EXTEND for values of mode for which the insn sign-extends, ZERO_EXTEND
for which it zero-extends, and NIL for other modes.

This macro is not called with mode non-integral or with a width greater than
or equal to BITS_PER_WORD, so you may return any value in this case. Do
not define this macro if it would always return NIL. On machines where this
macro is defined, you will normally define it as the constant SIGN_EXTEND or
ZERO_EXTEND.

SHORT_IMMEDIATES_SIGN_EXTEND
Define this macro if loading short immediate values into registers sign extends.

FIXUNS_TRUNC_LIKE_FIX_TRUNC
Define this macro if the same instructions that convert a floating point number
to a signed fixed point number also convert validly to an unsigned one.

MOVE_MAX The maximum number of bytes that a single instruction can move quickly
between memory and registers or between two memory locations.

MAX_MOVE_MAX
The maximum number of bytes that a single instruction can move quickly
between memory and registers or between two memory locations. If this is
undefined, the default is MOVE_MAX. Otherwise, it is the constant value that is
the largest value that MOVE_MAX can have at run-time.

SHIFT_COUNT_TRUNCATED

A C expression that is nonzero if on this machine the number of bits actually
used for the count of a shift operation is equal to the number of bits needed
to represent the size of the object being shifted. When this macro is nonzero,
the compiler will assume that it is safe to omit a sign-extend, zero-extend, and
certain bitwise ‘and’ instructions that truncates the count of a shift operation.
On machines that have instructions that act on bit-fields at variable positions,
which may include ‘bit test’ instructions, a nonzero SHIFT_COUNT_TRUNCATED
also enables deletion of truncations of the values that serve as arguments to
bit-field instructions.

If both types of instructions truncate the count (for shifts) and position (for
bit-field operations), or if no variable-position bit-field instructions exist, you
should define this macro.

However, on some machines, such as the 80386 and the 680x0, truncation only
applies to shift operations and not the (real or pretended) bit-field operations.

Chapter 10: Target Description Macros and Functions 317

Define SHIFT_COUNT_TRUNCATED to be zero on such machines. Instead, add
patterns to the ‘md’ file that include the implied truncation of the shift instruc-
tions.

You need not define this macro if it would always have the value of zero.

TRULY_NOOP_TRUNCATION (outprec, inprec)
A C expression which is nonzero if on this machine it is safe to “convert” an
integer of inprec bits to one of outprec bits (where outprec is smaller than
inprec) by merely operating on it as if it had only outprec bits.

On many machines, this expression can be 1.

When TRULY_NOOP_TRUNCATION returns 1 for a pair of sizes for modes for which
MODES_TIEABLE_P is 0, suboptimal code can result. If this is the case, making
TRULY_NOOP_TRUNCATION return O in such cases may improve things.

STORE_FLAG_VALUE
A C expression describing the value returned by a comparison operator with
an integral mode and stored by a store-flag instruction (‘scond’) when the
condition is true. This description must apply to all the ‘scond’ patterns and
all the comparison operators whose results have a MODE_INT mode.

A value of 1 or —1 means that the instruction implementing the comparison
operator returns exactly 1 or —1 when the comparison is true and 0 when the
comparison is false. Otherwise, the value indicates which bits of the result are
guaranteed to be 1 when the comparison is true. This value is interpreted in
the mode of the comparison operation, which is given by the mode of the first
operand in the ‘scond’ pattern. KEither the low bit or the sign bit of STORE_
FLAG_VALUE be on. Presently, only those bits are used by the compiler.

If STORE_FLAG_VALUE is neither 1 or —1, the compiler will generate code that
depends only on the specified bits. It can also replace comparison operators
with equivalent operations if they cause the required bits to be set, even if the
remaining bits are undefined. For example, on a machine whose comparison
operators return an SImode value and where STORE_FLAG_VALUE is defined as
‘0x80000000’, saying that just the sign bit is relevant, the expression

(ne:SI (and:SI x (const_int power-of-2)) (const_int 0))

can be converted to
(ashift:SI x (const_int n))

where n is the appropriate shift count to move the bit being tested into the sign
bit.

There is no way to describe a machine that always sets the low-order bit for a
true value, but does not guarantee the value of any other bits, but we do not
know of any machine that has such an instruction. If you are trying to port
GCC to such a machine, include an instruction to perform a logical-and of the
result with 1 in the pattern for the comparison operators and let us know at
gcclgec.gnu.org.

Often, a machine will have multiple instructions that obtain a value from a
comparison (or the condition codes). Here are rules to guide the choice of value
for STORE_FLAG_VALUE, and hence the instructions to be used:

318

GNU Compiler Collection (GCC) Internals

e Use the shortest sequence that yields a valid definition for STORE_FLAG_
VALUE. It is more efficient for the compiler to “normalize” the value (con-
vert it to, e.g., 1 or 0) than for the comparison operators to do so because
there may be opportunities to combine the normalization with other oper-
ations.

e For equal-length sequences, use a value of 1 or —1, with —1 being slightly
preferred on machines with expensive jumps and 1 preferred on other ma-
chines.

e As asecond choice, choose a value of ‘0x80000001’ if instructions exist that
set both the sign and low-order bits but do not define the others.

e Otherwise, use a value of ‘0x80000000’.

Many machines can produce both the value chosen for STORE_FLAG_VALUE and
its negation in the same number of instructions. On those machines, you should
also define a pattern for those cases, e.g., one matching

(set A (neg:m (ne:m B C)))

Some machines can also perform and or plus operations on condition code
values with less instructions than the corresponding ‘scond’ insn followed by
and or plus. On those machines, define the appropriate patterns. Use the
names incscc and decscc, respectively, for the patterns which perform plus or
minus operations on condition code values. See ‘rs6000.md’ for some examples.
The GNU Superoptizer can be used to find such instruction sequences on other
machines.

You need not define STORE_FLAG_VALUE if the machine has no store-flag in-
structions.

FLOAT_STORE_FLAG_VALUE (mode)

Pmode

A C expression that gives a nonzero REAL_VALUE_TYPE value that is returned
when comparison operators with floating-point results are true. Define this
macro on machine that have comparison operations that return floating-point
values. If there are no such operations, do not define this macro.

An alias for the machine mode for pointers. On most machines, define this to
be the integer mode corresponding to the width of a hardware pointer; SImode
on 32-bit machine or DImode on 64-bit machines. On some machines you must
define this to be one of the partial integer modes, such as PSImode.

The width of Pmode must be at least as large as the value of POINTER_SIZE.
If it is not equal, you must define the macro POINTERS_EXTEND_UNSIGNED to
specify how pointers are extended to Pmode.

FUNCTION_MODE

An alias for the machine mode used for memory references to functions being
called, in call RTL expressions. On most machines this should be QImode.

INTEGRATE_THRESHOLD (decl)

A C expression for the maximum number of instructions above which the func-
tion decl should not be inlined. decl is a FUNCTION_DECL node.

Chapter 10: Target Description Macros and Functions 319

The default definition of this macro is 64 plus 8 times the number of arguments
that the function accepts. Some people think a larger threshold should be used
on RISC machines.

STDC_O_IN_SYSTEM_HEADERS
In normal operation, the preprocessor expands __STDC__ to the constant 1, to
signify that GCC conforms to ISO Standard C. On some hosts, like Solaris,
the system compiler uses a different convention, where __STDC__ is normally 0,
but is 1 if the user specifies strict conformance to the C Standard.

Defining STDC_0_IN_SYSTEM_HEADERS makes GNU CPP follows the host con-
vention when processing system header files, but when processing user files
__STDC__ will always expand to 1.

NO_IMPLICIT_EXTERN_C
Define this macro if the system header files support C++ as well as C. This
macro inhibits the usual method of using system header files in C++, which is
to pretend that the file’s contents are enclosed in ‘extern "C" {...}".

HANDLE_PRAGMA (getc, ungetc, name)
This macro is no longer supported. You must use REGISTER_TARGET_PRAGMAS
instead.

REGISTER_TARGET_PRAGMAS (pfile)
Define this macro if you want to implement any target-specific pragmas. If
defined, it is a C expression which makes a series of calls to cpp_register_
pragma for each pragma, with pfile passed as the first argument to to these
functions. The macro may also do any setup required for the pragmas.

The primary reason to define this macro is to provide compatibility with other
compilers for the same target. In general, we discourage definition of target-
specific pragmas for GCC.

If the pragma can be implemented by attributes then you should consider defin-
ing the target hook ‘TARGET_INSERT_ATTRIBUTES’ as well.

Preprocessor macros that appear on pragma lines are not expanded. All
‘#pragma’ directives that do not match any registered pragma are silently
ignored, unless the user specifies ‘~Wunknown-pragmas’.

void cpp_register_pragma (cpp_reader *pfile, const [Function]
char *space, const char *name, void (*callback) (cpp_reader
*))
Each call to cpp_register_pragma establishes one pragma. The callback
routine will be called when the preprocessor encounters a pragma of the
form
#pragma [space] name ...
space is the case-sensitive namespace of the pragma, or NULL to put the
pragma in the global namespace. The callback routine receives pfile as its
first argument, which can be passed on to cpplib’s functions if necessary.
You can lex tokens after the name by calling c_lex. Tokens that are
not read by the callback will be silently ignored. The end of the line is
indicated by a token of type CPP_EOF.

320

GNU Compiler Collection (GCC) Internals

For an example use of this routine, see ‘c4x.h’ and the callback routines
defined in ‘c4x-c.c’.

Note that the use of c_lex is specific to the C and C++ compilers. It
will not work in the Java or Fortran compilers, or any other language
compilers for that matter. Thus if c_lex is going to be called from
target-specific code, it must only be done so when building the C and
C++ compilers. This can be done by defining the variables c_target_
objs and cxx_target_objs in the target entry in the ‘config.gcc’ file.
These variables should name the target-specific, language-specific object
file which contains the code that uses c_lex. Note it will also be necessary
to add a rule to the makefile fragment pointed to by tmake_file that
shows how to build this object file.

HANDLE_SYSV_PRAGMA

Define this macro (to a value of 1) if you want the System V style pragmas
‘#pragma pack(<n>)’ and ‘#pragma weak <name> [=<value>]’ to be supported
by gcc.

The pack pragma specifies the maximum alignment (in bytes) of fields within
a structure, in much the same way as the ‘__aligned__’ and ‘__packed__’
__attribute__s do. A pack value of zero resets the behavior to the default.
A subtlety for Microsoft Visual C/C++ style bit-field packing (e.g. -mms-
bitfields) for targets that support it: When a bit-field is inserted into a packed
record, the whole size of the underlying type is used by one or more same-size
adjacent bit-fields (that is, if its long:3, 32 bits is used in the record, and any
additional adjacent long bit-fields are packed into the same chunk of 32 bits.
However, if the size changes, a new field of that size is allocated).

If both MS bit-fields and ‘__attribute__((packed))’ are used, the latter will
take precedence. If ‘__attribute__((packed))’ is used on a single field when
MS bit-fields are in use, it will take precedence for that field, but the alignment
of the rest of the structure may affect its placement.

The weak pragma only works if SUPPORTS_WEAK and ASM_WEAKEN_LABEL are
defined. If enabled it allows the creation of specifically named weak labels,
optionally with a value.

HANDLE_PRAGMA_PACK_PUSH_PQOP

Define this macro (to a value of 1) if you want to support the Win32 style prag-
mas ‘#pragma pack(push,n)’ and ‘#pragma pack(pop)’. The ‘pack(push,n)’
pragma specifies the maximum alignment (in bytes) of fields within a structure,
in much the same way as the ‘__aligned__’ and ‘__packed__’ __attribute__s
do. A pack value of zero resets the behavior to the default. Successive invoca-
tions of this pragma cause the previous values to be stacked, so that invocations
of ‘#pragma pack(pop)’ will return to the previous value.

DOLLARS_IN_IDENTIFIERS

Define this macro to control use of the character ‘$’ in identifier names. 0 means
‘$’ is not allowed by default; 1 means it is allowed. 1 is the default; there is
no need to define this macro in that case. This macro controls the compiler
proper; it does not affect the preprocessor.

Chapter 10: Target Description Macros and Functions 321

NO_DOLLAR_IN_LABEL
Define this macro if the assembler does not accept the character ‘¢’ in label
names. By default constructors and destructors in G++ have ‘¢’ in the identi-
fiers. If this macro is defined, ‘.’ is used instead.

NO_DOT_IN_LABEL
Define this macro if the assembler does not accept the character in label
names. By default constructors and destructors in G++ have names that use
‘.7, If this macro is defined, these names are rewritten to avoid .’.

[

DEFAULT_MAIN_RETURN
Define this macro if the target system expects every program’s main function
to return a standard “success” value by default (if no other value is explicitly
returned).

The definition should be a C statement (sans semicolon) to generate the appro-
priate rtl instructions. It is used only when compiling the end of main.

NEED_ATEXIT
Define this if the target system lacks the function atexit from the ISO C
standard. If this macro is defined, a default definition will be provided to
support C++. If ON_EXIT is not defined, a default exit function will also be
provided.

ON_EXIT Define this macro if the target has another way to implement atexit functionality
without replacing exit. For instance, SunOS 4 has a similar on_exit library
function.

The definition should be a functional macro which can be used just like the
atexit function.

EXIT_BODY
Define this if your exit function needs to do something besides calling an
external function _cleanup before terminating with _exit. The EXIT_BODY
macro is only needed if NEED_ATEXIT is defined and ON_EXIT is not defined.

INSN_SETS_ARE_DELAYED (insn)
Define this macro as a C expression that is nonzero if it is safe for the delay slot
scheduler to place instructions in the delay slot of insn, even if they appear to
use a resource set, or clobbered in insn. insn is always a jump_insn or an insn;
GCC knows that every call_insn has this behavior. On machines where some
insn or jump_insn is really a function call and hence has this behavior, you
should define this macro.

You need not define this macro if it would always return zero.

INSN_REFERENCES_ARE_DELAYED (insn)
Define this macro as a C expression that is nonzero if it is safe for the delay
slot scheduler to place instructions in the delay slot of insn, even if they appear
to set or clobber a resource referenced in insn. insn is always a jump_insn or
an insn. On machines where some insn or jump_insn is really a function call
and its operands are registers whose use is actually in the subroutine it calls,
you should define this macro. Doing so allows the delay slot scheduler to move

322 GNU Compiler Collection (GCC) Internals

instructions which copy arguments into the argument registers into the delay
slot of insn.

You need not define this macro if it would always return zero.

MACHINE_DEPENDENT_REORG (insn)
In rare cases, correct code generation requires extra machine dependent process-
ing between the second jump optimization pass and delayed branch scheduling.
On those machines, define this macro as a C statement to act on the code
starting at insn.

MULTIPLE_SYMBOL_SPACES
Define this macro if in some cases global symbols from one translation unit
may not be bound to undefined symbols in another translation unit without
user intervention. For instance, under Microsoft Windows symbols must be
explicitly imported from shared libraries (DLLs).

MD_ASM_CLOBBERS (clobbers)
A C statement that adds to clobbers STRING_CST trees for any hard regs the
port wishes to automatically clobber for all asms.

MAX_INTEGER_COMPUTATION_MODE
Define this to the largest integer machine mode which can be used for operations
other than load, store and copy operations.

You need only define this macro if the target holds values larger than word_mode
in general purpose registers. Most targets should not define this macro.

MATH_LIBRARY
Define this macro as a C string constant for the linker argument to link in the
system math library, or ‘""’ if the target does not have a separate math library.

You need only define this macro if the default of ‘"-1m"’ is wrong.

LIBRARY_PATH_ENV
Define this macro as a C string constant for the environment variable that
specifies where the linker should look for libraries.

You need only define this macro if the default of ‘"LIBRARY_PATH"’ is wrong.

TARGET_HAS_F_SETLKW
Define this macro if the target supports file locking with fentl / F_.SETLKW.
Note that this functionality is part of POSIX. Defining TARGET_HAS_F_SETLKW
will enable the test coverage code to use file locking when exiting a program,
which avoids race conditions if the program has forked.

MAX_CONDITIONAL_EXECUTE
A C expression for the maximum number of instructions to execute via condi-
tional execution instructions instead of a branch. A value of BRANCH_COST+1 is
the default if the machine does not use cc0, and 1 if it does use cc0.

IFCVT_MODIFY_TESTS(ce_info, true_expr, false_expr)
Used if the target needs to perform machine-dependent modifications on the
conditionals used for turning basic blocks into conditionally executed code.
ce_info points to a data structure, struct ce_if_block, which contains infor-
mation about the currently processed blocks. true_expr and false_expr are the

Chapter 10: Target Description Macros and Functions 323

tests that are used for converting the then-block and the else-block, respec-
tively. Set either true_expr or false_expr to a null pointer if the tests cannot be
converted.

IFCVT_MODIFY_MULTIPLE_TESTS(ce_info, bb, true_expr, false_expr)
Like IFCVT_MODIFY_TESTS, but used when converting more complicated if-
statements into conditions combined by and and or operations. bb contains
the basic block that contains the test that is currently being processed and
about to be turned into a condition.

IFCVT_MODIFY_INSN(ce_info, pattern, insn)
A C expression to modify the PATTERN of an INSN that is to be converted
to conditional execution format. ce_info points to a data structure, struct ce_
if_block, which contains information about the currently processed blocks.

IFCVT_MODIFY_FINAL(ce_info)
A C expression to perform any final machine dependent modifications in con-
verting code to conditional execution. The involved basic blocks can be found
in the struct ce_if_block structure that is pointed to by ce_info.

IFCVT_MODIFY_CANCEL(ce_info)
A C expression to cancel any machine dependent modifications in converting
code to conditional execution. The involved basic blocks can be found in the
struct ce_if_block structure that is pointed to by ce_info.

IFCVT_INIT_EXTRA_FIELDS(ce_info)
A C expression to initialize any extra fields in a struct ce_if_block structure,
which are defined by the IFCVT_EXTRA_FIELDS macro.

IFCVT_EXTRA_FIELDS
If defined, it should expand to a set of field declarations that will be added to
the struct ce_if_block structure. These should be initialized by the IFCVT_
INIT_EXTRA_FIELDS macro.

void TARGET_INIT_BUILTINS () [Target Hook]
Define this hook if you have any machine-specific built-in functions that need to be
defined. It should be a function that performs the necessary setup.

Machine specific built-in functions can be useful to expand special machine instruc-
tions that would otherwise not normally be generated because they have no equivalent
in the source language (for example, SIMD vector instructions or prefetch instruc-
tions).

To create a built-in function, call the function builtin_function which is defined by
the language front end. You can use any type nodes set up by build_common_tree_
nodes and build_common_tree_nodes_2; only language front ends that use those
two functions will call ‘TARGET_INIT_BUILTINS’ .

rtx TARGET_EXPAND_BUILTIN (tree exp, rtx target, rtx [Target Hook]
subtarget, enum machine_mode mode, int ignore)

Expand a call to a machine specific built-in function that was set up by

‘TARGET_INIT_BUILTINS’. exp is the expression for the function call; the result

324 GNU Compiler Collection (GCC) Internals

should go to target if that is convenient, and have mode mode if that is convenient.
subtarget may be used as the target for computing one of exp’s operands. ignore is
nonzero if the value is to be ignored. This function should return the result of the
call to the built-in function.

MD_CAN_REDIRECT_BRANCH(branchl, branch2)
Take a branch insn in branchl and another in branch2. Return true if redirect-
ing branchl to the destination of branch2 is possible.

On some targets, branches may have a limited range. Optimizing the filling of
delay slots can result in branches being redirected, and this may in turn cause
a branch offset to overflow.

ALLOCATE_INITIAL_VALUE(hard_reg)

When the initial value of a hard register has been copied in a pseudo register,
it is often not necessary to actually allocate another register to this pseudo
register, because the original hard register or a stack slot it has been saved
into can be used. ALLOCATE_INITIAL_VALUE, if defined, is called at the start of
register allocation once for each hard register that had its initial value copied
by using get_func_hard_reg_initial_val or get_hard_reg_initial_val.
Possible values are NULL_RTX, if you don’t want to do any special allocation,
a REG rtx—that would typically be the hard register itself, if it is known not
to be clobbered—or a MEM. If you are returning a MEM, this is only a hint for
the allocator; it might decide to use another register anyways. You may use
current_function_leaf_function in the definition of the macro, functions
that use REG_N_SETS, to determine if the hard register in question will not be
clobbered.

TARGET_OBJECT_SUFFIX
Define this macro to be a C string representing the suffix for object files on
your target machine. If you do not define this macro, GCC will use ‘.0’ as the
suffix for object files.

TARGET_EXECUTABLE_SUFFIX
Define this macro to be a C string representing the suffix to be automatically
added to executable files on your target machine. If you do not define this
macro, GCC will use the null string as the suffix for executable files.

COLLECT_EXPORT_LIST
If defined, collect2 will scan the individual object files specified on its com-
mand line and create an export list for the linker. Define this macro for systems
like ATX, where the linker discards object files that are not referenced from main
and uses export lists.

MODIFY_JNI_METHOD_CALL (mdecl)
Define this macro to a C expression representing a variant of the method call
mdecl, if Java Native Interface (JNI) methods must be invoked differently from
other methods on your target. For example, on 32-bit Windows, JNI methods
must be invoked using the stdcall calling convention and this macro is then
defined as this expression:

Chapter 10: Target Description Macros and Functions 325

build_type_attribute_variant (mdecl,

build_tree_list

(get_identifier ("stdcall"),
NULL))

bool TARGET_CANNOT_MODIFY_JUMPS_P (void) [Target Hook]

This target hook returns true past the point in which new jump instructions could
be created. On machines that require a register for every jump such as the SHmedia

ISA of SH5, this point would typically be reload, so this target hook should be defined
to a function such as:

static bool

cannot_modify_jumps_past_reload_p ()
{

return (reload_completed || reload_in_progress);

}

326 GNU Compiler Collection (GCC) Internals

Chapter 11: Host Configuration Headers 327

11 Host Configuration Headers

Host configuration headers contain macro definitions that describe the machine and system
on which the compiler is running. They are usually unnecessary. Most of the things GCC
needs to know about the host system can be deduced by the configure script.

If your host does need a special configuration header, it should be named ‘xm-machine.h’,
where machine is a short mnemonic for the machine. Here are some macros which this
header can define.

VMS Define this macro if the host system is VMS.

FATAL_EXIT_CODE
A C expression for the status code to be returned when the compiler exits after
serious errors. The default is the system-provided macro ‘EXIT_FAILURE’, or ‘1’
if the system doesn’t define that macro. Define this macro only if these defaults
are incorrect.

SUCCESS_EXIT_CODE
A C expression for the status code to be returned when the compiler exits
without serious errors. (Warnings are not serious errors.) The default is the
system-provided macro ‘EXIT_SUCCESS’, or ‘0’ if the system doesn’t define that
macro. Define this macro only if these defaults are incorrect.

USE_C_ALLOCA
Define this macro if GCC should use the C implementation of alloca provided
by ‘libiberty.a’. This only affects how some parts of the compiler itself
allocate memory. It does not change code generation.

When GCC is built with a compiler other than itself, the C alloca is always
used. This is because most other implementations have serious bugs. You
should define this macro only on a system where no stack-based alloca can
possibly work. For instance, if a system has a small limit on the size of the
stack, GCC’s builtin alloca will not work reliably.

HAVE_DOS_BASED_FILE_SYSTEM
Define this macro if the host file system obeys the semantics defined by MS-
DOS instead of Unix. DOS file systems are case insensitive, file specifications
may begin with a drive letter, and both forward slash and backslash (‘/’ and
‘\’) are directory separators. If you define this macro, you probably need to
define the next three macros too.

PATH_SEPARATOR
If defined, this macro should expand to a character constant specifying the
separator for elements of search paths. The default value is a colon (‘:’). DOS-
based systems usually use semicolon (*;’).

DIR_SEPARATOR

DIR_SEPARATOR_2
If defined, these macros expand to character constants specifying separators for
directory names within a file specification. They are used somewhat inconsis-
tently throughout the compiler. If your system behaves like Unix (only forward

328 GNU Compiler Collection (GCC) Internals

slash separates pathnames), define neither of them. If your system behaves like
DOS (both forward and backward slash can be used), define DIR_SEPARATOR to
‘/” and DIR_SEPARATOR_2 to ‘\’.

HOST_OBJECT_SUFFIX
Define this macro to be a C string representing the suffix for object files on
your host machine. If you do not define this macro, GCC will use ‘.o’ as the
suffix for object files.

HOST_EXECUTABLE_SUFFIX
Define this macro to be a C string representing the suffix for executable files
on your host machine. If you do not define this macro, GCC will use the null
string as the suffix for executable files.

HOST_BIT_BUCKET
A pathname defined by the host operating system, which can be opened as a file
and written to, but all the information written is discarded. This is commonly
known as a bit bucket or null device. If you do not define this macro, GCC will
use ‘/dev/null’ as the bit bucket. If the host does not support a bit bucket,
define this macro to an invalid filename.

COLLECT2_HOST_INITIALIZATION
If defined, a C statement (sans semicolon) that performs host-dependent ini-
tialization when collect2 is being initialized.

GCC_DRIVER_HOST_INITIALIZATION
If defined, a C statement (sans semicolon) that performs host-dependent ini-
tialization when a compilation driver is being initialized.

UPDATE_PATH_HOST_CANONICALIZE (path)
If defined, a C statement (sans semicolon) that performs host-dependent canon-
icalization when a path used in a compilation driver or preprocessor is canoni-
calized. path is a malloc-ed path to be canonicalized. If the C statement does
canonicalize path into a different buffer, the old path should be freed and the
new buffer should have been allocated with malloc.

DUMPFILE_FORMAT

Define this macro to be a C string representing the format to use for constructing
the index part of debugging dump file names. The resultant string must fit in
fifteen bytes. The full filename will be the concatenation of: the prefix of the
assembler file name, the string resulting from applying this format to an index
number, and a string unique to each dump file kind, e.g. ‘rtl’.

If you do not define this macro, GCC will use ‘.%02d.’. You should define this
macro if using the default will create an invalid file name.

SMALL_ARG_MAX
Define this macro if the host system has a small limit on the total size of
an argument vector. This causes the driver to take more care not to pass
unnecessary arguments to subprocesses.

In addition, if configure generates an incorrect definition of any of the macros in
‘auto-host.h’, you can override that definition in a host configuration header. If you
need to do this, first see if it is possible to fix configure.

Chapter 11: Host Configuration Headers 329

If you need to define only a few of these macros, and they have simple definitions,
consider using the xm_defines variable in your ‘config.gcc’ entry instead of creating a
host configuration header. See Section 5.3.2.2 [System Config], page 14.

330 GNU Compiler Collection (GCC) Internals

Chapter 12: Makefile Fragments 331

12 Makefile Fragments

When you configure GCC using the ‘configure’ script, it will construct the file ‘Makefile’
from the template file ‘Makefile.in’. When it does this, it can incorporate makefile frag-
ments from the ‘config’ directory. These are used to set Makefile parameters that are not
amenable to being calculated by autoconf. The list of fragments to incorporate is set by
‘config.gcc’; See Section 5.3.2.2 [System Config], page 14.

Fragments are named either ‘t-target’ or ‘x-host’, depending on whether they are
relevant to configuring GCC to produce code for a particular target, or to configuring GCC
to run on a particular host. Here target and host are mnemonics which usually have some
relationship to the canonical system name, but no formal connection.

If these files do not exist, it means nothing needs to be added for a given target or host.
Most targets need a few ‘t-target’ fragments, but needing ‘x-host’ fragments is rare.

12.1 Target Makefile Fragments

Target makefile fragments can set these Makefile variables.

LIBGCC2_CFLAGS
Compiler flags to use when compiling ‘libgcc2.c’.

LIB2FUNCS_EXTRA
A list of source file names to be compiled or assembled and inserted into
‘libgcc.a’.

Floating Point Emulation
To have GCC include software floating point libraries in ‘libgcc.a’ define
FPBIT and DPBIT along with a few rules as follows:

We want fine grained libraries, so use the new code
to build the floating point emulation libraries.
FPBIT = fp-bit.c

DPBIT = dp-bit.c

fp-bit.c: $(srcdir)/config/fp-bit.c
echo ’#define FLOAT’ > fp-bit.c
cat $(srcdir)/config/fp-bit.c >> fp-bit.c

dp-bit.c: $(srcdir)/config/fp-bit.c
cat $(srcdir)/config/fp-bit.c > dp-bit.c

You may need to provide additional #defines at the beginning of ‘fp-bit.c’
and ‘dp-bit.c’ to control target endianness and other options.

CRTSTUFF_T_CFLAGS
Special flags used when compiling ‘crtstuff.c’. See Section 10.20.5 [Initial-
ization|, page 292.

CRTSTUFF_T_CFLAGS_S
Special flags used when compiling ‘crtstuff.c’ for shared linking. Used if
you use ‘crtbeginS.o’” and ‘crtendS.o’ in EXTRA-PARTS. See Section 10.20.5
[Initialization|, page 292.

332 GNU Compiler Collection (GCC) Internals

MULTILIB_OPTIONS
For some targets, invoking GCC in different ways produces objects that can not
be linked together. For example, for some targets GCC produces both big and
little endian code. For these targets, you must arrange for multiple versions
of ‘1ibgecc.a’ to be compiled, one for each set of incompatible options. When
GCC invokes the linker, it arranges to link in the right version of ‘libgcc.a’,
based on the command line options used.

The MULTILIB_OPTIONS macro lists the set of options for which special versions
of ‘libgcc.a’ must be built. Write options that are mutually incompatible side
by side, separated by a slash. Write options that may be used together separated
by a space. The build procedure will build all combinations of compatible
options.

For example, if you set MULTILIB_OPTIONS to ‘m68000/m68020 msoft-float’,
‘Makefile’ will build special versions of ‘libgcc.a’ using the following sets of
options: ‘-m68000’, ‘-m68020°, ‘-msoft-float’, ‘-m68000 -msoft-float’, and
‘-m68020 -msoft-float’.

MULTILIB_DIRNAMES
If MULTILIB_OPTIONS is used, this variable specifies the directory names that
should be used to hold the various libraries. Write one element in MULTILIB_
DIRNAMES for each element in MULTILIB_OPTIONS. If MULTILIB_DIRNAMES is
not used, the default value will be MULTILIB_OPTIONS, with all slashes treated
as spaces.

For example, if MULTILIB_OPTIONS is set to ‘m68000/m68020 msoft-float’,
then the default value of MULTILIB_DIRNAMES is ‘m68000 m68020 msoft-float’ .
You may specify a different value if you desire a different set of directory names.

MULTILIB_MATCHES
Sometimes the same option may be written in two different ways. If an option is
listed in MULTILIB_OPTIONS, GCC needs to know about any synonyms. In that
case, set MULTILIB_MATCHES to a list of items of the form ‘option=option’ to de-
scribe all relevant synonyms. For example, ‘m68000=mc68000 m68020=mc68020°.

MULTILIB_EXCEPTIONS
Sometimes when there are multiple sets of MULTILIB_OPTIONS being specified,
there are combinations that should not be built. In that case, set MULTILIB_
EXCEPTIONS to be all of the switch exceptions in shell case syntax that should
not be built.

For example the ARM processor cannot execute both hardware floating point
instructions and the reduced size THUMB instructions at the same time, so
there is no need to build libraries with both of these options enabled. Therefore
MULTILIB_EXCEPTIONS is set to:

*mthumb/*mhard-floatx*

MULTILIB_EXTRA_OPTS
Sometimes it is desirable that when building multiple versions of ‘libgcc.a’
certain options should always be passed on to the compiler. In that case, set
MULTILIB_EXTRA_OPTS to be the list of options to be used for all builds. If you
set this, you should probably set CRTSTUFF_T_CFLAGS to a dash followed by it.

Chapter 12: Makefile Fragments 333

SPECS Unfortunately, setting MULTILIB_EXTRA_OPTS is not enough, since it does not
affect the build of target libraries, at least not the build of the default multilib.
One possible work-around is to use DRIVER_SELF_SPECS to bring options from
the ‘specs’ file as if they had been passed in the compiler driver command
line. However, you don’t want to be adding these options after the toolchain is
installed, so you can instead tweak the ‘specs’ file that will be used during the
toolchain build, while you still install the original, built-in ‘specs’. The trick is
to set SPECS to some other filename (say ‘specs.install’), that will then be
created out of the built-in specs, and introduce a ‘Makefile’ rule to generate the
‘specs’ file that’s going to be used at build time out of your ‘specs.install’.

12.2 Host Makefile Fragments

The use of ‘x-host’ fragments is discouraged. You should do so only if there is no other
mechanism to get the behavior desired. Host fragments should never forcibly override
variables set by the configure script, as they may have been adjusted by the user.

Variables provided for host fragments to set include:

X_CFLAGS

X_CPPFLAGS
These are extra flags to pass to the C compiler and preprocessor, respectively.
They are used both when building GCC, and when compiling things with the
just-built GCC.

XCFLAGS These are extra flags to use when building the compiler. They are not used when
compiling ‘libgcc.a’. However, they are used when recompiling the compiler
with itself in later stages of a bootstrap.

BOOT_LDFLAGS
Flags to be passed to the linker when recompiling the compiler with itself in
later stages of a bootstrap. You might need to use this if, for instance, one of
the front ends needs more text space than the linker provides by default.

EXTRA_PROGRAMS
A list of additional programs required to use the compiler on this host, which
should be compiled with GCC and installed alongside the front ends. If you set
this variable, you must also provide rules to build the extra programs.

334 GNU Compiler Collection (GCC) Internals

Chapter 13: collect? 335

13 collect2

GCC uses a utility called collect2 on nearly all systems to arrange to call various initial-
ization functions at start time.

The program collect?2 works by linking the program once and looking through the linker
output file for symbols with particular names indicating they are constructor functions. If
it finds any, it creates a new temporary ‘. c’ file containing a table of them, compiles it, and
links the program a second time including that file.

The actual calls to the constructors are carried out by a subroutine called __main, which
is called (automatically) at the beginning of the body of main (provided main was compiled
with GNU CC). Calling __main is necessary, even when compiling C code, to allow linking
C and C++ object code together. (If you use ‘-nostdlib’, you get an unresolved reference
to __main, since it’s defined in the standard GCC library. Include ‘-1gcc’ at the end of
your compiler command line to resolve this reference.)

The program collect?2 is installed as 1d in the directory where the passes of the compiler
are installed. When collect?2 needs to find the real 1d, it tries the following file names:

e ‘real-1d’ in the directories listed in the compiler’s search directories.

e ‘real-1d’ in the directories listed in the environment variable PATH.

e The file specified in the REAL_LD_FILE_NAME configuration macro, if specified.

e ‘1d’ in the compiler’s search directories, except that collect2 will not execute itself
recursively.

e ‘14’ in PATH.

“The compiler’s search directories” means all the directories where gcc searches for
passes of the compiler. This includes directories that you specify with ‘-B’.

Cross-compilers search a little differently:

‘real-1d’ in the compiler’s search directories.
e ‘target-real-1d’ in PATH.
e The file specified in the REAL_LD_FILE_NAME configuration macro, if specified.
e ‘1d’ in the compiler’s search directories.
e ‘target-1d’ in PATH.
collect2 explicitly avoids running 1d using the file name under which collect?2 itself
was invoked. In fact, it remembers up a list of such names—in case one copy of collect2

finds another copy (or version) of collect2 installed as 1d in a second place in the search
path.

collect? searches for the utilities nm and strip using the same algorithm as above for
1d.

336 GNU Compiler Collection (GCC) Internals

Chapter 14: Standard Header File Directories 337

14 Standard Header File Directories

GCC_INCLUDE_DIR means the same thing for native and cross. It is where GCC stores its
private include files, and also where GCC stores the fixed include files. A cross compiled
GCC runs fixincludes on the header files in ‘¢ (tooldir)/include’. (If the cross compi-
lation header files need to be fixed, they must be installed before GCC is built. If the cross
compilation header files are already suitable for GCC, nothing special need be done).

GPLUSPLUS_INCLUDE_DIR means the same thing for native and cross. It is where g++
looks first for header files. The C++ library installs only target independent header files in
that directory.

LOCAL_INCLUDE_DIR is used only by native compilers. GCC doesn’t install anything
there. It is normally ‘/usr/local/include’. This is where local additions to a packaged
system should place header files.

CROSS_INCLUDE_DIR is used only by cross compilers. GCC doesn’t install anything there.

TOOL_INCLUDE_DIR is used for both native and cross compilers. It is the place for other
packages to install header files that GCC will use. For a cross-compiler, this is the equivalent
of ‘/usr/include’. When you build a cross-compiler, fixincludes processes any header
files in this directory.

338 GNU Compiler Collection (GCC) Internals

Chapter 15: Memory Management and Type Information 339

15 Memory Management and Type Information

GCC uses some fairly sophisticated memory management techniques, which involve deter-
mining information about GCC’s data structures from GCC’s source code and using this
information to perform garbage collection.

A full C parser would be too overcomplicated for this task, so a limited subset of C
is interpreted and special markers are used to determine what parts of the source to look
at. The parser can also detect simple typedefs of the form typedef struct ID1 *ID2; and
typedef int ID3;, and these don’t need to be specially marked.

The two forms that do need to be marked are:

struct ID1 GTY(([options]))
{

[fields]
+;

typedef struct ID2 GTY(([options]))
{

[fields]
} ID3;

15.1 The Inside of a GTY(())

Sometimes the C code is not enough to fully describe the type structure. Extra information
can be provided by using more GTY markers. These markers can be placed:

e In a structure definition, before the open brace;
e In a global variable declaration, after the keyword static or extern; and
e In a structure field definition, before the name of the field.
The format of a marker is
GTY (([name] ([param]), [name] ([param]) ...))
The parameter is either a string or a type name.

When the parameter is a string, often it is a fragment of C code. Three special escapes
may be available:

%h This expands to an expression that evaluates to the current structure.

Al This expands to an expression that evaluates to the structure that immediately
contains the current structure.

%0 This expands to an expression that evaluates to the outermost structure that
contains the current structure.

%ha This expands to the string of the form [i1][i2]... that indexes the array
item currently being marked. For instance, if the field being marked is foo,
then %1.foo%a is the same as %h.

The available options are:

340

length

skip

desc
tag
default

GNU Compiler Collection (GCC) Internals

There are two places the type machinery will need to be explicitly told the
length of an array. The first case is when a structure ends in a variable-length
array, like this:

struct rtvec_def GTY(()) {

int num_elem; /* number of elements */

rtx GTY ((length ("%h.num_elem"))) elem[1];
};
In this case, the length option is used to override the specified array length
(which should usually be 1). The parameter of the option is a fragment of C
code that calculates the length.

The second case is when a structure or a global variable contains a pointer to
an array, like this:

tree *
GTY ((length ("%h.regno_pointer_align_length"))) regno_decl;
In this case, regno_decl has been allocated by writing something like

x->regno_decl =
ggc_alloc (x->regno_pointer_align_length * sizeof (tree));

and the length provides the length of the field.
This second use of 1length also works on global variables, like:

static GTY((length ("reg_base_value_size")))
rtx *reg_base_value;

If skip is applied to a field, the type machinery will ignore it. This is somewhat
dangerous; the only safe use is in a union when one field really isn’t ever used.

The type machinery needs to be told which field of a union is currently active.
This is done by giving each field a constant tag value, and then specifying a
discriminator using desc. For example,

struct tree_binding GTY(())
{
struct tree_common common;
union tree_binding u {
tree GTY ((tag ("0"))) scope;
struct cp_binding_level * GTY ((tag ("1"))) level;
} GTY ((desc ("BINDING_HAS_LEVEL_P ((tree)&}%0)"))) scope;
tree value;

};

In the desc option, the “current structure” is the union that it discriminates.
Use %1 to mean the structure containing it. (There are no escapes available to
the tag option, since it’s supposed to be a constant.)

FEach tag should be different. If no tag is matched, the field marked with
default is used if there is one, otherwise no field in the union will be marked.

Chapter 15: Memory Management and Type Information 341

param_is

use_param
Sometimes it’s convenient to define some data structure to work on generic
pointers (that is, PTR) and then use it with a specific type. param_is specifies
the real type pointed to, and use_param says where in the generic data structure
that type should be put.

For instance, to have a htab_t that points to trees, one should write

htab_t GTY ((param_is (union tree_node))) ict;

paramn_is

use_paramn
In more complicated cases, the data structure might need to work on several
different types, which might not necessarily all be pointers. For this, paraml_is
through param9_is may be used to specify the real type of a field identified by
use_paraml through use_param9.

use_params
When a structure contains another structure that is parameterized, there’s no
need to do anything special, the inner structure inherits the parameters of the
outer one. When a structure contains a pointer to a parameterized structure,
the type machinery won’t automatically detect this (it could, it just doesn’t
yet), so it’s necessary to tell it that the pointed-to structure should use the
same parameters as the outer structure. This is done by marking the pointer
with the use_params option.

deletable
deletable, when applied to a global variable, indicates that when garbage
collection runs, there’s no need to mark anything pointed to by this variable,
it can just be set to NULL instead. This is used to keep a list of free structures
around for re-use.

if_marked

Suppose you want some kinds of object to be unique, and so you put them in a
hash table. If garbage collection marks the hash table, these objects will never
be freed, even if the last other reference to them goes away. GGC has special
handling to deal with this: if you use the if_marked option on a global hash
table, GGC will call the routine whose name is the parameter to the option on
each hash table entry. If the routine returns nonzero, the hash table entry will
be marked as usual. If the routine returns zero, the hash table entry will be
deleted.

The routine ggc_marked_p can be used to determine if an element has been
marked already; in fact, the usual case is to use if _marked ("ggc_marked_p").

maybe_undef
When applied to a field, maybe_undef indicates that it’s OK if the structure
that this fields points to is never defined, so long as this field is always NULL.
This is used to avoid requiring backends to define certain optional structures.
It doesn’t work with language frontends.

special

342 GNU Compiler Collection (GCC) Internals

The special option is used for those bizarre cases that are just too hard to
deal with otherwise. Don’t use it for new code.

15.2 Marking Roots for the Garbage Collector

In addition to keeping track of types, the type machinery also locates the global variables
that the garbage collector starts at. There are two syntaxes it accepts to indicate a root:

1. extern GTY (([options])) [type] ID;
2. static GTY (([options])) [typel ID;

These are the only syntaxes that are accepted. In particular, if you want to mark a
variable that is only declared as

int ID;

or similar, you should either make it static or you should create a extern declaration
in a header file somewhere.

15.3 Source Files Containing Type Information

Whenever you add GTY markers to a new source file, there are three things you need to do:

1. You need to add the file to the list of source files the type machinery scans. There are
three cases:

a. For a back-end file, this is usually done automatically; if not, you should add it to
target_gtfiles in the appropriate port’s entries in ‘config.gcc’.

b. For files shared by all front ends, this is done by adding the filename to the GTFILES
variable in ‘Makefile.in’.

c. For any other file used by a front end, this is done by adding the filename
to the gtfiles variable defined in ‘config-lang.in’. For C, the file is
‘c-config-lang.in’. This list should include all files that have GTY macros in
them that are used in that front end, other than those defined in the previous list
items. For example, it is common for front end writers to use ‘c-common.c’ and
other files from the C front end, and these should be included in the ‘gtfiles’
variable for such front ends.

2. If the file was a header file, you’ll need to check that it’s included in the right place to be
visible to the generated files. For a back-end header file, this should be done automati-
cally. For a front-end header file, it needs to be included by the same file that includes
‘gtype-lang.h’. For other header files, it needs to be included in ‘gtype-desc.c’,
which is a generated file, so add it to ifiles in open_base_file in ‘gengtype.c’.

For source files that aren’t header files, the machinery will generate a header file
that should be included in the source file you just changed. The file will be called
‘gt-path.h’ where path is the pathname relative to the ‘gcc’ directory with slashes
replaced by -, so for example the header file to be included in ‘objc/objc-parse.c’
is called ‘gt-objc-objc-parse.c’. The generated header file should be included after
everything else in the source file. Don’t forget to mention this file as a dependency in
the ‘Makefile’!

Chapter 15: Memory Management and Type Information 343

3. If a new ‘gt-path.h’ file is needed, you need to arrange to add a ‘Makefile’ rule that
will ensure this file can be built. This is done by making it a dependency of s-gtype,
like this:

gt-path.h : s-gtype ; Q@true
For language frontends, there is another file that needs to be included somewhere. It

will be called ‘gtype-lang.h’, where lang is the name of the subdirectory the language is
contained in. It will need ‘Makefile’ rules just like the other generated files.

344 GNU Compiler Collection (GCC) Internals

Funding Free Software 345

Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to
help encourage people to contribute funds for its development. The most effective approach
known is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-
fee distributors to donate part of their selling price to free software developers—the Free
Software Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So
when you compare distributors, judge them partly by how much they give to free software
development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as,
“We will donate ten dollars to the Frobnitz project for each disk sold.” Don’t be satisfied
with a vague promise, such as “A portion of the profits are donated,” since it doesn’t give
a basis for comparison.

Even a precise fraction “of the profits from this disk” is not very meaningful, since
creative accounting and unrelated business decisions can greatly alter what fraction of the
sales price counts as profit. If the price you pay is $50, ten percent of the profit is probably
less than a dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep
everyone honest, you need to inquire how much they do, and what kind. Some kinds of
development make much more long-term difference than others. For example, maintaining
a separate version of a program contributes very little; maintaining the standard version
of a program for the whole community contributes much. Easy new ports contribute little,
since someone else would surely do them; difficult ports such as adding a new CPU to the
GNU Compiler Collection contribute more; major new features or packages contribute the
most.

By establishing the idea that supporting further development is “the proper thing to
do” when distributing free software for a fee, we can assure a steady flow of resources into
making more free software.

Copyright (©) 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.

346 GNU Compiler Collection (GCC) Internals

The GNU Project and GNU /Linux 347

The GNU Project and GNU /Linux

The GNU Project was launched in 1984 to develop a complete Unix-like operating system
which is free software: the GNU system. (GNU is a recursive acronym for “GNU’s Not
Unix”; it is pronounced “guh-NEW?”.) Variants of the GNU operating system, which use the
kernel Linux, are now widely used; though these systems are often referred to as “Linux”,
they are more accurately called GNU/Linux systems.

For more information, see:

http://www.gnu.org/
http://www.gnu.org/gnu/linux-and-gnu.html

348 GNU Compiler Collection (GCC) Internals

GNU GENERAL PUBLIC LICENSE 349

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (©) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

350 GNU Compiler Collection (GCC) Internals

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions

GNU GENERAL PUBLIC LICENSE 351

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following;:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

¢. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you

352

GNU Compiler Collection (GCC) Internals

indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

GNU GENERAL PUBLIC LICENSE 353

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

354 GNU Compiler Collection (GCC) Internals

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.

This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w” and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c¢’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

GNU Free Documentation License 355

GNU Free Documentation License

Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

356

GNU Compiler Collection (GCC) Internals

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed for
human modification. Examples of transparent image formats include PNG, XCF and
JpG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

GNU Free Documentation License 357

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

358

O

N.

O.

GNU Compiler Collection (GCC) Internals

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

GNU Free Documentation License 359

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

360

10.

GNU Compiler Collection (GCC) Internals

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warrany Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

GNU Free Documentation License 361

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled °‘GNU
Free Documentation License’’.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

362 GNU Compiler Collection (GCC) Internals

Contributors to GCC 363

Contributors to GCC

The GCC project would like to thank its many contributors. Without them the project
would not have been nearly as successful as it has been. Any omissions in this list are
accidental. Feel free to contact law@redhat.com or gerald@pfeifer.com if you have been
left out or some of your contributions are not listed. Please keep this list in alphabetical
order.

Analog Devices helped implement the support for complex data types and iterators.

John David Anglin for threading-related fixes and improvements to libstdc++-v3, and
the HP-UX port.

James van Artsdalen wrote the code that makes efficient use of the Intel 80387 register
stack.

Alasdair Baird for various bug fixes.

Giovanni Bajo for analyzing lots of complicated C++ problem reports.
Gerald Baumgartner added the signature extension to the C++ front end.
Godmar Back for his Java improvements and encouragement.

Scott Bambrough for help porting the Java compiler.

Wolfgang Bangerth for processing tons of bug reports.

Jon Beniston for his Windows port of Java.

Daniel Berlin for better DWARF?2 support, faster/better optimizations, improved alias
analysis, plus migrating us to Bugzilla.

Geoff Berry for his Java object serialization work and various patches.

Eric Blake for helping to make GCJ and libgcj conform to the specifications.

Segher Boessenkool for various fixes.

Hans-J. Boehm for his garbage collector, IA-64 libffi port, and other Java work.

Neil Booth for work on cpplib, lang hooks, debug hooks and other miscellaneous clean-
ups.

Eric Botcazou for fixing middle- and backend bugs left and right.

Per Bothner for his direction via the steering committee and various improvements
to our infrastructure for supporting new languages. Chill front end implementation.
Initial implementations of cpplib, fix-header, config.guess, libio, and past C++ library
(libg++) maintainer. Dreaming up, designing and implementing much of GCJ.

Devon Bowen helped port GCC to the Tahoe.

Don Bowman for mips-vxworks contributions.

Dave Brolley for work on cpplib and Chill.

Robert Brown implemented the support for Encore 32000 systems.
Christian Bruel for improvements to local store elimination.

Herman A.J. ten Brugge for various fixes.

Joerg Brunsmann for Java compiler hacking and help with the GCJ FAQ.
Joe Buck for his direction via the steering committee.

Craig Burley for leadership of the Fortran effort.

364

GNU Compiler Collection (GCC) Internals

Stephan Buys for contributing Doxygen notes for libstdc++.

Paolo Carlini for libstdc++ work: lots of efficiency improvements to the string class,
hard detective work on the frustrating localization issues, and keeping up with the
problem reports.

John Carr for his alias work, SPARC hacking, infrastructure improvements, previous
contributions to the steering committee, loop optimizations, etc.

Stephane Carrez for 68HC11 and 68HC12 ports.

Steve Chamberlain for support for the Renesas SH and HS8 processors and the PicoJava
processor, and for GCJ config fixes.

Glenn Chambers for help with the GCJ FAQ.

John-Marc Chandonia for various libgcj patches.

Scott Christley for his Objective-C contributions.

Eric Christopher for his Java porting help and clean-ups.

Branko Cibej for more warning contributions.

The GNU Classpath project for all of their merged runtime code.

Nick Clifton for arm, mcore, fr30, v850, m32r work, ‘--help’, and other random hack-
ing.

Michael Cook for libstdc++ cleanup patches to reduce warnings.

Ralf Corsepius for SH testing and minor bugfixing.

Stan Cox for care and feeding of the x86 port and lots of behind the scenes hacking.
Alex Crain provided changes for the 3b1.

Tan Dall for major improvements to the NS32k port.

Dario Dariol contributed the four varieties of sample programs that print a copy of
their source.

Russell Davidson for fstream and stringstream fixes in libstdc++.
Mo DeJong for GCJ and libgcj bug fixes.

DJ Delorie for the DJGPP port, build and libiberty maintenance, and various bug
fixes.

Gabriel Dos Reis for contributions to g++, contributions and maintenance of GCC
diagnostics infrastructure, libstde++-v3, including valarray<>, complex<>, maintaining
the numerics library (including that pesky <limits> :-) and keeping up-to-date anything
to do with numbers.

Ulrich Drepper for his work on glibc, testing of GCC using glibc, ISO C99 support,
CFG dumping support, etc., plus support of the C++ runtime libraries including for all
kinds of C interface issues, contributing and maintaining complex<>, sanity checking
and disbursement, configuration architecture, libio maintenance, and early math work.
Zdenek Dvorak for a new loop unroller and various fixes.

Richard Earnshaw for his ongoing work with the ARM.

David Edelsohn for his direction via the steering committee, ongoing work with the
RS6000/PowerPC port, help cleaning up Haifa loop changes, doing the entire AIX

port of libstdc++ with his bare hands, and for ensuring GCC properly keeps working
on AIX.

Contributors to GCC 365

e Kevin Ediger for the floating point formatting of num_put::do_put in libstdc++.

e Phil Edwards for libstdc++ work including configuration hackery, documentation main-
tainer, chief breaker of the web pages, the occasional iostream bug fix, and work on
shared library symbol versioning.

e Paul Eggert for random hacking all over GCC.

e Mark Elbrecht for various DJGPP improvements, and for libstdc++ configuration sup-
port for locales and fstream-related fixes.

e Vadim Egorov for libstde++ fixes in strings, streambufs, and iostreams.
e Christian Ehrhardt for dealing with bug reports.

e Ben Elliston for his work to move the Objective-C runtime into its own subdirectory
and for his work on autoconf.

e Marc Espie for OpenBSD support.

e Doug Evans for much of the global optimization framework, arc, m32r, and SPARC
work.

e Christopher Faylor for his work on the Cygwin port and for caring and feeding the
gce.gnu.org box and saving its users tons of spam.

e Fred Fish for BeOS support and Ada fixes.
e Ivan Fontes Garcia for the Portugese translation of the GCJ FAQ.
e Peter Gerwinski for various bug fixes and the Pascal front end.

e Kaveh Ghazi for his direction via the steering committee, amazing work to make ‘-W
-Wall’ useful, and continuously testing GCC on a plethora of platforms.

e John Gilmore for a donation to the FSF earmarked improving GNU Java.
e Judy Goldberg for c++ contributions.

e Torbjorn Granlund for various fixes and the c-torture testsuite, multiply- and divide-
by-constant optimization, improved long long support, improved leaf function register
allocation, and his direction via the steering committee.

e Anthony Green for his ‘-0s’ contributions and Java front end work.
e Stu Grossman for gdb hacking, allowing GCJ developers to debug our code.
e Michael K. Gschwind contributed the port to the PDP-11.

e Ron Guilmette implemented the protoize and unprotoize tools, the support for
Dwarf symbolic debugging information, and much of the support for System V Re-
lease 4. He has also worked heavily on the Intel 386 and 860 support.

e Bruno Haible for improvements in the runtime overhead for EH, new warnings and
assorted bug fixes.

e Andrew Haley for his amazing Java compiler and library efforts.
e Chris Hanson assisted in making GCC work on HP-UX for the 9000 series 300.

e Michael Hayes for various thankless work he’s done trying to get the ¢30/c40 ports
functional. Lots of loop and unroll improvements and fixes.

e Dara Hazeghi for wading through myriads of target-specific bug reports.
e Kate Hedstrom for staking the g77 folks with an initial testsuite.

366

GNU Compiler Collection (GCC) Internals

Richard Henderson for his ongoing SPARC, alpha, ia32, and ia64 work, loop opts, and
generally fixing lots of old problems we’ve ignored for years, flow rewrite and lots of
further stuff, including reviewing tons of patches.

Aldy Hernandez for working on the PowerPC port, SIMD support, and various fixes.

Nobuyuki Hikichi of Software Research Associates, Tokyo, contributed the support for
the Sony NEWS machine.

Kazu Hirata for caring and feeding the Renesas H8/300 port and various fixes.

Manfred Hollstein for his ongoing work to keep the m88k alive, lots of testing and bug
fixing, particularly of our configury code.

Steve Holmgren for MachTen patches.

Jan Hubicka for his x86 port improvements.

Falk Hueffner for working on C and optimization bug reports.

Christian Iseli for various bug fixes.

Kamil Iskra for general m68k hacking.

Lee Iverson for random fixes and MIPS testing.

Andreas Jaeger for testing and benchmarking of GCC and various bug fixes.

Jakub Jelinek for his SPARC work and sibling call optimizations as well as lots of bug
fixes and test cases, and for improving the Java build system.

Janis Johnson for ia64 testing and fixes, her quality improvement sidetracks, and web
page maintenance.

Kean Johnston for SCO OpenServer support and various fixes.

Tim Josling for the sample language treelang based originally on Richard Kenner’s
"“toy” language".

Nicolai Josuttis for additional libstdc++ documentation.

Klaus Kaempf for his ongoing work to make alpha-vms a viable target.

David Kashtan of SRI adapted GCC to VMS.

Ryszard Kabatek for many, many libstdc++ bug fixes and optimizations of strings,
especially member functions, and for auto_ptr fixes.

Geoffrey Keating for his ongoing work to make the PPC work for GNU/Linux and his
automatic regression tester.

Brendan Kehoe for his ongoing work with g++ and for a lot of early work in just about
every part of libstdc++.

Oliver M. Kellogg of Deutsche Aerospace contributed the port to the MIL-STD-1750A.

Richard Kenner of the New York University Ultracomputer Research Laboratory wrote
the machine descriptions for the AMD 29000, the DEC Alpha, the IBM RT PC, and
the IBM RS/6000 as well as the support for instruction attributes. He also made
changes to better support RISC processors including changes to common subexpression
elimination, strength reduction, function calling sequence handling, and condition code
support, in addition to generalizing the code for frame pointer elimination and delay
slot scheduling. Richard Kenner was also the head maintainer of GCC for several years.
Mumit Khan for various contributions to the Cygwin and Mingw32 ports and main-
taining binary releases for Windows hosts, and for massive libstdc++ porting work to
Cygwin/Mingw32.

Contributors to GCC 367

e Robin Kirkham for cpu32 support.

e Mark Klein for PA improvements.

e Thomas Koenig for various bug fixes.

e Bruce Korb for the new and improved fixincludes code.

e Benjamin Kosnik for his g++ work and for leading the libstdc++-v3 effort.

e Charles LaBrec contributed the support for the Integrated Solutions 68020 system.

o Jeff Law for his direction via the steering committee, coordinating the entire egcs
project and GCC 2.95, rolling out snapshots and releases, handling merges from GCC2,
reviewing tons of patches that might have fallen through the cracks else, and random
but extensive hacking.

e Marc Lehmann for his direction via the steering committee and helping with analysis
and improvements of x86 performance.

e Ted Lemon wrote parts of the RTL reader and printer.

e Kriang Lerdsuwanakij for C++ improvements including template as template parameter
support, and many C++ fixes.

e Warren Levy for tremendous work on libgcj (Java Runtime Library) and random work
on the Java front end.

e Alain Lichnewsky ported GCC to the MIPS CPU.

e Oskar Liljeblad for hacking on AWT and his many Java bug reports and patches.

e Robert Lipe for OpenServer support, new testsuites, testing, etc.

e Weiwen Liu for testing and various bug fixes.

e Dave Love for his ongoing work with the Fortran front end and runtime libraries.

e Martin von Lowis for internal consistency checking infrastructure, various C++ improve-
ments including namespace support, and tons of assistance with libstde++/compiler
merges.

e H.J. Lu for his previous contributions to the steering committee, many x86 bug reports,
prototype patches, and keeping the GNU /Linux ports working.

e Greg McGary for random fixes and (someday) bounded pointers.

e Andrew MacLeod for his ongoing work in building a real EH system, various code
generation improvements, work on the global optimizer, etc.

e Vladimir Makarov for hacking some ugly i960 problems, PowerPC hacking improve-
ments to compile-time performance, overall knowledge and direction in the area of
instruction scheduling, and design and implementation of the automaton based in-
struction scheduler.

e Bob Manson for his behind the scenes work on dejagnu.

e Philip Martin for lots of libstdc++ string and vector iterator fixes and improvements,
and string clean up and testsuites.

e All of the Mauve project contributors, for Java test code.
e Bryce McKinlay for numerous GCJ and libgcj fixes and improvements.
e Adam Megacz for his work on the Windows port of GCJ.

e Michael Meissner for LRS framework, ia32, m32r, v850, m88k, MIPS, powerpc, haifa,
ECOFF debug support, and other assorted hacking.

368

GNU Compiler Collection (GCC) Internals

Jason Merrill for his direction via the steering committee and leading the g++ effort.

David Miller for his direction via the steering committee, lots of SPARC work, im-
provements in jump.c and interfacing with the Linux kernel developers.

Gary Miller ported GCC to Charles River Data Systems machines.

Alfred Minarik for libstdc++ string and ios bug fixes, and turning the entire libstdc++
testsuite namespace-compatible.

Mark Mitchell for his direction via the steering committee, mountains of C++ work,
load /store hoisting out of loops, alias analysis improvements, ISO C restrict support,
and serving as release manager for GCC 3.x.

Alan Modra for various GNU/Linux bits and testing.

Toon Moene for his direction via the steering committee, Fortran maintenance, and his
ongoing work to make us make Fortran run fast.

Jason Molenda for major help in the care and feeding of all the services on the
gee.gnu.org (formerly eges.cygnus.com) machine—mail, web services, ftp services, etc
etc. Doing all this work on scrap paper and the backs of envelopes would have been...
difficult.

Catherine Moore for fixing various ugly problems we have sent her way, including the
haifa bug which was killing the Alpha & PowerPC Linux kernels.

Mike Moreton for his various Java patches.
David Mosberger-Tang for various Alpha improvements.

Stephen Moshier contributed the floating point emulator that assists in cross-
compilation and permits support for floating point numbers wider than 64 bits and
for ISO C99 support.

Bill Moyer for his behind the scenes work on various issues.
Philippe De Muyter for his work on the m68k port.

Joseph S. Myers for his work on the PDP-11 port, format checking and ISO C99
support, and continuous emphasis on (and contributions to) documentation.

Nathan Myers for his work on libstdc++-v3: architecture and authorship through the
first three snapshots, including implementation of locale infrastructure, string, shadow
C headers, and the initial project documentation (DESIGN, CHECKLIST, and so
forth). Later, more work on MT-safe string and shadow headers.

Felix Natter for documentation on porting libstdc++.
Nathanael Nerode for cleaning up the configuration/build process.
NeXT, Inc. donated the front end that supports the Objective-C language.

Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to the search engine
setup, various documentation fixes and other small fixes.

Geoff Noer for this work on getting cygwin native builds working.

Diego Novillo for his SPEC performance tracking web pages and assorted fixes in the
middle end and various back ends.

David O’Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64, FreeBSD/ARM,

FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and related infrastructure
improvements.

Contributors to GCC 369

e Alexandre Oliva for various build infrastructure improvements, scripts and amazing
testing work, including keeping libtool issues sane and happy.

e Melissa O’Neill for various NeXT fixes.

e Rainer Orth for random MIPS work, including improvements to our 032 ABI support,
improvements to dejagnu’s MIPS support, Java configuration clean-ups and porting
work, etc.

e Hartmut Penner for work on the s390 port.
e Paul Petersen wrote the machine description for the Alliant FX/8.

e Alexandre Petit-Bianco for implementing much of the Java compiler and continued
Java maintainership.

e Matthias Pfaller for major improvements to the NS32k port.

e Gerald Pfeifer for his direction via the steering committee, pointing out lots of problems
we need to solve, maintenance of the web pages, and taking care of documentation
maintenance in general.

e Andrew Pinski for processing bug reports by the dozen.
e Ovidiu Predescu for his work on the Objective-C front end and runtime libraries.

e Ken Raeburn for various improvements to checker, MIPS ports and various cleanups
in the compiler.

e Rolf W. Rasmussen for hacking on AWT.

e David Reese of Sun Microsystems contributed to the Solaris on PowerPC port.
e Volker Reichelt for keeping up with the problem reports.

e Joern Rennecke for maintaining the sh port, loop, regmove & reload hacking.

e Loren J. Rittle for improvements to libstdc++-v3 including the FreeBSD port, threading
fixes, thread-related configury changes, critical threading documentation, and solutions
to really tricky I/O problems, as well as keeping GCC properly working on FreeBSD
and continuous testing.

e Craig Rodrigues for processing tons of bug reports.

e Gavin Romig-Koch for lots of behind the scenes MIPS work.
e Ken Rose for fixes to our delay slot filling code.

e Paul Rubin wrote most of the preprocessor.

e Chip Salzenberg for libstdc++ patches and improvements to locales, traits, Makefiles,
libio, libtool hackery, and “long long” support.

e Juha Sarlin for improvements to the H8 code generator.
e Greg Satz assisted in making GCC work on HP-UX for the 9000 series 300.

e Roger Sayle for improvements to constant folding and GCC’s RTL optimizers as well
as for fixing numerous bugs.

e Bradley Schatz for his work on the GCJ FAQ.
e Peter Schauer wrote the code to allow debugging to work on the Alpha.
e William Schelter did most of the work on the Intel 80386 support.

e Bernd Schmidt for various code generation improvements and major work in the reload
pass as well a serving as release manager for GCC 2.95.3.

370

GNU Compiler Collection (GCC) Internals

Peter Schmid for constant testing of libstdc++ — especially application testing, going
above and beyond what was requested for the release criteria — and libstdc++ header
file tweaks.

Jason Schroeder for jcf-dump patches.
Andreas Schwab for his work on the m68k port.

Joel Sherrill for his direction via the steering committee, RTEMS contributions and
RTEMS testing.

Nathan Sidwell for many C++ fixes/improvements.

Jeffrey Siegal for helping RMS with the original design of GCC, some code which
handles the parse tree and RTL data structures, constant folding and help with the
original VAX & m68k ports.

Kenny Simpson for prompting libstdc++ fixes due to defect reports from the LWG
(thereby keeping us in line with updates from the ISO).

Franz Sirl for his ongoing work with making the PPC port stable for linux.

Andrey Slepuhin for assorted AIX hacking.

Christopher Smith did the port for Convex machines.

Danny Smith for his major efforts on the Mingw (and Cygwin) ports.

Randy Smith finished the Sun FPA support.

Scott Snyder for queue, iterator, istream, and string fixes and libstdc++ testsuite entries.
Brad Spencer for contributions to the GLIBCPP_FORCE_NEW technique.

Richard Stallman, for writing the original gcc and launching the GNU project.

Jan Stein of the Chalmers Computer Society provided support for Genix, as well as
part of the 32000 machine description.

Nigel Stephens for various mipsl6 related fixes/improvements.

Jonathan Stone wrote the machine description for the Pyramid computer.
Graham Stott for various infrastructure improvements.

John Stracke for his Java HT'TP protocol fixes.

Mike Stump for his Elxsi port, g++ contributions over the years and more recently his
vxworks contributions

Jeff Sturm for Java porting help, bug fixes, and encouragement.

Shigeya Suzuki for this fixes for the bsdi platforms.

Tan Lance Taylor for his mips16 work, general configury hacking, fixincludes, etc.
Holger Teutsch provided the support for the Clipper CPU.

Gary Thomas for his ongoing work to make the PPC work for GNU /Linux.
Philipp Thomas for random bug fixes throughout the compiler

Jason Thorpe for thread support in libstdc++ on NetBSD.

Kresten Krab Thorup wrote the run time support for the Objective-C language and
the fantastic Java bytecode interpreter.

Michael Tiemann for random bug fixes, the first instruction scheduler, initial C++
support, function integration, NS32k, SPARC and M88k machine description work,
delay slot scheduling.

Contributors to GCC 371

e Andreas Tobler for his work porting libgcj to Darwin.
e Teemu Torma for thread safe exception handling support.

e Leonard Tower wrote parts of the parser, RTL generator, and RTL definitions, and of
the VAX machine description.

e Tom Tromey for internationalization support and for his many Java contributions and
libgcj maintainership.

e Lassi Tuura for improvements to config.guess to determine HP processor types.

e Petter Urkedal for libstde++ CXXFLAGS, math, and algorithms fixes.

e Brent Verner for work with the libstdc++ cshadow files and their associated configure
steps.

e Todd Vierling for contributions for NetBSD ports.
e Jonathan Wakely for contributing libstdc++ Doxygen notes and XHTML guidance.

e Dean Wakerley for converting the install documentation from HTML to texinfo in time
for GCC 3.0.

e Krister Walfridsson for random bug fixes.

e Stephen M. Webb for time and effort on making libstdc++ shadow files work with the
tricky Solaris 8+ headers, and for pushing the build-time header tree.

e John Wehle for various improvements for the x86 code generator, related infrastructure
improvements to help x86 code generation, value range propagation and other work,
WE32k port.

e Ulrich Weigand for work on the s390 port.

e Zack Weinberg for major work on cpplib and various other bug fixes.

e Matt Welsh for help with Linux Threads support in GCJ.

e Urban Widmark for help fixing java.io.

e Mark Wielaard for new Java library code and his work integrating with Classpath.
e Dale Wiles helped port GCC to the Tahoe.

e Bob Wilson from Tensilica, Inc. for the Xtensa port.

e Jim Wilson for his direction via the steering committee, tackling hard problems in
various places that nobody else wanted to work on, strength reduction and other loop
optimizations.

e (Carlo Wood for various fixes.
e Tom Wood for work on the m88k port.

e Masanobu Yuhara of Fujitsu Laboratories implemented the machine description for the
Tron architecture (specifically, the Gmicro).

e Kevin Zachmann helped ported GCC to the Tahoe.
e Gilles Zunino for help porting Java to Irix.
In addition to the above, all of which also contributed time and energy in testing GCC,
we would like to thank the following for their contributions to testing:
e Michael Abd-El-Malek
e Thomas Arend

372

Bonzo Armstrong
Steven Ashe

Chris Baldwin
David Billinghurst
Jim Blandy
Stephane Bortzmeyer
Horst von Brand
Frank Braun
Rodney Brown
Sidney Cadot
Bradford Castalia
Ralph Doncaster
Richard Emberson
Levente Farkas
Graham Fawcett
Robert A. French
Jorgen Freyh

Mark K. Gardner
Charles-Antoine Gauthier
Yung Shing Gene
David Gilbert
Simon Gornall
Fred Gray

John Griffin

Patrik Hagglund
Phil Hargett
Amancio Hasty
Bryan W. Headley
Kevin B. Hendricks
Joep Jansen
Christian Joensson
David Kidd

Tobias Kuipers
Anand Krishnaswamy
llewelly

Damon Love

Brad Lucier
Matthias Klose
Martin Knoblauch

GNU Compiler Collection (GCC) Internals

Contributors to GCC 373

e Jesse Macnish
e Stefan Morrell
e Anon A. Mous
e Matthias Mueller
e Pekka Nikander
e Jon Olson

e Magnus Persson
e Chris Pollard

e Richard Polton
e David Rees

e Paul Reilly

e Tom Reilly

e Torsten Rueger
e Danny Sadinoff
e Marc Schifer

e David Schuler

e Vin Shelton

e Tim Souder

e Adam Sulmicki
e George Talbot
o Gregory Warnes
e David E. Young
e And many others

And finally we’d like to thank everyone who uses the compiler, submits bug reports and
generally reminds us why we’re doing this work in the first place.

374 GNU Compiler Collection (GCC) Internals

Option Index 375

Option Index

GCC’s command line options are indexed here without any initial ‘=’ or ‘-=’. Where an
option has both positive and negative forms (such as ‘-foption’ and ‘-fno-option’), rele-
vant entries in the manual are indexed under the most appropriate form; it may sometimes
be useful to look up both forms.

D A8 oo 34
S e 35

AB .

36 A e 34
AC o 34
ad 36 AW o 33

"""""""""""""""""""""""""" AX e

e o 33 33
AE . 35
A oo a4 F
Ag .o 36 fnew-ra...... ... 35
AG .o 34 frerun-cse-after-100p 34
e O 32 £SSa . 33
A o 33 £SSACCP. ot 33
AR e e 36 fssa-dce.......... . 33
Al . 35 fthread-jumps 33
AL . 34
AN L 35
AT 32 M

AR . 36 msoft-float 8

376 GNU Compiler Collection (GCC) Internals

Index

Index

!

‘in constraint 131
‘4 in constraint L. 132
#in template......... ... i 124
#pragma 319, 320

%

‘% in constraint 132
% in GTY option, 339
“Ointemplate.......... 123

&

‘& in constraint 131
(Mil) oo 72
*

‘¢’ in constraint 132
*in template............. 125
+

‘“+dn constraint 131
/I in RTLdump ..o 79
Y in RTLdump ... 79
/P in RTL dump ... 79
/3 inRTLdump 80
/s’in RTLdumpo ... 79
Y’ in RTLdump ..o 80
YvVin RTLdump ...t 80
<

‘inconstraint 127
‘=" in constraint 131
>

‘> in constraint 127

377

?
‘?’in constraint 131
__builtin_args_info....................... 254
__builtin_classify_type.................. 254
__builtin_next_arg........................ 254
__builtin_saveregs........................ 253
__CTOR_LIST ...ttt 292
__ DTOR_LIST ..ttt 292
Mmadn. ... 335
\
N 124
0
‘0’in constraint 127
A
AbOTt ... 5
ADS . 93
abs and attributes.......................... 177
absence_set 188
absm?2 instruction pattern 147
absolute value 93
access tooperands 74
ACCESSOTS & v o vt et et e ettt et et 74
ACCUMULATE_OUTGOING_ARGS 240
ACCUMULATE_OUTGOING_ARGS and stack frames

....................................... 250
ADA_LONG_TYPE_SIZE...........coviiinn... 213
ADDITIONAL_REGISTER_NAMES 296
addm3 instruction pattern 146
addr_diff_vec............, 102
addr_diff_vec, lengthof.................... 181
ADDR_EXPR 61
AddT _VeC .ottt 102
addr_vec, length of 181
address constraints.......................... 128
ADDRESS _COST ..ottt e ee e 267
address_operand........................... 128
addressing modes 260
addressof 90
ADJUST_FIELD_ALIGN.............ooiieo.... 207
ADJUST_INSN_LENGTH........................ 181
aggregates as return values 247
ALL_COP_ADDITIONAL_REGISTER_NAMES 314
ALL_REGS e 223
ALLOCATE_INITIAL_VALUE 324

allocate_stack instruction pattern.......... 155

378

ALLOCATE_TRAMPOLINE....................... 257
alternate entry points....................... 106
analysis, data flow 34
and 92
and and attributes............... 176
and, canonicalization of 163
andm3 instruction pattern 146
APPLY _RESULT _SIZE............c.ovuinienn.n. 246
ARG_POINTER_CFA_OFFSET 232
ARG_POINTER_REGNUM........................ 236
ARG_POINTER_REGNUM and virtual registers 87
arg_pointer_rtX............... ... 237
ARGS_GROW_DOWNWARD 231
argument passing 7
arguments in registers....................... 242
arguments on stack L 239
arithmetic libraries............................ 8
arithmetic shift 92
arithmetic simplifications..................... 32
arithmetic, in RTL........................... 90
ARITHMETIC_TYPE P........., 43
AITAY « . e voe et e e et et 42
ARRAY_REF 61
ARRAY_TYPE 42
ashift...... 92
ashift and attributes.................... ... 177
ashiftrt....... L 93
ashiftrt and attributes..................... 177
ashlm3 instruction pattern.................. 147
ashrm3 instruction pattern.................. 147
ASM_APP_OFF i 280
ASM_APP_ON 280
ASM_CLOBBERSt 55
ASM_COMMENT_START, 280
ASM_CV_QUAL 55
ASM_DECLARE_CLASS_REFERENCE.............. 292
ASM_DECLARE_CONSTANT_NAME 287
ASM_DECLARE_FUNCTION_NAME 287
ASM_DECLARE_FUNCTION_SIZE................ 287
ASM_DECLARE_OBJECT_NAME 287
ASM_DECLARE_REGISTER_GLOBAL.............. 288
ASM_DECLARE_UNRESOLVED_REFERENCE......... 292
ASM_FILE ENDotiti e 279
ASM_FILE_STARTt 279
ASM_FINAL_SPEC.........ititiiiinenn. 195
ASM_FINISH_DECLARE_OBJECT 288
ASM_FORMAT_PRIVATE_NAME 290
asm_fprintf il 298
ASM_FPRINTF_EXTENSIONS 298
ASM_GENERATE_INTERNAL_LABEL.............. 290
asm_input 102
asm_input and /v’ i 76
ASM_INPUTSo 55
ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX 234
ASM_NO_SKIP_IN_TEXT.............cvueinn.. 302
asm_noperandsiiiiiiiaaa. 108
asm_operands and /v’ 76

asm_operands, RTL sharing 114

GNU Compiler Collection (GCC) Internals

asm_operands, USAZEoueuueunnnn.. 104
ASM_OUTPUT_ADDR_DIFF_ELT 299
ASM_QOUTPUT_ADDR_VEC_ELT 299
ASM_OUTPUT_ALIGN.............ccivirenennn.. 302
ASM_QOUTPUT_ALIGN_WITH_NOP................ 302
ASM_QOUTPUT_ALIGNED_BSS 285
ASM_QOUTPUT_ALIGNED_COMMON 284
ASM_OUTPUT_ALIGNED_DECL_COMMON........... 284
ASM_OUTPUT_ALIGNED_DECL_LOCAL............ 285
ASM_QOUTPUT_ALIGNED_LOCAL 285
ASM_QOUTPUT_ASCII....... ..o, 282
ASM_OUTPUT_BSS ...t 284
ASM_OUTPUT_CASE_END............oovuinn... 299
ASM_OUTPUT_CASE_LABEL 299
ASM_QOUTPUT_COMMONvviiiieennnn. 284
ASM_QOUTPUT_DEBUG_LABEL 290
ASM_OUTPUT DEFcoieiinnn... 291
ASM_OUTPUT_DEF_FROM_DECLS 291
ASM_QOUTPUT_DWARF_DELTA 309
ASM_QOUTPUT_DWARF_OFFSET 309
ASM_OUTPUT_DWARF_PCREL 309
ASM_OUTPUT_EXTERNAL....................... 289
ASM_OUTPUT_EXTERNAL_LIBCALL.............. 289
ASM_QUTPUT_FDESCoiiiiiieeennn, 282
ASM_QOUTPUT_IDENT........ ..., 280
ASM_OUTPUT_INTERNAL_LABEL 290
ASM_OUTPUT_LABEL......... ..., 286
ASM_QOUTPUT_LABEL_REF...................... 290
ASM_OQOUTPUT_LABELREF....................... 289
ASM_QOUTPUT_LOCAL, 285
ASM_OUTPUT_MAX_SKIP_ALIGN................ 302
ASM_OUTPUT_MEASURED_SIZE 286
ASM_OQUTPUT_OPCODE.ciiieeen 296
ASM_OUTPUT_POOL_EPILOGUE 283
ASM_OUTPUT_POOL_PROLOGUE 282
ASM_OUTPUT_REG_POP........................ 299
ASM_QOUTPUT_REG_PUSH....................... 298
ASM_QOUTPUT_SHARED_BSS 285
ASM_QOUTPUT_SHARED_COMMON 284
ASM_OUTPUT_SHARED_LOCAL 285
ASM_OUTPUT_SIZE_DIRECTIVE................ 286
ASM_OQUTPUT_SKIPcoiiiiinnnn. 302
ASM_OUTPUT_SOURCE_FILENAME 280
ASM_QOUTPUT_SOURCE_LINE 280
ASM_QOUTPUT_SPECIAL_POOL_ENTRY............ 282
ASM_QOUTPUT_SYMBOL_REF 289
ASM_QOUTPUT_TYPE_DIRECTIVE................ 287
ASM_QOUTPUT_WEAK_ALIAS 291
ASM_OUTPUTSottt e e et et 55
ASM_PREFERRED_EH_DATA_FORMAT............. 234
ASM_SPEC ...t 195
ASM_STABD_OP 304
ASM_STABN_OP . ..ottt e 304
ASM_STABS 0Pt e 304
ASM_STMT e 55
ASM_STRING 55
ASM_WEAKEN _DECL0iuneeennnnnn. 288
ASM_WEAKEN_LABEL.............coieuennn.. 288

Index

assemble_Nameouviireennnnn.. 286
assembler format 279
assembler instructions in RTL 104
ASSEMBLER_DIALECT.......... 298
assigning attribute values to insns............ 178
assignment operator 52
asterisk in template............ 125
AEET 178, 179
attr_flag il 177
attribute expressions............. 176
attribute specifications 180
attribute specifications example.............. 180
attributes 61
attributes, defining 175
attributes, target-specific.................... 313
autoincrement addressing, availability 5
autoincrement /decrement addressing 126
autoincrement /decrement analysis 34
automata_option.................. 188
automaton based pipeline description ... 183, 186,
190

automaton based scheduler.................. 183
AVOID_CCMODE_COPIES..........coiviineinn.. 222
B

backslash 124
barrier........ ... 106
barrier and ‘/f’ 77
barrier and /i’ 77
barrierand /v’ 75
BASE_REG_CLASS i 224
basic block reordering 36
basic blocks 34
bcond instruction pattern 151
beopy, implicit usage........................ 260
BIGGEST_ALIGNMENT......................... 207
BIGGEST_FIELD_ALIGNMENT 207
BImode...........oiiiiiiiii i 81
BIND_EXPR 61
BINFO_TYPE i 48
bit-fields 95
BIT_AND_EXPR 61
BIT_IOR_EXPR i 61
BIT_NOT_EXPR 61
BIT_XOR_EXPR ... 61
BITFIELD_NBYTES_LIMITED 210
BITS_BIG_ENDIAN........... 205
BITS_BIG_ENDIAN, effect on sign_extract 95
BITS_PER_UNIT......... 205
BITS_PER_WORD, 205
bitwise complement 92
bitwise exclusive-or 92
bitwise inclusive-or........................... 92
bitwise logical-and 92
BLKmode.............iiiiiiiiiii 82
BLKmode, and function return values.......... 113

379

BOOL_TYPE_SIZE.............iuiniininnn... 214
BOOLEAN_TYPE i 42
branch shortening. 36
BRANCH_COST ...t 269
break_out_memory_refs 262
BREAK_STMT 55
BSS_SECTION_ASM_OP................c....... 276
builtin_longjmp instruction pattern......... 157
BUILTIN_SETJMP_FRAME_VALUE............... 232
builtin_setjmp_receiver instruction pattern

....................................... 156
builtin_setjmp_setup instruction pattern ... 156
byte_mode i 84
BYTES_BIG_ENDIAN............. 205
BYTES_BIG_ENDIAN, effect on subreg........... 88
bzero, implicit usage........................ 260
C
C statements for assembler output 124
C/C++ Internal Representation 39
CAX_FLOAT_FORMAT 211
call 79, 99
call instruction pattern..................... 151
call usageoviiii 113
call-clobbered register 218, 219
call-saved register 218, 219
call-used register 218, 219
CALL_EXPR . ..ottt 61
call_dnSn ... 105
call_inmsnand /£ 7
call_imsnand /i’ 7
call_imsnand /3 78
call_insnand /s’ 75, 77
call_imsnand ‘/u’ 75
call_imsnand /v’ 75
CALL_INSN_FUNCTION_USAGE 105
call_pop instruction pattern 151
CALL_POPS_ARGS 241
CALL_REALLY_USED_REGISTERS 218
CALL_USED_REGISTERS....................... 218
call_used_regsooiiuiinninn.. 219
call_value instruction pattern.............. 151
call_value_pop instruction pattern.......... 151
CALLER_SAVE_PROFITABLE 248
calling conventions.......................... 230
calling functions in RTL..................... 113
CAN_DEBUG_WITHOUT_FP...................... 203
CAN_ELIMINATE, 239
canadiamn 11
canonicalization of instructions 163
CANONICALIZE_COMPARISON 265
canonicalize_funcptr_for_compare instruction

pattern....... 154
CASE_DROPS_THROUGH........................ 315
CASE_VALUES_THRESHOLD 315
CASE_VECTOR_MODE 315
CASE_VECTOR_PC_RELATIVE 315

380

CASE_VECTOR_SHORTEN_MODE 315
casesi instruction pattern 153
ce_status ...t 264
CC_STATUS_MDEPot 264
CC_STATUS_MDEP_INIT............cvvuvinn.. 264
CCO .ttt 89
ccO, RTL sharing 114
CCO_TEX. ..o 89
CCL_SPECt e 195
CCIPLUS_SPEC oot 195
(010311 Te Yo 1= 82
CDIMOAE . . .o voe et e 82
change_address 144
char. 278
CHAR_TYPE_SIZE 214
check_stack instruction pattern............. 155
CHImode...........coiiiiiiiiii. 82
class ..o 48
class definitions, register..................... 223
class preference constraints.................. 131
CLASS_LIKELY_SPILLED P 228
CLASS_MAX_NREGS, 228
CLASS_TYPE P i 43
classes of RTX codes......................... 72
CLASSTYPE_DECLARED_CLASS 48
CLASSTYPE_HAS_MUTABLE 49
CLASSTYPE_NON_POD_P........... ..., 49
CLEANUP_DECLt 55
CLEANUP_EXPR 55
CLEANUP_POINT_EXPR..........., 61
CLEANUP_STMTttt 55
CLEAR_BY PIECES_P........... 270
CLEAR_INSN_CACHE......... 258
CLEAR_RATIO ...t 270
clobber......... 99
clrstrm instruction pattern................. 148
cmpm instruction pattern 148
cmpstrm instruction pattern................. 149
code generation RTL sequences 164
codemotion............... i 34
code_label 106
code_label and ‘/i’........, 76, 77
code_label and /v’ 75
CODE_LABEL_NUMBER............c.ouiuenn.n. 106
codes, RTL expression 71
(018 151 T Yo K= 82
COLLECT_EXPORT_LIST..........covvvvnenn.. 324
COLLECT2_HOST_INITIALIZATION............. 328
combiner pass ... 88
common subexpression elimination............ 33
COMPATE . . ottt ettt e et e iee e iie e iea e 91
compare, canonicalization of 163
compiler passes and files...................... 31
complement, bitwise 92
COMPLEX _CST ...ttt 61
COMPLEX_EXPR 61
COMPLEX_TYPE 42

COMPONENT_REF, 61

GNU Compiler Collection (GCC) Internals

COMPOUND_BODY ...ttt e 55
COMPOUND_EXPRottt e 61
COMPOUND_LITERAL_EXPR 61
COMPOUND_LITERAL_EXPR_DECL 69
COMPOUND_LITERAL_EXPR_DECL_STMT........... 69
COMPOUND_STMTottt e e 55
computing the length of an insn 180
concat and ‘/u’........ 77
CONA . oottt 94
cond and attributes......................... 176
CONA_CXEC &+ ot vttt ettt ettt ettt 101
COND_EXPR ..ottt e 61
condition code register, 89
condition code status 264
condition codes 93
conditional constant propagation.............. 33
Conditional Constant Propagation, SSA based
.. 33
conditional execution 190
CONDITIONAL_REGISTER_USAGE............... 219
conditional_trap instruction pattern........ 158
conditions, in patterns 118
configuration file............... 327
configure terms L. 11
CONJ_EXPR ... e e 61
constand ‘/i’. 77
CONST_COSTS ..ttt et 267
CONST_DECL . ..ottt ettt e 49
const_double, 84
const_double, RTL sharing 114
CONST_DOUBLE_CHAIN..........¢coiiennnnnn. 85
CONST_DOUBLE_LOWcvieiienann, 85
CONST_DOUBLE_MEM.civiiiiininn... 85
CONST_DOUBLE_OK_FOR_LETTER_P............. 229
const_int 84
const_int and attribute tests 176
const_int and attributes.................... 176
const_int, RTL sharing 114
CONST_OK_FOR_LETTER_P 229
CONST_OR_PURE_CALL_P..............coon... 75
const_stringl 85
const_string and attributes 176
const_true_TtXiiiii 84
CONSt_VeCtOr ...ttt 84
const_vector, RTL sharing 114
ConsStO_TtX .ot 84
CONSTO_RTX ..ot e 85
ConsStl_TEX .o 84
CONSTL_RTX ..ottt e 85
CONStE2_TEX oottt e 84
CONST2_RTX ..ottt e 85
constant attributes.......................... 182
constant definitions 191
constant folding 32
constant propagation 33, 34
CONSTANT_ADDRESS _P.........covinennn.. 260
CONSTANT _AFTER_FUNCTION_P................ 283
CONSTANT _ALIGNMENT..............covvnn... 208

Index

CONSTANT_P . ..ot e
CONSTANT_POOL_ADDRESS_P
CONSTANT_POOL_BEFORE_FUNCTION............
constants in constraints
constml_TtxX ...
constraint modifier characters................
constraint, matching
constraints i
constraints, machine specific.................
constructor............. il
CONSTRUCTORo oeei e
constructors, automatic calls.................
constructors, output of
CONBAINET . ..o\ v et
CONTINUE_STMTttt
contributors........ il
controlling register usage
controlling the compilation driver............
conventions, run-time
CONVETSIONS .+« vttt ee e e e et
CONVERT_EXPRt
copy constructor............
copy propagation il
COPY_TEX .ot
copy_rtx_if_shared................
cosm?2 instruction pattern
costs of instructions.........................
COSTS_N_INSNS ... ottt
CP_INTEGRAL_TYPE.............
cp_namespace_decls.........................
CP_TYPE_CONST_NON_VOLATILE_P..............
CP_TYPE_CONST_P...........oiiiiiiiinn...
CP_TYPE_QUALS ottt
CP_TYPE_RESTRICT_P...............c.oon.....
CP_TYPE_VOLATILE P...........coiiiniennenn.
CPLUSPLUS_CPP_SPEC.................c....
CPP_PREDEFINEScotiiiineannn..
cpp_register_pragma.......................
CPP_SPECt
CQImode.
cross compilation and floating point..........
CRT_CALL_STATIC_FUNCTION
CRTSTUFF_T_CFLAGS
CRTSTUFF_T_CFLAGS_S..........ciiieen....
CSImode.t
CTImodeot
CUMULATIVE_ARGSt
current_function_epilogue_delay_list
current_function_is_leaf
current_function_outgoing_args_size
current_function_pops_args...............
current_function_pretend_args_size
current_function_uses_only_leaf_regs
current_insn_predicate

381
D
databypass................. ..., 186, 188, 190
data dependence delays 183
data flow analysis............................ 34
data structures 204
DATA_ALIGNMENTt 208
data_section.............., 276
DATA_SECTION_ASM_OP..........c.coinenn... 275
DBR_OUTPUT_SEQEND............. 297
dbr_sequence_length....................... 297
DBX_BLOCKS_FUNCTION_RELATIVE............. 305
DBX_CONTIN_CHAR........., 305
DBX_CONTIN_LENGTH......................... 304
DBX_DEBUGGING_INFO..................o..... 304
DBX_FUNCTION_FIRST........... ..., 305
DBX_LBRAC_FIRST......... .t 305
DBX_MEMPARM_STABS_LETTER 305
DBX_NO_XREFS 304
DBX_OUTPUT_ENUM........ ..., 306
DBX_OUTPUT_FUNCTION_END 306
DBX_OUTPUT_LBRAC......... ..., 306
DBX_OUTPUT_MAIN_SOURCE_DIRECTORY......... 308
DBX_OUTPUT_MAIN_SOURCE_FILE_END.......... 308
DBX_OUTPUT_MAIN_SOURCE_FILENAME.......... 307
DBX_OUTPUT_NFUN........ ..., 306
DBX_OUTPUT_RBRAC............ ..., 306
DBX_OUTPUT_SOURCE_FILENAME............... 308
DBX_OUTPUT_STANDARD_TYPES 306
DBX_REGISTER_NUMBER....................... 303
DBX_REGPARM_STABS_CODE 305
DBX_REGPARM_STABS_LETTER 305
DBX_STATIC_CONST_VAR_CODE 305
DBX_STATIC_STAB_DATA_SECTION............. 305
DBX_TYPE_DECL_STABS_CODE 305
DBX_USE_BINCLc.ciiiuiniiiinnn. 306
DBX_WORKING_DIRECTORY 307
DCE,SSA based 33
DCmode.ovvniiiii i 82
De Morgan’slaw. 163
dead code......... ... 33
dead code elimination 33
dead_or_set_pP.........oiiiiiiiiiiii... 172
DEBUG_SYMS_TEXTt 304
DEBUGGER_ARG_OFFSET....................... 303
DEBUGGER_AUTO_OFFSET............ ..., 303
debugging information generation............. 36
DECL_ALIGNottt 49
DECL_ANTICIPATED...........ciiuiiiiann. 53
DECL_ARGUMENTS 55
DECL_ARRAY_DELETE_OPERATOR_P.............. 55
DECL_ARTIFICIAL 50, 52, 55
DECL_ASSEMBLER_NAME 52, 53
DECL_ATTRIBUTES, 61
DECL_BASE_CONSTRUCTOR_P 54
DECL_CLASS_SCOPE_P..........coiinieinan... 50
DECL_COMPLETE_CONSTRUCTOR_P 54
DECL_COMPLETE_DESTRUCTOR_P 54
DECL_CONST_MEMFUNC_P....................... 53

382
DECL_CONSTRUCTOR_P 52, 53
DECL_CONTEXT 47
DECL_CONV_FN_P........ ..., 52, 54
DECL_COPY_CONSTRUCTOR_P 54
DECL_DESTRUCTOR_P 52, 54
DECL_EXTERN_C_FUNCTION_P 53
DECL_EXTERNAL........ ...t 49, 53
DECL_FUNCTION_MEMBER_P................. 52, 53
DECL_FUNCTION_SCOPE_P 50
DECL_GLOBAL_CTOR_P 52, 54
DECL_GLOBAL_DTOR_P 52, 54
DECL_INITIALoti i 49
DECL_LINKONCE_P........ ..ot 52, 53
DECL_LOCAL_FUNCTION_P 53
DECL_MAIN_P ... e 52
DECL_NAMEcooiiuiaeeeno... 47, 49, 52
DECL_NAMESPACE_ALIAS......., 47
DECL_NAMESPACE_SCOPE_P 50
DECL_NAMESPACE_STD_P...........oiviin.. 47
DECL_NON_THUNK_FUNCTION_P 54
DECL_NONCONVERTING_P.............c.ooin... 54
DECL_NONSTATIC_MEMBER_FUNCTION_P.......... 53
DECL_OVERLOADED_OPERATOR_P............. 52, 54
DECL_RESULT ...ttt 55
DECL_SIZEttt 49
DECL_SOURCE_FILE.......... ..., 49
DECL_SOURCE_LINE............ ..., 49
DECL_STATIC_FUNCTION_P 53
DECL_STMT . ..ottt e 55
DECL_STMT_DECLo, 55
DECL_THUNK_P 54
DECL_VOLATILE_MEMFUNC_P 53
declaration.................... 49
declarations, RTL............................ 97
DECLARE_LIBRARY_RENAMES 259
decrement_and_branch_until_zero instruction
pattern............ i L 153
default............... i, 340
DEFAULT_CALLER_SAVES...................... 248
DEFAULT_GDB_EXTENSIONS 304
DEFAULT_MAIN_RETURN....................... 321
DEFAULT_PCC_STRUCT_RETURN 247
DEFAULT_RTX_COSTS....... ..o, 267
DEFAULT_SHORT_ENUMS................c.... 215
DEFAULT_SIGNED_CHAR....................... 214
define_asm_attributes 179
define_attr 175
define_automaton.......................... 186
define_bypass 188
define_cond_exec...............ciiiiiii.. 190
define_constants.......................... 191
define_cpu_unit................., 186
define_delay, 182
define_expand, 164
define_function_unit...................... 184
define_insnc.cciiiiiiii.. 117
define_insnexample....................... 118

define_insn_and_split 169

GNU Compiler Collection (GCC) Internals

define_insn_reservation.................. 186
define_peephole........................... 171
define_peephole2.......................... 174
define_query_cpu_unit 186
define_reservation........................ 188
define_split 167
defining attributes and their values........... 175
defining jump instruction patterns 160
defining looping instruction patterns 161
defining peephole optimizers................. 171
defining RTL sequences for code generation ... 164
delay slots, defining 182
DELAY_SLOTS_FOR_EPILOGUE 251
delayed branch scheduling 36
deletable i, 341
Dependent Patterns......................... 159
AESC ittt 340
destructor. 52
destructors, output of 292
deterministic finite state automaton 183, 188
DFA_PIPELINE_INTERFACE 274
DFmModeoiuiuiii i 81
digits in constraint............... 127
DImode.t 81
DIR_SEPARATORt 327
DIR_SEPARATOR_2.......coiiiinnnn, 327
directory options .md 171
disabling certain registers 219
dispatch table.............. 299
Aiv. ..o 92
div and attributes.............. 177
DIVDI3_LIBCALLcooiuiiiien... 259
division 92
divm3 instruction pattern 146
divmodm4 instruction pattern................ 147
DIVSI3_LIBCALLcooitiiien... 258
DO_BODY . ..ot 55
DO_COND. . ..ottt 55
DO_STMTt 55
DOLLARS_IN_IDENTIFIERS 320
doloop_begin instruction pattern............ 154
doloop_end instruction pattern.............. 153
DONE . .ottt e et e 165
DONT_REDUCE_ADDRcociuininnn.. 269
DOUBLE_TYPE_SIZE......... ..., 214
driver....... 193
DRIVER_SELF_SPECS........... ..., 194
DUMPFILE_FORMAT, 328
DWARF_CIE_DATA_ALIGNMENT 300
DWARF_DEBUGGING_INFO...................... 308
DWARF_FRAME_REGISTERS 237
DWARF2_ASM_LINE_DEBUG_INFO............... 309
DWARF2_DEBUGGING_INFO 308
DWARF2_FRAME_INFO................ ..., 308
DWARF2_GENERATE_TEXT_SECTION_LABEL 309
DWARF2_UNWIND_INFO.............c.co.onon... 300
DYNAMIC_CHAIN_ADDRESS 231

Index

E

‘E’in constraint 127
earlyclobber operand........................ 131
EDOM, implicit usage.............. 259
EH_FRAME_IN_DATA_SECTION 300
EH_FRAME_SECTION_NAME 300
eh_return instruction pattern............... 157
EH_RETURN_DATA_REGNO...................... 233
EH_RETURN_HANDLER _RTX 233
EH_RETURN_STACKADJ RTX 233
EH_USES. i 251
ELIGIBLE_FOR_EPILOGUE_DELAY.............. 251
ELIMINABLE_REGS 238
ELSE_CLAUSEttt et 55
EMIT_MODE_SETttt 312
EMPTY_CLASS_EXPR........, 55
EMPTY_FIELD_BOUNDARY...................... 208
ENDFILE_SPEC 196
eNAIANNESS . ..ot 5
enum machine_mode 81
enumreg classiiiiiiii.... 224
ENUMERAL_TYPE 42
epilogue. 248
epilogue instruction pattern................ 157
EPILOGUE_USESot 251
1= 94
eq and attributes......... o oo L 177
eg_attr.......... 177
EQ_EXPR. 61
equal ... 94
errno, implicit usage........................ 259
€SCaPEe SEQUENCES. . .ot vt 217
exception handling.......................... 233
exception_receiver instruction pattern 156
exclamation point........................... 131
exclusion_set 188
exclusive-or, bitwise................ 92
EXIT_BODY ... 321
EXIT_EXPR e 61
EXIT_IGNORE_STACK........... ..., 251
EXPAND_BUILTIN_SAVEREGS 254
expander definitions 164
expm?2 instruction pattern 147
expr_list i 113
EXPR_STMTttt e 55
EXPR_STMT_EXPR 55
EXPIESSION . o v v ettt et 61
expression codes 71
extendmn?2 instruction pattern............... 149
extensible constraints, 128
extern int target_flags................... 201
EXTRA_ADDRESS_CONSTRAINT 230
EXTRA_CC_MODES 265
EXTRA_CONSTRAINT 229
EXTRA_MEMORY_CONSTRAINT 229
EXTRA_SECTION_FUNCTIONS 276
EXTRA_SECTIONSot 276
EXTRA_SPECS i 196

383

extv instruction pattern..................... 150
extzv instruction pattern 150
F
‘F’in constraint 127
FAIL .o 165
FATAL_EXIT_CODE........., 327
FDL, GNU Free Documentation License. 355
features, optional, in system conventions. 201
ffs . 93
ffsm?2 instruction pattern 148
FIELD DECL i 49
FILE_STMTttt 55
FILE_STMT_FILENAME......................... 55
files and passes of the compiler................ 31
files, generated L 342
final pass. ... 36
FINAL_PRESCAN_INSN........... ..., 296
FINAL_PRESCAN_LABEL........... 297
FINAL_REG_PARM_STACK_SPACE............... 240
final_scan_insn........................... 251
final_sequence................. 298
FINALIZE_PICottt 279
FIND_ BASE_TERM.........., 262
FINI_SECTION_ASM_OP............cciea.... 276
finite state automaton minimization.......... 188
FIRST_INSN_ADDRESS.............c.c.vue.... 181
FIRST_PARM_OFFSET.............cciiinnan.n. 231
FIRST_PARM_OFFSET and virtual registers 87
FIRST_PSEUDO_REGISTER 218
FIRST_STACK_REG............ ..., 223
FIRST_VIRTUAL_REGISTER 87
e - 97
FIX_TRUNC_EXPR, 61
fix_truncmn?2 instruction pattern............ 149
fixed register 218
FIXED_REGISTERS......... ..ot 218
fixed_regs il 219
fixmn2 instruction pattern.................. 149
FIXUNS_TRUNC_LIKE_FIX_TRUNC.............. 316
fixuns_truncmn?2 instruction pattern 149
fixunsmn?2 instruction pattern............... 149
flags in RTL expression 75
float.... ..o 97
FLOAT_EXPR i 61
float_extendiiii.... 96
FLOAT_LIB_COMPARE_RETURNS_BOOL (mode,

COMPATISOM) v v veeeiee e 259
FLOAT_STORE_FLAG_VALUE 318
float_truncate............. 97
FLOAT_TYPE_SIZE....... ...t 214
FLOAT_WORDS_BIG_ENDIAN 205
FLOAT_WORDS_BIG_ENDIAN, (lack of) effect on

subreg ... 88
floating point and cross compilation.......... 310
Floating Point Emulation.................. 331
floatmn2 instruction pattern................ 149

384
floatunsmn?2 instruction pattern............. 149
FOR_BODYo e e 55
FOR_COND. ...ttt e e 55
FOR_EXPR. ...t 55
FOR_INIT_STMT ..ottt 55
FOR_STMT . ..ttt e 55
FORCE_CODE_SECTION_ALIGN 276
FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN.. 207
force _Teg ..ot 144
frame layout 230
FRAME_GROWS_DOWNWARD...................... 231
FRAME_GROWS_DOWNWARD and virtual registers ... 87
frame_pointer_needed...................... 249
FRAME_POINTER_REGNUM...................... 236
FRAME_POINTER_REGNUM and virtual registers ... 87
FRAME_POINTER_REQUIRED 238
frame_pointer_rtx................, 237
frame_related 79
frame_related, in insn, call_insn, jump_insn,
barrier,and set........................ 77
frame_related, inmem....................... 76
frame_related,inreg....................... 76
frame_related, in symbol_ref................ 78
ftruncm?2 instruction pattern................ 149
function........... 52
function body oL 55
function call conventions 7
function entry and exit...................... 248
function units, for scheduling 184
function-call insns 113
FUNCTION_ARGo 242
FUNCTION_ARG_ADVANCE................oo... 244
FUNCTION_ARG_BOUNDARY 245
FUNCTION_ARG_CALLEE_COPIES............... 243
FUNCTION_ARG_PADDING...................... 244
FUNCTION_ARG_PARTIAL_NREGS............... 243
FUNCTION_ARG_PASS_BY_REFERENCE........... 243
FUNCTION_ARG_REGNO_P...................... 245
FUNCTION_BOUNDARY.......... 207
FUNCTION_DECLcoiiiin.. 52
FUNCTION_INCOMING_ARG 242
FUNCTION_MODEiitiiiiiennn.. 318
FUNCTION_OK_FOR_SIBCALL 253
FUNCTION_OUTGOING_VALUE 246
FUNCTION_PROFILER......................... 252
FUNCTION_TYPE 42
FUNCTION_VALUE, 245
FUNCTION_VALUE_REGNO_P 246
functions, leaf 222
fundamental type................ ... L 42
G
‘g’ in constraint oL 127
‘G’ in constraint oL 127
GCC and portability 5
GCC_DRIVER_HOST_INITIALIZATION........... 328

GCOV_TYPE_SIZE........... ..., 215

GNU Compiler Collection (GCC) Internals

B 94
ge and attributes........... il 177
GE_EXPR. 61
GEN_ERRNO_RTX 259
geNCOdEeS . ..ot 32
genconfigl 37
general operand.....................ai... 120
GENERAL_REGS 223
generated files...................., 342
generating assembler output................. 124
generating insns o .. 119
genflags............... 32
get_attr 177
get_attr_length........................... 181
GET_CLASS_NARROWEST_MODE 84
GET_CODE. 71
get_frame_size................ 238
get_insns Ll 105
get_last_insn.............. 105
GET_MODE. 83
GET_MODE_ALIGNMENT............... 84
GET_MODE_BITSIZE............. ..., 83
GET_MODE_CLASS i 83
GET_MODE_MASK 83
GET_MODE_NAME, 83
GET_MODE_NUNITS0t 84
GET_MODE_SIZEot 83
GET_MODE_UNIT_SIZE...............c.ouiuo... 84
GET_MODE_WIDER_MODE........................ 83
GET_RTX_CLASS 72
GET_RTX_FORMAT 73
GET_RTX_LENGTH.......... 73
BOU . ottt 94
geu and attributes........ o oo 177
GGC .. 339
global common subexpression elimination. 34
global register allocation 35
GLOBAL_INIT_PRIORITY 52, b5
GO_IF_LEGITIMATE_ADDRESS 261
GO_IF_MODE_DEPENDENT_ADDRESS............. 263
GOTO_DESTINATION...............ovinin... 55
GOTO_FAKE_P 55
GOTO_STMT ...t 55
graph coloring register allocation.............. 35
greater than.............. 94
=28 94
gt and attributes L 177
GT_EXPR. 61
gtu ... 94
gtu and attributes......... ... o o 177
GTY . 339

Index

H

‘Hin constraint 127
HANDLE_PRAGMA i, 319
HANDLE_PRAGMA_PACK_PUSH_POP.............. 320
HANDLE_SYSV_PRAGMA........................ 320
HANDLER. . ..t 55
HANDLER_BODYo 55
HANDLER_PARMS i, 55
hard registers.......... o L 86
HARD_FRAME_POINTER_REGNUM................ 236
HARD_REGNO_CALL_PART_CLOBBERED........... 218
HARD_REGNO_CALLER_SAVE_MODE.............. 248
HARD_REGNO_MODE_OK.............coouv.... 220
HARD_REGNO_NREGS 220
HAS_INIT_SECTION............ ..., 294
HAVE_DOS_BASED_FILE_SYSTEM............... 327
HAVE_POST_DECREMENT....................... 260
HAVE_POST_INCREMENT....................... 260
HAVE_POST_MODIFY_DISP 260
HAVE_POST_MODIFY_REG...................... 260
HAVE_PRE_DECREMENT........................ 260
HAVE_PRE_INCREMENT........................ 260
HAVE_PRE_MODIFY_DISP...................... 260
HAVE_PRE_MODIFY REG...............cou.... 260
HCmodet 82
HFmode........ ..., 81
BAGR . e 86
HImode........ ..., 81
HImode,ininsn.............. 108
host makefile fragment 333
HOST_BIT_BUCKETiiiinnnn. 328
HOST_EXECUTABLE_SUFFIX 328
HOST_OBJECT_SUFFIX............cvvinnnn.. 328
HOT_TEXT_SECTION_NAME 275
I

‘47inconstraint 127
‘T’in constraint 127
IBM_FLOAT_FORMAT, 211
identifier........... 41
IDENTIFIER_LENGTH.......................... 41
IDENTIFIER_NODEciinnnnnnn.. 41
IDENTIFIER_OPNAME P............ciiviinn.. 41
IDENTIFIER_POINTER............vviinnn... 41
IDENTIFIER_TYPENAME P 41
IEEE_FLOAT_FORMAT, 211
ifconversion.................c.iiiiiiii... 35
IF_COND. ... e 55
if_marked 341
IF _STMT . .o e 55
if_then_elsecoiiiiiinininan.. 94
if_then_else and attributes 176
if_then_elsewusagec.ooon.. 98
IFCVT_EXTRA_FIELDS...........oviiin.. 323
IFCVT_INIT_EXTRA_FIELDS 323
IFCVT_MODIFY_CANCEL............cvvuuunn.. 323

IFCVT_MODIFY_FINAL........................ 323

385
IFCVT_MODIFY_INSN........ccvviiiin... 323
IFCVT_MODIFY_MULTIPLE_TESTS.............. 323
IFCVT_MODIFY_TESTS...... ..ot 322
IMAGPART _EXPR e 61
immediate_operand......................... 120
IMMEDIATE_PREFIX.............. .. 298
in_data.......oii 276
in_struct 79
in_struct, in code_label and note........... 76
in_struct,indinsn.......................... 75
in_struct, in insn and jump_insn and call_insn
.. 75
in_struct, in insn, jump_insn and call_insn
.. 77
in_struct,in label_ref 75
in_struct,inmem, 76
in_struct,inreg 76
in_struct,in subreg........................ 78
In_text. 276
include. ... 170
INCLUDE_DEFAULTSttt 199
inclusive-or, bitwise 92
INCOMING_FRAME_SP _OFFSET 232
INCOMING_REGNOovviii e 219
INCOMING_RETURN_ADDR _RTX 232
INDEX_REG_CLASS 225
indirect_jump instruction pattern........... 153
INDIRECT _REFttt 61
INIT_CUMULATIVE_ARGS...................... 244
INIT_CUMULATIVE_INCOMING_ARGS............ 244
INIT_CUMULATIVE_LIBCALL_ARGS............. 244
INIT_ENVIRONMENTccviiinnnnn.. 198
INIT_EXPANDERSt 204
INIT_EXPR ...t 61
init_machine_status....................... 204
INIT_SECTION_ASM_ OP 276, 294
INIT_TARGET _OPTABS.........ccviiinn. 259
INITIAL_ELIMINATION_OFFSET............... 239
INITIAL_FRAME_POINTER_OFFSET............. 238
initialization routines 292
INITIALIZE_TRAMPOLINE 256
inline on rtx, automatic 32
inline on trees, automatic..................... 32
inlining 314
S =3 105
insnand ‘/f 77
insnand ‘/i’. 7
insnand /3 ... 78
insnand /s’ 75, 77
insnand ‘/u’....... ... 75
insnand /v 75
insn attributes., 175
insn canonicalization........................ 163
insnincludes 170
insn lengths, computing 180
insn splitting L. 167
insn-attr.h.......... 175
INSN_ANNULLED_BRANCH_P 75

386

INSN_CACHE_DEPTH.........., 257
INSN_CACHE_LINE_WIDTH 257
INSN_CACHE_SIZE.......... ..., 257
INSN_CODE 108
INSN_DEAD_CODE_P.........c. i, 75
INSN.DELETED_P....... i, 75
INSN_FROM_TARGET_P......... 75
insn_list ... 113
insn_listand /i’ 77
INSN_REFERENCES_ARE_DELAYED.............. 321
INSN_SETS_ARE_DELAYED 321
INSN_UID . ..ot e 104
INSNS. .ot 104
insns, generating............................ 119
insns, recognizing 119
instruction attributes 175
instruction combination 34
instruction latency time........ 183, 186, 188, 190
instruction patterns................, 117
instruction recognizer 37
instruction scheduling 35, 36
instruction splitting............... 167
insv instruction pattern..................... 150
INT_TYPE_SIZE 213
INTEGER_CSTttt 61
INTEGER_TYPE 42
INTEGRATE_THRESHOLD....................... 318
integrated 79

integrated, in insn, call_insn, jump_insn,
barrier, code_label, insn_list, const, and

NOBE. ..o 77
integrated,inreg 76
integrated, in symbol_ref................... 78
Interdependence of Patterns 159
interfacing to GCC output..................... 7
interlock delays 183, 190
INTMAX_TYPE 216
introduction............... il 1
INVOKE_ mainooiniininn.a.. 294
10T . 92
ior and attributes............... 176
ior, canonicalization of 163
iorm3 instruction pattern 146
IS_ASM_LOGICAL_LINE_SEPARATOR............ 283
J
JUMD . oot 80
jump instruction pattern..................... 151
jump instruction patterns 160
jump instructions and set.................... 98
jump optimization 33
jump threading 33
jump,incall_insn.......................... 78
jump,indinsn.......... 78
jump,inmem........... 76
JUMP_ALIGN 301

jump_insn ... 105

GNU Compiler Collection (GCC) Internals

jump_insnand /£’ oL 7
jump_insnand /i’ ool 7
jump_insn and ‘/s’.............. 75, 77
jump_insn and ‘/u ... 75
jump_insn and /v’ ... 75
JUMP_LABEL 105
JUMP_TABLES_IN_TEXT_SECTION.............. 277
L

LABEL_ALIGNt 302
LABEL_ALIGN_AFTER_BARRIER 301
LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 301
LABEL_ALIGN_MAX_SKIP...................... 302
LABEL_ALT ENTRY_P........ 106
LABEL_DECLttt 49
LABEL_KINDottt 106
LABEL_NUSESot 106
LABEL_OQUTSIDE_LOOP_P.......... 75
LABEL_PRESERVE P 76
label_ref 85
label_ref and /s’ ... 75
label_ref and /v’ ... 76
label_ref, RTL sharing 114
LABEL_REF_NONLOCAL_P........... 76
LABEL_STMT ot 55
LABEL_STMT_LABEL0iiennn.. 55
large return values.......................... 247
LARGEST _EXPONENT_IS_NORMAL 212
LAST_STACK_REG.........., 223
LAST_VIRTUAL_REGISTER 87
LD_FINI_SWITCH.........cooiiutiiennn. 294
LD_INIT_SWITCH..........oiiiiinenn. 294
LDD_SUFFIX ...ttt 295
d e 94
le and attributes 177
LE_EXPR.o 61
leaf functions............................... 222
leaf _function_p........................... 152
LEAF_REG_REMAP, 222
LEAF_REGISTERSt 222
left rotate ... 93
left shift 92
LEGITIMATE_CONSTANT_P 264
LEGITIMATE_PIC_OPERAND P 279
LEGITIMIZE_ADDRESS.......... ..., 262
LEGITIMIZE_RELOAD_ADDRESS 263
length....... ... 339
lessthan............. 94
lessthanorequal............................ 94
= 94
leu and attributes............... 177
LIB_SPEC ...ttt e 195
LIB2FUNCS_EXTRA i 331
LIBCALL_VALUE, 246
‘libgec.a’ oo 258
LIBGCC_NEEDS_DOUBLE....................... 260
LIBGCC_SPECiiti e 195

Index

LIBGCC2_CFLAGSot
LIBGCC2_WORDS_BIG_ENDIAN
library subroutine names....................
LIBRARY PATH_ENV........
LIMIT_RELOAD_CLASS....... ...,
LINK_COMMAND_SPEC.............ciiiinna ..
LINK_ELIMINATE_DUPLICATE_LDIRECTORIES ...
LINK_GCC_C_SEQUENCE_SPEC
LINK_LIBGCC_SPECIAL.......................
LINK_LIBGCC_SPECIAL_1
LINK_SPECt
linkage. ...
LINKER_DOES_NOT_WORK_WITH_DWARF2.........
list oo

LOAD_ARGS_REVERSED........................
LOAD_EXTEND_OPt
load_multiple instruction pattern...........
local register allocation.......................
LOCAL_ALIGNMENT,
LOCAL_CLASS_ Pot
LOCAL_INCLUDE DIR..............viuinn.n.
LOCAL_LABEL_PREFIX..........
LOCAL_REGNOttt
LOG_LINKS
logical-and, bitwise
logm?2 instruction pattern
LONG_DOUBLE_TYPE_SIZE
LONG_LONG_TYPE_SIZE.......................
LONG_TYPE_SIZE......... ...,
longjmp and automatic variables..............
loop optimization............................
LOOP_ALIGN . ..ottt e
LOOP_ALIGN_MAX_SKIP............ ...,
LOOP_EXPR ...
looping instruction patterns
LSHIFT_EXPR i
Ishiftrt........ i
lshiftrt and attributes.....................
1shrm3 instruction pattern
L

‘m’ in constraint,
machine attributes..........................
machine description macros..................
machine descriptions........................
machine mode conversions....................
machine modes
machine specific constraints
MACHINE_DEPENDENT_REORG
machine mode
macros, target description...................

387
MAKE_DECL_ONE_ONLY (decl) 289
make_safe_from............ 166
makefile fragment.............., 331
makefile targets.......... il 15
marking roots ool 342
MASK_RETURN_ADDR.............cciiuiinnn.. 300
match_dup.............ooiiiiii.. 120, 174
match_dup and attributes.................... 180
match_insn0, 123
match_insn2ciiiiiiiin.. 123
match_op_dup............... 122
match_operand 119
match_operand and attributes............... 176
match_operatorc..iii... 121
match_par_dup............. ..., 123
match_parallel 122
match_scratch......................... 120, 174
matching constraint............... 128
matching operands.......................... 124
math libraries 8
math, in RTL 90
MATH_LIBRARY i 322
MAX_BITS_PER_WORD......................... 205
MAX_CONDITIONAL_EXECUTE 32